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1 Introduction 

 
In June and July of 2010, the world learned about Stuxnet, a malicious computer worm believed to 

be jointly created by American and Israeli cyber weapon specialists.1 Experts have been convinced 

that Stuxnet was meant to sabotage the uranium enrichment facility at Natanz in Iran and its centrifuge 

operational capacity, but the damage spread to other units, too. It is believed that most of the infected 

computers worldwide by Stuxnet have been in Iran. Judging from such a cyber operation, Israel 

apparently preferred to mount a cyber attack rather than a military strike on the nuclear facilities of 

Iran. There is little downside to such an attack because it would be virtually impossible to prove who 

did it. Though the attack against Iran was a success, the same is not true of the corresponding attempts 

to cause damage to the nuclear program of North Korea. It is conceivable that such strikes have been 

planned and even attempted. With computerised instruments like Stuxnet, the world has entered into 

a new age, the era of cyber war.2 

Cyber issues are rapidly growing in importance to defence alliances. At the Wales Summit in 2014, 

allied heads of state and government affirmed that cyber defence is part of NATO’s core task of 

collective defence. Ambassador Sorin Ducaru, NATO’s assistant secretary general for emerging 

security challenges, gave a statement about NATO’s efforts to improve its cyber defences against 

emerging threats.3 The message is that by treating cyberspace as an operational domain, NATO aims 

to better protect its missions and operations. It will assist in the management of resources, skills, and 

capabilities, and will also ensure that cyber defence is better reflected in military planning, exercises, 

training, and how NATO responds to crises. One of the questions is whether Article 5 would be 

triggered in the case of a cyber attack on a member country. Until recently, the political impact of 

cyberspace was thought to be a matter of low politics—background conditions and routine processes 

and decisions. Now, however, experts have begun to recognise its effect on high politics—national 

security, core institutions, and critical decision processes. Choucri (2012) investigated the 

implications of this new cyberpolitical reality for international relations theory, policy, and practice, 

and the modes of cyber conflict and cyber cooperation in international relations.  

                                                           
1 For details, see Sutherland (2012), for example. 

2 Cyber measures were also employed in the Georgian war in 2008 by the Russian military, though 

success was apparently rather limited. Recently, successful invasions in several servers in military 

organisations abroad have taken place. Civilian targets have been subject to attacks over the years, 

including the Warshaw Stock Exchange and a German steel mill, both in 2014. Russians also 

launched a cyber strike against the electric system in Ukraine in 2015, causing substantial trouble for 

a large number of people. On February 10, 2017, Defense News reported that the US Air Force has 

conducted a multitude of cyber missions over the last year that have contributed to captured or killed 

terrorists. According to written testimony provided to the House and Senate Armed Services 

committee, Air Force Vice Chief of Staff Gen. Stephen Wilson said, “The Air Force conducted 4,000 

cyber missions against more than 100,000 targets, disrupting adversaries and enabling over 200 high 

value individual kill/capture missions.” 

3 Cf. The Journal of International Affairs, Winter 2016, Vol. 70, No1. 
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Contests are situations in which each participant expends resources to win a valuable prize. When 

resorting to warfare, values and lives are destroyed. The digital world has changed warfare not only 

in terms of the destructive power of the weapons and direct damage to the efficient use of the 

technology-dependent weapons of the opponent but also indirectly causing paralysing effects on the 

society at large. By its logic, a cyber attack represents a pre-emptive offensive, typically a remote 

action employing digital technologies to damage the social and/or military capabilities of an enemy. 

As cyber capability represents an instrument prior to a war with conventional weapons, modern 

warfare may consequently be viewed as a multi-stage game. A war with conventional weapons tends 

to be preceded by a cyber war. A static one-stage approach, therefore, does not appear appropriate.  

There are a number of excellent surveys on economic theories of conflicts, including Jackson and 

Morelli (2009), Garfinkel and Skaperdas (2012), and Baliga and Sjöström (2013). The theoretical 

literature on cyber wars employing methods commonly used in economic research, however, appears 

non-existent. This paper develops a theory of conflict where countries invest in both cyber technology 

and conventional weapons as complementary military inputs. As far as the author is aware, the current 

paper is the first to use a formal economic approach in the analysis of cyber war. However, the model 

studied in this paper has links to the literature on contests and sabotage. Cyber strike can indeed be 

viewed as a special kind of sabotage, as it directly reduces the effectiveness of conventional arms. 

Papers on sabotage include Konrad (2000), Chen (2003), Beviá and Corchón (2006), Muenster 

(2007), Amegashie (2012), and Chang and Luo (2017), among others. Chowdhury and Guertler 

(2015) have provided a comprehensive review of the literature on contests and sabotage and a more 

extensive list of references. The contestants face a single prize for the winner and a prize of lesser 

value for losers. They are assumed to choose an action, an “effort” boosting the probability of 

winning, and an action of sabotage, reducing the probability of winning by the contestant, both 

determining the contest success function for each player and summing up to one.  

Though our cyber war approach has a similar flavour with the economic literature on sabotage, there 

are differences. While the sabotage papers consider one-time decisions, our approach leads to 

sequential decision-making with a potential first-mover advantage in terms of a pre-emptive strike. 

The model therefore allows for asymmetries between the hostile countries to produce cyber 

capabilities. The return on cyber investment in terms of the probability of winning the war is strictly 

convex in its size. This is the remarkable property of the model. Convexity makes cyber technology 

a first-ranked military investment. In the conventional theory of conflict, the return on the investment 

effort in terms of the marginal increase in the probability of victory is concave and subject to 

diminishing returns. Moreover, while the papers on sabotage state that expectations of being 

sabotaged have a discouraging effect (causing the participants to reduce their effort), this is not the 

case in the current model.4  

Access to a cyber attack raises new questions. First, how worthwhile is it to invest in conventional 

weapons if countries can resort to cyber instruments? Second, does the answer depend on the 

differences in cyber capability? Third, what are the implications for arms race and the probability of 

warfare? Fourth, is it always the case that a cyber war is followed by a war with conventional 

weapons? Fifth, does the threshold to a cyber war differ from that of a conventional war? Sixth, how 

much is it optimal to invest in the cyber capability if the expected success differs between the 

conflicting parties? These are the issues to be analysed in the current paper and some of the answers 

turn out to be unexpected. 

                                                           
4 As Chowdhury and Guertler (2015) explicate, sabotage activities are common in various contexts 

of life and the economy. In the soccer world, one example is the case of Lionel Messi of F.C. 

Barcelona: whenever he obtains the ball, the dominating strategy of the opposing team appears to 

stop him physically kicking his feet, as he is faster than most the other players. 
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The roadmap of the model world of the paper is as follows. The cost of war is first introduced in the 

standard model of contests, but in a non-standard way. Then, an investment in cyber technology is 

introduced into this model in terms of the probability of being victorious in warfare. The investment 

in cyber capability is considered risky in terms of the outcome of the development effort. The outcome 

is private information for each country. The country that turns out to be more successful finds that it 

has the option of initiating a cyber attack against the enemy, but without knowing whether the enemy 

has been successful in its rival development effort, too. After the cyber war stage, the countries enter 

warfare with conventional weapons. It is a fundamental notion in the model world of this paper that 

the war cannot be won by a cyber attack only: conventional weapons are needed to capture the prize.  

