
EXPERIMENTATION COOKBOOK
An introduction to systematic experimentation

for software-intensive businesses

CONTINUOUS
D

IM
EC

C
PU

BL
IC

AT
IO

N
S

SE
RI

ES
 N

O
. 1

5

RESULT PUBLICATIONS 3/2017

Myriam Munezero, Sezin Yaman,
Fabian Fagerholm, Petri Kettunen,
Hanna Mäenpää, Simo Mäkinen,
Juha Tiihonen, Leah Riungu-Kallio-
saari, Antti-Pekka Tuovinen, Markku
Oivo, Jürgen Münch & Tomi Männistö

Continuous Experimentation Cookbook
An introduction to systematic experimentation

for software-intensive businesses

Authors |Myriam Munezero, Sezin Yaman, Fabian Fagerholm,
Petri Kettunen, Hanna Mäenpää, Simo Mäkinen, Juha Tiihonen,
Leah Riungu-Kalliosaari, Antti-Pekka Tuovinen, Markku Oivo,
Jürgen Münch & Tomi Männistö
Cover | Marja Hautala, Muuks Creative
Images | iStock
Drawings | Simo Koivunen, Cultural Cooperative Vehrä
Design | Katja Kuuramaa, Cultural Cooperative Vehrä

Publisher | DIMECC Oy
 Korkeakoulunkatu 7
 33720 Tampere
 www.dimecc.com

ISBN 978-952-68735-1-0

© Writers

Helsinki, Finland 2017

Content

RESULT PUBLICATIONS 3/2017

Executive Summary 5

1 Introduction to Continuous Experimentation 9

2 Continuous Experimentation: Four Cases 13
 Case Ericsson: First experiences in structured experimentation 13
 Case Solita: Setting a baseline for learning 17
 Case Vaadin: Conducting experiments to better understand customer needs 19
 Case Bittium: Experimenting towards innovation 22

3 Recipes 25
 Receipe 1 – Setting clear goals for the experiment 25
 Receipe 2 – Defining a concrete hypothesis 27
 Receipe 3 – Designing and using the experiment object 28
 Receipe 4 – Setting up a systematic experiment plan 29
 Receipe 5 – Testing your experiment plan using mock data 31
 Receipe 6 – Using existing data to test hypotheses 32
 Receipe 7 – Collecting the right data in the right format 33
 Receipe 8 – Preparing experiment results for decision-making 35

4 Pitfalls 37

5 Tools and Models 41
 The Wheels of Value Model 41
 Canvas Tools for Linking Experiments to Product and Business Development 55
 VALUE Tool 61
 Continuous Experimentation Infrastructure 65

Glossary of Terms 69

4 5

An increasing number of companies are involved in building
software-intensive products and services – hence the popular
slogan “every business is a software business”. Software allows

companies to disrupt existing markets because of its flexibility. This
creates highly dynamic and competitive environments, imposing
high risks to businesses. One risk is that the product or service is of
only little or no value to customers, meaning the effort to develop it
is wasted. In order to reduce such risks, you can adopt an experiment-
driven development approach where you validate your product ideas
before spending resources on fully developing them. Experiments
allow you to test assumptions about what customers really want and
react if the assumptions are wrong.

This book provides an introduction to continuous experimentation,
which is a systematic way to continuously test your product or service
value and whether your business strategy is working. With real case
examples from Ericsson, Solita, Vaadin, and Bittium, the book not
only gives you the concepts needed to start performing continuous
experimentation, but also shows you how others have been doing it.

Continuous experimentation is also a means of expanding the
viewpoint of product and service development. The focus should
shift from just identifying and solving technical problems to
identifying the right customers, identifying their relevant problems,
and offering valuable experiences for them. While this can be based
on experience, personal opinions, and guesswork, approaching
the issue in a more systematic way will result in improved software
products and services. The main idea is using customer behaviour
data to test assumptions about products or services and to support
decision-making. Figure 1 depicts the overall model for continuous

Executive Summary
If you only have time for one chapter, this is the one.

6 7

experimentation from idea to explicated assumption and finally with
data obtained form the experiment to decision-making and next
experiment.

Development of software-intensive products and services
increasingly occurs by continuously deploying product or service
increments, such as new features and enhancements to customers.
Each increment creates a slightly different customer and user
experience. Businesses must continuously find out what their
customers need in order to provide improved value. Business people
and developers continuously collect direct customer feedback and
observe usage behaviour, before the actual development project and
even after delivery of the product or service to customers. In the web
world, this is already the norm, but the examples and models in this
book show that it can be done in other software-intensive industries
as well.

Continuous experimentation, the approach presented in this
cookbook, is a systematic approach for linking customer behaviour to
development decisions. In addition to collecting data from product

or service usage, one proactively introduces changes to the product
or service as experiments in order to learn how the customer reacts
to them, possibly changing the customer’s behaviour. Collecting data
on these actual usage changes allows informed decision making.
Doing this continuously means that companies stay up to date with
the direction of the market as they learn more and more about who
their customers are and what they want – even as they change.

Experiments rely on small, fast, and cheap probes to create a more
complex and dynamic strategy for the future. They can be conducted
as a way to gain deeper customer insight, identify means to increase
customer loyalty, product feature usage behaviour and in identifying
the best business model. However, in order to conduct successful
experiments, a few key elements should be understood, such as how
to conduct them systematically and what the pitfalls are.

This cookbook gives an introduction to continuous experi-
mentation and offers actionable recipes and tools to guide its
adoption by businesses. The book offers concrete and practical
advice with a solid theoretical background needed to conduct
systematic experiments. The guidelines, tools, models, experiences,
and examples given in the book have been developed in
collaboration with researchers and software companies that are part
of the Need for Speed research program. The company cases from
Ericsson, Solita, Vaadin, and Bittium provided in this book showcase
experiences from adopting and conducting experiments.

This book primarily targets practitioners involved in the
development of software products and services who would like
to adopt continuous experimentation as a way to improve the
development or business processes. It is also useful for all those
interested in the subject generally.

The book is divided into five main chapters. The first chapter
gives an introduction to continuous experimentation and its main
elements. Case examples, demonstrating experiments conducted by
companies, are given in Chapter 2. Chapter 3 presents a collection of
recipes to guide you when starting the continuous experimentation
cycle. These are linked to the case examples to show their practical
application. As conducting experiments does come with pitfalls,
a checklist of things to avoid is provided in Chapter 4. Chapter 5
provides a sample of tools and models that can be used to structure
the experimentation activity and reach results faster.

Figure 1. Continuous experimentation cycle.

Experiment
Execution

Experiment
Object

Assumption

Analysis

Experiment
Idea

Business
Strategy

8 9

Before attempting to make bold product or service development
or business decisions, it is often best for companies to make
sure that knowledge and data – and not just assumptions or

opinions – are guiding the process. Experiments are an efficient
way to obtain this knowledge and data, and bring objective
assessments of initiatives and plans in business or development
decisions. Experimentation brings knowledge and data from the
real environment of products and services to back up decisions on
guiding the future of the development.

Continuous experimentation is a development approach where
the R&D and business process is guided by constantly conducting
systematic experiments and collecting user feedback. It requires
a company to utilise empirical evaluation of their offerings, e.g.,
features and products, in order to avoid unnecessary product risks.
This helps to make data- and knowledge-driven decisions and to
ensure that the development is focused on features that provide real
value for customers.

Particularly in the software development domain, experimentation
can support a wide variety of decision-making situations. It can
provide answers to software development questions such as: Does
the product or a feature solve users’ real problems and thus provide
value? Which of the alternative implementations do users like best?
Have the customers changed their behaviour? Does the product
(still) fit the market or a segment?

Haphazard or ad-hoc experimentation can produce interesting
data, but may fail to reveal the reliable and valuable knowledge
required to make good decisions. Systematic experimentation
requires the ability to identify areas where experiments are needed,
would be beneficial, and would be worth the effort. In addition,

1 Introduction to
 Continuous Experimentation

10 11

the idea is invalid. The set of assumptions can be prioritised and the
most important assumption is then selected for a more detailed,
systematically designed experiment where the assumption is turned
into a testable hypothesis. The experiment is designed so that after
seeing the results, it is possible to make a decision:

•	 Kill the idea – the entire idea is so flawed that it makes no
sense to continue with it.

•	 Rethink the idea – there is something wrong with the idea but
the experiment indicates it could work in a different form.

•	 Continue – the experiment shows the idea is promising and
the next assumption should be tested.

For conducting meaningful experiments, experimenters need
to identify and separate an independent variable (the presumed
cause) from a dependent variable (the observed effect) and hold
all other potential causes constant. Then the independent variable
can be manipulated through a treatment, in order to study changes
in the dependent variable. Carefully conducted experiments can
yield insights in company operations and test assumptions of which
variables cause which effects. Experimenters need to have a clear
purpose for the experiment and have a good hypothesis to test. For
instance, a weak hypothesis (such as “we can increase our sales”)
doesn’t specify a particular independent variable to test on a specific
dependent variable, which makes it difficult to either support or reject
that hypothesis. A good hypothesis helps delineate those variables.

One critical aspect of an experiment is how to achieve the
manipulation at low enough cost and quickly enough in order to
justify the experiment. In software development, the manipulation
includes the creation of an experiment object, such as a minimum
viable product (MVP) or minimum viable feature (MVF) that can be
given to users. It is highly important that the experiment object is
designed to represent the critical aspects of the final product or
service so that the results achieved in the experiment can actually be
used in decision-making.

