
ar
X

iv
:1

60
6.

00
40

1v
3

 [c
s.

H
C

]
21

 J
un

 2
01

6

How to advance general game playing artificial
intelligence by player modelling

Benjamin Ultan Cowley
BrainWork Research Centre

Finnish Institute of Occupational Health
POBox 40, Helsinki 00250, Finland

Cognitive Brain Research Group
University of Helsinki, Finland
Email: ben.cowley@helsinki.fi

Abstract—General game playing artificial intelligence has re-
cently seen important advances due to the various techniques
known as ’deep learning’. However the advances conceal equally
important limitations in their reliance on: massive data sets;
fortuitously constructed problems; and absence of any human-
level complexity, including other human opponents. On the other
hand, deep learning systems which do beat human champions,
such as in Go, do not generalise well. The power of deep
learning simultaneously exposes its weakness. Given that deep
learning is mostly clever reconfigurations of well-established
methods, moving beyond the state of art calls for forward-
thinking visionary solutions, not just more of the same. I present
the argument that general game playing artificial intelligence
will require a generalised player model. This is because games
are inherently human artefacts which therefore, as a class of
problems, contain cases which require a human-style problem
solving approach. I relate this argument to the performance
of state of art general game playing agents. I then describe a
concept for a formal category theoretic basis to a generalised
player model. This formal model approach integrates my existing
’Behavlets’ method for psychologically-derived player modelling:

Cowley, B., & Charles, D. (2016). Behavlets: a Method for
Practical Player Modelling using Psychology-Based PlayerTraits
and Domain Specific Features.User Modeling and User-Adapted
Interaction, 26(2), 257–306.

I. I NTRODUCTION

Atari (当たり, あたり, or アタリ) nominalized form of
ataru (当たる, あたる, or アタル) (verb), meaning:

”to hit the target”

With great fanfare and much publicity, recent studies have
claimed solutions to two important landmarks of game-playing
artificial intelligence (AI) - competitive world-class Go [1] and
(constrained) generalised game playing [2]1. Each of these
problems is an exemplar ’difficult problem’ in AI, and each
solution uses variations on the ’deep neural network’ learning
method. However despite this leap of progress, there remains
the need to move beyond the constraints exploited by these
deep learning methods.

Beyond the recent advances in game playing AI lie two
still more daunting challenges: to build AI that can react to

1Although see [3] for criticism of the claimed originality.

human players as individuals; and to play games of imperfect
information and strategic scope [4]. I argue that both of these
problems are related, and therefore share a common solution.
The link, or intersection in problem space, is that games are
essentiallyhuman-relevant artefacts. Encoding human-style
playing strategies will enable not only better responses to
human players, but better responses to problems of recreational
interest to humans. Therefore both problems can be addressed
with an improved understanding of human play, by building
a generalised player model. A general player model should
be thought of primarily as a system for expressing the supra-
specific elements that apply to all players, especially cognition,
emotion and personality. The specific implementation then
depends on the game.

As well as advancing the state of art, [1], [2] demonstrate,
directly and indirectly, that human-level performance (inspe-
cific problems) is different to human-level capability. The
senior author of both papers (they each come from Google’s
DeepMind lab) hinted at this [4]:

I think for perfect information games, Go is
the pinnacle... There are other games — no-limit
poker is very difficult, multiplayer has its challenges
because it’s an imperfect information game. And
then there are obviously all sorts of video games
that humans play way better than computers, like
StarCraft... Strategy games require a high level
of strategic capability in an imperfect information
world — ”partially observed,” it’s called.

The specifics of the two systems nicely illustrate the prob-
lem. In both cases, their solution is largely a method to deal
with very large possibility spaces, which were tackled by
constraint of the search space and learning from large amounts
of data, but in different ways.

[1]’s ’alphaGo’ system represented the Go board with a
19 × 19 matrix, and used Monte Carlo tree search (MCTS)
enhanced by deep convolutional neural networks, to reduce the
search space and determine play strategy. The algorithm first
used supervised learning from existing games; then performed
unsupervised reinforcement learning (RL) by playing against

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/157586647?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1606.00401v3

itself. I term this the ’strategic approach’, learning by deeply
examining playing strategies (in the MCTS rollouts). It does
not generalise well because large quantities of human-played
games need to be used in the supervised part of training.