 

The cost of war turns out to be crucial for the results. The equilibrium analysis in the war game is 

conditional on the cost of war relative to the payoff of being victorious. The results of the paper can 

be summarised as follows. First, two types of Nash equilibria are possible depending on the cost of 

war relative to the payoff from a victory. Both are subject of warfare. With a “small” cost of war and 

in the absence of cyber technology, armament in conventional weapons is large; with a “large” cost 

of war, it is smaller. Second, if countries expect to have access to equally effective cyber capabilities, 

their cyber investments are neutral in respect to the optimal investment in conventional weapons, but 

only when the cost of war is small. Such a symmetric case is not necessarily typical if countries have 

access to different technological skills and competence to start with. The third result is therefore 

concerned with an asymmetric case. It is shown that hostile countries choose to invest an equal 

amount of resources in their militaries, even when their cyber capabilities differ, but with a low 

perceived cost of war, they invest less than in the absence of cyber war technology. Surprisingly, they 

invest more when the perceived cost of war is bigger. The fourth result is rather dramatic: cyber 

technologies can make the world unsafe. The intuitive reason is that technological advances in cyber 

capabilities lower the cost of war in conventional weapons. The fifth result adds to the concerns of 

the cyber war given that cyber technologies are difficult and costly. Namely, heterogeneity in the 

success of cyber programs creates the option of a pre-emptive strike. In is shown that a low success 

probability of the cyber program encourages exercising the cyber attack option by a successful 

country to be followed by warfare with conventional weapons. A successful cyber program means a 

new set of beliefs of the winning probability in the conventional war. The odds have thus been 

changed in favour of the attacking country. 

 

2 Economic model of armament 

 

2.1 Conflict theory without a cyber technolocy 

 

In the model world of this paper, there are two countries (players), A and B. Potentially resorting to 

their military power, they compete for a resource with a value of v > 0 with imperfectly specified 

property rights. The “winner takes it all” principle applies. Section 2.1 examines a complete-

information simultaneous-move game with two stages.  

The timeline and action space in the current section are as follows. In stage 0, both players allocate 

their resources to a conventional military capacity to maximise their expected payoff. The investment 
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costs for conventional weapons are denoted by x and y for countries A and B, respectively.5 In stage 

1, both countries decide whether to resolve the conflict by war or not.6 This section summarises the 

equilibrium in the baseline model of the contest theory and provides important qualifications for it in 

terms of the cost of war. It also shows that depending on the perceived cost of war relative to the 

payoff from victory, two types of equilibria in terms of armament can arise.  Section 2.1 is followed 

by Section 2.2, which outlines a complete-information sequential game where both players are 

assumed to have access to a costly cyber program for the purpose of developing cyber weapons.  

Let the probabilities of winning a war in the last stage of the war game be denoted by P(A) and P(B). 

The well-known Tullock model predicts that the probabilities of winning a (conventional) war 

between two countries P(A) and P(B) are dictated by their relative military investments x and y, 

yielding the contest success functions 

 

                                             𝑃(𝐴) =
𝑥

𝑥+𝑦
;    𝑃(𝐵) =

𝑦

𝑥+𝑦
.                                         (1) 

 

This model was suggested by Tullock (1967, 1980) and it has long been the standard approach in 

modelling the conflicts. Subsequently, it has been discussed and elaborated by a number of authors 

in particular by Hirshleifer (1989); Pérez-Castrillo and Verdier (1992); and further developed and 

evaluated by Nti (1997, 1999); Konrad (2009); and Chowdhury and Sheremeta (2011) and others.7 

We notice that the marginal returns on investment are strictly concave. For example, for country A 

(similarly for country B),  

 

                       
𝜕𝑃(𝐴)

𝜕𝑥
=

𝑦

(𝑥+𝑦)2
> 0; 

𝜕2𝑃(𝐴)

𝜕𝑥2
= −

2𝑦

(𝑥+𝑦)3
< 0.                      (2) 

 

The remarkable property of the contest success function is that the value of the marginal unit of arms 

for a country is related to the amount of arms acquired by the enemy. We are thereby at the source of 

explanation as to why the arms races arise!  

                                                           
5 A linear cost is needed for technical reasons if only to solve the model analytically for the optimal 

conventional investment. Access to such an explicit solution is helpful to illustrate the mechanisms 

of the model. The cost of a cyber program is introduced in the later section.  

6 The possibility of a unilateral withdrawal is excluded. 
 
7 As discovered by Konrad (2009), an early solution of a structurally equivalent problem in the context 

of proportional competition was given by Mills (1961). We notice that the literature has recognised 

the asymmetry between an offensive war and a defensive one (Acre et al. 2012). In our model, the 

distinction becomes relevant if the costs of war differ. Slayton (2016/2017) has warned of 

overconfidence in the offensive advantage as it can create a “cult of the offensive” with potentially 

tragic results. 



5 
 

Another question is whether it is worthwhile to fight. Therefore, the model is adjusted for the costs 

of a mutual war if one takes place.. 8 The cost functions are assumed to be identical and depend on 

the military strength of the enemy. They will be denoted by C(y) and C(x), respectively, with 𝐶′(𝑥) =

𝐶′(𝑦) > 0. 9 The expected ex ante payoffs of the war game to the countries involved are 

 

                   𝐸0(𝜋𝐴) = 𝑃(𝐴)𝑣 − 𝑥 − 𝐶(𝑦)                                                       (3) 

                   𝐸0(𝜋𝐵) = 𝑃(𝐵)𝑣 − 𝑦 − 𝐶(𝑥).                                                  (4) 

 

In the two-stage war game, the solution of the last game must be found first in the spirit of backward 

induction. Suppose for a moment that the countries A and B can settle the issue peacefully, with both 

obtaining half of the resource, (𝜋𝐴 =
𝑣

2
, 𝜋𝐵 =

𝑣

2
)  where (𝜋𝐴, 𝜋𝐵) denote the ex post payoffs to each 

country, respectively. In such a naive trust game, neither side needs to invest in a military capacity in 

stage 0, 𝑥 = 𝑦 = 0. The outcome is Pareto-efficient.10 However, it cannot be an equilibrium if peace 

is not contractible and the commitment to it is not credible.11 Both countries would have an incentive 

to opportunistically make an investment in arms, attacking the non-investing country to gain 

exclusive access to the resource. If the defender has no military capacity, the cost of war for the 

offensive country is zero while it is positive for the defending country. In the absence of trust between 

the players, both thus end up making military investments in stage 0, regardless of whether the issue 

is settled by war or by negotiation subsequently in stage 1.  