The release of the experiment object is followed by careful
observation, data collection and analysis, which yields insight into
the relationships between cause and effect. There are many questions
involved in designing and running the experiment. For example,
choosing the right number of users to involve in the experiment not
only has an impact on the statistical validity of the experiment, it
also has an impact on the cost of the experiment. Deciding on how
long to observe the users further depends on the variables and the
success criteria included in the hypothesis, i.e., the criteria at which
the hypothesis is falsified or validated.

The main challenges of continuous experimentation are how to
form proper hypotheses, make good experiment designs, and utilise
experiment results in decision making. As many companies start or
continue to discover the benefits of conducting experiments, the
next steps include creating value, which comes from analysing the
data and utilising the results for decision-making.

Figure 2. Continuous experimentation links decision-making to systematic
experimentation. The systematic part ensures that there is a repeatable way of
getting reliable data for decision-making.

The detailed cycle of continuous experimentation is shown in
Figure 2. Continuous experimentation starts by identifying an idea
that needs to be validated. The idea can come from various sources,
but is often a part of the product strategy or roadmap. Once an idea
has been chosen, it should be broken down into a set of assumptions.
These assumptions are what the idea rests on – if they don’t hold,

before conducting any experiments, stakeholders must agree on how
they are going to interpret the results once they become available, in
order to avoid a biased interpretation. Experiment results must not
be ignored, even when they contradict the assumptions or intuition
of management. Decisions should also not be made blindly out of the
data, but usually needs a human to make an informed judgement.

Analysis

Test subjects

Experiment
object

Experimenter

Decision-
maker

Collalaboration

Select next thing to test

Continue

Rethink
idea

Break
down

Kill idea

Pivot

Systematic experimentation

Data

12

2 Continuous Experimentation: Four Cases

Continuous experimentation includes many challenges that
need to be solved for each situation. This chapter provides
intuition for how to implement continuous experimentation

through four company cases. Each case illustrates the complex details
that need to be taken into account, and shows examples of how to
tackle the challenges you may face when starting to do continuous
experimentation.

Case Ericsson: First experiences in structured
experimentation

The Ericsson case presents experiences from two teams within a large
company that took their first steps towards adopting continuous
experimentation in their development process.

Company and product description

Ericsson is a multinational communications technology corporation
that provides equipment, software and services that enable the
transformation towards a networked society.

One of their products enables telecom operators to offer
connectivity management and billing services for their enterprise
customers. One of its components is the Activity Log tool which

13

provides the overview information about mobile subscription
events, such as when a SIM card is registered on the network, a
data transfer occurs, or an SMS message is sent. The tool is used by
Ericsson’s operator customers to troubleshoot problems with mobile
subscriptions.

Aim of the first experiment

The Activity Log tool was a promising target for experimentation
as many questions regarding its design were open. The product’s
feature requests were analysed and formulated as behaviour-
driven development (BDD) stories. One feature was selected by
the development team’s technical coach to be the subject for
experimentation.

The experiment aimed at testing options for feedback messages
that a user of the Activity Log tool receives after clicking on a
“reconnect” button which flushes a SIM card registration, meaning
that the mobile device must reconnect in order to resume normal
operation. A good feedback message was to inform the user on the
current state of the connection and to provide instructions on what
to do next so as to avoid the case where a user would continuously
click the reconnect button, and clogging up the network.

Design of the experiment

Based on the selected feature, reconnect button, and its BDD story,
the underlying assumption was identified: users will be able to know
what is happening once they click the reconnect button. Based on
the assumption, a hypothesis to be tested was formed. Subsequently,
an experiment plan was drafted, detailing how to run the experiment
in order to validate the hypothesis (see Table 1).

Two rounds of experiments were conducted with internal
employees of Ericsson acting as test subjects. The experiments
were run by the technical coach of the development team and two
members of the user experience (UX) team. In the first round of the
experiment, the new feedback messages were found to be unclear
and misleading to the test subjects. At the same time, the people
conducting the experiment had difficulties determining whether a
user had succeeded in answering accurately to the criterion outlined
in the hypothesis (see Table 1). Based on this information, the
messages were updated and the experiment was run again. In this
second round, the product’s original feedback message was included
in the set.

BDD Story
As an Activity Log user, I want to flush network memory for a subscription
so that I can be sure that there is no mismatched information and next I
can see when a device connects to the network.

First run Second run

Hypothesis

We believe that with the right
feedback message, users should
be able to tell 1) what the state
of the device’s connection is and
2) what the next action is.

We believe that with the right
feedback message, users are able
to tell: 1) what is the next action to
take, 2) what is the state of device’s
connection, 3) what to do if the
device does not connect to the
network.

Experiment plan

In order to validate this, users
will be shown a set of feedback
messages and will be asked to
provide answers to the above
two criteria. The message
with the most yes answers for
each criterion will be the best
message and will be selected.

In order to validate this, users
will be shown a set of feedback
messages and will be asked to
provide answers to the above
three criteria. The message with
the most yes answers for each
criterion, especially for criterion 1,
will be the best message and will
be selected.

Experiment object Five mock-ups (PowerPoint) with
different feedback messages

Seven mock-ups (PowerPoint)
with different feedback messages

Test subjects

Three internal company
employees invited by the
experimenters based on
availability

Seven internal company
employees invited by the
experimenters based on
availability

Experimenters
One person from the
development team and one
from the UX team

One person from development
team, one from UX team and an
additional observer from the UX
team

Data collection
Yes or no scores for each test subject according to each hypothesis
criterion as well as experimenters observations of test subjects during
the experimentation.

Total duration of

running experiment
60 minutes 120 minutes

Data analysis Ranking of the feedback message scores in order to identify the best
message.

Table 1. The first experiment.

14 15

Case Solita: Setting a baseline for learning

The Solita case describes a project transitioning an existing product
towards a new technological infrastructure, simultaneously enabling
new business. The case aimed at understanding how a key feature in
this product was used.

Company and product

Solita is a Finnish company that specialises in aiding the digitalisation
of businesses and services. One of their products being developed for
a client, a media monitoring service (MMS), allows real time analysis
of online content, helping the client’s customers to e.g. follow trends
relating to their own and competitors’ businesses. The MMS is based
on customer specific search profiles that are trained by identifying
and ranking relevant content items. Alerts of new content that match
the client’s or their customer’s interest criteria can be received by
email and the retrieved content can also be viewed from a web based
reporting.

Need for experimentation

Solita had devoted significant development efforts on the web
based reporting tool. However, it was uncertain whether the current
customers of the MMS were content with accessing their results only
as email alerts. If email was sufficient, the new report web-based
tool would lack users. However, the report tool provided users with
more features such as commenting, rating and sharing of reports.
Hence, the company wanted to use experimentation to form an
understanding of the role the email alerts play for their customers.

Design of the experiment

The email alert was the experiment object. As the email alert showed
the media monitoring results as a summary with links to the source
of the original content, the idea of the experiment was to design the
email alert so that it redirected users to the reporting tool instead of
the original media source and thus also increase the number of users
using the report tool. Table 3 presents the details of the experiment.

Results

In line with the original hypothesis, it was observed that the test
subjects were able to complete their task best when presented with
a particular type of a feedback message. Based on the results of
the experiment, the development team was able to select the best
feedback message, which was included in the next product release.

Lessons learned

The development and UX teams mentioned that the process of
experimentation had benefits on its own: “We have not done any
structured experimentation before. Now we have the structure”.
In light of this, they plan to spread the experimentation culture
within other development teams as well. Table 2 presents additional
learnings gained by starting to conduct a structured experiment.

Quotations Learnings

“We have to start experimenting with something
small, more importantly we have to start now.
Practice will make it perfect.”

It’s possible to start with small teams and small-scale
experiments.

“Piloting the experiment was important.” It’s beneficial to do a pilot run before a real
experiment.

“If there is a mistake in the experiment design, we
should not dwell on it. We fix the experiment in the
best way we can do and run it again. We learn so
much with each experiment, over-planning (after
certain amount of time) would be pointless.”

It’s important to realise when the design of the
experiment is not appropriate and in consequence
modify the design and rerun the experiment.

“Experimentation really moved along when BDD
user stories were prepared and introduced.”

It was useful to prepare the BDD stories as they
were able to capture the user requirements and the
underlying assumptions.

“It was possible to run experimentation with a
simple [PowerPoint] mock-up.”

It’s possible to run an experiment effectively without
much development effort and with low costs.

“Experimentation made it clear to the team that
there is no need to debate between opinions as you
can quickly test them with an experiment.”

It’s better to make decisions based on data than
opinions and assumptions.

Table 2. Learnings from starting to conduct structured experiments.

1716

Results

Determining whether the experiment had been successful was
not easy as the company had no previous usage data that the
analysis results could be compared to. Therefore in the end, product
management would need to make a decision on what the ratio
results would mean for them and whether to keep the email alert
which directs users to the report tool or change it. Performing an
interview with users would assist in the decision making.

Next steps

As this was the first structured experiment the company performed,
participants from Solita stated “having a structured and academic
context ensured that the company participants thought through all
the details, which probably would have been skipped in everyday
operative work”. Next steps include running the experiment again and
using the current results as a baseline for setting a new hypothesis.

Case Vaadin: Conducting experiments to
better understand customer needs

Vaadin improved their development platform using experiments
with their APIs.

Company description

Vaadin builds and provides open source tools and components that
make building web applications easy. Their tool framework includes
APIs for developers and businesses.

Experimentation at Vaadin has been adopted as an approach to
trying out new technologies and products, and for gaining business
insight “fairly early” on. Vaadin tries to prototype and pilot all their
products and services to get quick feedback from customers and
try out different ideas. Through this, more information about the
customer needs can be gained and the market understood better.
This then allows them to focus on viable products and features and
drop the ones that do not gain traction.