[2]’s ’Atari’ system presented a deep RL algorithm with
a 84 × 84 × 4 map of pixels of the game screen from 49
Atari games. The algorithm then played a very large number
of games to learn a policy. The performance was expressed
proportional to a human expert, achieving>90% in 26 games.
At the other end of the scale, authors state that ”temporally ex-
tended planning strategies still constitute a major challenge”.
Indeed, examining the lowest scoring games (<10%) shows
that they all share the features of an extensive game world,
and the need to manage resources or tokens across this world.
Thus the ’general approach’ does not handle strategy well.
Especially in the two lowest scoring games,Montezuma’s
Revengeand Private Eye, the relationship between current
task and overall possibility space is quite non-linear, as players
must track back and forth through the game world to search,
transport and use tokens such as keys. Compared to this,
the strategy the authors actually describe their algorithmas
having found in Breakout, a totally deterministic and perfect
information game, is trivial.

The poor performance (compared to a human) in this type
of open problem is mirrored of the work of [5]. Given
feedback, humans were shown to achieve close-to-optimal
solutions on certain classes of computationally hard problems,
e.g. Travelling Salesman, by heuristically exploiting structure
in the ’typical instances’.

[6] has also pointed out how the DeepMind Atari player
exploits constraints in its problem domain:

in the Atari game system, data is very cheap.
You can play the game over and over again...get
gigabytes of data very quickly, with no real cost.

in the Atari system, ...you have [only] eighteen
choices at any given moment.

He contrasts this with learning problems of unconstrained
choices and sparse data, e.g., when trying to learn from
a human or a real-world scenario. Computer games may
never be as noisy and unconstrained as real-world scenarios,
modern games with multiplayer interaction are frequently
very complex. Although [2] used games for humans, they
were nevertheless from an era of much greater technological
constraint, such that their dimensional reduction to tractability
was straightforward - modern games will not allow that.

Thus the field of computational intelligence in games faces
a research question which I state asRQ1: how can general
game playing AI cope with human-level games and human
players?

Both [1], [2] imposed well-chosen constraints on the prob-
lem domain to enable their solutions. Constraints can be
dimensionality reduction, and can also besimulation of the
original system, according to some simplifying theory.

As stated above, I propose that a generalised player model
gives a partial solution. There are two parts to the solution:

a) to capture information about player psychology (cognition,
emotion and personality) and activity;b) to represent that
information in the context of the game. Parta) constrains
the model of player behaviour to well-understood theoretical
constructs; partb) presents the model as input to a learning
algorithm.

A. Behavlets

A general model should provide insight into different facets
of player behaviour, for example the cognitive information
processing ’style’ of a player. It thus requires a foundation of
parameters that describe the subjective experience of play. The
foundation will draw on established modelling tools, including
at least: i) psychology of behaviour; ii) general game design;
and iii) actions in the context of a given game.

I previously proposed theBehavletsmethod [7] to build
facets i) to iii) above into composite features of game-play
defined over entire action sequences. The aim is to create
player-modelling features linked to valid psychological theory.
The Behavlet process integrates descriptive models for tem-
perament theory, game design patterns, and patterns of player
actions. The core concept is to capture behaviours with certain
known bias of personality; e.g. aggression, caution; and thus
observe the players’ self-expression. Behavlets have beenused
to model players for, e.g. personality type classification [8] and
move prediction [9]. Thus I use the Behavlets method to fulfil
part a) above.

B. Formalism

How best to represent Behavlets (or any other psychological
model) ’in the game’, i.e. in a manner both machine- and
human-comprehensible? In principle, this should be done
by simulation. As stated in the inspirational work of [10],
simulation ”models’ main purposes are to leave out certain
aspect of complex systems to facilitate study of those systems.”

Note that games can be neatly modelled as a mathematical
system because they rely on rule-based interactions definedon
a possibility space, and the mechanics of play are essentially
functions over that space.

Restricting the games under consideration to those with
strictly bounded rules, observe that a state at timet is
determined by the game state at timet−1. Thus the game can
usually be represented by a finite-state Markov process2. A
state-based model is often used for game representation, and
Markov methods are often used for computational intelligence
in games.

However, observe that play involves spaces and control sys-
tems; these can be either discrete, or approximately continuous
with minimum lower bound, sometimes defined by the frame
rate of e.g. 60fps or 16.67ms per frame.

For purpose of player modelling, the difference between
approximate and truly continuous is not as important as the

2With a non-rational learning human player at the core of gameplay (who
may display highchoice variance, i.e. infer different predicates based on
the same observations), game processes are usually strictly non-Markovian;
however they can still be given Markovian representations as a simplifying
assumption.

player’s understandingof the nature of the play space. To
create a general player model we must capture the player’s
understanding, and deal with ’approximately continuous’ data.