In order to highlight the effect of the cost of war on the results, assume first that the cost of war is 

zero. As commitment to zero-investment is not credible, both invest. In stage 1, the investments are 

sunk and as the cost of war is zero, the countries definitely fight. The ex ante and the post investment 

expected payoffs from investments and the subsequent warfare are 

 

                   𝐸0(𝜋𝐴) = 𝐸1(𝜋𝐴) =
𝑥

𝑥+𝑦
𝑣 − 𝑥                                               (5) 

                                                           
8 The cost of war was also introduced in the earlier work on conflicts, cf. Baliga and Sjöström (2013). 

However, the models with a cost of war have taken it to be constant and unrelated to the destructive 

power of the enemy. Once it is recognised that the cost of war results from the enemy’s military 

capacity, it plays a more important role in the war games. 
 
9 The purpose of a cyber attack is to destroy part of the military capacity of the enemy. In the 

subsequent sections, the damage effect will be introduced in the expressions for the cost of war. 

 
10 The question has been raised in the literature as to why perfectly rational agents do not peacefully 

negotiate outcomes and why would they sometimes fight costly wars. The Coase theorem seems to 

rule out wars as free negotiation should lead to a surplus-maximising outcome. The question then is 

whether the conditions for the Coase outcome are valid. Such thought leads to analyses on 

imperfect commitment and incomplete information, starting with Brito and Intriligator (1985) and 

surveyed by Baliga and Sjöström (2013).  

11 Jackson and Morelli (2009) point out that commitment problems are probably the single most 

pervasive reason for bargaining failure. 
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                   𝐸0(𝜋𝐵) = 𝐸1(𝜋𝐵) =
𝑦

𝑥+𝑦
𝑣 − 𝑦.                                          (6) 

Carrying out the maximisation of the expected returns (5) and (6) with respect to investments in stage 

0, the reaction functions are  

 

                                            𝑥 = −𝑦 + √𝑦𝑣, 𝑦 = −𝑥 + √𝑥𝑣.                               (7)                       

 

Then, the Nash equilibrium in investments in conventional weapons is given by a pair (𝑥0, 𝑦0), 

satisfying12 

 

                                                          𝑥0 = 𝑦0 =
𝑣

4
.                                                      (8) 

 

Natural as it is, the optimal investment is less than the available prize, 
𝑣

4
< 𝑣. A high prize v justifies 

a high investment.  It follows that both countries have the same probability of winning the war, P(A) 

= P(B) = 1/2. In the absence of a cost of war, the countries fight, having access to an expected payoff 

which is solved to be 
𝑣

4
. As the winner takes it all, the ex post payoff to the winner, however, is 3𝑣/4 

while it is −𝑣/4 for the loser.  

 

The existence of a Nash equilibrium in investments is no issue. By continuity, a Nash equilibrium 

also exists when a war is costly but the cost of war is “small”, say 𝐶𝑠(𝑥) > 0, 𝐶𝑠(𝑦) > 0, when 𝑥 >
0, 𝑦 > 0. Introducing the cost of war into the model, the expected ex ante returns are 

 

                   𝐸0(𝜋𝐴) =
𝑥𝑁

𝑥𝑁+𝑦𝑁 𝑣 − 𝑥𝑁 − 𝐶𝑠(𝑦𝑁)                                           (9) 

                   𝐸0(𝜋𝐵) =
𝑦𝑁

𝑥𝑁+𝑦𝑁 𝑣 − 𝑦𝑁 − 𝐶𝑠(𝑥𝑁).                                     (10) 

 

It is the cost of war that results in mutual externalities in the war game. As one is looking for a Nash 

equilibrium of the war game, we have denoted these investments by 𝑥𝑁 and 𝑦𝑁. It turns out that the 

investments in the Nash equilibrium are independent of the cost of war, 𝑥𝑁 = 𝑦𝑁 =
𝑣

4
 when the cost 

of war” is small”. Given the investments, the expected post-investment payoffs from warfare are 

therefore 

 

                                𝐸1(𝜋𝐴) =
𝑣

4
− 𝐶𝑠(𝑥𝑁) = 𝐸1(𝜋𝐵) =  

𝑣

4
− 𝐶𝑠(𝑦𝑁) <

𝑣

4
,                       (11) 

 

while the realised ex post payoff for the winner, if A, is 3𝑣/4 −  𝐶𝑠(𝑦𝑁) and −𝑣/4 − 𝐶𝑠(𝑥𝑁) for the 

loser, if B. 

 

Notice that for any cost of war, the ex post payoffs would be greater under peaceful contracting than 

the expected payoffs from fighting, 

                                           

                                                           
12 The second-order conditions are satisfied as P(A) is strictly concave in x and P(B) in y.  
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                                                 𝜋𝐴 =
𝑣

2
− 𝑥0 =  

𝑣

4
>

𝑣

4
− 𝐶𝑠(𝑥𝑁).                             (12)                                           

                                                 𝜋𝐵 =
𝑣

2
− 𝑦0 =

𝑣

4
>

𝑣

4
− 𝐶𝑠(𝑦𝑁).                         (13)                              

  

The ultimate reason for not entering into a peaceful contract comes from outside the model. It is 

easiest to think that it is the imperfect commitment. Then, in the symmetric Nash equilibrium, both 

countries invest v/4 in their militaries in stage 0 and end up fighting in stage 1 if the expected ex post 

payoffs are positive, 𝐸1(𝜋𝐴) > 0  and  𝐸1(𝜋𝐵) > 0.The benefit/cost ratio has to be sufficiently high, 

to justify the warfare, 

                                   
𝑣

𝐶𝑠(𝑥𝑁)
> 4,

𝑣

𝐶𝑠(𝑦𝑁)
> 4.                                                    (14) 

 

When costly, wars are about externalities. When the conditions (14) hold, the externalities, however, 

are not sufficiently great to make the countries abstain from fighting. 

 

Assume now instead that the cost of war is larger, 𝐶𝑙(𝑖) > 𝐶𝑠(𝑖)  for all  𝑥𝑁 > 0, 𝑦𝑁 > 0 violating 

conditions (14). Then, the no-fight solution appears attractive. With (𝑥𝑁 , 𝑦𝑁), the post-investment 

incentive conditions for a no-fight equilibrium, adjusted for the costs of war, are  

 

 

                   𝐸1(𝜋𝐴) =
𝑥𝑁

𝑥𝑁+𝑦𝑁 𝑣 − 𝑥𝑁 − 𝐶𝑙(𝑦𝑁) ≤ 0                                       (15) 

                   𝐸1(𝜋𝐵) =
𝑦𝑁

𝑥𝑁+𝑦𝑁 𝑣 − 𝑦𝑁 − 𝐶𝑙(𝑥𝑁) ≤ 0.                                  (16) 

 

What the conditions (15) and (16) dictate is that the expected payoffs from fighting in stage 1 have to 

be negative, or at most zero, for a no-fight equilibrium to arise. A greater cost of war relative to the 

available payoff then makes the players pay attention to the mutual externalities. 