Need for experiment

Vaadin sought to improve their development framework by collecting
and analysing API usage data in order to understand what APIs
developers are using and also explore any potential issues in the APIs.
In particular, Vaadin was interested in improving two key metrics in
their framework: API quality and hit-rate. The API quality refers to the
manner in which an API is used by developers, usage patterns of APIs
and issues involved; hit-rate refers to how often APIs are being used.
Although there were known issues with these two metrics, Vaadin
was interested in finding unknown issues, for instance, boilerplate
code or antipatterns (workarounds that developers are forced to use
due to lack of support from the technology or API) of usage.

Purpose of the experiment

Collecting API based information would help Vaadin steer their
development efforts to the right parts of API development, give
them the ability to use their limited resources wisely, address any
issues or fix bugs with the most impact first, fix API issues that affect
the most users, and thus consequently improve API quality and hit-

Assumption Linking the email alerts to the online report tool will drive more users to the
online reporting tool.

Hypothesis We believe that sending users an email alert linked to the report tool will
increase the number of users coming to the tool from the email alert by 90%.

Experiment plan
In order to validate this, we will run a two week experiment where users will
receive email alerts with links to the report tool and we will measure the users
that come to the report tool through these alerts.

Experiment object Email alert that is linked to the report tool and collects the users’ movements
from the email alerts to the report tool.

Test subjects Ten beta testers of the MMS.

Execution and duration
of running experiment

A developer at Solita implemented the MVF and instrumentation for data
collection. The experiment was run for two weeks.

Collected data
The raw data form is a collection of timestamped events that are associated
with a specific user and a specific report (except for logins that did not originate
from a report link) and contains a data item. Data was collected in a database.

Data analysis
For each user, calculate ratio of “number of email alerts that brought the user
to the report tool” to the “total number of email alerts sent to user” in the two-
week period.

Table 3. Experiment details.

1918

rate. In return, user satisfaction for the framework and the APIs could
improve as well.
Conducting the experiment

The experiment was conducted in collaboration with Codetrails
and Åbo Akademi University. Codetrails is a company which creates
tools for Eclipse that aid a programmer with, for instance, better
code completions, knowledge transfer, and API usage analysis
for enhancing development efforts. Vaadin and Åbo Akademi co-
operated and initiated experiments to see what could be done for
Vaadin programmers, and what usage information could be collected.
The experiment design was exploratory in nature as the main aim
was to identify how API usage data can be used as a decision making
tool to assist API developers to make better decisions about API
development.

The experiment was started by collaborating with Codetrails.
With Codetrails, Vaadin developed a plugin prototype called Vaadin
Insights that could be enabled for usage data collection. The
prototype development took 3–4 calendar months.

The API experiment was conducted internally in two separate
trials with a limited amount of test subjects. The first trial lasted for
about one month, and the second one was a snapshot from several
large projects (i.e., they analysed the API usage at specific points of
time). By first conducting experiments internally, they were able to fix
multiple issues and to develop the analysis further.

In addition to the data collection plugin, Vaadin had developed
a result analysis tool using Python data mining libraries as part of
their tool chain. This also included a report generation tool that was
developed internally at Åbo Akademi. Both of these tools were used
for the analysis of the collected usage data. Analysis was performed
both quantitatively and qualitatively. The quantitative data was
provided by the tool chain. It provided information on the number of
patterns identified as unexpected and actionable.

Results

The tool chain provided 144 interesting patterns, such as methods
commonly used together, from 400+ KLOC (Thousand Lines of
Code) to the developers in an automatically generated report, out of
which 20 actionable items, i.e., product improvement actions, were
identified by the Vaadin experts. Based on the analysis from Vaadin
experts, the plugin and insights tool were updated accordingly. For
example, they identified needs and ways to get more representative
data with the tools. The experts identified what action related to API
structure needed more attention, and they also gave their opinion

on how the collected information can be used for better decision
making.

Lessons learned

By conducting experiments fairly early on, Vaadin is able to get
more information about their customer needs and understand the
market better. As Vaadin’s key account manager Pekka Perälä puts
it, experimentation allows them to “focus on viable products and
features and drop the ones that do not gain traction.”

Conducting the API experiment has helped Vaadin pay more
attention to how their users behave and to understand how
important it is in product and service development. They have now
started, and plan to continue, to include data gathering as part of their
development process. For instance, they have started performing
structured usability experiments on all their products.

As Vaadin has experienced, conducting experiments does have
some challenges, many of which they have managed to solve. Their
biggest challenge however has been making experimentation as

2120

part of the daily work and in the backlog of the development teams.
Changing the culture of doing things at Vaadin has also been a
challenge. Solving these is still work in progress at Vaadin.

Case Bittium: Experimenting towards
innovation
Bittium incorporated continuous experimentation in their
innovation process to make it more agile and lean, and to improve
its performance. This is in contrast to previous experimentation
cases where experimentation was used to guide software product
development.

Company description

Bittium is a B2B provider of embedded systems for the wireless
communications industry with more than 500 employees in four
countries. The company had used the traditional stage-gate model
for their ideation for over thirteen years. In the spring of 2014,
they decided to adopt a more experimental approach to their idea
harvesting, focusing, and validation stages in order to speed up
their innovation process, gain better fit of ideas to the company’s
business targets and reach more radical business innovations. More
specifically, the company wanted to meet four targets: 1) Harvest
more ideas within the company, 2) Grow ideas faster into business
innovations, 3) Capture ideas with better fit for purpose, and 4)
Improve the participation of various company stakeholders in the
innovation process.

Need to incorporate experimentation in the innovation process

As an established technology company operating in an environment
where the technology push and market pull are high, Bittium needed
to maintain their current business and simultaneously develop
new business ideas. Before incorporating experimentation in their
stage-gate innovation process, ideas were focused only on creating
intellectual property rights. The processing of ideas involved only
a limited number of experts so the ideas did not spread to others.
There was also a gap between management running the business
cases and specialists who had the ideas. Mutual visibility was missing.
As a result, collected ideas seldom supported the business goals.

As a solution, continuous experimentation and transparency were
incorporated into the stage-gate innovation process.

How experimentation was incorporated in the innovation process

Bittium’s idea screening and feedback process includes continuous
iterations of idea harvesting, focusing and validation activities with
established practices. Experimentation focuses on developing
early and low-cost demos of ideas and collecting feedback for early
validation, to figure out what ideas work and have potential. The light
demos (i.e., experiment objects) create a common understanding of
an idea within the company. When all participants understand an
idea similarly, collected feedback is more relevant and constructive.
The plan of each light demo is visible and iteratively maintained in
a centralised system. This supports continuous learning about and
feedback on ideas. Idea screening is frequent and transparent, which
leads to early idea validation and short process lead times. As a result,
many ideas reach the maturity level required for business decisions
much faster than before. Ideas visualised with light demos, collected
feedback, and screening decisions give the management validated
information for making better informed business decisions. Therefore,
Bittium management sees experimentation as a significant part in
the innovation process: give ideas an opportunity to enter the demo
stage, and learn what works and does not work by trying things out.

Continuous experimentation is a way for Bittium to get early
validation for ideas without high expenses, as well as to give many
ideas an opportunity to show their potential. Bittium recognises
though that it is not reasonable to expect to create an innovation,
especially a disruptive innovation, with a single experiment. Instead,
a series of experiments are needed to evolve the novel solution.

Lessons learned

An established technology company like Bittium needs to be
simultaneously efficient and profitable in their current business
and also flexible in developing their future business opportunities.
Incorporating continuous experimentation and transparency
into the stage-gate model allowed Bittium to succeed in both.
Good practices of the stage-gate model were combined with the
experimental approach and free idea evolution. The stage-gate
model has systematic practices that support idea validation and idea
growth in a way that connects ideas to business targets. Furthermore,
practices supporting long-term strategic planning were retained –
innovation experimentation cycle does not include corresponding
practices; therefore conducting experiments only is not viable. The
inclusion of experiments allowed them to achieve rapid and radical
business innovations and it was found to support the company’s
radical thinking of ideas and early collection of feedback.

2322

24

3 Recipes

In this chapter, we provide recipes to guide you in actionable and
concrete terms when starting to conduct experiments. Each recipe
includes information on where and when it should be used, how

to perform it and how to present the outcomes, as well as particular
pitfalls and cautions to be considered. Recipes offered in this section
are in the natural order of a systematic experimentation cycle (see
Chapter 1) and they are enriched with examples, especially referring
to the cases presented in Chapter 2.

Setting clear goals for the experiment

Before starting an experiment, you should know why you’re doing it! How will the
experiment results contribute to the high-level goals you have for your product or
service idea, business strategy, ways of working, etc.?

As an example, Airbnb’s high-level goal was to increase its revenue and it does this
by increasing the chances that its renters will have more customers. Airbnb had an
assumption they wanted to test (i.e., ‘apartments with high-quality photos are rented
more often’). This has the crisp goal of increasing the number of nights a listing is rented
which is directly connected to the higher-level goal of increasing revenue. Based on the
experiment results, Airbnb hired photographers to take professional pictures.

Identifying clear and relevant goals is not trivial and requires domain knowledge and
expertise.

25

Recipe 1

Where to use this
recipe

Apply this recipe when the development of your product/service/
business calls for objective data. Objective data can be needed to
make a decision on whether to apply an idea or which alternative
idea to adopt, to verify an assumption, to settle a difference of
opinions or to resolve an uncertainty.

What you need

•	 Product roadmap, vision or strategy

•	 Decision maker(s),

•	 An idea that you wish to test

Directions

•	 Place the idea you want to test, which could be an uncertainty
or assumption on the roadmap, vision or the business strategy
you have. If this is not possible, determine the items on the
roadmap that will be affected by the experimentation. Or,
determine what other major aspects such as user experience
or non-functional properties will be affected.

