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Abstract: Vegetation properties can be estimated using optical sensors, acquiring data on board
of different platforms. For instance, ground-based and Unmanned Aerial Vehicle (UAV)-borne
spectrometers can measure reflectance in narrow spectral bands, while different modelling
approaches, like regressions fitted to vegetation indices, can relate spectra with crop traits. Although
monitoring frameworks using multiple sensors can be more flexible, they may result in higher
inaccuracy due to differences related to the sensors characteristics, which can affect information
sampling. Also organic production systems can benefit from continuous monitoring focusing on
crop management and stress detection, but few studies have evaluated applications with this
objective. In this study, ground-based and UAV spectrometers were compared in the context of
organic potato cultivation. Relatively accurate estimates were obtained for leaf chlorophyll (RMSE
= 6.07 µg·cm−2), leaf area index (RMSE = 0.67 m2·m−2), canopy chlorophyll (RMSE = 0.24 g·m−2)
and ground cover (RMSE = 5.5%) using five UAV-based data acquisitions, from 43 to 99 days after
planting. These retrievals are slightly better than those derived from ground-based measurements
(RMSE = 7.25 µg·cm−2, 0.85 m2·m−2, 0.28 g·m−2 and 6.8%, respectively), for the same period.
Excluding observations corresponding to the first acquisition increased retrieval accuracy and made
outputs more comparable between sensors, due to relatively low vegetation cover on this date.
Intercomparison of vegetation indices indicated that indices based on the contrast between spectral
bands in the visible and near-infrared, like OSAVI, MCARI2 and CIg provided, at certain extent,
robust outputs that could be transferred between sensors. Information sampling at plot level by both
sensing solutions resulted in comparable discriminative potential concerning advanced stages of late
blight incidence. These results indicate that optical sensors, and their integration, have great potential
for monitoring this specific organic cropping system.

Keywords: hyperspectral imagery; Vis-NIR spectroscopy; organic cropping systems;
vegetation indices
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1. Introduction

In-season monitoring of crop development can assist management practices in different aspects,
allowing farmers to optimize agricultural operations according to site-specific characteristics [1].
Information obtained in previous seasons can also be considered for planning the cultivation of
subsequent crops, taking into account the spatiotemporal variability of yield and of different factors
related to the production [1,2]. In parallel, high-throughput approaches for field-based phenotyping
can assist plant breeding in order to identify genotypes with better performance under diverse abiotic
and biotic constraints, under realistic production conditions [3]. In these cases, proximal and remote
sensing offers a multitude of techniques that can be applied to estimate crop traits over time in
non-destructive and spatially explicit ways. For instance, reflectance in the optical domain has been
used to retrieve plants biochemical and biophysical properties, with high potential for the assessment
of leaf pigments, like chlorophylls, and leaf area index, amongst other traits of great importance in the
evaluation of plant health and of its response to stress conditions [4,5].

The estimation of leaf pigments content and canopy structural traits through optical remote
sensing, usually with measurements of reflectance in spectral bands between 450 and 900 nm
(i.e., from visible to near-infrared), is performed using approaches that can be broadly divided in
three categories [6]: empirical-statistical (i.e., through parametrical or non-parametrical regressions),
physical-based and hybrid. The first group comprises calculations of vegetation indices, which are
derived considering statistical or physical relations between vegetation properties and its spectral
response, and also statistical-based methods, which rely on “best-fit” or regression optimization for a
given training dataset [7]. Physical methods, on the other hand, are based on detailed mathematical
description of the interactions between incident energy with vegetation and background (i.e., soil),
considering the major factors related to this relationship (e.g., view and illumination geometry, leaf and
canopy characteristics, etc.), through radiative transfer models (RTMs). Although physical approaches
have a greater generalization potential their parametrization and inversion are considerably more
complex and require substantial effort to be implemented in practical frameworks. In order to mitigate
these limitations, RTMs can be inverted using non-parametric regressions trained upon simulated
data originating hybrid methods, which give a simplified inversion alternative to physical approaches.
Despite the fast development of more advanced retrieval techniques based on the physical description
of crop spectral response, vegetation indices still are a valuable alternative to perform plat traits
modeling in a straightforward and robust way with applications in the assessment of crop health and
phenomics [8–10].

The timely acquisition of spectral information is a key factor for crop monitoring during the
growing season concerning the detection of stress factors and assessment of their impact on the crop
development [1]. To that end, integration of data streams from different optical sensors can bring
flexibility to follow crop growth over time, since acquisition can be performed using different platforms,
according to environmental constraints, and measurements may be potentially coupled with other
agricultural operations [4]. In this respect, simultaneous use of point-based data or images acquired
using terrestrial sensors with spatially continuous information derived from UAV, airborne or satellite
systems can provide a more suitable monitoring framework than relying on a single information source,
especially considering temporal resolution demanded by agricultural applications and phenotyping
methodologies [11,12].

Multiple approaches are available to integrate datasets from optical sensors. For instance,
intercalibration methods are generally applied to combine reflectance or vegetation indices derived
from different satellite systems [13–16], although its application to sensors in other platforms has
been evaluated as well [17,18]. In this context, the use of vegetation indices may simplify the
transfer procedure since they are designed to mitigate background effects and changes in illumination
conditions over time. Also, RTMs might be included in frameworks intending to extend the analysis to
outputs of different sensors, considering the generalization potential of these methods [6]. However,
any integration approach will be potentially subject to bias introduced by the sensors and data
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acquisition characteristics (e.g., spectral response, data spatial support, information sampling scheme)
and the interaction of these factors with illumination conditions and sun-target-sensor geometry.
Therefore evaluating the impact that using different sensors, at different acquisition levels, has upon
crop traits retrieval and plant development monitoring may help to indicate limitations and potentials
of integrate sensing frameworks applied to the context of crop phenotyping or general vegetation
growth monitoring.

The retrieval of crop traits during the growing season can be particularly challenging for organic
cropping systems. For instance, in organic production of potato (Solanum tuberosum), nitrogen and late
blight (Phytophthora infestans) are in general the most important aspects affecting the crop development,
due to the constraints on the use of chemical fertilizers and synthetic pesticides [19]. Nutrient
shortage and pathogen development can occur simultaneously with other stress factors, increasing
the complexity of the system. In addition, the estimation of vegetation properties can be particularly
challenging in initial stages of the crop development while canopy is still largely open and considerable
amount of background can affect the signal measured by a given sensor [20]. These factors, together
with potential variations in the illumination condition and sun-target-sensor geometry between
different data acquisitions [21], increase the difficulty of crops traits retrieval. Despite that, continuous
monitoring of crop development in organic production can be useful to stablish management according
to the variability observed in the field, concerning, for example, fertilization and varietal choices.
However, research focusing on the application of precision agriculture practices in organic cropping is
still scarce [22], and solutions suitable to this particular cultivation system need to be established.

Therefore, the present study has the following objectives: (a) evaluate the accuracy of simple
retrieval methods (i.e., calculation of vegetation indices from narrow band spectral data coupled
with linear regression) for predicting organic potato traits during the growing season, based on
UAV hyperspectral data; (b) compare results obtained using UAV imagery with those derived from
ground-based measurements concerning crop traits estimation and discriminative potential of the
information derived, in this case focusing on late blight development; (c) intercompare data derived
from both acquisition levels (i.e., UAV- and ground-based) in order to evaluate implications that
a potential integration of different sensing approaches may have in agricultural applications or
phenotyping frameworks.

2. Materials and Methods

2.1. Study Site

The dataset used in this study was acquired on twelve plots cultivated with potato, during the
2015 growing season. These plots were located within an stripcropping experiment (51.9917◦ N,
5.66332◦ E; WGS84) started in 2014, at the Droevendaal experimental farm of Wageningen University
in The Netherlands. As illustrated in Figure 1, plots were arranged in a strip along the experimental
site and measured 3 m × 10 m. Buffer areas, measuring 3 m × 5 m, were placed before and after each
plot, in the same strip, in order to separate them and avoid border effects along the experiment. The
crop was planted on 23 April 2015, with 0.75 m of inter-row spacing and 0.30 m of interplant distance,
and was harvested on 10 August of the same year. Two different cultivation methods were compared:
(a) plots in which a variety mixture of four different cultivars, “Annabelle”, “Ditta”, “Tiamo” and
“Toluca”, with different degrees of resistance (from low to high, respectively) to late blight, were
iterated in each crop row, referred as mixed crop system; and (b) plots cultivated with only one potato
variety (“Toluca”) considered highly resistant to late blight, named non-mixed system. The experiment
followed a generalized randomized block design, with 3 blocks and 2 replicates of each treatment
(i.e., cultivation methods) in each block (Figure 1). The main objective of this study was to evaluate
crop development and disease occurrence for these two organic production systems. The potential
of ground-based and UAV-carried sensors for monitoring plant growth over time was tested in this
context. For that, late blight severity was assessed at the plot level in different dates, as indicated in
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Section 2.2 (Table 1), according to the methodology described by the European and Mediterranean
Plant Protection Organization (EPPO) [23].Sensors 2017, 17, 6  4 of 37 
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Figure 1. Location of the plots in the experimental area, represented over true color composite of a
hyperspectral image, acquired in 24 June 2015. Bands centered at 665, 555 and 485 nm are used in the
RGB representation, respectively.

2.2. UAV-Based Hyperspectral Data Acquisition and Processing

Hyperspectral data was acquired during the growing season using the WageningenUR
Hyperspectral Mapping System (HYMSY), an UAV-based pushbroom imaging system [24].
It comprises a custom spectrometer (PhotonFocus SM2-D1312 camera – PhotonFocus AG, Lachen,
SZ, Switzerland – with a Specim ImSpector V10 2/3 spectrograph – Specim, Spectral Imaging
Ltd., Oulu, Finland), a photogrammetric camera (Panasonic GX1 16 MP – Panasonic Corp., Osaka,
Japan – with 14 mm pancake lens), an integrated GPS and inertial navigation system (INS) unit (XSens
MTi-G-700 – Xsens Technologies BV, Enschede, The Netherlands), together with synchronization
and data sink elements. The equipment weights approximately 2 kg, allowing its use with
relatively small-size UAVs resulting in a flexible hyperspectral sensing platform for in season
vegetation monitoring.

Digital numbers (DN) obtained with the UAV-based spectrometer were converted to radiance
units using dark current and flat field calibration. Wavelengths were standardized to allow comparison
over the complete sensor field-of-view yielding a resampled radiance data in the interval between 450
and 915 nm, with 10 nm spectral resolution. A 25% reflectance spectralon panel was measured
before each flight as reference target to convert the radiances to reflectance factors considering
illumination conditions.