If the benefit/cost ratios from fighting do not satisfy the conditions (14), the no-fight conditions (15) 

and (16) suggest that a peaceful equilibrium may appear lucrative. War is too expensive. However, 

when the no-fight conditions are non-binding, the solution 𝑥𝑁 = 𝑦𝑁 =
𝑣

4
 cannot represent an 

equilibrium. The two countries will obviously find it optimal to choose lower investments ex ante, 

say 𝑥′ <  𝑥𝑁 , 𝑦′ <  𝑦𝑁, if only to save in investment costs. Under peaceful contracting, their payoffs 

are increased to  
1

2
𝑣 − 𝑥′ >

1

2
𝑣 − 𝑥𝑁 ,

1

2
𝑣 − 𝑦′ >

1

2
𝑣 − 𝑦𝑁 . This is not, however, the only mechanism 

involved. With lower investments in military, the perceived cost of war is reduced, too. As long as 

the no-fight conditions are not binding, it is optimal (even individually) for both countries to have a 

lower investment in armament. With a sufficient low cost of war, the no-fight conditions (15) and 

(16) become ultimately binding, say at some 𝑥′, 𝑦′. Countries would be indifferent between peace 

and war. One plausible argument is that a country cannot pick up its share of the prize without 

fighting, even in the case of indifference. In such an equilibrium, the investment levels (𝑥′, 𝑦′) are 

then determined from 
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1

2
𝑣 − 𝑥′ − 𝐶𝑙(𝑦′) = 0                                                         (17) 

                                    
1

2
𝑣 − 𝑦′ − 𝐶𝑙(𝑥′) = 0.                                                       (18) 

 

We have included the costs of war in (17) and (18) to pinpoint the view that commitment to a no-

fight equilibrium can be seen as non-credible. We have arrived at a remarkable conclusion that 

disarmament can make warfare more attractive by reducing the cost of war. Individually reducing 

the investment even below 𝑥′, 𝑦′ will not be an equilibrium strategy for either country. The probability 

of a war victory with such a strategy will be reduced to less than half while the cost of war would 

exceed the cost of war for the enemy. Therefore, neither country has an incentive to deviate from 
(𝑥′, 𝑦′), satisfying the two conditions (17) and (18). This establishes the existence of the second type 

of Nash equilibrium in the war game. 

How much do the countries invest in the second type of Nash equilibrium? To illustrate, assume that 

the cost of war is given by 𝐶𝑙(𝑥′) = 𝛾𝑥′, 𝐶𝑙(𝑦′) = 𝛾𝑦′, 𝛾 > 0. Solving for 𝑥′, 𝑦′ from (17) - (18), one 

obtains 𝑥′ = 𝑦′ =
𝑣

2(1+𝛾)
. The conditions 𝑥′ < 𝑥𝑁 , 𝑦′ <  𝑦𝑁 are satisfied if the cost of war is 

sufficiently high, γ > 1.  

We summarize the findings as follows, 

Proposition 1. In the war game, there can be two Nash equilibria in terms of armament investment.  

If the no-fight conditions (15) and (16) do not hold at 𝑥𝑁 = 𝑦𝑁, the solution 𝑥𝑁 = 𝑦𝑁 =
𝑣

4
  qualifies 

as a Nash equilibrium in armaments. There is fighting in equilibrium. If the conditions (15) and (16) 

hold at the solution (𝑥𝑁 , 𝑦𝑁), another Nash equilibrium exists with  𝑥′ <  𝑥𝑁 , 𝑦′ <  𝑦𝑁 , and in the 

absence of commitment, the countries fight in this equilibrium, too. 

To state the above results intuitively, under a low cost of war relative to the prize available, the players 

abstract from the mutual externalities resulting from a war when deciding on armament and the peace 

and war. However, war is ultimately about mutual externalities. Under a greater cost of war relative 

to the prize available, the players settle in a game equilibrium where the cost of war is effectively 

internalised. 

 

2.2 Investment in arms with access to a cyber technology13 

2.2.1 Action space and assumptions 

 
The paper now introduces cyber capability as a new warfare instrument. The action space in stage 0 

is two-dimensional: both countries expecting a military confrontation invest in both the 

conventional military capacity and in the cyber capability. Those investments are denoted by (x,a) 

for country A and by (y,b) for country B. When the model is extended to a two-instrument 

framework, the armament expenditures are given by 𝑀𝐴 = 𝑥 + 𝑐(𝑎), 𝑀𝐵 = 𝑦 + 𝑐(𝑏). 
 
The success of the cyber program is subject of uncertainty. In stage 1, the investment probabilistically 

yields a cyber capability. The outcome of the cyber program is private knowledge: the success or 

                                                           
13 Only pure strategies are examined. The resulting equilibria are of the Bayesian Nash type. 
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failure of the enemy is not observable. In stage 2, a successful country decides on whether to launch 

a cyber attack against the enemy. The decision is conditional on the expectations concerning the 

success of the enemy. In stage 3, the cyber war is followed by a war with conventional weapons, 

provided that the expected payoff to at least one of the countries is positive.  

The model to be developed is an extension of the Tullock-model to the case of multiple investments 

and sequential decision-making in choosing between peace and war. Several assumptions are 

introduced as follows. 

 

Assumption 1. The costs of a cyber program, 𝑐(𝑎), 𝑐(𝑏) are strictly convex with 𝑐′(0) = 0, 𝑐′(𝑎) >

0, 𝑐′′(𝑎) > 0, 𝑐′(𝑏) > 0, 𝑐′′(𝑏) > 0. 14 

 

To make the analysis tractable, simplifying assumptions in the model world are introduced. As the 

confrontation in the model world is of a one-shot type, it is assumed that:  

 

Assumption 2. The beliefs concerning the success of the cyber programs are exogenous. 

Beliefs concerning the enemy’s access to cyber weapons are formed in stage 0. In the current section, 

two scenarios on belief formation are examined. In the first, both countries are assumed to have 

confident expectations, not only of their own success but also of the success of the enemy in the 

development of cyber weapons. In the second scenario, one country expects to have a superior ability 

in the development of the cyber instrument. Based on such beliefs, two fundamental results will be 

reported. 

 

Assumption 3. The success probability of a cyber program is given by 0 < p < 1.15 

When successful, the damage caused in a cyber attack by country A, say, on the military strength of 

country B, is assumed to be proportional to the scale of the cyber cyber program, and given by 𝜆𝑎 

where 𝜆 > 0 is a parameter. Similarly, if country B is successful in the cyber program, it can cause 

damage 𝜆𝑏 > 0 to country A. The damage of a cyber attack thus depends on the scale of cyber 

investments (a,b).16 

 

Assumption 4. With a successful cyber program, the damage effects on the military capacity of the 

enemy on countries A and B are proportional to cyber investments and are given by 

 

                                                           
14 One can think that investments in conventional weapons employ existing technologies while the 

cyber capability necessitates the development of new technologies with increasing costs. 