If the model must capture every frame of the game, it is
hardly an efficient simulation. Far more parsimonious to use
a modelling framework that can handle continuous entities.

For example, consider Go played with clocks. Players make
a single discrete move while their clock elapses continuous
time. The elapsed time value can be captured with a simple
integer, but the elapsed psychological experience cannot.

Fortunately, the required tools are already in [11]’s category
theory framework to model interactive control systems. The
framework in [11] models both discrete and continuous control
systems, in hybrid form and as abstraction simulations. I
will draw on the definition of hybrid control systems (HCS),
following [10] and building on [11].

[10] is an excellent complement for the reader; it works
lucidly through the foundational technical aspects of applying
this formalism to games. It also concludes at about the point
where I aim to depart: the composition of micro-games (e.g.
Behavlets) to form complete games (e.g. player models). The
approach is more applied than [10], but as in that paper I still
aim to produce a simulation model with reduced complexity
compared to the original game.

[10] described thehow of game specification using HCS
methods, but he himself questionedwhy one would wish to
do it. I am interested in providing this motivating vision.

C. Summary

In this paper I aim to provide a notation to represent
Behavlets as action sequences in a formally defined simulation
of a game system, by extending [11]. The motivation is to
generate a representation of possible player actions, and the
archetypal behaviour traits that can shape those actions, such
that the representation can be used as input for a learning
system. Ultimately, the goal is to learn from real human
behaviour.

In the rest of the paper, I first give a brief literature review
in the next section. In section III I describe a formal model of
a game system, before showing briefly in section V how it can
be used to represent some Behavlets taken from [7]. Finally,
in section VI, I suggest some future directions of work.

II. BACKGROUND

A general player model has the difficult task to account for
the variation between players, variability in their behaviour
over time, and the reciprocal relationship of players to the
game. For example, such a model should account not only
for player learning, but also player emotions’ impact on play.
There are many relevant fields of study in that problem, and I
have previously reviewed literature contributing to generalised
player modelling [12]. Here I briefly review literature on
formal models.

Various descriptivemodels of game play have tried to in-
clude aspects of player psychology, such as emotions. For ex-
ample, I proposed the User-System-Experience (USE) model

[13], [14], to describe the intrinsic motivation of games in
terms of the cognitive neuroscience of information processing
and learning. However the specification of games themselves
was lacking in detail. Järvinen [15, pp.99-247] built a player
experience model on top of a game decomposition theory. The
model has two concepts: game experiences are composed of
sequences of emotions; and game elements embody conditions
that elicit emotions. [16] define a formalisation of ‘synthetic’
emotions using Decision Theory, to be used for player mod-
elling or for communication of AI agent states to the player.
Methods which codify game mechanics allow a model to
capture player-game interactions. [17] attempts this, using
the object oriented programming paradigm to define game
mechanics as ”methods invoked by agents”. [18] developed a
formal modelling toolset to analyse player behaviour by action
sequence mining. The method finds all action sequences and
their frequency in a game log, representing common sequences
as features, which are selected by ranking according to their
mutual information with the class variable.

Formal specification of the play space can support the
integration of game and psychological models. [19] defined
game theory, which gives useful tools to analyse player
behaviour: assuming that players are rational agents with de-
finable utilities for action. Such assumptions do not serve our
purpose to learn from real human behaviour. More generally,
formal methods such as category theory [20], enable specifi-
cation and verification of the objects and actions of the play
space, and thus support rigorous testing of system coherence.
Category theory was applied to game specification in [10],
which leveraged [11]’s system of notation for abstractions.
In [10]’s abstract specification, a game ”consists of objects
which change their state during the play, where the evolution
of their state is governed by rules and influenced by the players
or other objects”. [10] defined a game as atriple(S,M, F),
whereS is a set of game states;M is a monoid describing
the inputs to the system; andF is an action of the monoid
on the set, i.e. the rules. [10] also showed how the operation
of composition defined in [11] could be used to create novel
games; this was a useful abstract discussion.

This approach is flexible, but the complexity of the domain
poses a large problem for this method. [10] agrees: ”describing
a game with this formalism seems to be a cumbersome task”.
The task is cumbersome because the approach relies too much
on one system; any such system will be either unwieldy or
insufficiently descriptive. In a multi-step modelling approach,
methods for action-tracking [18], design pattern analysis[21],
and player psychology profiling [7] can first describe the game;
i.e. parta) above. These descriptions can then be associated
with a coding formalism for rigour, i.e. partb) above.