The geometric correction of the hyperspectral datacube acquired was performed through a direct
georeferencing procedure, which requires an external digital surface model (DSM) and GPS-INS data
with high accuracy [25]. In the case of the HYSMY, a DSM was obtained from images taken with
the photogrammetric camera included in the system, using structure-from-motion algorithm [26],
implemented through the photogrammetric software PhotoScan Pro v1.0.0 (Agisoft LLC, St. Petersburg,
Russia). At the same time that the high resolution DSM was derived, adjusted camera orientations that
matched the surface model were obtained. These adjusted orientations were used to increase accuracy
of the GPS-INS data before geometric correction of the hyperspectral data, which is a necessary step
considering the relative inaccuracy of the miniature GPS-INS unit included in the system.

The resulting DSM and updated GPS-INS data were feed together with the hyperspectral datacube
to the PARGE algorithm (v3.2beta, ReSe Applications, Schläpfer et al. [25]) in order to implement the
georeferencing of the hyperspectral datacube. Considering that a conventional GPS receiver was used
during the flights, a final georeferencing step was necessary to increase positioning accuracy not only
for the hyperspectral datacube, but also for the DSM and photogrammetric orthomosaic. Therefore,
a first order polynomial transformation was fitted based on six ground control points (GCPs, Figure 1),
which were registered using a RTK-GPS system.
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Images were acquired on five different days during the growing season, corresponding to distinct
crop growth stages, as indicated in Table 1. During data acquisition the sensor system was positioned at
80 m altitude resulting in an approximate spatial resolution of 0.2 m for the hyperspectral imagery and
of 0.02 m for the RGB orthomosaics. DSM with the same spatial resolution of hyperspectral datacube
was derived from the orthoimages to be used in the geometric correction of the hyperspectral data.

Table 1. Characteristics of the UAV data collected over time. Days after planting (DAP), estimate
potato growth stage (according to the BBCH scale [27,28]), growing degrees day (GDD; using 7 ◦C
as base temperature), flight time (UTC +2), Sun zenith angle (SZA), Sun azimuth angle (SAA), and
illumination conditions.

Date DAP Growth Stage 1 GDD 2 Flight Time SZA 3 SAA 3 Illum.

05 June 2015 43 3–4 235.7 13:24 29.5 174.5 Clear
24 June 2015 62 4–5 368.9 09:49 52.0 100.4 Overcast
07 July 2015 75 6–7 541.7 10:16 49.0 106.6 Clear
16 July 2015 84 8–9 631.2 10:57 44.3 117.7 Clear
31 July 2015 99 9 774.7 12:15 37.9 144.3 Clear
1 BBCH scale: 3—main stem elongation; 4—tuber formation; 5—inflorescence emerging; 6—flowering; 7—fruit
development; 8—ripening of fruit and seed; 9—senescence. 2 calculated from daily maximum and minimum
temperatures from an automated weather station locate at approx. 3 km from the experimental field (weather
station “Veenkampen”, 51.9808◦ N, 5.6217◦ E); 3 SZA and SAA calculated in relation to the center of the images.

2.3. Spectra Extraction from Hyperspectral Images

Residual geometric distortion could be observed in the hyperspectral imagery even after applying
the data processing methods described in Section 2.2, especially different degrees of “roll-related” bias
(i.e., errors across the flight direction). This can be attributed to the interpolation performed while
deriving the final orientations for the hyperspectral data [24], and the distortion intensity is probably
related to flight conditions (i.e., wind speed and its variation at the flight altitude). The advantage
of the geometric correction adopted here is that it depends only on in-flight acquired data, allowing
a predominantly automated post-acquisition data processing procedure. Other authors proposed
alternative approaches to increase geometric correction accuracy for hyperspectral datacubes obtained
from UAV-based pushbroom systems, for example, relying on GCPs, tie points and linear features
identified in high resolution images from RGB frame cameras [29]. However, these methods are
generally more complex and require additional steps besides the flight operation itself.

Therefore, to minimize the impact of geometric inaccuracies in the final dataset to be analyzed,
spectral information at plot level was extracted based on plot boundaries identified in the hyperspectral
imagery using a straightforward edge-detection approach [30], implemented over values of vegetation
indices. This method depended on contrasting intensities for vegetation indices corresponding to
crops in adjacent strips in the experiment and between soil and vegetation in the space between strips.
Different vegetation indices were used (i.e., NDVI, REP, WDVI and TCARI/OSAVI; Table 2) and results
yielding the sharpest plot boundaries for each acquisition date were retained. As parameters for the
Canny edge-detection algorithm the sigma value, which determines the width of the Gaussian filter
applied to the image before segmentation, was set to 0.5 and the maximum and minimum thresholds
adopted were the average of the directional gradient intensities for a given image and 40% of this value,
respectively. Images corresponding to each acquisition were divided in four segments for processing,
and calculations were performed for each segment separately.

Although the decision about the final boundaries was made visually, adding bias to the process,
this simple approach helped to mitigate georeferencing errors across the flight line in the selection of the
hyperspectral data. Errors along the flight direction were not considered, i.e., plot limits were assumed
to be the same as those located in the field using a RTK-GPS, since the buffer areas before and after
each plot received the same treatment as the corresponding plot and residual geometric distortions
were estimated to be considerable lower than the dimensions of these buffer areas. Therefore any
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signal mixing between spectra corresponding to plots and buffer areas would probably result in low
impact in the final information extracted.

2.4. Ground-Based Spectral Measurements

Following UAV data acquisitions, canopy reflectance was measured using a handheld Cropscan
Multispectral Radiometer (MSR16R; CROPSCAN Inc., Rochester, MN, USA), which performs readings
in 16 spectral bands in the visible, near-infrared and shortwave infrared (from 490 to 1650 nm). Only
data until 870 nm was used for analysis resulting in reflectance values for eleven bands with FWHM
(full width at half maximum) varying between 7.3 and 13 nm. Measurements were made at 1 m high
from the top of the crop canopy, and considering the sensor field-of-view (28◦) the effective measured
area was equivalent to 0.20 m2. More details about the sensor and data acquisition procedures are
described by Clevers and Kooistra [4]. The reflectance derived using this sensor was calculated
based on simultaneous measurements of down-welling irradiance, using a cosine-correct diffusor,
and up-welling radiance. Spectral acquisition followed a consistent intra-plot sampling scheme,
with readings recorded in four distinct points, according to a diagonal arrangement along each plot
(Figure 2). One measurement was acquired per crop row in a regularly spaced pattern, which was
retrieved during data acquisition using a measuring tape extended from the plot borders. Therefore,
during each data acquisition 48 spectral measurements were obtained over the crop strip and spectra
was averaged at plot level (i.e., the average reflectance was calculated bandwise, considering the four
spectral measurements acquired in each plot) resulting in 12 spectral signatures per acquisition date,
after aggregation.
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Figure 2. Sampling scheme at plot level represented over RGB orthomosaic for one plot cultivated with
the non-mixed treatment (a) and other planted with mixed varieties (b), on the last acquisition date (31
July 2015). Transparent red circles represent ground-based spectrometer footprint (i.e., measurement
area at the top of the canopy) while red rectangles indicate sampling units, in which chlorophyll
measurements were made (as described in Section 2.5). Digital hemispherical photographs (DHPs)
were taken pointing to the center of the sampling units, and the area sampled by pictures is indicated
using transparent black circles (as described in Section 2.6). Small circles indicated by dashed black
lines correspond to the area considered to derive fractional vegetation cover from DHPs (as described
in Section 2.6).

2.5. Chlorophyll Content at Leaf and Canopy Levels

Leaf chlorophyll content was determined based on SPAD meter readings (SPAD-502; Minolta
Corporation Ltd., Osaka, Japan). This sensor derive a measure based on the transmittance in red
(650 nm) and near infrared (940 nm) wavelengths [31]. Data collection followed the same intra-plot
sampling scheme described in Section 2.3, and, therefore, measurements were recorded in four distinct
sampling units (measuring 0.75 m× 2.5 m) arranged diagonally along the plot, with one sampling area
allocated per crop row in a regularly spaced pattern (Figure 2). Only the last fully developed leafs of
four potato plants were measured in each sampling unit. SPAD meter values were transformed into leaf
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chlorophyll content per leaf surface area (µg·cm−2) using the equation described by Uddling et al. [31],
and values corresponding to one plot were averaged to give an estimate chlorophyll content at plot
level. Authors suggesting equations to convert SPAD units to leaf chlorophyll content often arrive to
different formulations, according to crop and environmental conditions, for example, and differences
between converted values can be considerable even when equations used are derived for the same crop,
as discussed by Parry et al. [32]. Despite that, considering the need in this study for data acquisition in
the same plots over the season, non-destructive retrieval was preferred. Chlorophyll concentration at
canopy level (g·m−2) was estimated per plot multiplying the average leaf chlorophyll content (derived
from 16 values of chlorophyll content per plot, in each acquisition date) by the corresponding leaf area
index (calculated based on 4 DHPs taken per plot, in each acquisition date, as described in Section 2.6),
a method widely adopted to derive this attribute [33].

2.6. Leaf Area Index and Ground Cover

Leaf area index was estimated for each plot, after UAV data acquisitions, using an indirect
non-destructive approach based on digital hemispherical photographs (DHPs) [34]. For this, DHPs
were taken using a Nikon D-300s camera (12.3 MP; Nikon Corp., Tokyo, Japan) equipped with
full-frame fisheye lens (Fisheye-Nikkor, focal length of 10.5 mm, maximal aperture f/2.8) looking
downward and at approximately 0.6 m from the top of the canopy. Camera focus was set to infinity
and ISO to 200, while aperture and shutter speed were adjusted automatically, to mitigate saturation
issues due to overexposure [35]. Inside the plots, four pictures were acquired in each acquisition
date following the same diagonal pattern described previously (Figure 2). The camera was manually
levelled before shooting with aid of a bubble level attachment and images were registered in fine jpeg
format. Camera optical centre and projection function, used to convert image pixels to zenith view
angles, were estimated based on the method described by Baret [36]. Segmentation of each picture in
vegetation and background components (i.e., potato canopy and soil) was performed through threshold
optimization after transformation of image colors, as proposed by Liu et al. [37] and Song et al. [38].