 
15 Making the success probability dependent on the investment in the cyber program complicates the 

modelling task too much. 

 
16 In the model world of the current paper, the damage caused by a cyber attack concerns military 

targets as assets in the civil sector are not introduced. 
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𝑑𝐴 = 𝜆𝑎,   𝑑𝐵 = 𝜆𝑏, 𝜆 > 0.  

 

What is left of the armament capacity after a successful cyber attack is thus 𝑥 − 𝜆𝑏𝑥 = 𝑥(1 − 𝜆𝑏) 

for country A, and 𝑦 − 𝜆𝑎𝑦 = 𝑦(1 − 𝜆𝑎)  for country B, respectively. 

 

2.2.2 Interaction between cyber and conventional armament 

 

The following research agenda is developed. We suppose first that both countries are planning their 

investment programs in conventional weapons, x and y, expecting to be equally successful in creating 

the cyber destructive power, 𝜆𝑎 = 𝜆𝑏. Then, we examine the Nash equilibrium under different costs 

of cost of war relative to the potential prize. 

With the stated effects of a cyber attack on the quality of the conventional military, one of the Nash 

equilibria has to satisfy the following conditions: 

 

𝑚𝑎𝑥𝑥,𝑎 𝐸0(𝜋𝐴) =
𝑥(1−𝜆𝑏)

𝑥(1−𝜆𝑏)+𝑦(1−𝜆𝑎)
𝑣 − 𝑥 − 𝑐(𝑎) − 𝐶(𝑦(1 − 𝜆𝑎))                  (19)                           

 

𝑚𝑎𝑥𝑦,𝑏 𝐸0(𝜋𝐵) =
𝑦(1−𝜆𝑎)

𝑦(1−𝜆𝑎)+ 𝑥(1−𝜆𝑏)
𝑣 − 𝑦 − 𝑐(𝑏) − 𝐶(𝑥(1 − 𝜆𝑏)).                (20)                                

 

There are four first-order conditions to determine such a Nash equilibrium, to be called 

(𝑥𝑐, 𝑦𝑐, 𝑎𝑐, 𝑏𝑐).17 Evaluating the partial derivatives the equilibrium conditions are given by 

 

                                      𝑀𝑃𝑥 =
𝑦(1 − 𝜆𝑎)(1 − 𝜆𝑏)

𝑚2
𝑣 − 1 = 0                                               (21) 

                                    𝑀𝑃𝑦 =
𝑥(1 − 𝜆𝑎)(1 − 𝜆𝑏)

𝑚2
𝑣 − 1 = 0                                                 (22) 

                         𝑀𝑃𝑎 =
𝜆𝑥𝑦(1 − 𝜆𝑏)

𝑚2
𝑣 + 𝜆𝑦𝐶′(𝑦(1 − 𝜆𝑎)) = 𝑐′(𝑎)                                  (23) 

                        𝑀𝑃𝑏 =
𝜆𝑥𝑦(1 − 𝜆𝑎)

𝑚2
𝑣 + 𝜆𝑥𝐶′(𝑥(1 − 𝜆𝑏)) = 𝑐′(𝑏).                                 (24) 

 

We have denoted 𝑚 = 𝑥(1 − 𝜆𝑏) + 𝑦(1 − 𝜆𝑎). By imposing symmetry, 𝑥𝑐 = 𝑦𝑐, 𝑎𝑐 = 𝑏𝑐, one 

obtains 

                                              𝑥𝑐 = 𝑦𝑐 =
𝑣

4
                                                                                 (25) 

                                                           
17 The approach is built to satisfy the subgame perfectness. 
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𝜆𝑣

4(1 − 𝜆𝑎𝑐)
+ 𝜆𝑥𝑐(𝐶′(𝑥𝑐(1 − 𝜆𝑎𝑐)) = 𝑐′(𝑎𝑐),     𝑎𝑐 = 𝑏𝑐.                     (26)  

 

To qualify for a Nash equilibrium, this solution must satisfy the conditions  

 

𝑥𝑐(1 − 𝜆𝑏𝑐)

𝑥𝑐(1 − 𝜆𝑏𝑐) + 𝑦𝑐(1 − 𝜆𝑎𝑐)
𝑣 − 𝑥𝑐 − 𝑐(𝑎𝑐) − 𝐶(𝑦𝑐(1 − 𝜆𝑎𝑐)) > 0 

𝑦(1 − 𝜆𝑎𝑐)

𝑦𝑐(1 − 𝜆𝑎𝑐) +  𝑥𝑐(1 − 𝜆𝑏𝑐)
𝑣 − 𝑦𝑐 − 𝑐(𝑏𝑐) − 𝐶(𝑥𝑐(1 − 𝜆𝑏𝑐)) > 0 

 

In a symmetric equilibrium, the conditions are reduced  

 

𝑣

𝑐(𝑎𝑐) + 𝐶(𝑦𝑐(1 − 𝜆𝑎𝑐))
> 4,

𝑣

𝑐(𝑏𝑐) + 𝐶(𝑥𝑐(1 − 𝜆𝑏𝑐))
> 4.                   (27) 

 

These conditions dictate that the sum of the costs of a cyber program and the cost of war cannot be 

too large relative to the potential prize available. These conditions are extensions to what was found 

in Section 2.1 above without cyber investment. The first observation is that in such a symmetric Nash 

equilibrium, the investment in conventional armament is unrelated to the cyber capability, as 𝑥𝑐 =
𝑦𝑐 = 𝑣/4, 

 

Proposition 1. (Neutrality of cyber in an equilibrium with war). When the cost of war is sufficiently 

small and countries expect to have access to equally effective cyber capabilities, their cyber 

capabilities are neutral in respect to the optimal investment in conventional weapons. 

Proof. From above. 

  

For an intuition of this case, one should notice that the contest success functions are homogeneous of 

degree zero in (1 − 𝜆𝑎) and (1 − 𝜆𝑏).  We notice that although the cyber capabilities are neutral in 

respect to the optimal conventional armament, the cost of war in the last stage of the game is reduced, 

intensifying the fighting incentive. 

To illustrate the optimal cyber investment in such a Nash equilibrium, we first consider a case where 

the cost of war is zero and we introduce a quadratic cost function, say 𝑐(𝑎) =  
1

2
𝜏𝑎2, 𝜏 > 0. Then, the 

first-order condition for the cyber investment of country A after imposing symmetry, 𝑏𝑐 = 𝑎𝑐 , is 

reduced to 
𝜆𝑣

4 
= (1 − 𝜆𝑎𝑐)𝜏𝑎𝑐. The solution for the cyber investments is 

 

                                                           𝑎𝑐 = 𝑏𝑐 =
1±√1−𝜆𝑣/𝜏

2𝜆
.                                               (28)                 
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Conditional on 1 −
𝜆𝑣

𝜏
> 0, both roots are real and positive. Because 𝜕𝐸0(𝜋𝐴(𝑥𝑐, 𝑦𝑐, 𝑎, 𝑏𝑐))/ 𝜕𝑎 > 0 

at 𝑎 = 0, only the smaller root qualifies as the maximising value. It thus represents the solution 

𝑎𝑐 = 𝑏𝑐 in the Nash equilibrium in the absence of the cost of war. The natural comparative statistics 

include 
𝜕𝑎𝑐

𝜕𝑣
> 0,

𝜕𝑎𝑐

𝜕𝜏
< 0 while the sign of  

𝜕𝑎𝑐

𝜕𝜆
 remains uncertain. 