III. F ORMAL MODEL

Here, I extend the full HCS defined by [11]. A game
is modelled as a HCS; some rectifying operations are also
defined, to force the HCS to behave as games do.

A. Model Foundation

Definition: A gameG = (X ,M,Φ), consisting of:

• the state spaceX = {Xq}q∈Q

• a monoidM =
∐
n∈N

(U∗ ∪ Σ∗)n

• a partial actionΦ of M on X , such that there exist
invariantsInv(q) ⊆ Xq

Note: Here,X is a set of smooth manifolds parametrised
by discrete statesq ∈ Q; this allows modelling of any simu-
lated spaces with entities, such as a game’s 3D environment
with typical player-controlled unit(s) and opponent(s).

Note: Monoid M is defined as the product union of
the setsU∗, the set of smooth manifold inputs, andΣ∗, the
set of discrete inputs3; which allows modelling of combined
analogue and digital inputs, such as a joystick and buttons.
Individual inputs are denoted bym, a map inN+

0 , defined as
a composition of finiteut1...i with finite σ1...j . In this system,
ut

′

indexes time, with ’embedded’ discrete inputs fromΣ∗, if
modelling game time is required.

Note: The partial actionΦ implies a ruleset that can be
defined over a subset of the state space; this allows modelling
of rules such as power-ups, which alter some core function in
a restricted area of state-space, i.e. after a power-up itemhas
been consumed, and perhaps within limited time/space.

This general-form model may be revised to obtain the
core framework for specific games. For example perfect-
information purely-discrete games, such as chess and Go, can
be obtained whenXq is a singleton andU = ∅.

Example: Let us model the game ofNoughts & Crosses
(TicTacToe in American) as a demonstration.

• Xxo = (posψ){ψ∈1...9}, the set of3× 3 board positions,
uniquely ordered by the magic squaren = 3 4.

• Mxo = σx∈ψ ∪ σo∈ψ, the act of placing anx or ano.
• Φxo = φ : {1, 2, 3}, a map to three ’rules’,

1) σx × σo −→ 4Pψ, paired player turns involve sam-
pling without replacement from the magic square
n = 3, up to four times,

2) x ∩ o = ∅, choices are disjoint,
3) win ⇐⇒

∑
Σ∗ = 15, winning condition such

that player wins if and only if 3 choices sum to 15.

Although Noughts & Crossesis a trivial child’s game,
it is a simple matter to adapt this specification to model
Gomoku, which is also anm,n, k-game. From there, it is
straightforward to model Go, at least for(X ,M). To define
Φ for the core Go rules, which we will not state here for the
sake of brevity, would require significant effort but tractable
complexity because the rules are all simply derived from the
board and input definitionsX ,M.

3Although continuous systems are constrained to have finite duration of
input times, they may have infinite number of inputs defined asvector field
maps from an input manifold. This permits a model consistentwith the
player’s point of view, which is an important part of creating psychologically
relevant models.

4This is a rare occasion when a magic square becomes a magic circle (in
the sense of Huizinga, not Yang Hui)!

In order to more flexibly create games, it helps to exploit
modularity; for this we can use the operationcomposition of
monoids. Composition implies that, given two monoidsM1

andM2, we can form the compositionM′ = M1 ⊗M2,
which is also a monoid.M′ has all possible evolutions of the
composed monoids and no interaction between their parts.

For such a model(X ,M,Φ)as described, a common short-
hand notation isΦX , denotingΦX : X ×Mx → X . With this
notation, and composition, we can thus describe a basic game,
Φ0, and compatible game-partsΦXa andΦX b, and obtain a
complete game by composition,ΦX b×ΦXa×ΦX0 → ΦXab.
The goal is that such game-parts are used to represent Be-
havlets, as described below, section IV.

However as [10] pointed out, with such a framework it is
not yet possible to build any reasonably interesting game, in
the sense of a system which produces meaningful decisions
and outcomes [22]. This is because the composition operator
does not impose any interaction on the composed parts, leaving
the resultant system causally heterogeneous and un-gamelike.
Composition should additionally impose constraints on the
composed monoids, such that the inputs of each are influenced
by the other. Additionally, tracking activity patterns allows
us to see more clearly how the defined influences work in
practice. Therefore, two more concepts will complete our core
toolset:composition with restriction, andorbits.