Results of the picture segmentation procedure were divided in angular sectors with zenith
and azimuth resolutions of 2.5 and 5◦, respectively, in order to describe the different view angles
registered in the images. Canopy gap fraction for each sector of the images was then derived and,
due to characteristics of the lens used, only the angular interval between 0 and 37.5◦ was sampled.
Leaf area index was estimated based on the relation described by Nilson [34,39], through the so
called Poison model, between gap fraction, leaf area index and mean projected leaf area (G) in the
plane perpendicular to the zenith view angle, considering uniform projection for different azimuth
directions [35,40]. G is directly dependent on the leaf inclination distribution function (LIDF), described
here using an ellipsoidal density function [41], which allows a flexible and simple representation of the
LIDF requiring only one parameter (i.e., the ratio of vertical to horizontal projections of a representative
volume of the canopy—χ). Through the relation between χ and the average leaf inclination of the
canopy, the inversion of the Poison model to estimate leaf area index from canopy gap fraction becomes
only dependent on the average leaf inclination angle, besides on the leaf area index itself.

In the method briefly described above, a random spatial distribution of leafs in the canopy is
assumed, which differs from reality especially for row crop systems. A modified version of the Poison
model was proposed by Nilson [39,42] to account for canopy non-random distribution through a
clumping parameter (Ω), allowing to describe the relation of gap fraction with “true” values of leaf area
index and average leaf inclination angle. The logarithm gap fraction averaging method, introduced by
Lang and Xiang [43], was used to estimate the clumping parameter (Ω) for a given zenith view angle
(θi) (Equation (1)):

Ω(θi) =
ln
{

1
N ∑N

j=1
1

Nϕ
∑Nϕ

ϕ=1[Pϕ(θi)]
}

1
N ∑N

j=1
1

Nϕ
∑Nϕ

ϕ=1 ln[Pϕ(θi)]
, (1)
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where N corresponds to the number of images taken in one plot and Nϕ to the number of cells
describing azimuth view angle variation for a given zenith angle. This approach relies on the fact that
leaf area index is related to natural logarithm of the gap fraction and therefore the ratio between the
logarithm of average gap fraction (large-scale component) and the average of gap fraction logarithm
(small-scale component) gives a good estimate of canopy clumping [44,45]. In this approach, canopy
elements are assumed to be randomly distributed within each individual cell.

The Poisson model inversion procedure allows to use a limited range of zenith view angles,
a desirable feature considering that extreme view angles of DHPs can have higher degrees of targets
mixing and masked areas, and, at the same time, the complete angular range is not always sampled,
depending on the specifications of the camera-lens set. Several approaches were proposed to perform
inversion of the Poisson model based on multangular gap fraction values [34]. In this study a method
based on a look-up-table (LUT) was used [34,35,40]. For that, a LUT was built combining leaf area
index values from 0 to 10 m2·m−2 (in 0.01 m2·m−2 steps) with average leaf inclination angles from
10◦ to 80◦ (with 2◦ intervals) and clump parameter estimates for all values of effective leaf inclination
angle from 10◦ to 80◦, with 2◦ intervals. In the case of the clumping factor, the effective leaf inclination
angles were used to estimate saturated gap fractions (considering LAI at saturation level equal to
10 m2·m−2), which in turn were used to replace gap values for cells completely covered by vegetation.
The gap averaging calculations were weighted by the amount of non-masked pixels in each cell. The
cost function described by Demarez et al. [35] was used to retrieve the canopy parameters in the LUT
that best described the gap fractions measured in the different zenith view angles in a plot.

Results of model inversion (i.e., estimates of leaf area index, average leaf inclination angle
and clumping index) corresponded not only to leafs but to all vegetation components, since
photosynthetically active elements could not be distinguished from other plant parts like senescent
leafs, branches and stems [40]. Therefore, the so called plant area index is the parameter derived
through this inversion and in subsequent sections the term leaf area index refers to plant area index
adjusted for clumping effects.

Ground cover at plot level was estimated based on the ratio between foreground and background
components derived from the segmentation of DHPs, considering only the zenith view angle interval
between 0◦ and 20◦.

2.7. Vegetation Indices

Vegetation indices were calculated from UAV and ground-based spectra, at plot and intra-plot
levels, for all acquisition dates. From the numerous vegetation indices designed to describe different
properties of leaf and canopy, those listed in Table 2 were selected to explore the relationship between
crop traits and spectral information during the growing season. The normalized difference vegetation
index (NDVI) is widely used due to its relation with amount of vegetation and photosynthesis capacity,
light use efficiency and biomass productivity, while reducing the effects of illumination conditions on
spectral data [46]. However, it is largely affected by soil reflectance (background effects) and has low
sensitivity to changes of plant properties when the sensed area is completely covered by vegetation.
Indices searching to correct for background effects as the weighted difference vegetation index (WDVI)
often take advantage of the constant relationship between soil reflectance in red and near-infrared
wavelengths, if soil moisture is the only changing factor [47,48]. WDVI is highly correlated with
canopy structural properties like leaf area and can be described as an orthogonal index since it is given
as a function of isolines parallel to the principal axis of the soil spectral variation in the red versus
near-infrared space (soil-line) [49]. Other vegetation indices were developed considering the soil-line
concept to adjust for background effects in estimations of vegetation properties, like the optimized
soil-adjusted vegetation index (OSAVI) [46].

Various indices have been designed specifically to estimate leaf chlorophyll content as the
modified chlorophyll absorption in reflectance index (MCARI), which searches to reduce effects
of background and non-photosynthetic materials in the spectral measurements [20]. MCARI was
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developed from CARI, proposed by Kim et al. [50], and was further improved by Haboudane et al. [51]
in order to reduce residual effects of non-photosynthetic elements at low chlorophyll concentrations,
originating the transformed chlorophyll absorption ratio index (TCARI). Also, following the integration
of MCARI with OSAVI proposed by Daughtry et al. [20], the same combination can be applied to
TCARI to reduce influence of soil reflectance resulting in two different indices, MCARI/OSAVI and
TCARI/OSAVI [52]. Wu et al. [52] proposed to replace bands in these indices at 670 nm and at 700
or 800 nm by bands centered at 705 and 750 nm, respectively. They verified that linearity of the
relationship with leaf chlorophyll content improved while sensitivity to changes in canopy structural
properties decreased after bands in the red edge region were integrated. Ciganda et al. [53] and Clevers
and Kooistra [4] also demonstrated that an index based on a spectral band in the red edge region, the
red edge chlorophyll index (CIre) [54], has linear relation to leaf chlorophyll and nitrogen contents
being well suited for estimations of these properties.

The inflexion point of vegetation spectra in the red edge region (between 680 and 780 nm), referred
as red edge position (REP), has proven to be a measure sensitive to vegetation properties at leaf and
canopy levels like chlorophyll content and leaf area. However saturation of this index under high
chlorophyll content scenarios has been reported [48]. The REP was estimated in this study using the
linear four-point interpolation method [55,56]. This approach consists of estimating the reflectance in
the red edge point as the average of the reflectance in the near-infrared (780 nm) and in in the region of
maximal energy absorption by chlorophyll (680 nm). The final REP value is calculated proportionally
in relation to reflectance in wavelengths between 700 and 740 nm.

Based on the reflectance spectra slope in the red edge region, the MERIS terrestrial chlorophyll
index (MTCI) was developed as a relatively simple approach to estimate changes in the red edge
position using bands included in the Medium Resolution Imaging Spectrometer (MERIS) sensor [57].
Although designed to be derived from discontinuous spectral information it has been described as
having better performance than REP or other red-edge-based indices for chlorophyll estimation [58],
especially for high chlorophyll contents, even when compared with indices designed to be derived
from continuous narrow spectral bands.

Gitelson et al. [54,59] found that replacing a band in the red edge region (710 nm) by a band in
the green region (550 nm) in an index with same format as CIre would bring comparable result in
anthocyanin-free leaves and proposed the green chlorophyll index (CIg) as alternative to estimate
leaf chlorophyll. Besides chlorophylls, other leaf pigments are related to photosynthetic activity and
participate in the regulation of radiation use by plants. The photochemical reflectance index (PRI), also
using spectral bands in the green region, has been proposed as indicative of the epoxidation state of
xanthophyll cycle pigments, which are related to the efficiency of photosynthesis [60]. Although it has a
strong relationship at leaf level with xanthophylls, for longer time periods PRI is sensitive to other leaf
pigments, like carotenoids and to the ratio of carotenoids versus chlorophylls concentration [61–64],
besides being sensitive to changes in canopy structure [65,66], like variations in leaf area, facts that
need to be taken into account for vegetation monitoring over time.

Finally, to improve prediction of leaf area Haboudane et al. [67] introduced the MCARI2, in which
a band in the red region (700 nm) present in the original MCARI was replaced by a band in the
near-infrared (800 nm) and a soil adjustment factor was added, to reduce chlorophyll, background and
atmosphere effects while increasing linearity of the relationship with leaf area.
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Table 2. Vegetation indices used to estimate crop traits.

Vegetation
Index Formulation 1 Spectral Bands (Centre-nm) Sensitive to

(Scale) 2 Ref.
Ground UAV

NDVI R800−R670
R800+R670

670, 780 670, 800 chl, LAI, chl ×
LAI (L, C) [68]

WDVI
R870 −C R670;

C = RSoil870
RSoil670

670, 870 670, 870 LAI (C) [47]

OSAVI (1 + 0.16) (R800−R670)
(R800+R670+0.16) 670, 780 670, 800 chl, LAI, chl ×

LAI (L, C) [46]

MCARI [(R700 − R670)− 0.2(R700 − R550)]
(

R700
R670

)
550, 670, 700 550, 670, 700 chl (L) [20]

TCARI 3
[
(R700 − R670)− 0.2(R700 − R550)

(
R700
R670

)]
550, 670, 700 550, 670, 700 chl (L) [49]

MCARI/OSAVI
[(R700−R670)−0.2(R700−R550)]

(
R700
R670

)
(1+0.16) (R800−R670)

(R800+R670+0.16)

550, 670, 700, 780 550, 670, 700, 800 chl (L) [20]

TCARI/OSAVI
3
[
(R700−R670)−0.2(R700−R550)

(
R700
R670

)]
(1+0.16) (R800−R670)

(R800+R670+0.16)

550, 670, 700, 780 550, 670, 700, 800 chl (L) [51]

MCARIre [(R750 − R705)− 0.2(R750 − R550)]
(

R750
R705

)
550, 700, 750 550, 705, 750 chl (L) [52]

MCARI/OSAVIre
[(R750−R705)−0.2(R750−R550)]

(
R750
R705

)
(1+0.16) (R750−R705)

(R750+R705+0.16)

550, 700, 750 550, 705, 750 chl (L) [52]

TCARI/OSAVIre
3
[
(R750−R705)−0.2(R750−R550)

(
R750
R705

)]
(1+0.16) (R750−R705)

(R750+R705+0.16)

550, 700, 750 550, 705, 750 chl (L) [52]

CIre
R780
R710
− 1 710, 780 710, 780 chl (L) [54,59]

CIg
R780
R550
− 1 710, 750 710, 750 chl (L) [54,59]

MCARI2
1.5[2.5(R800−R670)−1.3(R800−R550)]√
(2R800+1)2−(6R800−5

√
R670)−0.5

550, 670, 780 550, 670, 800 LAI (C) [67]

REP 700 + 40

(
R670+R780

2

)
−R700

R740−R700
670, 700, 740, 780 670, 700, 740, 780 chl, LAI, chl ×

LAI (L, C) [55]

MTCI R754−R709
R709−R681

670, 710, 750 680, 710, 755 chl, LAI, chl ×
LAI (L, C) [57]

PRI R570−R531
R570+R531

530, 570 530, 570 xan, car, car/chl,
LAI (L, C) [60]

1 Rw = reflectance in the spectral band centered in w, RSoilw = reflectance of bare soil in the spectral band centered
in w; 2 chl = leaf chlorophylls content; LAI = leaf area index; chl × LAI = canopy chlorophylls content; xan =
xantophylls; car = carotenoids; car/chl = ratio between carotenoids and chlorophylls; L = leaf scale; C = canopy scale.