 

When the cost of war is zero, only one type of equilibrium exists. By continuity, a Nash equilibrium 

must also exist when the joint costs of war and the cyber program are “small” relative to the payoff 

from victory. Both countries, if successful in their cyber programs, therefore expect to launch a 

cyber attack against each other, subsequently anticipating a mutual war with conventional weapons. 

The equilibrium to be considered is analogous to the first type of Nash equilibrium in Section 2.1. 

The perceived joint costs are sufficiently limited so that fighting is expected to take place. The 

existence of such an equilibrium is guaranteed when the value of the prize, 𝑣 is sufficiently high 

relative to the joint costs. 

 

However, in the symmetric case with a greater cost of war, we again suggest that the equilibrium is 

of another type. Suppose thus that the perceived costs relative to the prize are sufficiently large at 

the above solution (𝑥 = 𝑥𝑐 , 𝑦 = 𝑦𝑐, 𝑎 = 𝑎𝑐, 𝑎 = 𝑏𝑐) so as to make it not worthwhile to launch a 

cyber attack in stage 2 and fight in stage 3, 𝐸0(𝜋𝐴) ≤ 0, 𝐸0(𝜋𝐵) ≤ 0. This means that 

(𝑥𝑐, 𝑦𝑐, 𝑎𝑐, 𝑏𝑐) cannot represent an equilibrium when the cost of war is high. However, another type 

of Nash equilibrium is available. As it is expected that no war takes place, it is optimal even 

individually to cut armament. The effects of cyber capability can be evaluated as follows. With 

positive cyber investment, the no-fight condition becomes binding at a higher level of investments 

(𝑥, 𝑦) than in Section 2.1, say at (𝑥′′, 𝑦′′) with 𝑥′ < 𝑥′′ < 𝑥𝑐, 𝑦′ < 𝑦′′ < 𝑦𝑐. The conclusion holds 

for a cyber program of any (positive) size in equilibrium (𝑎 > 0, 𝑏 > 0). 18 This means that under 

cyber technology, the post-investment incentive conditions for a no-fight equilibrium, analogous to 

conditions (15) and (16), become binding at a higher level of armament than in the absence of cyber 

abilities. The result follows from the impact of cyber ability on the cost of conventional warfare and 

the cost of the cyber program. A successful cyber program makes wars more likely by lowering the 

cost of war when conventional weapons are used. In the symmetric Nash equilibrium of the first 

type, the countries fight in any case. In the second type, the condition for fighting is met at the 

higher level of armament. Thus, 

 

Proposition 2. (Armament effect of cyber when the cost of war is large). When the sum of the 

perceived costs of war and a cyber program is large relative to the potential prize and countries 

expect to have access to equally effective cyber capabilities, their cyber capabilities increase the 

incentive to enhance the investment in conventional weapons compared to when no cyber technology 

is available. 

 

The purpose of the rest of the paper is to explore what other results are attainable in such a two-

instrument framework. The symmetric case studied above is destroyed if one of the countries expects 

to be superior in creating the cyber capability while the other country expects to be inferior.19 With 

homogenous beliefs in the cyber capability, it is implied that the access to a mutual cyber attack is 

neutral in respect to the action space concerning the investment in conventional weapons with a low 

                                                           
18 We consider the cyber investment in equilibrium later in the paper. 
19 Such asymmetry may arise if country A, say, has better resources in terms of inherited 

technological competence to be allocated to the cyber program. 
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cost of war while an incentive to enhance investment was created by a higher cost of war. With non-

homogenous beliefs, however, such a strong result, is not available. In the case of asymmetric beliefs, 

an unexpected result is reported. 

                                                                                                           

Proposition 3. In a Nash equilibrium of both types, countries with superior and inferior cyber 

abilities have incentives to invest an equal amount in conventional weapons, but less relative to the 

case when cyber technology is not expected to be available for either of them.  

 

Proof. Suppose that country A expects to be superior in its cyber program, while both expect that 

country B will not be able to create such a capability. It holds that 

 

                                  𝐸0(𝜋𝐴) =
𝑥

𝑥+𝑦(1−𝜆𝑎)
𝑣 − 𝑥 − 𝑐(𝑎) − 𝐶(𝑦(1 − 𝜆𝑎))                        (29)                          

                                  𝐸0(𝜋𝐵) =
𝑦(1−𝜆𝑎)

𝑦(1−𝜆𝑎)+𝑥
𝑣 − 𝑦 − 𝐶(𝑥).                                              (30) 

 

Solving for the Nash equilibrium (of the first type), the optimal investments in the conventional 

weapons are  

                                                  𝑥𝑐 = 𝑦𝑐 =
(1−𝜆𝑎)𝑣

(2−𝜆𝑎)2
<

𝑣

4
                                                (31) 

The inequality follows from that when 𝜆 = 0, 𝑥𝑐 = 𝑦𝑐 =
𝑣

4
. Moreover, for 𝜆 > 0, 

                                                   
𝜕[

(1−𝜆𝑎)𝑣

(2−𝜆𝑎)2]

𝜕𝜆
=  −

𝑎2𝜆𝑣

(2−𝜆𝑎)3
< 0.                                   

                                                                                                                                                QED  

Notice the reduced cost of war in (29) only for country A, 𝐶(𝑦(1 − 𝜆𝑎)) < 𝐶(𝑦), as a result of the 

successful cyber strike. The result holds for both types of Nash equilibria, though they differ in terms 

of the scale of the investment in conventional armament. 

Proposition 3 follows from the strategic interaction between the countries and from the fact that the 

marginal value of the armament for a country is positively related to the strength of its enemy, cf. (2). 

Once the enemy invests less, so does the other country. Intuition is readily available. The country 

with the superior cyber capability can economise in its arms investment because it knows that part of 

the military capacity of its enemy can be destroyed. Furthermore, even with this knowledge, the best 

response of the enemy with the more limited cyber capability is to invest the same amount as the 

country with the superior cyber technology. However, it is the superior country that has the greater 

probability of winning the war      

 

                                                  𝑃(𝐴) =
1

2−𝜆𝑎
>

1−𝜆𝑎

2−𝜆𝑎
= 𝑃(𝐵).                                              
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According to Proposition 3, country B ends up investing the same amount as the superior country A, 

even knowing that its probability of winning the war will be smaller. To make sure, the marginal 

values of the armaments for both countries are equalised in the Nash equilibrium with the marginal 

costs, 

                                                   
𝜕𝑃(𝐴)

𝜕𝑥
𝑣 = 1,

𝜕𝑃(𝐵)

𝜕𝑦
𝑣 = 1. 