•	 Consider, what implementing that idea, settling that
uncertainty or testing that assumption would mean for your
product and business vision.

•	 Together with the decision maker(s), write down how the
results, whether negative or positive, will be implemented.

What to expect A clear sense of what running the experiment will mean for the
product, service, or business development.

Presentation
Document or display the crisp goals of each experiment and how
they are aligned with the higher-level business goals and strategy
of the company where relevant people can see it.

What next? Forming a testable hypothesis to guide drafting the experiment
plan.

Pitfalls

•	 Yielding goals that do not relate to company’s strategy and
vision and with no connection to the product or service
roadmap.

•	 Avoiding to agree early on what will be done with experiment
results.

Case example
Case Solita provides an example of having a crisp goal for an
experiment, i.e., increasing the number of users for a product
which will increase product value.

Recipe 2

Defining a concrete hypothesis

An effective hypothesis is the core and kernel of a successful experiment. A hypothesis
is a tentative, testable answer or “an educated guess” to a scientific or business question.
A relevant hypothesis provides an answer to a question of interest. A well-formed
hypothesis makes it possible to plan experimentation systematically.

This recipe shows an example of forming hypotheses.

Where to use this
recipe

You need to have a hypothesis to get started with
experimentation and finally get the results for supporting “go/
no-go” decisions or determining the best alternative.

What you need

•	 An assumption

•	 Clear goals (Recipe 1)

•	 Success criteria

Directions

•	 First, take your assumption and clarify it.

•	 Start with writing down the following statement:

•	 We believe that [insert assumption, .i.e., (Airbnb) travelers
will book more properties because of professionally
photographed listings], which will [insert goal i.e., improve
the property bookings], by [insert success criteria i.e. X%]’

•	 Revise it until it is concrete enough to be tested.

What to expect A clear measurable hypothesis ready to guide designing the
experiment object (Recipe 3) and the experiment plan (Recipe 4).

What next? Take the hypothesis formed with this recipe as input for
Recipes 3 and 4.

Pitfalls (caution)

An unclear and unmeasurable hypothesis will lead to inability
to make decisions or to make wrong decisions based on
experiment results. Thus set it carefully! A hypothesis has to
be specific and measurable – avoid using hedging words like
“maybe”, “better”, or “some” when forming the hypothesis.

Case example
Case Solita Hypothesis: “We believe that sending users an
email alert linked to the report tool will increase the number
of users coming to the tool from the email alert by 90%.”

2726

2928

Recipe 3 Recipe 4

Designing and using the experiment object

Designing the experiment object means planning the intervention or treatment that
you are interested in testing, and setting things up so that you can observe how the
treatment causes changes in the outcome you are interested in.

Where to use this
recipe

After drafting your hypothesis and are starting to draft the
experiment plan (Recipe 4)

What you need

•	 An hypothesis (Recipe 2)

•	 Metrics to collect

•	 A product, service or feature

Directions

Based on the metrics you need to collect to validate the
hypothesis, take your product, service or feature, (e.g., the web
user interface in the case of Airbnb experiment mentioned in
recipe 1), then:

•	 Implement the intervention, (e.g., user interface with better
pictures)

•	 Implement also a data collection mechanism, (e.g.,
recording the number of clicks on the ‘book’ button)
(Recipe 6 and 7)

•	 Decide where to store the collected data (e.g., in a database
or text file) (Recipe 7)

What to expect An experiment object ready to be used for Recipe 5, 6 and 7.

What next? Use the experiment object to start executing your experiment
on.

Pitfalls Not instrumenting the experiment object correctly to collect
the needed metrics to validate the set hypothesis.

Case example

In the case of Solita, the experiment object was the email alert
feature, which was implemented to collect user clicks and link
those clicks to the report tool. Note that in the case of Ericsson,
they made use of a prototype of the experiment object, which
is also a possibility if carefully designed.

Setting up a systematic experiment plan

So you have a hypothesis and a planned experiment object – but how should you test
the hypothesis on the experiment object in order to validate or falsify it? This takes
some creativity and experience. Consult data analysts and other relevant people in your
company to confirm the metrics to be collected and measured, and also developers
on the feasibility of collecting the needed data. Planning an experiment is an iterative
activity, and you need to be able to switch between brainstorming and checking the
logic of your plan.

Where to use this
recipe

When you have selected the assumption you want to test and
have formed your hypothesis (Recipe 2).

What you need

•	 A hypothesis (from Recipe 2)

•	 An experiment object (from Recipe 3)

•	 Test subjects

•	 Other resources

Directions

•	 Start by taking the hypothesis and think carefully what
metrics you need that would allow you to (in)validate the
hypothesis. Often the hypothesis already includes some
hints regarding what metrics are needed. For instance, in the
Airbnb hypothesis, property bookings is an obvious metric.

•	 Then decide how long to run the test such that will be
sufficient for collecting enough data. For example, would
1 week or 1 month be better to measure a change, for
instance, in property bookings?

•	 Take your experiment object and modify it so as to allow it
to collect the set metrics if you have not done it yet. Here
decide also where to store the data and in what format. See
Recipe 3 and 8 for ways to do this.

•	 Note that if you have existing data (see Recipe 6), then
you might not need an experiment object.

•	 You need test subjects to use your experiment object, thus
you need to decide who these are and how many of them
you need. These could be real users/customers, or proxy
users such as internal employees (see case of Ericsson).

•	 Set the data analysis strategy and how the results will be
presented.

•	 Document the activities and results along the steps, in an
iterative way.

3130

What to expect An experiment object ready to run.

What next? Use the experiment object to start executing your experiment.

Pitfalls Not instrumenting the experiment object correctly to collect
the needed metrics to validate the set hypothesis.

What to expect

Running the experiment with mock data allows you to test the
experiment before spending time and other resources on running
it. If done right, you will increase the chances of getting a correct
and valid result, and can eliminate potential biases.

What next? You can alter the plan based on the results received at this
stage and go forward to executing the plan for real.

Pitfalls

You have to be sure that your mock data is identical in form
to the final data that you will use. Otherwise you have tested
the wrong thing. Note that if you test the experiment on mock
data based on existing data, you should not run the actual
experiment on the same data because you may have tuned
the experiment to give you the result you expect using the
mock data.

Recipe 5

Testing your experiment using mock data

As designing an experiment plan is a creative process, there are times when you would
like to test your experiment plan before you run it. Using mock data is a useful and
low-cost way of achieving this. When using mock data, you generate one or more sets
of plausible results that allow you to think through the analysis. These can allow you to
then discover flaws in your experiment design and fix them before you run it for real.

Where to use this
recipe

It is always useful to test your experiment before running it.
Especially in cases where the analysis is difficult or complex.

What you need

•	 An experiment plan or at least an initial one (Recipe 4).

•	 A way to generate mock data – preferably automatic,
especially if you expect to have a large amount of data in
your experiment.

Directions

•	 Start by listing different possible outcome scenarios of
how the experiment could turn out. Remember, you don’t
know the result at this point, but you can list many possible
outcome scenarios.

•	 Once you have the scenarios, ask yourself what data would
result in each outcome.

•	 Then, generate data of that kind. If you expect to have only
a small amount of data, you could simply construct it by
hand using a spreadsheet or text editor. If you expect to
have a large amount of data, you can either make a program
that generates it, or you can use existing data (see Recipe 6)
and alter it to fit your scenarios.

3332

Using existing data to test hypotheses

You may already have the data you need for your experiment. Web server logs,
authentication system logs, and other runtime information from an existing system
may allow you to conduct your experiment on existing data. Before spending time on
collecting new data, identify whether you already have suitable data and ensure that it
really can be used to validate your hypothesis.

Where to use this
recipe

After you conduct experiments on an existing system – even
a prototype – and/or whenever the users you are interested in
are already using a system you can access.

What you need •	 Experiment plan (Recipe 4)

Directions

•	 If you suspect you already have suitable data, you should
start by listing the data you already have.

•	 Match this list against the metrics you need to validate your
hypothesis.

•	 Extract a small sample of existing data that matches your
metrics and test if it really is as you expect.

What to expect
You may be able to reduce the cost of an experiment by using
existing data. However, do not underestimate the cost involved
with extracting and preparing the data.

What next? Extract a bigger sample of the identified data, and move into
the analysis phase based on your experiment plan.

Pitfalls (caution)

•	 Using existing data may be easy, but is it really suitable?
Events in the past may have caused effects in the data
that may skew your experiment results. Also, the data may
be from users who are different than the ones you are
interested in. Make sure you know the data you are using,
and think about the validity of the data in advance.

•	 Looking at the data before designing the experiment. If you
look at the data first, chances are you will become biased by
it and design your experiment to confirm your prior belief
rather than learning anything from the data.

•	 Do you have permission to use the data for your experiment?
When users signed up, did they agree for their data to be
used in the way you would like? Ensure that you are not
overstepping the legal or ethical boundaries of data use.

Collecting the right data in the right format
To enable efficient data analysis, the data needs to be collected and stored in such a way
that it is easy to get the desired results with enough accuracy.

The data can be collected in various ways. You may have an automatic system which
can collect information about events in the system, you may ask your users to perform
specific actions which you record, or you may even collect the data by hand while
observing your users. For these and all other scenarios, make sure you think through
what form of the data you will be collecting, and how it will be stored.

As an example, let’s take a polling mechanism for determining duration of use: The
experimenter wants to know how long users spend in a specific section of the system.
The developer implements this as a polling mechanism which inserts a log event with
some interval that doubles every time. Although this saves resources, analysing this
event data is difficult and the accuracy may be less than what was assumed for the
experiment. In this example, if the user closes the system just before the next polling
event, the timing will be as inaccurate as the polling interval, meaning the analysis of
the experiment data will be harder and the accuracy may not be enough to make a
decision.