2.8. Crop Traits Modelling and Intercomparison of Different Spectral Acquisition Levels

Vegetation indices derived from UAV and ground-based measurements were used as predictors
to model crop properties, using linear regressions fitted through ordinary least squares. The predictive
performance of each model was assessed based on root mean squared errors (RMSE) and coefficient of
determination (R2). RMSE was estimated using repeated (100 times) 10-fold cross-validation (with
final RMSE values corresponding to the average for the 100 repetitions) while R2 was calculated for
models fitted to the complete dataset. Confidence and prediction intervals (95% confidence level) were
derived considering the complete dataset as well. Also, the mean errors (the sum of residuals divided
by the number of observations) were evaluated per acquisition date (from 43 to 99 DAP). Estimations
derived from the fitted models were used for their calculation.

The direct intercomparison of vegetation indices from both sensing approaches was performed
fitting linear regressions to the values of each index and calculating R2 and discrepancy of slope (DS),
which consists of subtracting from one the slope of the linear model considered [69]. R2 and DS were
used as parameters to assess comparability of the outputs at plot level.

Finally, to assess UAV and ground-based sensors capabilities to sample comparable information
and its discriminative potential concerning differences between treatments, the Bhattacharyya
coefficient (B-coefficient; [70]) was used. For that, average and standard deviation were calculated in
order to describe a normal distribution for values of each vegetation index corresponding to a given
treatment. The B-coefficient was then derived as indicated in Equation (2):

B− coeff.(t1, t2) =
∫ √

t1(x)t2(x)dx, (2)
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where t1 and t2 are the normal probability distributions of values corresponding to the different
treatments (i.e., non-mixed—t1—and mixed varieties—t2), for a given vegetation index. The result
was subtracted from one to give a parameter varying between zero and one, corresponding to totally
overlapping to completely separated probability distributions, respectively.

3. Results

3.1. Description of Crop Development and Canopy Reflectance over Time

During the growing season crop traits were measured on different dates to describe leaf and
canopy development (Figure 3). Leaf chlorophyll content decreased over time (Figure 3a), especially
between the first (43 DAP) and the third (75 DAP) data acquisitions, while canopy structure was
still developing, as indicated by changes of leaf area index and ground cover levels on this period
(Figure 3b,d). This continuous decrease in leaf chlorophyll content is also observed for leaf nitrogen in
potato and it is associated to biomass accumulation in shoots and tubers during the crop growth [71].
Ground cover arrived to its maximum after the second (62 DAP) data acquisition (Figure 3d) and
only consistently decreased after the fourth (84 DAP) acquisition, towards the end of the growing
season. Canopy chlorophyll content (Figure 3c) was apparently limited by lower canopy structure on
the initial acquisitions (43 and 62 DAP) and by the decrease in leaf chlorophyll content during the
third and fourth acquisitions (from 75 to 84 DAP), since changes in canopy structure were minimal
during this period.

For the last dataset collected (99 DAP), no obvious differences were observed concerning leaf
chlorophyll content between different production systems (Figure 3), although values describing
canopy properties were consistently smaller for plots with mixed varieties. Between the fourth and the
last data collections (i.e., 84 and 99 DAP), late blight was detected in all plots with mixed varieties,
while those cultivated according to the non-mixed treatment were relatively less affected by the disease.
The characteristics of the different varieties included in each treatment, concerning resistance to the
pathogen, as described in Section 2.1, are most likely the causes of the differences between production
systems. Although, apparently, leaf chlorophyll content was not affected by late blight incidence
(Figure 3), only the last developed leafs were measured during the determination of this trait, while
basal leafs in the canopy are known to be generally attacked earlier and more severely [72].

Comparison between traits observed during the growing season is presented in Figure 4.
A negative trend occurred between leaf chlorophyll and leaf area index (Figure 4a) for observations
corresponding to the first two acquisition dates (from 43 to 62 DAP). After that, leaf area index changed
very little, except on the last acquisition when considerable lower leaf area levels were observed in
comparison with the previous dates, in particular for plots with mixed varieties, while leaf chlorophyll
content continued to decrease, resulting in a positive trend between these traits in this period, as can
be observed in Figure 3 as well. Conversely, leaf chlorophyll had a relatively weaker relationship
with canopy chlorophyll during the first two acquisitions (from 43 to 62 DAP; Figure 4b) and a
stronger positive relation after this period (from 75 to 99 DAP). Canopy chlorophyll content was
always positively associated to leaf area index (Figure 4d), although in the period between the third
and the last data collections (from 75 to 99 DAP) a given content of canopy chlorophyll corresponded
to higher levels of leaf area index in comparison with the previous period, indicating that the canopy
structure was more developed during period 2. A similar trend was described by Gitelson et al. [73]
for the same traits (i.e., canopy chlorophyll and leaf area) in maize, despite physiological differences
between maize and potato. They observed a linear relation during the vegetative stage and a slightly
nonlinear trend during reproductive stage, matching the periods 1 and 2 described in Figure 4d, since
potato flowering started approximately in the third acquisition (Table 1). Ground cover was positively
related to other canopy properties (i.e., leaf area index and canopy chlorophyll; Figure 4e,f) in both
periods considered. Association of ground cover with leaf chlorophyll (Figure 4c) was similar to that
observed between leaf area index and leaf chlorophyll, but after the two initial observations ground
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cover achieved its maximum and observations were less disperse, especially for the third and fourth
acquisitions (75 and 84 DAP).Sensors 2017, 17, 6  12 of 37 
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Figure 4. Pairwise comparison of crop traits measured over the season (from 43 to 99 DAP): (a) Leaf
chlorophyll content and leaf area index, (b) Leaf chlorophyll content and canopy chlorophyll, (c) Leaf
chlorophyll content and ground cover, (d) Leaf area index and canopy chlorophyll, (e) Leaf area index
and ground cover, (f) Canopy chlorophyll content and ground cover. Linear trends (estimated by
least squares) describing the relationship between properties are indicated for two periods: period 1,
corresponding to the first two acquisitions (from 43 to 62 DAP); and period 2, comprising the last three
acquisitions (from 75 to 99 DAP).
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Figure 5. Description of the spectra acquired using ground-based (dots) and UAV sensor (lines) for
each production system (i.e., non-mixed and with mixed varieties) and acquisition date: (a,b) 43,
(d,e) 62, (g,h) 75, (j,k) 84 and (m,n) 99 DAP. Data range (maximum and minimum values), 25% and
75% quartiles are represented using red shades for the complete UAV dataset and using error bars for
all ground measurements. Graphs in last column (c,f,i,l,o) correspond to the averaged reflectance for
plots of both cultivation methods.
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The spectral measurements acquired during the crop growth using both sensor systems are
summarized in Figure 5. Reflectance was generally lower in wavelengths affected by absorption from
leaf pigments, between 450 and 700 nm, during the first acquisition date (43 DAP) for ground-based
measurements, in comparison with UAV spectral information. During the same acquisition, reflectance
for bands above 700 nm (near-infrared), which are related to light scattering by leaf and canopy
structural components [48,62,67], was higher for ground-based readings as well. This indicates that
ground-based sensing allowed to capture a stronger vegetation signal, in these first measurements,
most likely because ground-based reflectance was measured directly over the crop rows reducing the
fraction of canopy gaps in the sampled area.

Although on subsequent measurements, until 84 DAP (fourth data acquisition), the same trend
of stronger vegetation signal for ground-based measurements was still present, UAV and ground
data were more comparable, particularly for the second and third acquisitions (62 and 75 DAP), with
average ground-based reflectance within the upper quartile of UAV spectral data (Figure 5d,e,g,h).
Reflectance corresponding to ground-based and UAV sensor started to differ more intensely during the
fourth acquisition (84 DAP), especially for wavelengths above 700 nm, indicating a possible reduction
in canopy structure (Figure 5l), with greater impact on UAV-based data.

On the last acquisition (99 DAP), reflectance in wavelengths from 450 to 700 nm, a region in
which incident energy is mostly absorbed by leaf pigments, increased while it decreased in the
near-infrared, region related to scattering by canopy structure, for both sensors, especially for the mixed
production system (Figure 5m–o). These are effects of canopy structure loss coupled with reduction
in the chlorophyll content, as indicated by data described in Figure 3, and can be attributed to both
natural vegetation senescence and late blight incidence, especially upon plots with mixed varieties.
Furthermore, plots cultivated with the non-mixed system had slightly lower vegetation signal on the
first (43 DAP) and second (62 DAP) acquisitions (Figure 5c,f) due to lower leaf chlorophyll content
and smaller canopy structure (Figure 3), dissimilarities most likely related to intrinsic characteristics
of each potato variety included in the different production systems. Additionally, the strongest
vegetation signal, in comparison with other dates, was observed during the second acquisition
(62 DAP; Figure 5d–f), which can be attributed to the relatively higher canopy chlorophyll levels
(Figure 3) coupled with specific illumination and sun-target-sensor geometry in this specific date. The
spectral readings corresponding to the second acquisition were measured under overcast conditions
and with low sun elevation (Table 1), in comparison with other dates, factors that can have reduced
contributions from background and shadowing effects to the reflectance at canopy level, increasing the
characteristic vegetation signal [21,74,75].