Notice that country B saves resources by not investing in the cyber program. Is the cyber program 

reasonable for country A from the cost/benefit point of view? Not necessarily: the condition is that 

the cost of the program shall not be too high. Evaluating the expected payoff for country A with and 

without the cyber program, the condition can be stated as 

 

                    𝑐(𝑎𝑐) < [
𝑥𝑐

𝑥𝑐+𝑦𝑐(1−𝜆𝑎𝑐)
−

𝑥𝑁

𝑥𝑁+𝑦𝑁] 𝑣 − (𝑥𝑐 − 𝑥𝑁) + 𝐶(𝑦𝑁) − 𝐶(𝑦𝑐(1 − 𝜆𝑎𝑐).          (32) 

  

In the next sections, the case is considered where condition (32) is assumed to hold. There, questions 

are raised about how much to optimally invest in the cyber program and whether it is worthwhile to 

initiate a cyber attack. 

From the above analysis under asymmetric cyber abilities, a dramatic conclusion arises. Whether 

there is a mutual cutback in the armament in conventional weapons or not, a war with conventional 

weapons is not eliminated. Unexpectedly and in contrast, it follows that cyber warfare makes the wars 

in conventional weapons less costly and less destructive and therefore more likely. To emphasize this 

result, we summarize 

 

Corollary 1. A successful cyber program makes wars more likely by lowering the cost of war in 

conventional weapons when the cyber capabilities differ among the countries involved in the 

hostilities. 

 

3 Cyber attack as a first-mover pre-emptive strike 

 

3.1 Uncertainty of the success of the enemy 

 
This section considers a cyber attack as an option to a pre-emptive strike arising from asymmetry in 

the development success of the cyber program. The action space in stage 0 is again two-dimensional: 

both countries expecting a military confrontation invest in both the conventional military capacity 

and in the cyber capability. Moreover, the beliefs concerning the enemy’s access to cyber weapons 

are formed in stage 0. We let 𝑝 > 0 denote the success probability of a cyber program, assumed to 

be common knowledge. Following the cyber investments, there are four possible outcomes from the 

ex ante perspective to be revealed in stage 1: with probability pp, both succeed in their cyber 

programs; with probability p(1-p), one succeeds while the other does not; and with probability (1-

p)(1-p), neither succeeds. A success is private information and unobservable. The case of information 

asymmetry arises. In stage 1, the game analyzed is therefore turned into one in incomplete information 

as the success in the program is private information. The successful player does not know the type of 
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enemy in this round. Moreover, and as a consequence, it expects either a high or low cost of war. In 

stage 2, a successful country decides on whether to launch a cyber attack against the enemy. The 

decision is conditional on the expectations of the enemy’s success. In stage 3, a war based on 

conventional weapons takes place if the cyber attack has taken place.  

 

Intuitively, a first-mover strike in stage 2 can be particularly attractive when the success probability 

p is low because if A has succeeded, it expects that B has been successful at most with a low 

probability. This suggests that the probability of a first-mover attack may be high when the ex ante 

success probability is small.  

 

Consider therefore, the action space of the successful country in stage 2. If this is country A, for 

example, it knows that it has successfully completed its cyber program, but it faces uncertainty 

concerning the success of its enemy. It has to decide in stage 2, whether to launch a cyber attack 

against country B knowing that country B with cyber capability will (say immediately) retaliate with 

a cyber counterattack followed by warfare with conventional weapons in stage 3. By stage 2, all 

investments (x,y,a,b) have been undertaken (optimized in stage 0) and are bygone. Denote their values 

by (𝑥∗, 𝑦∗, 𝑎∗, 𝑏∗). 

Let 𝐸2(𝜋𝐴1) denote the expected payoff on a cyber attack by country A in stage 2 based on the 

perceived first-mover advantage, and let 𝐸2(𝜋𝐴0) denote the expected payoff on a cyber attack on the 

condition that country B has been successful in its cyber program, too. With the investments (𝑥∗, 𝑎∗) 

as bygone, the incentive condition for country A to exercise its option to initiate a cyber attack in 

stage 2 to be followed by the warfare in conventional weapons is given by  

 

                                               𝑝𝐸𝑠(𝜋𝐴0) + (1 − 𝑝)𝐸2(𝜋𝐴1) ≥ 0                                            (33) 

 

where  

                                    𝐸2(𝜋𝐴0) =
𝑥∗(1−𝜆𝑏)

𝑥∗(1−𝜆𝑏∗)+𝑦∗(1−𝜆𝑎∗)
𝑣 − 𝐶(𝑦∗(1 − 𝜆𝑎∗))                              (34) 

captures the effect of a mutually successful cyber program and  

                                 𝐸2(𝜋𝐴1) =
𝑥∗

𝑥∗+𝑦∗(1−𝜆𝑎∗)
𝑣 − 𝐶(𝑦∗(1 − 𝜆𝑎∗))            (35) 

captures the case where only country A was successful. Clearly,  𝐸(𝜋𝐴1) >  𝐸(𝜋𝐴0). 

Denote the probabilities of the victory of war by 

𝑃∗(𝐴) =
𝑥∗

𝑥∗ + 𝑦∗(1 − 𝜆𝑎∗)
, 𝑃∗(𝐵) =

𝑦∗(1 − 𝜆𝑎∗)

𝑦∗(1 − 𝜆𝑎∗) + 𝑥∗(1 − 𝜆𝑏∗)
. 

Inserting into (30), the condition for exercising the attack option under uncertainty can be stated in 

terms of the success probability,  

 

                                             𝑝 ≤ 𝑝∗ = (
1

𝜆𝑏∗) [1 −
𝐶(𝑦(1−𝜆𝑎∗)

𝑃∗(𝐴)
]

1

𝑃∗(𝐵)
,                            (36)                                

 



16 
 

The condition (36) determines the threshold for exercising the attack option for country A based on 

the understanding of the potential cyber power of country B and the probability of its victory in war 

(stage 3).  

If the probability of success of the enemy is greater, 𝑝 > 𝑝∗, the best move is not to exercise the 

attack option. The best response of the enemy, country B, is to fight back, as no option of surrendering 

is assumed. Its expected payoff depends on whether it was successful, too, in its cyber program and 

whether it is able to cause damage to the attacker with its counterattack. 

We report: 

Proposition 4. A low success probability of the cyber R&D encourages exercising the cyber attack 

option by a successful country to be followed by warfare in conventional weapons. 

 

The result is logical: a country that has been able to acquire the cyber capability knows that the enemy 

may have a similar capability but with a small probability.  