Definition: Composition with restriction , denoted⊗,
from [11], imposes a restriction ofΦX to a subset ofX ⊗M′

x,
such that the composed monoids are forced to synchronise by
the restriction.

Definition: An orbit is a setOx containing all points
visited on an evolution starting atx and controlled by some
inputm ∈M. Formally,Ox = {x′ ∈ X : x′ = ΦX (x,m′) for
some prefixm′ of m}. [20] defines an orbit as the behaviour
of an imperative programf , i.e. the effect of a series of inputs
a on an initial statex, such thatfai(xi−1) = xi.

For our purposes, an orbit of monoidΦX will represent
instances whenever the game-play activity pattern defined by
ΦX is played. For example, in Noughts & Crosses there
are well-known tactics, which when played according to the
correct selection criteria will generate a perfect game. These
include Play Center, Block, Fork and others defined in [23].
They can be modelled with a triplet defining: the player’s
move, the state of the board, plus a test to determine the type
of tactic played.

In the game of Go there are also various well-known
patterns of play, such asatari, gote vs. sente, joseki, ko
fighting. These concepts may be captured by orbits, at least
where the analysis of the pattern characteristics is algorithmic
and tractable (in Go, an element of expert judgement is often
involved in assessing such patterns).

To make a well-formed map from games to models, an orbit
for modelling behaviour is under two constraints. It cannot
be a cycle, as cycles are not game-like: consider theko rule
in Go. It cannot consist only of a stable state, as this cannot
evolve (by definition [20]), and is therefore uninterestingfrom
a player modelling point of view.

B. Complete Model

Based on this framework I propose a modelling scheme for
game behaviour, which is descriptive rather than generative;
i.e. the aim is to simulate the game components that relate to
player actions, rather than deriving a simulation of game play
from a model of the engine mechanics.

Definition: A gameG′ is a composition of HCSsΦX i,
1 < i ≤ k, where eachΦX i is used to model a distinct
game play pattern, and the composition (by the properties of
composition of monoids) is also a HCS.

The ’base’ monoidΦX0 represents the core game frame-
work, with no orbit restrictions. A single game play pattern
is represented by a monoid,ΦX i : (Xi,Mi,Φi), instantiated
by an orbitOX i, with a starting condition(q, x0)i, an initial
condition fromXqi which corresponds to the opening state
of the game pattern. Such monoids are constrained from
having initial or terminal objects (as defined by [20]), because
they would then be allowed to define only a single function,
violating the principle that games should be uncertain.

Modelling of the complete game is achieved by composition
with restriction, where three restriction operators are defined.

1) Xqi ⊆ Xqi−1, i.e. state space is reduced every time by
composition. This models the progression of games, i.e.
the fact that a game can generally be modelled as a tree
traversal, such that every move will reduce the remaining
possible moves.

2) mi⊗mi−1 iff mi−1 is a prefix ofmi, such that e.g. in a
time-indexed systemmt1 ≥ m− 1t1 , i.e. the start time
of the orbit for the next monoid to be composed must
be greater than or equal to the prior monoid, such that
game progression is modelled.

3) Oxi 6= Oxi−1 where (q, x0)i ∩ (q, x0)i−1 6= ∅ without
any other restriction onx ∈ OX i. I.e. monoids composed
such that their orbits have overlapping time sequences,
shall not be isomorphic.

Thus, based on this approach, a gameG′ is a basis monoid
ΦX0 : (X0,M0,Φ0), which provides the complete state space
and time registration, without inputs. The basis monoid is
composed with1..k − 1 additional game pattern monoids, to
describe those activities in the game that reduce the possibility
space until game end. Each pattern monoidΦi is restricted to
join the base monoid in a time-ordered fashion, without over-
lap of isomorphs, and without expanding the game tree with
nodes excluded by previously composed monoidsΦ1..i−1.

IV. B EHAVLETS-BASED FORMAL MODEL

As mentioned, the intention is to formalise the Behavlets’
method of player modelling. As indicated in the formal model
definition, this can be done by using orbits to represent the
play patterns which arise in the game. Here I elaborate this
idea.

A Behavlet is essentially a game play pattern associated
with a temperament trait. Thus, a well-chosen monoid repre-
sentation of a pattern,ΦX i, can also represent a Behavlet, and
thereby be associated with a temperament trait. To select the

right monoid for the Behavlet is quite straightforward. The
instantiation orbitOX i is equivalent to the Behavlet logic,
defined in [7]. Further, the orbit starting condition(q, x0)i
is equivalent to the Behavlet concept of aconstraint harness,
defined in [7].