3.2. Performance of Crop Traits Retrieval Using UAV and Ground-Based Spectral Measurements

Results from linear regressions relating vegetation indices to crop properties are presented in
Table 3. Considering that data from all acquisitions were used together to build the predictive models,
results indicate that relatively accurate estimations could be obtained for crop properties, despite
possible changes in background reflectance, sun-target-sensor geometry and illumination conditions
between acquisitions. UAV data yielded the best predictions in comparison with ground measurements,
regardless the potentially higher mixing of soil and vegetation signals at plot level. The best estimates
for leaf chlorophyll content using UAV data were achieved using TCARI/OSAVI, which compensate
for effects of background reflectance (as indicated in Section 2.7). For ground-based measurements,
MTCI, an index sensitive to chemical and structural properties at leaf and canopy levels, performed
comparatively better.
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Table 3. Coefficient of determination and RMSE (from repeated 10-fold cross-validation) for linear
regressions between crop traits and vegetation indices calculated from UAV and ground-based data
acquired during five data acquisitions (from 43 to 99 DAP; n = 60). Indices with best prediction
performance for UAV and ground data are indicated in red.

Vegetation
Indices

UAV Measurements

Leaf
Chlorophyll

Leaf Area
Index

Canopy
Chlorophyll Ground Cover

R2 RMSE 1 R2 RMSE 1 R2 RMSE 1 R2 RMSE 1

NDVI 0.19 9.42 0.68 0.69 0.39 0.375 0.71 0.069
WDVI 0.00 10.44 0.55 0.81 0.65 0.279 0.74 0.066
OSAVI 0.04 10.24 0.69 0.67 0.58 0.309 0.82 0.055
MCARI 0.37 8.18 0.60 0.78 0.13 0.445 0.44 0.098
TCARI 0.27 8.89 0.70 0.67 0.27 0.407 0.66 0.077

MCARI/OSAVI 0.57 6.63 0.35 0.99 0.00 0.480 0.17 0.120
TCARI/OSAVI 0.63 6.07 0.09 1.19 0.07 0.465 0.02 0.132

MCARIre 0.03 10.10 0.31 1.02 0.59 0.303 0.55 0.088
MCARI/OSAVIre 0.02 10.18 0.37 0.97 0.63 0.287 0.61 0.082
TCARI/OSAVIre 0.03 10.11 0.16 1.12 0.43 0.353 0.35 0.105

CIre 0.00 10.37 0.41 0.94 0.61 0.295 0.62 0.081
CIg 0.02 10.21 0.47 0.87 0.73 0.241 0.68 0.074

MCARI2 0.03 10.31 0.67 0.69 0.59 0.300 0.81 0.056
REP 0.14 9.40 0.27 1.04 0.68 0.267 0.52 0.092

MTCI 0.19 9.04 0.18 1.11 0.61 0.297 0.41 0.101
PRI 0.00 10.40 0.04 1.21 0.08 0.456 0.11 0.122

Ground-Based Measurements

NDVI 0.10 9.63 0.41 0.92 0.60 0.295 0.64 0.077
WDVI 0.18 9.11 0.27 1.03 0.58 0.291 0.54 0.087
OSAVI 0.15 9.34 0.35 0.96 0.61 0.288 0.61 0.081

MCARI 0.03 10.22 0.50 0.85 0.34 0.385 0.72 0.068
TCARI 0.01 10.32 0.47 0.88 0.36 0.374 0.72 0.069

MCARI/OSAVI 0.18 9.29 0.43 0.92 0.14 0.441 0.56 0.087
TCARI/OSAVI 0.26 8.81 0.27 1.04 0.04 0.469 0.35 0.104

MCARIre 0.19 9.01 0.23 1.06 0.61 0.284 0.49 0.093
MCARI/OSAVIre 0.20 8.96 0.24 1.05 0.62 0.279 0.51 0.092
TCARI/OSAVIre 0.23 8.75 0.20 1.08 0.62 0.282 0.43 0.099

CIre 0.32 8.29 0.21 1.08 0.62 0.281 0.39 0.101
CIg 0.44 7.43 0.11 1.15 0.52 0.318 0.26 0.113

MCARI2 0.10 9.65 0.38 0.93 0.61 0.284 0.66 0.076
REP 0.38 7.82 0.07 1.19 0.42 0.360 0.12 0.124

MTCI 0.46 7.25 0.10 1.16 0.53 0.319 0.23 0.116
PRI 0.06 10.04 0.05 1.20 0.01 0.479 0.12 0.124

1 RMSE values with same units of corresponding crop properties, i.e., µg·cm−2, m2·m−2 and g·m−2 for leaf
chlorophyll, leaf area index and canopy chlorophyll, respectively.

In Figure 6, scatter plots corresponding to the vegetation indices yielding the lowest RMSE
for predictions of leaf chlorophyll content are presented. The most evident differences between
relationships derived for UAV and ground-based data concern observations from the first (43 DAP)
and second (62 DAP) acquisitions. Spectral measurements corresponding to 43 DAP were affected
by background reflectance, with apparent greater impact upon data from the UAV sensor as
can be observed for values of MTCI (Figure 6c,d). In opposition, TCARI/OSAVI seems to have
mitigated background effects yielding comparable outputs between both sensing levels for the first
acquisition (Figure 6a,b). Observations from 62 DAP deviate from others when TCARI/OSAVI
values corresponding to ground-based measurements are considered (Figure 6b). According to Wu
et al. [52], TCARI/OSAVI is especially sensitive to changes in leaf area index during initial canopy
development (i.e., leaf area index values lower than 3 m2·m−2). This may have caused the shift from
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lower to higher values for this index when comparing ground-based data from the first (43 DAP)
and second (62 DAP) acquisitions, respectively, considering that leaf chlorophyll content changed
considerably less than leaf area index during this period (Figure 3). On the other hand, comparing
values of TCARI/OSAVI from ground-based and UAV measurements for the second acquisition
(62 DAP) (Figure 6a,b), lower values occurred for UAV outputs, a difference probably related to
illumination conditions and contributions from soil reflectance. As observed in Section 3.1 as well, the
second acquisition happened under overcast conditions (i.e., increased diffuse incoming radiation)
and larger sun azimuth angle than in other dates, which may have affected canopy reflectance. These
factors can potentially change the fraction of shaded versus sunlit vegetation and the interaction of the
incoming energy with canopy and background elements [21,74]. Therefore, together with contributions
from soil reflectance, it may have induced a shift of TCARI/OSAVI towards lower values for UAV
observations corresponding to 62 DAP. The same illumination conditions apparently had a lower
impact on ground-based measurements, which seem to be mainly related to changes in leaf chlorophyll
and leaf area during this specific acquisition.
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Figure 6. Best vegetation indices for prediction of leaf chlorophyll content from UAV and ground-based
data (a,d, respectively) and corresponding results for ground-based and UAV measurements (b,c,
respectively). Red and black dashed lines indicate prediction and confidence intervals with 95%
confidence level, respectively.

Observations corresponding to the second acquisition (62 DAP) resulted also in comparatively
higher values of MTCI (Figure 6c), specially for UAV measurements, which may be explained
by the same illumination aspects described before, besides the high levels of canopy chlorophyll
content. Apparently, illumination had lower influence upon ground-based measurements in this case,
as observed also for values of TCARI/OSAVI.

Estimates of leaf area index through UAV data were more accurate using TCARI (Table 3), which
is an index proposed to predict leaf chlorophyll content [51], despite still being sensitivity to changes
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in canopy structure and to soil reflectance [51,52,76,77]. For ground measurements, MCARI performed
better than other indices, but results were similar to those corresponding to TCARI. In the scatter plot
in the Figure 7, a comparison of TCARI with MCARI2, an index optimized to predict leaf area index,
indicates that the former was able to better group together, for both sensor systems, measurements
from the second (62 DAP) to the fourth (84 DAP) acquisitions. During this period comparable leaf
area index levels were observed and grouping observations corresponding to these dates increased
accuracy. Besides that, TCARI was apparently more sensitivity to background reflectance for the
first acquisition in comparison to MCARI2, as can be observed for ground-based measurements
(Figure 7b,d), increasing prediction accuracy in this case. However, MCARI and TCARI saturate
fast for increases in leaf area, and this factor could hinder accurate estimates in datasets with larger
dynamic ranges for this attribute than that observed here [52].Sensors 2017, 17, 6  18 of 37 
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level, respectively.

Chlorophyll content at canopy level was relatively well predicted based on values of CIg

derived from UAV data (Table 3), with homogeneous residuals for different acquisition dates
(Figure 8). Similarly, ground-based measurements resulted in relatively accurate estimations of
canopy chlorophyll, but in this case lower retrieval errors were achieved using MCARI/OSAVIre.
CIg calculated using ground-based spectra overestimated canopy chlorophyll for observations from
the first acquisition (43 DAP). This index was better related to leaf chlorophyll in this case (Table 3).
Gitelson et al. [78] and Viña et al. [79] described a linear relationship between CIg and canopy properties
(i.e., leaf area and canopy chlorophyll content) for measurements corresponding to relatively larger
areas (i.e., around 2.4 m radius of sensor footprint) in comparison with the ground-based data used
here. Conversely, characteristics of the dataset used by these authors match the UAV measurements
collected in this study, after integration at plot level. In this respect, results obtained by these authors
corroborate those presented here indicating the potential of CIg for predictions of chlorophyll content
at canopy level, even under influence of considerable amount of background reflectance.
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ground-based data (a,d, respectively) and corresponding results for ground-based and UAV
measurements (b,c, respectively). Red and black dashed lines indicate prediction and confidence
intervals with 95% confidence level, respectively.

For ground cover estimation, OSAVI was the best option when information derived from
UAV-based sensor was used (Table 3, Figure 9). OSAVI is an index associate to leaf and canopy
properties with compensation for background effects (as described in Section 2.7). Indices optimized
to predict leaf area index, like MCARI2 and WDVI, or with general sensitivity to leaf and canopy
traits, like NDVI, also resulted in relatively accurate predictions of ground cover using this dataset.
OSAVI overestimated fractional cover for ground-based measurements corresponding to the first
acquisition (43 DAP, Figure 9b). This overestimation was regularly observed for ground-based spectra
measured during the first acquisition, when properties at canopy level were predicted. It may indicate
that the preferential sampling adopted for the ground-based measurements yielded a worse relation
with canopy properties, at least when compared with integrated ground truth data, as observed for
leaf area index and canopy chlorophyll estimates as well (Figures 7 and 8, respectively). MCARI
performed better for prediction of fractional cover from ground-based data, as observed for leaf area
index as well. As discussed before, this index is sensitivity to bare soil [51,52] and this may have
helped to increase quantification potential in this case, when models were fitted to observations from
all acquisitions dates.
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Figure 9. Best vegetation indices for prediction of ground cover from UAV and ground-based
data (a,d, respectively) and corresponding results for ground-based and UAV measurements (b,c,
respectively). Red and black dashed lines indicate prediction and confidence intervals with 95%
confidence level, respectively.

