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Abstract: This paper describes an online algorithm for detecting cow’s beat-to-beat interval on a small embedded 

microcontroller.  The target device is an ECG implant which only provides limited calculation power and insufficient 

storage memory for long term complete ECG data logging.  No common computationally efficient method for detecting the 

human R-wave was found successful for cattle ECG data with the used measurement configuration. Our algorithm detects a 

cow’s S-wave, which is the most distinguishable part of the QRS-complex.  The offset and amplitude adaptive algorithm 

utilizes only arithmetic operations and logic conditions. 
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1  Introduction 1  

Heart rate variability is recognized as an interesting 

parameter for studying welfare of cattle (von Borell et al., 

2008).  It has been used to study for instance the stress 

level of cows in different milking systems (Gygax et al., 

2008; Hagen at al. 2005), temperament of cow (Frondelius 

et al. 2015), and dehorning pain in calves (Stewart et al., 

2009). 

However, measuring electrocardiogram (ECG) with 

surface electrodes in normal production environments is 

very impractical and the measurements are generally noisy 

(Chen et al. 2000).  Our research group has been working 

on an implantable ECG device for measuring heart rate 

variability in dairy cows (Riistama and Vuorela, 2011).  

The aim of this study was to develop a simple and fast 

real-time algorithm for detecting beat-to-beat intervals 

from bovine ECG measured with an implantable device.  

This would enable the device to only store the interval 
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times instead of raw ECG reducing the storage space 

considerably.  The implantable measurement device, on 

which the algorithm will be embedded on, has a 16-bit 

ultralow power RISC microcontroller running at 8 MHz 

clock speed (Riistama and Vuorela, 2011).  

As the highest possible ADC speed will be 340 Hz, 

the detector algorithm must execute in much less than 3 

ms.  This leads to a high demand of simplicity in the 

algorithm computation.  After testing several simple 

derivative based methods developed for human ECG 

(Friesen et al. 1990) with poor performance we developed 

our own method.  In more complex existing algorithms 

the baseline wander is often removed by higher arithmetic 

methods, such as ensemble averaging, finite impulse 

response filters or cubic splines (Jane et al., 1992).  A 

derivative high-pass filter is more suitable considering our 

target application, where peak timing is essential but true 

voltage values insignificant.  

This paper demonstrates the development and 

operation of the developed algorithm using ECG measured 

with surface electrodes. 

2  Materials and methods 
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2.1 Data collection 

Surface ECG was recorded from 11 cows using 

portable Embla titanium recorder device that weighed 0.3 

kg and measured 12 cm × 8 cm × 3 cm (Embla Titanium, 

Embla Systems Inc., Broomfield, USA).  The cables, 

mobile recording device and a counter-weight were fixed 

to the udder holder on the back of the cow.  Ten curves 

were recorded at 256 Hz and 4 curves at 512 Hz. The 

cows were kept free in individual pens (3 m × 3 m) during 

the recording. 

The cows were moved and restrained in a pen used 

normally for veterinary purposes and prepared for the 

experiment.  The left side of the cows behind the 

shoulders was first shaved with clippers and afterwards 

with a manual razor.  The shaved area (left side 15 cm × 

30 cm was cleaned with a liquid disinfectant.  

The positive ECG electrode was placed on the left 

side of the cow over the heart area at the level of the 

elbow and over the 5th intercostal space, the negative 

electrode was placed 10 cm above it vertically, and the 

ground electrode was placed caudally of the horn base. 

The used connection corresponds to the one used in 

the implantable device. 

2.2 Cow’s QRS-complex 

The shape of the QRS-complex (Figure 1) depends 

on both the individual animal and the installation of the 

implant.  The Q-wave was not detectable in any of our 

measurements but to avoid confusion we still use the 

well-established abbreviation ―QRS‖.  The R-wave, 

when present at all, is also too weak to be distinguished 

from relaxation waves such as the T-wave, which is higher 

in amplitude.  In some cows the R-wave did not rise 

above the noise level at all.  The S-wave is the most 

specific component of the ECG data and was thus chosen 

as the target for the detection algorithm. Similar 

observations and thorough explanations on lactating 

Holstein cow ECG can be found in (Deroth, 1980).  This 

is why we refer to the SS-interval instead of the commonly 

used term ―successive RR-interval‖ (Tiusanen et al., 2015).

2.3 The algorithm 

The intended embedded platform would allow quite 

heavy calculations, but we decided to apply only 

multiplication, division, addition, subtraction and logical 

conditions in order to serve even lower-level future 

devices. 

A simple pace error detector assisted us during 

algorithm development and parameter tuning by giving a 

preliminary count of detection errors.  The final 

evaluation was performed by counting and classifying 

every heart beat manually.  