An example will illustrate the approach, for which I will
take already peer-reviewed [7] and empirically tested [9]
Behavlets, derived for the gamePac-Man (Namco, 1980). The
formal framework for the Behavlets model of a given gameΓ
is obtained and used with the following five step process:

1) define basis monoid forΓ
2) define compositionalΓ play pattern monoids, each with

associated temperament trait
3) define modelinstanceas label for play personality inΓ
4) model reduction by the operation ofsimulation, giving

representations of behaviour patterns inΓ-like games
which can be compared

5) obtain generalised player model by iterating this process

I will apply this process to the Pac-Man Behavlets using
the Pac-Man specification from my previous work (see e.g.
appendix D to [8]). This specification was totally state-based,
abstracting the smooth movement aspect of original Pac-Man.
Thus, as with chess or Go, this Pac-Man does not needU∗, and
X is singleton. For brevity, I will make a number of further
simplifications which do not relate to the example Behavlet.
I model only a single level, to avoid extra complications
surroundingtests that would be needed to model end-of-level
or loss of lives (for a description of test function construction,
see e.g. [20, pp.46]). I do not provide extra state variables
to model the bonus Fruit item, a cherry; or record the points
scored, or Pac-Man’s lives (these values are referenced but
left undefined). I also refrain from modelling any driver of
Ghost behaviour, which in the prior specification is simply a
probabilistic map to adjacent positions, weighted toward Pac-
Man in normal play and away from Pac-Man when a power
pill is in effect. All these features can be trivially added to the
model.

First, the basis monoid for a Pac-Man gameP .
Definition: ΦP = (XP0,MP0,ΦP0),

• XP0 = {mat, xyp}, where mat = (hposx) ∪
(vposy), {x, y ∈ N, 1 . . . 20} the Pac-Man ’map’ matrix
with values drawn from{∅, wall, pill, powerpill}; and
xyp is a set of current position values for Pac-Man and
the Ghosts{xyp | p ∈ PM,G1..4},

• MP0 = m : {←, ↑, ↓,→}×XxyPM

d=1
−−→ X , a map from

the four directions of movement to the matrix position
adjacent to Pac-Man’s current position,

• ΦP0 = φ : {1, 2, 3}, a map to three ’rules’,

1) m × pill −→ {+5points,XxyPM
= ∅}, Pac-Man

passes through a matrix position with a pill: increase
points by +5, position becomes empty,

2) m × powerpill −→ {+10points,XxyPM
= ∅, φ =

φ′ : {1, 2, 3′}, t : (1..n)}, similar effects aspill;
also transition to the mapφ′, where vulnerability of

Pac-Man to the Ghosts is inverted for a limited time
n,

3) m×xyG1..4 −→ −1life, Pac-Man and a Ghost enter
the same matrix position: Pac-Man loses a life,

3′ m×xyG1..4 −→ {+50points×i, i ∈ (1..4), xyGi
=

xy0Gi
}, Pac-Man and a Ghost enter the same ma-

trix position: +50 points (multiplied by consecutive
Ghost order), Ghost returns to starting position

Second, the Behavlets themselves are modelled. To illus-
trate, I select a Behavlet listed in [7, pp.293],A1 Hunt Close
To Ghost House. BehavletA1 (for short) tracks how often
a player follows the Ghosts right up to their house while
attacking them inpowerpill mode.

Definition: ΦA1 = (x′,m′, OPA1),

• x′ = ∀1..4,dist(xyGi
, xy0Gi

) ≤ 3, the manhattan
distance of each Ghost to its own starting position is three
or less,

• m′ ⊆ MP0∀t(1..n), the orbit elapses for all inputs until
the end of thepowerpill timer,

• OPA1 = {x′ ∈ XP0 : x′ = ΦP0(x,m
′), an orbit defined

on the Pac-Man basis monoid

Third, the composited game is produced,P = ΦA1 ⊗
ΦP = ΦPA1. Game instances where this Behavlet monoid
appears can be labelled as examples ofcautious play, with a
quantification scheme as described above.

Fourth, model reduction by simulation creates a simpler
representation without reference to the specifics of the game.
Thus we do not need to define, for example, the dimensions of
game space statesXq, only to define thetypeof spaces as they
appear to the player. In this way, we can make an equivalence
between models for Pac-Man, Go, even Noughts & Crosses
if we wish. Given the game produced by composition with
restrictionsΦPA1, we define two simulations of the composed
parts,βA1 and βP . The mapϕ which defines eachβ is an
abstraction of the part of the modelwhich is not relevant to
comparison with another simulated game. βs are composed
by restriction to produce a more general version of the model,
βPA1.