Where to use this
recipe

When you need to collect new data for your experiment and
when you need to know what data to store and how

What you need
•	 Experiment plan (from Recipe 4)

•	 Metrics to collect

Directions

•	 If you are collecting data automatically from system events,
you need to analyse your system and decide what format
to collect the data in and where to store it. This depends
completely on your experiment plan and your system.

•	 If you are asking your users to perform specific actions
which you record, you need to make sure that recording
points are designed well so that you get the data you need.
If you are collecting the data manually while observing the
user, you need a data entry form that allows you to quickly
record what you see.

•	 Have the necessary information available and not in a too
difficult form or organisation for the later analyses.

What to expect Good-quality and relevant raw data.

Recipe 6 Recipe 7

3534

Presentation
The last phase of collection is to gather the data you have
collected in one place. Usually, all of it should be in a single set
of files or in a database.

What next?
Once you have the data, move into the analysis phase.

Pitfalls (caution)

You might end up with bad data because you forgot to
include something like a timestamp, or information that links
a sequence of events. If you are collecting data manually, you
may be overloaded while trying to both observe and record at
the same time.

Preparing for decision-making
Analysis of collected data can be done in various ways depending on context. For
instance, in the Solita case, the ratio of “number of email alerts that brought the user to
the report tool” was calculated for the data analysis. After that, decisions based on the
analysed data must be made with respect to the hypothesis and set goals. If the analysis
results shows that the hypothesis is falsified, i.e., do not meet the success criteria, this
implies that the tested assumption was wrong and not based on any actual data.
Therefore a decision could be made to redesign the experiment plan to collect more
data, change and re-test the hypothesis or to kill the idea altogether. However, if the
hypothesis is validated, then the idea can go forward and be implemented.

Where to use this
recipe

Use this recipe after having analysed the collected data.

What you need

•	 Experiment results

•	 Initial set goals (Recipe 1)

•	 Success criteria specified in the hypothesis

•	 Domain experts

Directions

•	 Take your experiment results and compare them with your
success criteria.

•	 With domain experts, judge how to implement the decision
that was discussed before the experiment started, whether
it was to kill the idea or implement it, or take a risk and do
something different.

What to expect You make decisions that are empirically justifiable.

Presentation

Put the results in a proposal form or report for the rest of
your team members to enjoy. Present the final results and
or decision to relevant parties, include the impact, and your
learnings as well for a true knowledge-sharing party.

What next? Implement the insights gained from the results, either to
continue development or pivot the product.

Pitfalls (caution)

•	 Not ensuring that there is the ability to properly define
decision criteria and act on experiment results.

•	 Overconfidence and reliance on experiment results. There is
a responsibility to making decisions and that responsibility
should not be outsourced to experiment results alone.

Case example
In the Ericsson case, a decision was first made to rerun the
experiment after results were found to be wrong and another
decision to implement the idea based on valid results.

Recipe 8

36 37

4 Pitfalls

The following list includes pitfalls typical in continuous
experimentation. Some pitfalls apply more generally, while
others are very specific. Read the list and check the box when

you know you have avoided falling in the particular pit.

Lack of vision
Software quality requirements and baseline architecture goals should be
addressed before starting development. The lack of a clear vision of the
product can hinder

appropriate development work and increase the overall cost of the innovation
effort. In addition, it can lead to misunderstandings and slow development
due to unnecessary specification changes and variance in the project scope.

Prophecy vision
Sometimes the product vision is only a fantasy which is not in line with the
development team’s ability to produce software. While this could provide a
valuable learning experience for the customer, it may lead to exhaustion of the
development team. The vision must be clearly articulated and understandable
by everyone involved.

Vision not properly translated into usable guidelines
In addition to a product vision, more specific and usable guidelines must
exist to steer concrete development and experimentation tasks. Otherwise
the development team may start making uninformed interpretations and the
created product will not match the original vision. A lack of usable guidelines
may also create confusion in task and feature prioritisation, and can lead to
impaired collaboration between stakeholders due to misunderstandings.

38 39

We know what is good for our customers
Insufficient voice-of-customer work in product design contributes to low
customer acceptance. Establishing software design on non-validated
assumptions about the end-user or letting technological solutions shape
the product risks the project creating software that nobody wants.
Neglecting validation of the product concept or features with real end-
users contributes to poor user acceptance.

Experimenting without figuring out and explicating the right hypothesis

Some things are good to know, but not necessarily that valuable. As
experimentation is about testing a hypothesis, it is very important that it is
linked to a real goal. It should be clear where and how testing the hypothesis
will provide value.

Ambiguous hypotheses
When it comes to systematic experimentation, the devil is often in the details.
That is, with the slight variation in the wording, you may actually run an
experiment on something else, thus potentially yielding useless results and
wastage of effort and resources.

Testing ideas from data that you already have without a clear hypothesis
Companies often collect a lot of data in the hope that analysing it will lead to
something useful. However, when what you would like to answer is not defined
beforehand, you might end up realising that you collected all that data for
nothing or even you did not collect the right data. Moreover, starting from data
places a lot of emphasis on the data scientist’s ability to analyse and interpret the
collected data in some way that would be meaningful for the business.

Buying or building a tool for an unvalidated purpose
Buying or building a data analysis tool without defining the purpose
beforehand may lead to wastage of effort and resources. It is often easier
and clearer to buy a tool, as you know what you are getting, but it may be
that the tool does not actually contribute to solving the problem you are
about to address.

Not ensuring that you are able to act upon experiment results
It is crucial that as a company or team, you have the ability to properly
define decision criteria and act on experiment results. The pitfall is failing
to make sure that the results will actually be taken into use. In particular,
you should have a means to handle situations when the results contradict
the assumptions or intuition of experts, or other forms of organisational
resistance, e.g., when challenging long-standing practices or conventional
wisdom. This however, does not mean, you should blindly trust the
experiment results.

Running experiments in parallel without considering how they interact
Having several experiments run in parallel presents a particular challenge.
Statistical interactions between experiments should be considered in order
to assess the trustworthiness of the experiment results. For this reason, it
is important to coordinate the design and execution of experiments so that
correct inferences are drawn. If experiments are run in different parts of the
organisation, one experiment may influence another without the experimenters
realising it. More generally, the issue of validity becomes important when the
entire R&D process is experiment-driven.

Overconfident reliance on data or experiment results
One should take certain care when interpreting the results of an experiment (as
with any data). More importantly, there is a responsibility to making decisions
and that responsibility should not be outsourced to data or experiment results
alone. Decision-making should remain with the actual decision makers.
(For an example of data-driven decision-making and its potential dangers in
comparison to using data to inform and support your decisions, see Sebastian
Wenicke’s (MIT) TED talk: http://www.ted.com/talks/sebastian_wernicke_how_
to_use_data_to_make_a_hit_tv_show)

Jumping to conclusions too fast
Experimentation with customers is inherently about working with a moving
target, as the behaviour of customers is subject to change as a result of
introducing new products, services or features. It might take time to notice a
change among the customers. Thus, there is a risk of stopping the experiment
too early, before collecting enough data to observe the change, which will
result in misleading experiment results.

Confusing ad hoc and systematic experimentation
Continuous experimentation is a systematic approach for understanding
customers and acquiring the data needed for guiding product and service
development decisions. However, not every trial you may conduct or thing you
test should be called an experiment, nor are they continuous. The hallmarks
of systematic experiments are the presence of a clearly formulated, up-front
hypothesis and a logically solid experiment design where cause and effect are
separated.

Using experiments for everything
Continuous experimentation is only one approach for understanding customers
and acquiring the data needed to guide product and service development
decisions. There are other means that are called for in different situations, such
as usability tests, service design methods, market research tools, etc.

http://www.ted.com/talks/sebastian_wernicke_how_to_use_data_to_make_a_hit_tv_show)
http://www.ted.com/talks/sebastian_wernicke_how_to_use_data_to_make_a_hit_tv_show)

40 41

This section presents tools that can be used to support different
parts of the continuous experimentation cycle. In broad terms,
the focus is on discovering, describing, and modelling customer

value, making business models, and understanding the technical
infrastructure and architecture needed for automated, large-scale
field experiments with real users.

The Wheels of Value Model
The Wheels of Value Model is a strategic tool for quickly identifying
and documenting the value mechanics of business models with
many actors. Instead of identifying assumptions for each element of
a business model it generates closed value chains among the right
actors and ensures that important links are not missed. By doing this,
critical assumptions will be unearthed and visualised.

Organisations are increasingly operating in complex business
environments with many actors. One of the reasons is that innovative
products and services often need to be created and provided
together with an interdependent network of partners. All actors have
their own needs and the satisfaction of these needs depends on the
interplay between the actors. Such complex business environments
are often referred to as ecosystems. Companies in such environments
frequently struggle with deciding on how to connect and interact
with other actors. The big picture that visualises the connections and
reveals the success-critical assumptions is often missing.

The Wheels of Value Model allows you to invent, design, sketch,
change, analyse, and validate a multi-actor ecosystem with the aim of
creating a successful and sustainable business. It is a simple and fast
tool. It visualises multiple actors as well as their needs, behaviours,

5 Tools and Models

42 43

and capabilities and integrates them into a big picture. It helps to
unlock business and user value and to identify important business
model assumptions. The Wheels of Value Model can also help you
to get a shared understanding of an ecosystem and its business
dynamics.

The Wheels of Value Model can help you, in complex business
environments, to unearth critical value-related business assumptions
and to make informed decisions on what to develop.