A convenient interpretation a successful cyber program is available in the current model:  it means a 

new set of beliefs of the winning probability in the Tullock model of the conventional war. The odds 

have been changed in favour of the attacking country. 20 

 

 

3.2 Optimal investment in cyber: the superior country  

 

Within the context of our model world, we now turn to look at a country expecting to be superior in 

the cyber capability and analyse the question how much it will invest in a cyber program. Suppose it 

is the country A. We first notice the implication of the ability of a cyber strike to create a proportionate 

damage to the military of the enemy,  

 

Lemma 1. The probability of winning the war is strictly convex in the size of the investment in 

cyber.  

 

Proof. Taking the partial derivatives of the winning probability in (19), it holds for country A that  

             

                               𝜕 [
𝑥

𝑥+𝑦(1−𝜆𝑎)
] /𝜕𝑎 = 

𝑥𝑦𝜆

[𝑥+𝑦(1−𝜆𝑎)]2
> 0  

 

                              𝜕2 [
𝑥

𝑥+𝑦(1−𝜆𝑎)
] /𝜕𝑎2 = 

2𝑥𝑦2𝜆2

[𝑥+𝑦(1−𝜆𝑎)]3 > 0. 

                                                           
20 The superior country may threaten the inferior country with a cyber attack, which may lead to 

bargaining. This possibility is not considered in the current paper, however. The bargaining protocol 

should include negotiations on the restrictions of conventional weapons imposed on the weaker 

country, which would take the analysis to a side track for the purposes of the current paper. 
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.                                                                                                                                             QED 

It follows that the superior country has a strong incentive to acquire the destructive cyber capability, 

hoping it will enhance the probability of winning the war with conventional weapons in the final stage 

of a conflict. 

With one country being expected to be superior in its cyber program while the other is not, a Nash 

equilibrium has to satisfy the conditions 

 

𝑚𝑎𝑥𝑥,𝑎 𝐸0[𝜋𝐴(𝑥, 𝑦, 𝑎)] =
𝑥

𝑥 + 𝑦(1 − 𝜆𝑎)
𝑣 − 𝑥 − 𝑐(𝑎) − 𝐶(𝑦(1 − 𝜆𝑎)) 

𝑚𝑎𝑥𝑦 𝐸0[𝜋𝐵(𝑦)] =
𝑦(1 − 𝜆𝑎)

𝑦(1 − 𝜆𝑎) +  𝑥
𝑣 − 𝑦 − 𝐶(𝑥). 

 

Country A therefore faces a cost/benefit analysis of how to allocate its military resources between 

conventional weapons and the cyber capability. Intuitively, conventional investment can be cut when 

part of the military budget is allocated to cyber weapons. Moreover, as part of the enemy’s military 

is destroyed, the cost of war for the superior country is reduced. The optimal investment in cyber is, 

however, controlled by its cost. One can distinguish two cases. One possibility is a corner solution 

where the cost of the cyber program, though increasing with the scale of the cost, yet allows the 

advanced country to invest to the extent that the whole military capacity of its enemy can be 

destroyed. This is the case where the optimal cyber satisfies  

𝑎∗ =
1

𝜆
. 

The necessary and sufficient condition for such a case is that 𝑀𝑃𝑎 (
1

𝜆
) > 𝑐′ (

1

𝜆
). Its implications for 

armament investments are strong. The probability of victory in war for country A becomes 1 and is 

obtained with a small army size, 𝑥∗ = 𝜀 > 0. The expected ex ante payoff for country A, then, is 

 𝐸0[𝜋𝐴(𝑥, 𝑦, 𝑎)] = 𝑣 −  𝜀 − 𝑐 (
1

𝜆
). Cyber weapons are used as substitutes for conventional weapons. 

Such a world is characterized by a ruling superpower. A monopoly on cyber weapons shows up as a 

frightening view. 

 

With higher costs of a cyber problem, only an interior solution appears feasible with 𝑀𝑃𝑎(𝑎∗) =

𝑐′(𝑎∗), thus 𝑎∗ <
1

𝜆
. 21 The solution satisfying 𝜆𝑎 ∗ < 1 is indeed is more interesting. Notice first that 

at the origin with a = 0, 𝑀𝑃𝑎 > 0 while 𝑀𝐶𝑎 = 0. At a low level of a, 𝑀𝑃𝑎 is therefore exceeds 𝑀𝐶𝑎. 

With a higher level of 𝑎, the 𝑀𝐶𝑎-function reaches the 𝑀𝑃𝑎-function from below. The internal 

equilibrium is obtained if the 𝑀𝐶𝑎-function cuts the 𝑀𝑃𝑎-function from below at a point where 𝑎∗ <
1

𝜆
. Therefore, when a country expects to acquire a superior cyber capability, there is a unique solution 

for its optimal cyber investment. The cost of the cyber program determines whether the solution is an 

interior one or whether it is at a corner. The incentive to have great cyber capability is strong. 

 

                                                           
21 Even the plan for the “star war” during the Reagan administration in the USA turned out to be too 

expensive. 
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Such results based on the convexity of the payoff to modern weapons point to strong incentives to 

develop new instruments in an unsafe world with increasingly effective destruction power. 

 

4. Final remarks  

 

The current paper has established some regularities concerning modern warfare. The key results can 

be summarised follows. The role of the cost of war relative to the payoff from victory appears decisive 

for the characterisation of armament in equilibrium. When extended to the case of access to cyber 

technology, the distinction between symmetric and asymmetric cases is important.  

If countries expect to have access to equally effective cyber capabilities, their cyber capabilities are 

neutral in respect to the optimal investment in conventional weapons when the benefit/cost ratio of 

warfare is high. In a symmetric Nash equilibrium, countries with superior and inferior cyber abilities 

have incentives to invest an equal amount in conventional weapons, but this is less relative to the case 

when cyber technology is not expected to be available for either of them. This is good news. 

Unfortunately, a successful cyber program appears to increase the likelihood of war by lowering the 

cost of war with conventional weapons. Moreover, a low success probability of the cyber R&D 

program encourages the successful country to exercise its cyber attack option to be followed by 

warfare in conventional weapons. When a country expects to acquire a superior cyber capability, 

there is a unique solution for the optimal cyber program in the model world studied in the paper. A 

dramatic corner solution is not excluded. 

In the Georgian war, both cyber attack and conventional weapons were involved. Stuxnet made cyber 

war a reality in modern warfare. A cyber attack may have its limits for several reasons. The success 

of Stuxnet was conditional on several flaws in the cyber security of Iran. Moreover, once a cyber 

attack is accomplished, the operation reveals information to the target country, which may benefit 

from reverse engineering of the cyber instrument used in the operation. Finally, the attempts to hit 

North-Korea have apparently not been that successful. Yet, the cyber technology has huge potential 

in modern warfare. 

In the Stuxnet attack, conventional weapons were not employed. Many observers believe that the 

attacks against the Iranian nuclear stations by the Stuxnet virus were undertaken by Israel. Why did 

the country abstain from an attack with conventional weapons? To explain why the Stuxnet attack 

did not lead to a war with conventional weapons requires a reinterpretation of the prize available. If 

the cyber attack is effective enough in its destruction power, that may represent a sufficient prize 

itself. 
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