βA1 ⊗ βP βPA1

ΦA1 ⊗ ΦP ΦPA1

ϕ ϕ (1)

The complete approach to simulation is detailed in [11], and
is also discussed in [10]. Here it is enough to note that, given
proven models of games such as those described above, the
reduction can be pursued and the simulations are then ’safe’
to study without reference to the messy details.

Fifth and finally, obtaining the generalised player model
from the given framework is perhaps possible for a class of

games between which simulation is well-defined. Proving this
is clearly a matter for future work.

V. D ISCUSSION

The approach I described for a generalised player model
draws on the Behavlet method to create psychologically-based
features of game play, and redefines them as parts of a category
theoretic formal model. The value of this approach is that, un-
der a formal framework, Behavlet models of particular games
can be further generalised by the operation of simulation.

A. Potential applications

The primary use case for the described method is to capture
player variation. Consider that, if we model Behavlets as game
partsΦX , then by the Behavlets method [7], eachΦX i will
have an associated behaviour trait. Thus, a game instance
with a specificΦ composition will reflect the ’character’ of
a particular player’s play style. Potentially, characteristics of
human play can be learned through enough such instances.

Also consider that the method allow abstraction and speci-
ficity: we can build a canonical game model and also simulate
game instances quite easily from the same definitions. This
allows exploration of the space of possible games.

This might be termed personality profiling, but skill and
strategy are also a relevant considerations. Based on the
work of [5] where humans achieved near-optimal solutions on
hard problems, we can expect to find many problems where
human skills can provide the seed for improved computational
solutions. For example, [24] used a gamification to learn from
humans solutions, creating heuristic optimisation methods for
quantum computing problems which outperform traditional
multi-parameter numerical methods. The problem remains to
characterise player activity in a manner which is flexible to
the level and type of detail required, a problem to which I
suggest that simulation is well suited. Thus, given a composite
model of Behavlet-based game parts, defining play-sequences
such as the Noughts & Crosses or Go tactics described, the
actually-played components can denote the level of insightof
the player into the game problem.

A further consequence of this flexibility is the capacity to
model multipleflavoursof game rules. As defined by [22],
a game contains three different types of rule, Constituative
(written before play), Operative (emergent during play) and
Implicit (unspoken ’house’ rules between players). Go is
an example where all these rule types have been studied,
standardised, and written about in great detail, and thus were
available to the developers of alphaGo. For less well-studied
games, the method I present can characterise them with some
flexibility without loss of rigour.

B. Issues and considerations

This is a work at the concept stage, and like any concept
there are many details lacking. The state of the method
presented is probably sub-optimal, and this may frustrate the
more engineering-minded reader; but the aim is initiate a

conversation. It is to be hoped that the concept will provide
fertile soil to grow more detailed methods.

Despite the seeming complexity, what is required to build
such models is quite complementary to the development
process - defining the entities and operations of game-play.

When building such models, the user must take note of
whether the restrictions and constraints ever contradict his
game: this can help highlight flaws in either the game or the
model, and facilitate the work of quality assurance.

VI. CONCLUSION

I argue that in order to advance general game playing AI, it
is necessary to include the player perspective, because games
are ultimately human artefacts and therefore contain cases
which benefit from a human-style problem solving approach.
The argument implies creating a generalised player model.
I have set out a method to do so, based on integrating my
previously published Behavlets work [7] with a formal model
of game play. The result is avision for a general player model,
rather than a complete and final work, which I hope will serve
as inspiration.

REFERENCES

[1] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanc-
tot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever,
T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis,
“Mastering the game of Go with deep neural networks and tree search,”
Nature, vol. 529, no. 7587, pp. 484–489, jan 2016.

[2] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D.Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level controlthrough
deep reinforcement learning,”Nature, vol. 518, no. 7540, pp. 529–533,
feb 2015.

[3] J. Schmidhuber, “DeepMind’s Nature Paper and
Earlier Related Work,” 2015. [Online]. Available:
http://people.idsia.ch/{∼}juergen/naturedeepmind.html

[4] D. Hassabis, “DeepMind founder Demis Hassabis on how
AI will shape the future,” 2016. [Online]. Available:
http://www.theverge.com/2016/3/10/11192774/demis-hassabis-interview-alphago-google-deepmind-ai

[5] D. E. Acuña and V. Parada, “People efficiently explore the solution
space of the computationally intractable traveling salesman problem to
find near-optimal tours,”PloS one, vol. 5, no. 7, 2010.