Sketching Wheels of Value Models
A Wheels of Value Model is a visualisation of all relevant actors in
a business environment and their value-related connections. It is
typically developed and sketched collaboratively by considering the
following elements:

Actors
Actors have needs and demands for satisfying these needs. Actors
can also offer capabilities that contribute to satisfying needs of other
actors. Actors are individuals, organisations, or groups. Examples for
actors are “health care professional”, “fashionable women getting

The Wheels of Value Model is a new tool that integrates
and synthesises many important components of product
management, lean thinking, and business model generation.
The Wheels of Value Model allows quick visualisation of the
value mechanics in multi-actor business models. It focuses
on the value chains that are most important in creating a
good customer experience and a profitable business.
Sketching a Wheels of Value Model reveals assumptions
that are present in the business model and helps to
identify risky assumptions that should be tested first.
Testing the assumptions using continuous experiments
can help to avoid flaws in the business model and reach a
working business model faster. The Wheels of Value Model
was designed by Jürgen Münch and has been successfully
used with companies of different sizes in the context of the
Finnish Need for Speed research program. It will hopefully
evolve with further applications. Your help is appreciated:
try it out and see how it works in your environment. For
sharing your experience and feedback please contact
Jürgen Münch (j.muench@computer.org).

married”, “delivery team”, or “operator of mobile services”. The
following questions can help to find actors:

•	 Who has unfulfilled needs?
•	 Who could offer capabilities that support the satisfaction of

these needs?
•	 Who else could contribute to satisfying these needs?
•	 Who could obstruct the satisfaction of these needs?

Needs
Needs describe what actors want or value. Needs are motivating forces
that require action for their satisfaction. We focus on underserved
needs, i.e., needs that are important and currently not adequately
met. We distinguish business needs such as “increase revenue” and
user needs such as “explore the online world safely”. The description
of a need does not include how it can or should be satisfied and does
not impose constraints on a solution. The following questions can
help to find needs:

•	 What tasks are actors trying to achieve?
•	 Why are actors using products, services, or features?
•	 Why are actors offering products, services or features?

Behaviour Changes
Behaviour changes are modifications of the behaviours of actors.
Behaviour changes refer to either start doing something that is new
or familiar, or to doing something differently (e.g., to increase or
decrease a behaviour), or to stop doing something. Actors need to
change their behaviour in order to satisfy their needs. For instance, to
get healthy a user might need to run more often; to increase revenue
a company might need to start selling something new. The following
questions can help to find behaviour changes:

•	 How can actors change their behaviours to satisfy their needs?
•	 How can actors change their behaviours to help other actors

satisfy their needs?

Capabilities
Capabilities are entities that are offered to support behaviour changes
of other actors in order to help them making progress towards the
satisfaction of their needs. Examples of capabilities are features, epics,
services, products, data, or knowledge. For instance, a feature that
reminds runners to schedule a new run (capability) might help them
to run more often (behaviour change) and in consequence to get
healthier (need). If a capability does not support a behaviour change
that drives the satisfaction of a need it will probably not create value.
The following questions can help to find capabilities:

•	 How can we trigger a desired behaviour change?
•	 How can we support a desired behaviour change?

mailto:j.muench%40computer.org?subject=

44 45

Assumptions
Assumptions are statements that are taken for granted. For instance,
an assumption could be: if a delivery team provides a certain feature
then users will start using it. Assumptions might be wrong. Therefore,
assumptions that are critical for a business model should be seen as
working hypotheses to be tested. The following questions can help
to find assumptions:

•	 Who is delivering value and who is receiving the value?
•	 How does a capability impact a behaviour change of an actor?
•	 How does a behaviour change impact the satisfaction of a

need?
•	 Who is capturing value and from whom?

The Wheels of Value model characterises each actor with his needs,
capabilities, and behaviour changes (see Figure 3). For each actor, at
least one need must be identified.

The Wheels of Value model communicates assumptions about the
connections between capabilities, behaviour changes, and needs
(see Figure 4). These assumptions are visualised as arrows. Consider
the following example: an overweight person might have the need
to lose weight. One option to satisfy this need is changing his or her
eating behaviour, e.g., by reducing the daily calorie intake. In order to
do this, the person might need a capability to calculate calories. An
app developer could, for instance, develop a new app with a calorie
counter. The business need of the app developer could be to increase
revenue from the users. In this scenario, the overweight person uses
the calorie counter of the app (capability) to change his or her eating
behaviour (behaviour change) in order to lose weight (user need).

Figure 3. Actors are described in terms of capabilities, behaviour changes, and
needs.

Actor

Behaviour
changes

Capabilities

Needs

$

In return the user pays for the app (behaviour change) and thereby
increases the revenue of the app developer (business need). This
example is based on the following value-related assumptions: The
new feature is used by the overweight person and leads to a reduction
of calorie intake (value delivery), the reduction of the calorie intake
leads to a decrease in weight (value creation), and the user pays for
the app (value capture). If one of these assumptions is not true, it is
highly likely that the business mechanics will not work.

Complex business environments often involve many actors.
Without a clear understanding of the needs of the different actors
and the necessary behaviour changes to satisfy these needs it is very
difficult to determine which capabilities to develop. Developing
capabilities without understanding the value mechanics implies
a high risk that these capabilities will not create value and that the
effort for developing the capabilities will be wasted.

Figure 4. Describing the relationships between actors’ capabilities, behaviour
changes, and needs.

$
UserApp

developer

Increase
revenue Lose weight

Calorie counter
Reduce calorie
intake

Actor User need Business need
Behaviour change Assumption Capability

Actor User need Business need
Behaviour change Assumption Capability

$

Value delivery

Pay

Value
creation

46 47

Example: Digital Marketing

Let’s look at an example in the skin care business to illustrate the
Wheels of Value Model. A company selling skin care products such as
sun protection lotion for kids wanted to extend its business. Selling
sun lotion for kids involves different actors such as parents, children,
and the product manager responsible for sun lotion.

The vision of the company was to be the number one skin care
company in the world. The company was not number one in all
markets. It was, for instance, not market leader in Rio and therefore
the product manager for sun lotion got the task to improve the
business with sun lotion for kids in the Rio market.

Sun lotion Parent Child Product Manager

The product manager decided to first identify the user needs in
order to come up with new options to satisfy these needs. Therefore,
the product manager asked parents in Rio why they want sun lotion.
This revealed that they want sun protection to avoid sunburn of their
kids. Further asking the “why” question revealed that the parents
want that their children can play in the sun and do not need to stay at
home. Another “why” question uncovered that parents want to enjoy
the beach (e.g., sunbathing) while the kids are protected. Relaxing at
a beach without worrying about their children can be compared to a
happiness state and represents a need of many parents in Rio.

After identifying the need, the product manager thought of other
options besides sun lotion to satisfy this need. He thought about the
questions: “Are there other solutions to satisfy the need? Are there
other options besides sun lotion to protect children at the beach? Is
there another layer of protection that could be offered to potential
customers?” (see Figure 7).

The product manager gained the insight that losing a child at a
crowded beach in Rio is a serious problem. Protecting children from
getting lost at the beach by keeping them close to the family would
contribute to the satisfaction of the need of parents to relax at the
beach without worrying about their kids. Developing a solution for
this problem might help the company to reinforce the product’s
main attribute, i.e., protection. Through the principle of association
this could in turn help to increase sun lotion sales.

Sales
#1

Figure 5. Product and actors.

Figure 6. Example improvement target based on company vision. I want
sun
lotion

Sun
protection
for my kids

Avoid
sun burn

Children
can play in
the sun

Enjoy the
beach while
kids are
protected

1. WHY

2. WHY

3. WHY

4. WHY

5. WHY

value

Are there
further options
to create value?

e.g. keeping
children close to
family

Figure 7. Example of developing a value proposition.

48 49

Together with an advertisement agency and a development team,
the product manager developed a solution for keeping children close
to the family at the beach. He used Internet of Things technology to
implement the solution (see Figure 8). The solution consisted of a
bracelet to be placed around a child’s wrist and an app for the parent’s
smart phone that links with the bracelet to track the movements of
the child. If a child wanders beyond a pre-set maximum distance, an
alarm will start and the app helps to find the child by indicating if the
parent is approaching or moving away from the child.

In order to distribute the bracelets to parents, the company
created an ad for magazines that included the bracelet. The bracelet
could easily be detached from the ad and given to a child. The most
important weekly magazine was chosen for the ad.

these behaviour changes the company provides the app and the
bracelet (as part of the ad) to the parents. In addition, the principle of
association needs to be strong enough so that the protection power
of the bracelet solution is associated with the protection attribute
of the sun lotion and that this association increases sales of the sun
lotion. This in turn would contribute to the satisfaction of the business
need of the company.

Figure 8. Example solution using Internet of Things technology together with
traditional paper media and smart phone app.

AD

AD
App

Bracelet with radar

Print ad

The Wheels of Value model can be used to uncover the value
mechanics and the most important assumptions (see Figure 9). First
we identify the needs of the actors: parents want to keep children
safe while relaxing at the beach, kids want to play freely, and the
company wants to increase the sales volume with its sun lotion.
Different behaviours are necessary to satisfy the user needs: children
need to use the bracelet while playing at the beach (and not refusing
to wear it or throwing it away). Parents need to download the app
and to wrap the bracelet around their child’s wrist. In order to support

Child

Parent

Product Manager

Principle of association User need Business need
Behaviour change Assumption Capability

$

$

play freely

download

sun lotion

increase sales volume

use
bracelet

give
bracelet
to child

buy

app

keep children safe

Understanding the relations between the actors helps to
understand the value mechanics of the business model and to
identify important assumptions. Important assumptions are
visualised as arrows in the Wheels of Value model (see Figure 10). For
instance, an assumption is that the parents who see the ad download

Figure 9. Example Wheels of Value model.