Mean prediction errors associated to each sensing approach and acquisition date (from 43 to
99 DAP) are described in Figure 10. For leaf chlorophyll content, observations corresponding to the
first data collection were in general underestimated by the predictive models (i.e., positive mean
errors), especially when vegetation indices based on wavelengths in the red edge region were used
with UAV data (Figure 10a). The same occurred for ground-based spectra but indices based on bands
in the red edge performed better for this dataset (Table 3, Figure 10b). Estimations of leaf chlorophyll
for observations corresponding to the last data collection were in general overestimated (i.e., negative
mean errors) by models fitted to UAV data, especially by those derived from indices without bands in
the red edge region (Figure 10a). The same overestimation corresponding to the last data acquisition
was observed for ground-based measurements but mainly when MCARI, TCARI and combinations of
these with OSAVI were used (Figure 10b).
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For leaf area index, observations corresponding to the first (43 DAP) and second (62 DAP)
acquisitions were in general overestimated while those from the third (75 DAP) and fourth (84 DAP)
data collections were underestimated, when UAV data was used (Figure 10a). In this case, uniform
errors were observed for indices with broad sensitivity to leaf and canopy properties, i.e., NDVI and
OSAVI, or with specific sensitivity to leaf area, i.e., WDVI and MCARI2. Additionally, MCARI and
TCARI provided predictions based on UAV measurements with the lowest mean errors for different
dates, which were also relatively uniform, despite not being designed to predict leaf area index.
For ground-based data, leaf area index corresponding to the first acquisition (43 DAP) was generally
overestimated, but at lesser extent by models based on MCARI, TCARI or combinations of them with
OSAVI (Figure 10b). Also for predictions derived from ground-based measurements, leaf area index
was underestimated towards the end of the season, between 75 and 84 DAP (Figure 10b), as observed
for UAV data as well.

Quantification of canopy chlorophyll through both sensing approaches generally resulted in
uniform residuals for predictions corresponding to different acquisition dates (Figure 10b), especially
for indices including bands in the red edge region. MCARI, TCARI and combinations of those
with OSAVI yielded considerable worse estimations, when red edge bands were not included in
their formulation, with underestimation for predictions corresponding to the second (62 DAP) and
third (75 DAP) acquisitions and overestimation for the last data collection (99 DAP), considering
both datasets.

Predictions of ground cover from UAV data were more accurate using indices sensitive to
vegetation properties at leaf and canopy levels, i.e., NDVI and OSAVI, or indices designed to estimate
leaf area index, i.e., WDVI and MCARI2 (Figure 10a). Similarly, fractional cover was well predicted
using NDVI, OSAVI, WDVI or MCARI2 with ground-based data, but in this case MCARI and TCARI
provided the best performances, with more uniform residuals between different acquisition dates
(Figure 10b).

Considering the general distribution of the prediction errors, indicated in Figure 10, observations
corresponding to the first acquisition (43 DAP) are those with consistently higher residuals,
in comparison with other dates, in particular for estimates of leaf chlorophyll content. This acquisition
date was characterized by lower canopy development and higher leaf chlorophyll content (Figure 3),
originating a set of discrepant observations with more intense contribution from background reflectance
especially for UAV-based measurements. Fitting prediction models to data from all acquisitions except
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those observations corresponding to 43 DAP resulted in lower residuals for estimates of leaf chlorophyll,
canopy chlorophyll and ground cover (Table 4; Table A1), for both datasets. Only for predictions of leaf
area index based on UAV spectra RMSE was smaller using the complete set of observations (Tables 3
and 4), although, in this case, RMSE was almost the same of that achieved using a reduced dataset, and
corresponding ground-based estimations of leaf area index were considerably more accurate without
observations from the first acquisition date.

Table 4. Coefficient of determination and RMSE (from repeated 10-fold cross-validation) for linear
regressions between crop traits and vegetation indices calculated from UAV and ground-based data
acquired on the last 4 acquisition dates (from 62 to 99 DAP). Only indices with the best prediction
performance for both datasets are presented (the complete results are shown in the Table A1).

Traits
UAV Measurements

Vegetation Index R2 RMSE 1

Leaf chlorophyll MTCI 0.91 2.31
Leaf area index TCARI 0.56 0.68

Canopy chlorophyll CIg 0.81 0.201
Ground cover NDVI 0.90 0.037

Ground-Based Measurements

Leaf chlorophyll TCARI/OSAVIre 0.78 3.52
Leaf area index OSAVI 0.58 0.63

Canopy chlorophyll CIg 0.83 0.194
Ground cover OSAVI 0.92 0.033

1 RMSE values with same units of corresponding crop properties, i.e., µg·cm−2, m2·m−2 and g·m−2 for leaf
chlorophyll, leaf area index and canopy chlorophyll, respectively.

3.3. Intercomparison of UAV and Ground-Based Spectra

Comparison of vegetation indices calculated using data acquired at different levels are presented
in Figure 11, for indices yielding the best estimates concerning the different crop traits evaluated in
this study (Tables 3 and 4). Indices based on contrasts between absorbance in the visible wavelengths
(up to 700 nm) and scattering in the near-infrared region, like OSAVI, CIg and MCARI2 (Figure 11a,f,g),
resulted in comparable outputs between datasets, after canopy maximal structural development was
achieved (i.e., after 62 DAP). Conversely, indices based only on wavelengths in the visible region,
like MCARI and TCARI, and their combination with OSAVI (Figure 11b–d) yielded considerably
divergent values between different sensing approaches. Indices exploring the red edge region, like
MCARI/OSAVIre and MTCI (Figure 11e,h), resulted in comparable outputs between sensors but
these indices were apparently more affected by illumination aspects, specially MTCI, as indicated by
the deviation from linearity for observations corresponding to the second data collection (62 DAP),
which was performed under overcast conditions and low sun elevation. A constant bias towards
ground-based measurements occurred for CIg and, particularly, for MCARI/OSAVIre, most likely
because ground-based readings were less affected by background reflectance since they were made with
the sensor pointing to the center of the crop rows. Values corresponding to the first acquisition (43 DAP)
had a general offset in comparison with those observed on other dates, for all indices, but especially
for formulations exploring spectral changes in the visible in contrast to near-infrared region, like
OSAVI, CIg and MCARI2, and for indices based on bands in the red edge region, like MCARI/OSAVIre

and MTCI. Observations from the first acquisition also had an offset when considering MCARI and
TCARI (i.e., higher values for ground-based data), but in this case residuals were relatively high for
all acquisitions, probably due to an interaction between changes in environmental conditions (i.e.,
illumination and sun-target-sensor geometry) and vegetation properties (i.e., leaf and canopy traits)
with the characteristics of each sensor (e.g., spatial support, information sampling, etc.).
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Figure 11. Intercomparison of spectra acquired with handheld and UAV-based spectrometers, for the
vegetation indices with the best performace: (a) OSAVI, (b) MCARI, (c) TCARI, (d) TCARI/OSAVI,
(e) MCARI/OSAVIre, (f) CIg, (g) MCARI2 and (h) MTCI. R2 and DS parameters, as well regression
lines, corresponding to linear models fitted only to the last 4 acquisitions (from 62 to 99 DAP). DS
indicates proximity of the linear relation between sensors to the 1:1 line, with zero meaning that this
relation corresponds exactly to the 1:1 line.

In the Figure 12, images corresponding to one plot cultivated with the non-mixed production
system and another with mixed varieties, both located in the second block of the experiment, are
presented for all acquisition dates (from 43 to 99 DAP). In general, concerning the crop development
over the season, it can be observed that both production systems resulted in similar vegetation growth
from 43 (Figure 12a,b) to 84 DAP (Figure 12g,h), and dissimilarities started to be perceptible only
on the last acquisition, resulting mainly from more intense late blight spread in plots under mixed
production system, as indicated by crop traits measured on this date (Figure 3), i.e., lower levels of
canopy structural traits for plots of the mixed system.
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Figure 12. RGB orthomosaics (derived from images taken with the photogrammetric camera, as
described in Section 2.2), true color composite from hyperspectral images (bands centered at 665, 555
and 485 nm as RGB layers, respectively) and values of TCARI/OSAVI for one plot from non-mixed
(a,c,e,g,i) and mixed production systems (b,d,f,h,j), from 43 (a,b) to 99 DAP (i,j). Points over the
orthoimages represent TCARI/OSAVI calculated from ground-based measurements and colors follow
the same scale of pixel-wise results corresponding to the hyperspectral images.

Also, in the images acquired with the hyperspectral sensor (Figure 12) variable internal geometry
quality was observed over the season, as described in Section 2.3. In some cases, this fact probably
reduced accuracy of the spectral information retrieved for a given area, and it may be of especial
importance for studies or mapping efforts concerning characterization of small plots, as in phenotyping
studies. Difficulties in geometric correction procedures involving data acquired by pushbroom sensors
on board of UAV systems are described by other authors [80,81] and must be considered when choosing
the most suitable imaging system and pre-processing procedures for a given context. In Figure 12,
the variation in the geometric distortions observed over time are probably related to changes in wind
speedy and/or direction during each data acquisition. Therefore, besides being a limiting factor
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for the flight realization, wind condition can impact quality and spatial accuracy of the information
acquired [82].

Over the RGB orthoimages in Figure 12, values of TCARI/OSAVI derived from the point-based
ground measurements are presented and can be compared with the pixel-wise values of the same
index calculated for the corresponding hyperspectral images. From this comparison, it is possible
to observe that considerable part of the intra-plot variability was apparently not sampled using the
point-based sensor. Although averaged information at plot level from middle to late season resulted
in comparable performance for crop traits quantification, as indicated in Section 3.2, and in similar
values and trends for some of the vegetation indices evaluated in this study (Figure 11), if intra-plot
or fine scale variability are of interested in a given context different sensing approaches might lead
to different conclusions. This aspect can be of special importance when information acquired using
a “selective configuration”, i.e., with sensor pointing to a specific location over the mapped area is
compared with an exhaustive “not preferential” data source.