[6] G. Marcus, “Is Big Data Taking Us Closer to the Deeper Questions
in Artificial Intelligence? — Edge.org,” 2016. [Online]. Available:
https://www.edge.org/conversation/gary{ }marcus-big-data-ai

[7] B. Cowley and D. Charles, “Behavlets: a Method for Practical Player
Modelling using Psychology-Based Player Traits and DomainSpecific
Features,”User Modeling and User-Adapted Interaction, vol. 26, no. 2,
pp. 257–306, Feb 2016.

[8] B. Cowley, D. Charles, M. Black, and R. Hickey, “Real-time rule-based
classification of player types in computer games,”User Modeling and
User-Adapted Interaction, vol. 23, no. 5, pp. 489–526, Aug 2013.

[9] B. U. Cowley and D. Charles, “Utility of a Behavlets approach to a
Decision theoretic predictive player model,”arXiv, vol. 1603.08973, mar
2016.

[10] S. Grünvogel, “Formal Models and Game Design,”Games Studies,
vol. 5, no. 1, p. Online, 2005.

[11] P. Tabuada, G. J. Pappas, and P. Lima, “Compositional Abstractions
of Hybrid Control Systems,”Discrete Event Dynamic Systems, vol. 14,
no. 2, pp. 203–238, apr 2004.

[12] B. U. Cowley and D. Charles, “Short Literature Review for a General
Player Model Based on Behavlets,”arXiv, vol. 1603.06996, p. 7, mar
2016.

[13] B. Cowley, D. Charles, M. Black, and R. Hickey, “User-System-
Experience Model for User Centered Design in Computer Games,”
in Adaptive Hypermedia and Adaptive Web-Based Systems, vol. 4018.
Dublin: LNCS, 2006, pp. 419–424.

[14] ——, “Toward an understanding of flow in video games,”Comput.
Entertain., vol. 6, no. 2, pp. 1–27, 2008.

[15] A. Järvinen,Games Without Frontiers: Methods for Game Studies and
Design. Copenhagen: VDM Verlag, 2009.

[16] P. J. Gmytrasiewicz and C. L. Lisetti, “Modeling users’emotions during
interactive entertainment sessions,” Stanford, CA, USA, pp. 30–35,
2000.

[17] M. Sicart, “Defining Game Mechanics,”Games Studies, vol. 8, no. 2,
p. Online, 2008.

[18] S. Breining, H.-P. Kriegel, M. Schubert, and A. Zufle, “Action Sequence
Mining,” in Second International Workshop on Machine Learning and
Data Mining in Games, at European Conference on Machine Learning,
T. Croonenborghs, K. Driessens, and O. Missura, Eds., Athens, Greece,
2011.

[19] J. Von Neuman and O. Morgenstern,Theory of games and economic
behavior. New York: J. Wiley, 1944.

[20] R. Walters,Categories and computer science. Cambridge: Cambridge
University Press, 1991.

[21] S. Björk and J. Holopainen,Patterns in game design. Hingham,
Massachusetts: Charles River Media, 2005.

[22] K. Salen and E. Zimmerman,Rules of play : game design fundamentals.
London: MIT, 2004, vol. 1st.

[23] K. Crowley, “Flexible strategy use in young children’stic-tac-toe,”
Cognitive Science, vol. 17, no. 4, pp. 531–561, dec 1993.

[24] J. J. W. H. Sørensen, M. K. Pedersen, M. Munch, P. Haikka,J. H. Jensen,
T. Planke, M. G. Andreasen, M. Gajdacz, K. Mølmer, A. Lieberoth, and
J. F. Sherson, “Exploring the quantum speed limit with computer games,”
Nature, vol. 532, no. 7598, pp. 210–213, Apr 2016.

http://people.idsia.ch/{~}juergen/naturedeepmind.html
http://www.theverge.com/2016/3/10/11192774/demis-hassabis-interview-alphago-google-deepmind-ai
https://www.edge.org/conversation/gary{_}marcus-big-data-ai

	I Introduction
	I-A Behavlets
	I-B Formalism
	I-C Summary

	II Background
	III Formal Model
	III-A Model Foundation
	III-B Complete Model

	IV Behavlets-based formal model
	V Discussion
	V-A Potential applications
	V-B Issues and considerations

	VI Conclusion
	References