50 51

the app and give the bracelet to their children when they are at the
beach. Another assumption is that the children actually use the
bracelet at the beach and do not take it off and go elsewhere. One
more assumption is that using the bracelet in combination with the
app really keeps children safe from getting lost. A bracelet not being
humidity resistant or an unstable connection between the bracelet
and the smartphone could invalidate this latter assumption. There
are several more assumptions that can easily be identified from the
Wheels of Value model.

Testing important assumptions can help to reduce risks and to
increase the odds of success. If a test shows, for instance, that nearly
nobody is downloading the app after seeing the ad, an analysis
about the reasons should be made. A consequence could be that the
ad gets improved. Such a test would not require an upfront broad
distribution of the ad or a full implementation of the components of
the system.

Continuing in the example, the product manager decided to
develop the system in a lean way without wasting development
effort and by focusing on value creation for customers (see Figure
11). Based on the vision and the identification of the main actors
and their needs the company defined a big goal (i.e., being market
leader in the Rio market). This big goal was subsequently refined into
smaller goals. For each smaller goal, build-measure-learn cycles were
conducted. For instance, in a first test of the ad the product manager
aimed at 80% conversion rate for downloads of the app but only
reached 5%. This led to an improvement of the ad.AD

download
app

Value delivery

Value creation

Value capture

give bracelet
to child

use
bracelet

sun
lotion

principle of
association

keep
children
safe

increase
sales
volume

$

Figure 10. Example assumptions identified from Wheels of Value model.

If there is a high uncertainty whether an important assumption
is true or not, it is recommended to test this assumption. Testing
assumptions can be done by experiments and should be done early
in the development process, ideally before the implementation of
the solution.

Vision

#1 skin care company

#1 in Rio market

1st 80 % downloads
2nd 20 % sales volume increase
3rd 40 % sales volume increase

Main actors

Value

Big goal
1 st

little goal
2 nd 3rd

$

downloads 5 %

Build

Mea
su

reLearn

Figure 11. Large goals are broken down and assumptions tested using continuous
experimentation cycles (build-measure-learn).

Improve
ad

52 53

Let us finally check the prerequisites for establishing a business
model that works. One way of doing this is to check if two equations
are met; the value equation and the sustainability equation (as
defined by Maurya in his book “Scaling Lean”, see Figure 12).

The value equation requires that the perceived value created for
a customer is higher than the captured value. In the example one
would need to check if the new layer of protection (i.e., keeping
children close to the family at the beach) is perceived as a higher
value than the cost for buying sun lotion. Although the bracelet and
the app are free, on average customers need to buy more sun lotion.

The sustainability equation requires that the value captured back
is at least as high as the cost to deliver the value to the users. In the
example the accumulated cost for the app, the bracelet, and the
distribution should not exceed the profit from the increased sales.
If these two equations are not met in the long run, a sustainable
business model cannot be established.

on how actors can make progress towards their outcomes. In the
example, the parents can relax at the beach without worrying about
their children. The children can play freely and have fun. In return, the
product manager grows his business.

AD$> = ()> Cost of

Created value Captured value

Sustainability equationValue equation

Value delivery

for

Figure 12. The value equation and sustainability equation are prerequisites for a
working business model.

The results of the company’s efforts were impressive: 80% of those
who saw the ad downloaded the app. The company became the
market leader for sun protection for the first time. The sales volume
increased by 62% and surpassed the main competitor by 13%. As
a side effect, the company significantly improved its innovative
perception in the target market. Due to the success, the company
considers to give the bracelet away with each sun lotion packet or to
sell the bracelets as a separate product.

Making happy customers is not about giving the users products
or features. It is about results (see Figure 13). Therefore, the Wheels of
Value Model focuses on satisfying and balancing needs, i.e., it focuses

Sun
lotion

Parent Child Product
Manager

$

Figure 13. The Wheels of Value model focuses on balancing needs.

This example is inspired by Nivea’s digital marketing campaign with
the Nivea Protégé app and a sun protector strip. A video of Nivea’s
solution can be found here: http://bit.ly/TheProtectionAd

 http://bit.ly/ProtectionAd
http://bit.ly/TheProtectionAd

54 55

Three Ways to Apply the Wheels of Value Models

There are many different applications for using the Wheels of Value
Model.

Making strategic decisions and guiding tactical work
Very often, complex business environments are crowded with many
entities such as devices, technical systems, services, connections,
layers, information flows, control flows, and organisational units.
Therefore, it is very difficult to identify the main actors and their
needs. It is especially difficult to understand how to make a business
and to see how the different actors are involved in the value chains.
The Wheels of Value Model helps you to identify the key actors
with their needs in complex business environments. It can be used
to create a shared understanding of your own role and the role
of other important actors. Strategic decisions can be based on a
good understanding of the needs of the different actors. A clear
understanding of the different needs helps to identify options for
satisfying these needs and to decide on what capabilities to develop.
It can also help to evaluate existing or suggested capabilities.

Validating business models
Important assumptions that underlie a business model might not be
viable or even wrong. If, for instance, an important assumption about
value capture should turn out to be wrong, the cost for value delivery
might not be covered and in the long run the business model might
not work. Therefore, important assumptions should be identified
and tested in order to mitigate the risk that your business model is
not working. The Wheels of Value Model is a great way to analyse
complex business situations and to identify business-critical value
assumptions. It visualises assumptions on how value is delivered,
created, and captured. These assumptions should be validated.

Finding new business
Applying the Wheels of Value model is also a good way to uncover
new business opportunities. Based on the identification of the
needs of different actors, you can look for new solutions to satisfy
these needs. The Wheels of Value Model also helps to design new
ecosystems and to transform your business to new areas.

Canvas Tools for Linking Experiments to Product and Business
Development

To succeed, a software product needs acceptance from its stakeholders
such as business owners and paying customers. It has to be made
available for delivery, be different from its competitors, and it needs
to support a scalable business model and a software architecture that
meet the needs of the stakeholders also in the future. The success of
the product concept is not based on a single stakeholder perspective,
but on the value it provides for all key stakeholders (see Figure 14).

Figure 14. Product success is based on the value provided for all stakeholders.

The experimentation process can be seen as a structured voice-of-
customer validation cycle that centres around users’ reactions towards
design elements – that reflect the product designers’ expectations –
crafted as hypotheses. The motivation for experimentation can be
used to validate ideas or to discover new, actionable knowledge that
can be used in designing the future of the product development
effort. Experimentation can take place at any stage of the innovation
process and with versatile types of experiment objects. The type of
these objects is dependent on what knowledge is available about
stakeholders, their problems and motivations, along with the value
the product concept provides for its users. Figure 15 displays a general
innovation process with examples of goals for experimentation at
each stage.

56 57

While working in the realm of practical experimentation, it is easy to
lose track of what the overarching goals of the product development
effort were. Table 4 shows some characteristics of immature and
mature product concepts. The product vision describes the “raison
d’être” of the product development effort. Sufficient preparations
at the project’s front-end stage can help to define a precise enough
vision and help to start the project faster and with less friction than
when ambiguity of the project’s goals prevail. Therefore, tracking
the vision should be kept as an essential background process. This
can be achieved by using the versatile set of canvas-based product
development tools that can combine different perspectives for
describing the software product. As each tool considers different
knowledge in the envisioning process, the choice of canvas tool
greatly affects the outcome.

Figure 15. A general innovation process with experiment goals for each stage.

Certainty about the product concept and its business model
creates the boundaries within which experimentation can take place
– and helps determine which factors require the most attention.
Here, it is important to recognise maturity of the product concept:
is it a minimally viable prototype? A commercially feasible pilot? A
production quality software product that can be imagined to be
scaled both as a technologically, and as a business asset? In each case,
the choice of canvas tools should be made based on what knowledge
is available and what knowledge the product development effort
needs most urgently.

Since there is an immense selection of canvas tools available,
the problem of choosing the right tool to fit the purpose becomes
emphasised. However, there are many elements in each tool which
relate to common concepts. Table 5 lists questions that can be used
in identifying which factors of the product concept must be fortified
by eliciting new knowledge

Immature Mature

Quality of ideas Fuzzy and probable Clear, fixed and
specific

Quality of knowledge
for decision-making

Informal and
approximate Formal and precise

Focus of the concept Broad focus and
thinly described

Narrow focus and
detailed

Rejecting an idea Easy More difficult

Damage if project is
abandoned

None or small Substantial

Management methods
Unstructured,
experimental and
creative

Structured and
systematic

Budget Small or none Designated and larger

Personnel involvement Individual people
or small teams

Full development
team

Table 4. Characteristics of immature and mature product concepts. (Adapted from J.
Kim and D. Wilemon, “Focusing the fuzzy front–end in new product development,” R&D
Management, vol. 32, no. 4, pp. 269–279, 2002.)

58 59

Theme Question

Stakeholders

Have we discovered who the
stakeholders are? Who are the
most important stakeholders?
What are their goals? Who are
the most potential for becoming
paying customers?

Problem

What problem do the stakeholders
experience? Which context/
processes does the problem relate
to?

Solution

What is the name of the product?
What kind of solution does the
product offer? Which processes
does it relate to or create? What
value does it provide? What is the
value proposition? Is the product
designed at a coarse or a detailed
level?

Market

How is the product positioned
into the marketplace? Who are
the competitors? What is the
competitive advantage? How is
the product delivered?

Project (development)

Which competencies are required?
Are priorities of requirements well
defined? What are the first steps for
starting the project? Are quality
requirements clear?

Business model

What is the mission statement of
the company? Core identity and
brand values? What is the product’s
cost structure and revenue stream?
Which metrics define commercial
success? How are customer
relationships managed?