 

Figure 1 One cow’s QRS-complex as an average of 100 detected heart beats measured at 256 Hz 
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Both the amplitude and the baseline of our ECG 

recordings were unstable.  Reliable S-peak detection 

required an adaptive algorithm.  Therefore the algorithm 

includes simple amplitude monitoring and baseline 

tracking.  

2.3.1 Amplitude monitoring 

The amplitude A (μV) was calculated as the 

difference between the highest positive and the lowest 

negative voltage values by Equation (1) whenever a new 

voltage sample VNEW is measured.  
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where VMAX is the positive and VMIN the negative 

envelopes, AOLD the previously calculated amplitude value 

(μV) and f the sampling frequency (Hz).  

The envelope values are multiplied by 1 - 1/f to give 

them a sampling frequency independent 2.2 s fall time 

towards zero.  The old amplitude value AOLD has the 

weight 1-1/f over the present envelope difference weight 

1/f.  Thereby A moves towards the present envelope 

difference value with a 2.2 s fall time (Figure 2).

2.3.2 Signal normalization 

The baseline tracker is a custom high-pass filter, 

which simultaneously increases the signal dynamics and 

calculates the baseline B by the four steps in Equation (2). 
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where dV is the amplified square of the derivate, pV 

the amplification coefficient for the difference, VNEW and 

VOLD the newest and previous voltage sample values (μV) 

respectively, f the sampling frequency (Hz), A the 

amplitude (μV), ∆B the step change in the baseline (μV), B 

and BOLD the present and previous baselines (μV) 

respectively and VNORM the normalized voltage sample 

(μV). 

Fast changes in VNEW input result in a high dV value 

which forces ∆B close to zero and the baseline level B will 

not change.  On the other hand, B level will follow all 

slow VNEW changes (Figure 3).  Appropriate tuning of 

coefficients pV and pB produce a VNORM curve where the 

QRS-complex remains sharp but most of other waves are 

attenuated (Figure 4).

  

 

Figure 2  ECG signal V, positive VMAX and negative VMIN envelopes and the resulting amplitude A 
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In some occasions the input V changes very little, dV 

gets values close to zero, ∆B becomes excessively high 

and produces a large step in B.  For this reason we 

limited ∆B to 5% of the amplitude per sample.  This 

value does not affect filter response but prevents undesired 

steps in B when unpredicted cases such as disturbance in 

the signal occur.

2.3.3 S-peak detection trigger 

The actual triggering of the S-wave is a difference 

formula similar to those evaluated in (Friesen et al. 1990).  

A one-sample difference is too sensitive to noise and 

causes false alarms. The duration of the falling S-wave for 

a cow (as seen in Figure 1) is 15-18 ms.  We found 15 ms 

to be the best differencing time to detect the S-wave 

reliably but to not react on noise or T-waves.  At our 

sampling frequency 256 Hz this means differencing over 4 

samples. This interval must be adjusted for every f. 

The S-wave trigger T is the square of the difference 

over four samples dT in relation to the amplitude A in 

Equation (3).  Squaring improves dynamics which 

reduces false trigs. For our data, the S-wave has started 

when T > 0.02. 
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2.3.4 Peak location search time 

Once the condition T > 0.02 is met, the algorithm will 

keep searching for the lowest VNORM value for 300 ms.  

This search time allows a heart rate as high as 200 

 

Figure  3  The raw ECG input VNEW and the tracked baseline B. 

 

 

Figure 4 The normalized VNORM of the ECG data in Figure 3 
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beats/min without multiple S-waves occurring during the 

search.  The search time is not critical to the algorithm 

performance, but a long search is beneficial in noisy signal 

analysis since it gives the algorithm the opportunity to find 

the S-wave bottom peak even if triggered by a false T 

alarm. On the downside, if noise amplitude exceeds the 

signal, faulty peaks will be detected.  Once the peak is 

detected, new triggering is prohibited until 300 ms has 

elapsed from the S-wave peak. 

2.4 Validation 

We developed the algorithm using complete ECG 

curves from 11 individual cows and by programming the 

detector into a MATLAB graphical user interface.  The 

detector errors were divided into four categories, which 

are presented in the examples in Figure 5.  

Since the primary application will be the comparison 

of lying time HRV we recorded 14 complete 10 min ECG 

curves from 10 individual cows during lying time.  10 

curves were recorded at 256 Hz and 4 curves at 512 Hz.  

After executing the detector program we counted all 

detection errors and classified them according to Figure 5.  

The errors were found from the large data by evaluating 

every peak where the successive SS-interval was more 

than 30 ms.  Most of these peaks were correctly detected, 

but this approach reduced the amount of hand work.