For this reason, in order to assess if data from both sensing approaches evaluated here
yielded similar information sampling and discrimination potential for differences observed between
production systems, a comparison of vegetation indices distributions is presented in Figure 13 and
values of a parameter (B-coefficient) corresponding to this comparison is provided in Table A2. These
results show that indices with the best discrimination potential for each sensor achieved a comparable
potential for segregation of treatments, especially for the last data acquisition (99 DAP), in which
treatments were the most dissimilar in comparison with other dates due to stronger late blight incidence
upon plots with mixed varieties. Distributions of vegetation indices for an acquisition date before the
disease outbreak (84 DAP) indicate that no obvious differences between treatments is detected by any
sensing method in this case, following the trend observed for crop traits (Figure 3), which showed
comparable levels of crop development between both production systems.Sensors 2017, 17, 2265 2 of 3 
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Figure 13. Distribution of MCARIre (Modified Chlorophyll Absorption Ratio Index Red Edge,
Table 4), MTCI (MERIS terrestrial chlorophyll index, Table 2), and MCARI2 calculated from UAV
(a,c,e,g) and ground-based data (b,d,f,h), respectively. Estimate probability density and boxplot
corresponding to observations from a given sensor and acquisition date are presented for each treatment
(i.e., non-mixed and mixed systems). Results concerning UAV and ground data correspond, respectively,
to approximately 10,800 pixels and to 48 spectral measurements, per acquisition date.
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The vegetation index providing the best discriminative potential between treatments for UAV
and ground-based measurements, MCARI2 (Modified Chlorophyll Absorption Ratio Index 2, Table 2),
yielded good estimates of canopy properties, especially for chlorophyll content, leaf area, and ground
cover (Tables 3 and A1). This indicates that indices describing not only leaf properties but also canopy
traits resulted in better segregation of crops with this specific late blight incidence level, in relation to
relatively healthier plants. Plots with mixed varieties presented disease severity varying between 25%
and 75% of leaf area dead per plot, on the last acquisition date. At this infection stage, not only leaf
biochemical composition was affected by the pathogen development, but also structural properties at
the canopy level, and therefore indices describing global canopy health status were more effective for
treatments segregation.

4. Discussion

Although models derived from measurements of the different sensors resulted in comparable
prediction accuracies (Section 3.2, Tables 3 and 4), and intercomparison of vegetation indices calculated
from UAV and ground-based data indicated that integration of the sensors streams is possible in some
cases (Section 3.3, Figure 11), differences could be observed between sensing solutions, especially
concerning the first and second data acquisitions (43 and 62 DAP). These differences between datasets
can be related to intrinsic sensor characteristics, data spatial support, information sampling and
environmental conditions during the measurements.

Spectral resolution and spectral response of the sensors probably had low impact in the
methodology tested here since bands used to derive vegetation indices from UAV and ground-based
measurements (Table 2) are comparable (i.e., same or very close bands central wavelengths position
and FWHM). Also, reflectance values were derived differently for both sensing approaches. For UAV
data a reference panel was used to calculate reflectance factors, as described in Section 2.2, while
ground-based reflectance was retrieved through simultaneous acquisition of up-welling radiance
and down-welling irradiance, which was measured by a cosine-corrected diffusor [4,8,18]. Despite
that, previous studies reported comparable outputs using handheld sensors and reflectance readings
calculated through both methods [18], and therefore differences due to this factor are supposed to be
small considering the methods evaluated here.

Ground-based reflectance corresponded to slightly larger footprint (approximately 0.5 m
diameter) than the pixel size (approximately 0.2 m, while flying at 80 m height) obtained using
UAV measurements. Also spectra were acquired directly over the crop rows at four points inside each
plot during ground-based readings (Figure 2), while UAV data represented most of the plot area, after
spectra extraction (Figure 12). According to results presented in Sections 3.1–3.3, these are probably the
main factors causing inconsistencies between sensors outputs, due to their impact on the information
sampled and changes in the contribution of background or illumination conditions to the reflectance
measured. Other authors, comparing ground-based and UAV-carried spectrometers, indicated that
a combination of factors, including footprint mismatch (i.e., differences in the area measured), may
cause differences in the reflectance values obtained, even if data is acquired in the same date, with
comparable sensor footprints and over the same areas [82–84]. Conversely, Aasen et al. [85] reported
comparable reflectance factors derived from ground-based and UAV measurements corresponding to
reference targets, but in this case changes concerning sensor footprint probably have lower impact due
to the relative uniformity of these surfaces.

On the other hand, authors focusing on the calculation of vegetation indices for characterization of
crop growth indicate that robust formulations, like NDVI and OSAVI, result in very similar values for
data measured in different acquisition levels for the same areas [11,83,86]. Here we demonstrate that
some vegetation indices designed to be derived from narrow band spectra, like MCARI/OSAVIre and
CIg (Section 3.3, Figure 11), also may provide equivalent outputs between sensor systems for specific
period of the growing season, despite differences concerning information sampling, illumination
conditions and sun-target-sensor geometry over time. This is an important aspect to consider if one
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is interested in the integration of different sensing sources using simple approaches like vegetation
indices, while benefiting from improved retrieval performance using formulations designed for narrow
band spectra. In some cases, even simple linear transfer functions could be used to combine outputs of
different sensors, like proposed eventually to integrate data from different satellite systems [13,15],
provided that the function itself (i.e., bias from values derived from one sensor in relation to another)
is known (e.g., from dataset acquired in previous years) and that the relationship observed is stable
over time.

Predictions of crop properties were more accurate for observations acquired latter in the season,
after canopy development reached its maximum (Section 3.2, Tables 3 and 4, Figure 10). Other authors,
using ground-based or UAV measurements also arrived to similar conclusions [77,87], indicating
that lower background effects and more homogeneous canopy distribution, which are generally
characteristics of crops in the middle to late season period, provided better conditions for modelling
crop traits. Similar results may also be observed in the assessment of crop properties through RTMs
inversion, especially for models including a simplified representation of the vegetation canopy, not
taking into account row structure arrangement [88].

Inaccurate crop traits estimation during early season may be detrimental, for instance, to the
evaluation of varieties vigor in phenotyping studies [89]. On the other hand, relatively accurate
middle to late season retrieval of vegetation properties may still be useful to optimize nitrogen
side-dress rates, besides its potential application in diseases assessment and yield estimation [10,90–93].
Particularly late blight management may benefit from middle to late season monitoring, since climate
(i.e., mild-temperatures with high humidity) coupled with canopy closure provide ideal conditions
for the pathogen development during this period [72,94–96]. In the context of organic production,
the most important practices available for in season management of late blight are the application of
copper fungicides, which will be banned from 2018 onwards in the European Union, and desiccation
of above ground biomass [19,96,97]. Although desiccation using propane burners, after a certain
disease incidence threshold, reduces sporangia viability and its spread to nearby fields, it is not
advantageous to the producer since yield increases by delaying vine desiccation, due to extra growing
days in a period of rapid tubers bulking, are superior than the production loss caused by the
pathogen infection until approximately 60% of disease severity [97]. Therefore, early desiccation is
mandatorily implemented as national policy to control disease spread, for example in The Netherlands
(at approximately 7% of the leaf surface affected), and becomes therefore an important limiting
factor for the production. Concerning nitrogen management, organic crops depend mainly on crop
rotation and organic fertilization, which are mostly out of season practices [19]. Although few actions
are available for in season nutrient management, early within field detection of late blight might
allow site-specific control of infection through local use of propane burner or mechanical destruction
of affected plants, for example, in areas around the sites affected. In general, crop development
monitoring may assist implementation of cultural practices when needed and help to adapt cultivation
of future crops considering site-specific characteristics. For instance, intercropping with non-hosts and
more resistant varieties, eventually in mixture with others as well, can be alternatives to improve crop
protection in organic production of potato, while optical sensing approaches may help to evaluate
optimal strip widths for prevention of across strip infection and optimal planting densities of variety
mixtures, although these practices need to be evaluated considering different aspects of the crop
production (e.g., characteristics of the cultivars to be used, like potential yield and tubers quality;
productivity reduction due to smaller surfaces cultivated with the main crop of interest or more
productive varieties; etc.) [96,98]. Struik [72] discuss different physiological pathways that can be
explored to “escape” late blight infestation, advancing the crop cycle or the tuber bulking, although
the author affirms that these practices can only slightly reduce the impact related to disease and
indicate that better varieties are a most promising alternative to combat late blight in organic potato
cultivation. Lammerts van Bueren et al. [97] indicate that the participation of farmers in the selection
of varieties more suitable for organic production can help to complement the comparatively low
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amount of breeding outputs offered by companies to organic potato producers. In this context, field
phenotyping solutions, including optical sensors, can help farmers to better evaluate the varieties
under selection. For example, Tiemens-Hulscher et al. [99] evaluated the development of different
cultivars, under distinct nitrogen fertilization regimes, based on ground cover estimated through field
assessments over the season, an approach that could be adapted to UAV measurements considering the
relatively accurate results described here (Tables 3 and 4). Also, activities related to weed management
may benefit from continuous field monitoring in systems under conventional or organic cultivation,
despite not being an aspect evaluated in this study. Early or late weed detection in the growing season
based on spectral information in the optical domain may be possible and of interested for in season
management and out of season cultivation planning [100,101]. Although in this case the sensing effort
does not concern directly the crop monitored, weed may have different biochemical and biophysical
properties and their development might affect reflectance measurements over an area [102]. Despite
that, current research on approaches applied to weed management in agricultural context, especially
with UAV data, seem to focus on high spatial resolution imagery and different features extracted
from a few spectral bands, while integrating hyperspectral data in monitoring methodologies could
provide an increased feature space for infestation detection and intensity assessment, in particular for
approaches to be applied later in the growing season [103–105].

Best prediction for different crop traits were achieved using different vegetation indices, as
presented in Section 3.2 (Tables 3 and 4). Retrieval of leaf and canopy chlorophyll content was
generally more accurate with indices including bands in the red edge, like MTCI and TCARI/OSAVIre,
or using formulations designed for narrow spectral bands in the visible region in contrast to bands in
the near-infrared, like CIg. Other studies also report similar results using ground-based, UAV, airborne
and satellite derived datasets in comparable scales to the data collected in this study (i.e., at field
or plot level) [4,8,12,79,90,106–108], indicating that these indices are good options for retrieval and
monitoring of leaf and canopy chlorophyll content using simple quantification approaches. More
specifically, retrieval based on proximal and remote sensing described by [4,8,12,90] in studies with
potato help to confirm trends observed here, concerning leaf and canopy chlorophyll estimations.
Conversely, leaf area index was unexpectedly better predicted through indices not especially designed
to quantify this trait, like MCARI and OSAVI. This may be related to the fact that the crop canopy
was not completely closed at any moment during the growing season (i.e., maximum ground cover
of approximately 90%) and leaf area index variation was very small after a certain level of canopy
development was reached, probably resulting in low model sensitivity to saturation issues of indices
not optimized to leaf area estimation. Also, leaf area index is a difficult trait to estimate in potato
even through indirect methods used as ground truth in remote sensing studies (e.g., DHPs, plant
canopy analyzer, etc.), due to the large amount of stems and to the canopy configuration. Despite
that, R2 (0.5–0.6) and RMSE (0.6–0.7 m2·m−2) obtained using vegetation indices derived from UAV
and ground-based reflectance are comparable to those reported in other studies [12,79,87,106,108],
including results for potato, and therefore relatively accurate retrieval through indices designed to
predict other properties most likely occurred due to specific characteristics of the dataset used in this
work. On the other hand, ground cover was generally best predicted using indices sensitive to leaf and
canopy properties, i.e., NDVI and OSAVI. The same relatively high accuracy for predictions of this trait
using broad band vegetation indices was achieved by other authors [109–111]. This can be explained
by the relation between fractional cover with reflectance in the whole Vis-NIR spectral region, not only
in specific wavelengths, since the effects observed for changes in this property originate mostly from
the overall contrast between soil (i.e., background) and vegetation spectral response [112].