Table 5. Questions for evaluating maturity of the product concept. When choosing between canvas tools, consider whether they allow
you, in your particular case, to evolve your product concept towards
maturity (see Table 2) and whether they assist you to evaluate the
questions in Table 3. Some examples of canvas tools are shown below.

Strategyzer Business Model Canvas and Value Proposition Canvas
https://strategyzer.com/canvas

IDEO – Human centered design toolkit: a collection of useful tools
http://www.designkit.org/

Futurice Lean Service Design Toolkit
https://www.leanservicecreation.com/

Lean Stack – The Lean canvas
https://leanstack.com/leancanvas

Roman Pichler – Go product roadmap
http://www.romanpichler.com/blog/goal-oriented-agile-product-
roadmap/

https://strategyzer.com/canvas
http://www.designkit.org/
https://www.leanservicecreation.com/
https://leanstack.com/leancanvas
http://www.romanpichler.com/blog/goal-oriented-agile-product-roadmap/
http://www.romanpichler.com/blog/goal-oriented-agile-product-roadmap/

60 61

VALUE Tool

An important part in the continuous experimentation cycle is
making decisions based on experiment results. Decisions in software
industries have largely been made in a value neutral setting, in which
cost is the primary driver for every decision taken. However, better
decisions can be made using a value-based approach, achieving
cost-effective results and reliable construction and maintenance of
products.

About the VALUE Tool
The VALUE Tool was created as part of the VALUE research
project, a Tekes-funded Finland Distinguished Professor
Programme (FiDiPro) at the University of Oulu. The tool
was developed in cooperation with industry partners by
FiDiPro professor Emilia Mendes and the M3S research
group headed by prof. Markku Oivo.

Further information is available at:
VALUE project
http://valueproject.fi/

Value tool demo
https://www.youtube.com/watch?v=pi3yO5k-MZc

 The Value Tool, which was co-created in collaboration with three
software companies, is such a tool. It supports both individual and
group-based decisions using several visualisation mechanisms.
The tool’s web-based interface (Figure 16) can be used by the key
stakeholders participating in decision-making meetings. The tool
provides means to represent value considerations by different
stakeholders. Those value considerations are company-specific and
they are elicited before taking the VALUE Tool into use. The result is
a common vocabulary the key stakeholders explicitly apply in the
decision-making.

http://valueproject.fi/
https://www.youtube.com/watch?v=pi3yO5k-MZc

62 63

After all the stakeholders input their opinion for each decision
item being discussed, the VALUE Tool aggregates the results and
display the group opinion in a rich dashboard. The data visualisation
provided by the dashboard is the aggregated view by all the
stakeholders. The dashboard is composed by six different reports,
with many customisation options, such as chart types, ordering, sub-
groups of stakeholders.

The final step of a decision-making meeting supported by the
VALUE Tool is documenting the group’s decision, which can be the
prioritisation or selection of the decision items discussed (Figure 17).
All past decisions are stored in the tool, and can be used to support
future decisions, and to go over past decisions too.

Figure 16. Screenshot of Value Tool. Figure 17. Final decision view.

64 65

Continuous Experimentation Infrastructure

Continuously running experiments can be made more efficient
through automation and a proper technical architecture. Tasks
such as data collection, management, and analysis are frequently
occurring and the software supporting such tasks can be reused.
The technical architecture of a software product or service can be
designed to support experiments. For example, an architecture that
allows flexible deployment and activation of experimental features
allows experiments to be run in the same development pipeline as
normal development.

The University of Helsinki has developed a reference infrastructure
for continuous experimentation, which is available online (https://
github.com/TheSoftwareFactory). The technology stack for
continuous experimentation builds on well-known and existing
continuous integration, delivery, and deployment pipelines. Three
new blocks are needed in the system architecture: a set of tools
for managing experiments and analysis experiment results, an
experiment backend, and changes to the software product itself, the
front-end. Figure 18 shows an overview of the system architecture.
For simplicity, the figure omits the required security mechanisms.

Figure 18. Continuous Experimentation Technical Infrastructure.

The experiment management tool is used to define experiments:
the conditions for the experiments such as start and end times, amount
of participants, or the desired statistical power. Each experiment
is associated with a product configuration, which is managed
through a product configuration tool. These communicate with the
continuous experimentation backend, which stores information on
each experiment and the associated product configurations. The
analysis and management tools also include software for analysing

https://github.com/TheSoftwareFactory)
https://github.com/TheSoftwareFactory)

66 67

and visualising the experiment data. Various kinds of tools can be
used depending on what is needed for the analysis.

The continuous experimentation backend stores all information
regarding experiments and product configurations as well as the
experiment data collected from front-end software. Experiments
are defined in experiment models, which store all data required to
keep track of running experiments, their present state, and conflicts
between experiments. Each experiment is associated with a product
configuration which defines how the front-end should configure
itself when it is part of a particular experiment. Finally, the backend
includes a high-performance data store which is capable of receiving
and storing all experiment data arriving from frontends.

The continuous experimentation frontend is the software that
is actually used by users. Apart from the main functionality that is
visible to the user, the frontend can be enabled for continuous
experiments with three crucial features that are not normally visible
to the user. The field reconfiguration layer includes the logic required
to contact the experimentation backend to advertise the frontend
as being available for experiments, and to receive an up-to-date
configuration for any experiments that the frontend is to participate
in. The layer includes fallback mechanisms in case the backend cannot
be contacted, and handles the reconfiguration of the software either
at start time or continuously at run-time. To actually implement the
reconfiguration, the frontend requires parameterised features, which
can range from simple on-off feature toggles to complex parameter
trees with runtime constraints. This may require some additional
design of the other frontend components, but also allows shipping
of inactive software that can be activated for experiments. Finally,
the frontend has a cache for experiment data, which stores a small
amount of data that can be sent to the experiment data store. The
cache allows experiments to be run even in limited connectivity
scenarios, and allows more fine-grained timing information to be
collected locally.

68 69

Category Vocabulary Description
Experiment Experimentation Refers to the actual process

of rapidly and incrementally
testing assumptions and
uncertainties in your ideas.

Target of experiment The experiment target
refers to what drives
the experimentation
e.g., concepts, insights,
assumptions, uncertainties,
features. This can be ideas or
problems that need solving,
uncertainties related to
feature usage, assumptions,
or concepts.

Assumption A thing, aspect of your idea
that is accepted as true or as
certain to happen, without
proof.

Hypothesis A hypothesis is a proposed,
testable explanation
for a phenomenon. A
hypothesis usually drives
the experiment and can
be derived from business
strategies, innovation
initiatives, qualitative and
quantitative customer
feedback, or results from on-
going customer validation
cycles.

Experiment object The experiment object is a
MVF or MVP that represents
critical aspects of the
product or the feature that
will be experimented on. In
other words, hypotheses are
tested with the experiment
objects.

Experiment plan The plan describes how
to test the set hypothesis.
It includes the method
(e.g., A/B testing, survey),
experiment target, duration,
data collection and analysis
descriptions.

Metrics Metrics capture values
pertaining to the product
or feature at a specific time
during experiment data
collection.

Success criteria A measure or metric that can
allow you to clearly assess
whether a hypothesis has
been validated or falsified.

Glossary of Terms

70 71

Product Value Value here is the importance,
worth, or usefulness of a
feature, product or service.
Creating, delivering, and
capturing value from users
or customers is a central
motivation for conducting
experiments (e.g., increase
customer satisfaction or
save R&D costs).

Minimum viable product
(MVP)

Refers to the smallest
possible set of features of a
product that adds value to a
customer.

Minimum viable feature
(MVF)

The smallest composition of
a feature that provides the
essential value for both the
users and owners from the
product.

Process Data collection Refers to the process of
acquiring quantitative
(e.g., usage data) and/
or qualitative data (e.g.,
interviews, observations,
surveys). The method of
collection depends on the
hypothesis and metrics
needed to validate the
hypothesis.

Qualitative methods are
more frequent at the
beginning until product/
solution fit has been
achieved or at the end of
the experimentation to
find out the reasons behind
quantitative data.

Analysis Refers to the process of
examining the collected
data in order to validate
the hypothesis (e.g., data
analysis or gap analysis).

Company Findings, learnings and
decisions

The final element is to act on
the findings and learnings
gained from the analysis.
This can be to kill the
experiment idea, to rethink
the idea or to continue with
the next assumption.

User The person who uses your
product or feature.

Customer The person or organisation
who is paying for the
products or services. A
customer can be a user as
well.

72

Continuous Experimentation Cookbook
An introduction to systematic experimentation for software-intensive businesses

DIMECC RESULT PUBLICATIONS 3/2017

What do your users and customers actually need?
How do you know? How can you find out?

The business landscape is changing radically because of software. Companies in all industry
sectors are continuously finding new flexibilities in this programmable world. They are able to
deliver new functionalities even after the product is already in the customer’s hands. But success
is far from guaranteed if they cannot validate their assumptions about what their customers
actually need. A competitor with better knowledge of customer needs can disrupt the market in
an instant.

This book introduces continuous experimentation, an approach to continuously and systematically
test assumptions about the company’s product or service strategy and verify customers’ needs
through experiments. By observing how customers actually use the product or early versions
of it, companies can make better development decisions and avoid potentially expensive and
wasteful activities. The book explains the cycle of continuous experimentation, demonstrates
its use through industry cases, provides advice on how to conduct experiments with recipes,
tools, and models, and lists some common pitfalls to avoid. Use it to get started with continuous
experimentation and make better product and service development decisions that are in-line
with your customers’ needs.

	Cookbook3_etukansi_web
	Cookbook3_lowres_sisus_aukeamittain