 

(a) the peak location is dislocated; (b) one false peak is detected; (c) peak is completely undetected; (d) many peaks are 

indecisive on whether the detector works correctly or not 

Figure 5 Detector error classification 
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The detector performance was also evaluated during 

cow’s free movement in an individual pen.  All the 

examples in Figure 5 are from these recordings.  The 

baseline would shift up to 10 amplitudes during only a few 

heart beats but always returned to the zero level.  Since 

the baseline shifts clearly hampered the detector 

performance, we evaluated 20 such cases and classified 

the baseline shift speed visually as in Figure 6 in order to 

estimate the baseline shift influence on detection errors.

Our device also picked up different kinds of 

interference.  In Figure 5 the RFID reader induction 

pulses can be noticed in the right hand part in Figures 5a 

and 5b.  Where the pulses were higher in amplitude than 

the actual S-waves, they corrupted these periods of the 

data into the indecisive category.  These sections of data 

were not evaluated in detail. 

3  Results 

Table 1 presents the results from the error 

calculations. The detector algorithm performs very well on 

the lying time ECG.  Only 7 of all the 5115 heart beats 

were misinterpreted.  The performance becomes much 

worse once the cows start moving in the barn.  An 

average 3.7% of the heart beats go wrong, when the 

indecisive beats are excluded.

  

 

Figure 6 Example of baseline shift speed, which is 2 amplitudes per beat interpreted visually from the data 

 

Table 1 ECG detection algorithm validation results 

Behaviour Cow name f , Hz Heart beats 
Number of errors  Error 

probability, % Dislocated False Undetected Indecisive  

Lying 

Triumpf 256 427 1 0 0 0  0.23 

Triumpf 256 428 1 0 0 0  0.23 

Tussaud 256 778 0 0 0 0  0.00 

Unikko1 256 469 0 0 0 0  0.00 

Unikko2 256 509 0 0 1 0  0.20 

Unikko2 256 480 1 0 1 0  0.42 

Unikko2 256 495 0 0 1 0  0.20 

Viennetta1 256 406 0 0 0 0  0.00 

Viennetta1 256 366 1 0 0 0  0.27 

Viennetta2 256 380 0 0 0 0  0.00 

Viennetta2 256 377 0 0 0 0  0.00 

Moving 

Anna 512 814 12 12 4 1  3.56 

Ceres 512 625 2 10 26 2  6.40 

Maja 512 733 9 13 1 0  3.14 

Martha 512 824 4 5 42 0  6.19 

Tavernessa 
1)

 256 1588 11 2 1 20  0.89 

Tavernessa 
2)

 256 2449 89 11 6 17  4.36 

Note: 1) 20 min of quite noisy data.  2) 30 min of very noisy data 

 

416   March, 2016         AgricEngInt: CIGR Journal Open access at http://www.cigrjournal.org                 Vol. 18, No. 1  

 



March, 2016      Simple online algorithm for detecting cow’s ECG beat-to-beat interval using a microcontroller   Vol. 18, No. 1  417 

According to the simple baseline shift test (Figure 7) 

a shift slower than 1 amplitudes per heart beat causes 

errors only randomly.  When the baseline shifts faster 

than 2 amp/HB, it is likely for the detector to make one or 

several errors.

4  Discussion 

We have successfully developed a new algorithm for 

detecting beat-to-beat intervals from cattle ECG that can 

run on a resource constrained implant.  The algorithm 

performs well during rest, but the detection performance 

decreases on surface recordings during movement.  The 

developed algorithm worked for all of the tested cows, 

whereas the tested human algorithms from Friesen et al. 

(1990) were completely unable to detect the R or S wave 

for most of the animals in the dataset.  

We found that the amplitude of the R-peak in cow 

ECG is very small as compared to humans.  This is in 

accordance to the findings in (Tiusanen et al. 2015; 

Marques, 2008; Rezakhani, 1980). Therefore we focused 

on detecting the SS-interval which is a lot less susceptible 

to noise. 

Eventually the changes in HRV will be monitored by 

comparing measurements during cow’s lying times.  This 

excludes many problems concerning muscular EEG 

interference and sensor movement.  Therefore the 

detector algorithm was primarily validated using ECG 

data measured from lying animals. Further, the implant 

measurements have less noise than surface measurements 

that were used for the algorithm development. 

The dT could be restricted to negative values, but we 

did not find it necessary.  A noise figure could be used to 

adjust T threshold and search time. 

In noisy conditions a too fast drop in V could be 

excluded from triggering the search, since it probably is 

distortion instead of an S-wave.  This would still not help 

detecting a heartbeat occurring simultaneously with the 

disturbance. 

5  Conclusions 

The developed algorithm can be used to record 

beat-to-beat intervals from adult cows in real time using 

an implantable ECG monitor. The algorithm is included in 

MATLAB based graphical user interface for simple use in 

animal welfare research.  
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