Besides good agreement between modelling outputs (Section 3.2, Tables 3 and 4) and quasi-linear
relationship during intercomparison for some vegetation indices (Section 3.3, Figure 11), ground-based
and UAV measurements provided comparable descriptive potential concerning the variation of
vegetation indices over time, more specifically in relation to late blight development at end of the
growing season. This was evaluated in this study through comparison of probability distributions
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corresponding to vegetation indices derived for the different production systems, as described
in Section 3.3 (Figure 13, Table A2). The discriminative potential observed was related mainly
to changes in biochemical (i.e., chlorophyll content) and biophysical (i.e., leaf area) properties at
canopy level, which were well described by vegetation indices derived from data of the different
sensors. Similarly, Nebiker et al. [113] and Whitehead et al. [114] describe the potential for qualitative
identification of late blight incidence in potato fields using UAV-based multispectral data with high
spatial resolution. Sugiura et al. [91], extended the occurrence detection to severity assessment based
also on optical multispectral sensor on board of UAV, and achieved accurate estimates in relation
to conventional assessments, even at low incidence levels. These attempts to upscale observations
from leaf, as described by Prashar and Jones [115] using thermal data, to canopy level indicate that
disease assessment can potentially be performed at field scale, even using multispectral information.
Concerning hyperspectral measurements (from 325 to 1075 nm), Ray et al. [116] reported the potential
to detect differences between healthy and diseased plants, even at low levels of disease severity
(i.e., 0.1%). These results agree with those reported in more frequent studies concerning late blight
assessment in tomato (Solanum lycopersicum) [117–122], although, for this crop, early detection of the
disease was reported to be difficult by some authors [120], mainly due to the similarity between the
spectral response of diseased and healthy plants.

It is important to notice that in most studies concerning late blight assessment potato traits are
not monitored together with disease incidence or severity, and these traits are eventually assumed to
be homogeneous before disease occurrence, i.e., comparison of information corresponding to diseased
sites with “general” standards of healthy crop, without considering variability in the fields monitored.
These facts, indicate that further studies are still needed to better evaluate the suitability of spectral
measurements in the optical domain to detect early stages of late blight development in potato, in
particular following changes of leaf and canopy traits over time, according to different disease severity
levels, in order to allow better description of the disease development and distinction from other
stress factors.

5. Conclusions

In this study, a comparison of crop trait retrieval through Vis-NIR spectra measured for different
acquisition levels was performed. In this respect, results obtained using ground-based and UAV-carried
sensors were comparable regardless dissimilarities concerning information sampling and spatial
support between them. In the same way, intercomparison of vegetation indices derived from data
acquired by the different sensors indicated that, for some indices, results are comparable and could
be integrated using even a very simple method, including formulations designed to be derived
from narrow spectral bands. Also, spectral data from different acquisition levels presented similar
discriminative potential concerning effects of late blight under relatively high infestation severity.
These results demonstrate that both sensing solutions tested can deliver accurate outputs, which can
be used to model crop traits and follow vegetation growth over time in the context of conventional or
organic cropping systems. More specifically, studies exploring sensing technologies applied to organic
production are still lacking. Here we verified that even simple modelling techniques coupled with
high spatial and spectral resolution information have potential to assist management and phenotyping
efforts in organic cropping systems. Although results presented in this article concern estimation
of general crop properties related to growth and nutrient status (i.e., leaf chlorophyll content, leaf
area index, canopy chlorophyll content and ground cover), specific applications of the monitoring
approaches tested need to be further investigated (e.g., early disease detection—specially for late blight,
fertilization management, weed assessment, etc.) coupled with more advanced retrieval techniques
(e.g., non-parametrical statistical methods, RTMs, etc.), in realistic scenarios. Also, the implementation
of integrate monitoring frameworks has to be evaluated concerning accuracy of crop properties
estimation and its practical application.
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Despite that, general outcomes are positive and indicate a great potential for crop monitoring and
phenotyping under organic production scenarios.
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Appendix

Table A1. Coefficient of determination and RMSE (from repeated 10-fold cross-validation) for linear
regressions between crop traits and vegetation indices calculated from UAV and ground-based data
acquired on the last four acquisition dates (from 62 to 99 DAP). Indices with best prediction performance
for UAV and ground-based measurements are indicated in red (n = 60).

Vegetation
Indices

UAV Measurements

Leaf
Chlorophyll

Leaf Area
Index

Canopy
Chlorophyll Ground Cover

R2 RMSE 1 R2 RMSE 1 R2 RMSE 1 R2 RMSE 1

NDVI 0.38 6.03 0.62 0.60 0.74 0.239 0.90 0.037
WDVI 0.66 4.36 0.36 0.82 0.75 0.237 0.67 0.066
OSAVI 0.53 5.24 0.53 0.69 0.80 0.208 0.85 0.046
MCARI 0.08 7.33 0.38 0.81 0.05 0.471 0.22 0.102
TCARI 0.00 7.56 0.56 0.68 0.26 0.414 0.56 0.079

MCARI/OSAVI 0.42 5.77 0.12 0.94 0.03 0.471 0.01 0.111
TCARI/OSAVI 0.71 4.01 0.00 0.99 0.23 0.406 0.04 0.106

MCARIre 0.82 3.22 0.14 0.94 0.61 0.298 0.46 0.084
MCARI/OSAVIre 0.80 3.35 0.19 0.91 0.66 0.275 0.53 0.079
TCARI/OSAVIre 0.86 2.82 0.02 0.98 0.42 0.354 0.21 0.096

CIre 0.87 2.80 0.18 0.93 0.68 0.270 0.50 0.081
CIg 0.80 3.42 0.33 0.83 0.81 0.201 0.63 0.071

MCARI2 0.53 5.21 0.49 0.72 0.77 0.223 0.81 0.051
REP 0.88 2.66 0.21 0.90 0.72 0.249 0.54 0.078

MTCI 0.91 2.31 0.14 0.94 0.65 0.281 0.44 0.085
PRI 0.28 6.49 0.03 0.96 0.04 0.469 0.02 0.109

Ground-Based Measurements

NDVI 0.33 6.18 0.63 0.59 0.70 0.255 0.92 0.032
WDVI 0.52 5.20 0.44 0.75 0.72 0.240 0.82 0.050
OSAVI 0.41 5.83 0.58 0.63 0.74 0.233 0.92 0.033
MCARI 0.10 7.16 0.37 0.81 0.30 0.400 0.69 0.064
TCARI 0.13 7.00 0.37 0.80 0.34 0.386 0.71 0.062

MCARI/OSAVI 0.00 7.56 0.20 0.90 0.07 0.467 0.40 0.090
TCARI/OSAVI 0.03 7.46 0.04 0.98 0.00 0.481 0.15 0.105

MCARIre 0.70 4.11 0.31 0.84 0.72 0.243 0.66 0.067
MCARI/OSAVIre 0.67 4.28 0.34 0.82 0.74 0.232 0.70 0.063
TCARI/OSAVIre 0.78 3.52 0.27 0.85 0.74 0.237 0.57 0.074

CIre 0.65 4.53 0.45 0.74 0.83 0.194 0.72 0.061
CIg 0.67 4.33 0.43 0.75 0.83 0.194 0.67 0.067

MCARI2 0.42 5.75 0.53 0.68 0.71 0.244 0.89 0.038
REP 0.60 4.76 0.27 0.85 0.65 0.282 0.35 0.092

MTCI 0.69 4.18 0.41 0.76 0.83 0.196 0.64 0.070
PRI 0.00 7.64 0.00 0.99 0.00 0.482 0.05 0.110

1 RMSE values with same units of corresponding crop properties, i.e., µg·cm−2, m2·m−2 and g·m−2 for leaf
chlorophyll, leaf area index and canopy chlorophyll, respectively.



Sensors 2017, 17, 1428 30 of 36

Table A2. Bhattacharyya coefficient (B-coefficient) between distributions of vegetation indices,
calculated from UAV and ground-based measurements, corresponding to each production system (i.e.,
non-mixed and mixed varieties). Only values calculated for the two last data acquisitions (84 and
99 days after planting—DAP) are presented. The index giving the best treatments distinction (i.e.,
largest B-coefficients) for both sensor systems is indicated in red.

Vegetation Indices
B-Coefficient Difference between B-Coefficients

(99 DAP–84 DAP)84 DAP 99 DAP

UAV Ground UAV Ground UAV (Order) Ground (Order)

NDVI 0.052 0.049 0.289 0.459 0.237 (6) 0.410 (7)
WDVI 0.008 0.003 0.258 0.564 0.250 (4) 0.561 (2)
OSAVI 0.014 0.011 0.262 0.558 0.248 (5) 0.547 (4)
MCARI 0.041 0.011 0.264 0.419 0.223 (8) 0.408 (8)
TCARI 0.037 0.007 0.268 0.444 0.231 (7) 0.437 (6)

MCARI/OSAVI 0.048 0.007 0.189 0.297 0.141 (9) 0.290 (10)
TCARI/OSAVI 0.029 0.004 0.053 0.184 0.024 (14) 0.180 (15)

MCARIre 0.009 0.007 0.285 0.535 0.276 (3) 0.528 (5)
MCARI/OSAVIre 0.010 0.007 0.302 0.559 0.292 (2) 0.552 (3)
TCARI/OSAVIre 0.018 0.004 0.089 0.189 0.071 (11) 0.185 (14)

CIre 0.006 0.008 0.127 0.319 0.121 (10) 0.311 (9)
CIg 0.009 0.000 0.023 0.228 0.014 (15) 0.228 (11)

MCARI2 0.024 0.011 0.333 0.594 0.309 (1) 0.583 (1)
REP 0.007 0.010 0.042 0.004 0.035 (13) −0.006 (16)

MTCI 0.010 0.003 0.067 0.217 0.057 (12) 0.214 (12)
PRI 0.003 0.033 0.003 0.226 0.000 (16) 0.193 (13)
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