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Abstract—General game playing artificial intelligence has re- human players as individuals; and to play games of imperfect
cently seen important advances due to the various technigse information and strategic scope [4]. | argue that both of¢he
known as "deep learning’. However the advances conceal eqa 1 5plems are related, and therefore share a common salution

important limitations in their reliance on: massive data sds; The link int tion i bl is that
fortuitously constructed problems; and absence of any huma: e link, or intersection in problem space, IS that games are

level complexity, including other human opponents. On the ther ~ €ssentiallyhuman-relevant artefactsEncoding human-style
hand, deep learning systems which do beat human champions, playing strategies will enable not only better responses to

such as in Go, do not generalise well. The power of deep human players, but better responses to problems of recneati
learning simultaneously exposes its weakness. Given thakep niarest to humans. Therefore both problems can be addresse

learning is mostly clever reconfigurations of well-estabBhed . - . -
methods, moving beyond the state of art calls for forward- with an improved understanding of human play, by building

thinking visionary solutions, not just more of the same. | pesent @& generalised player modeR general player model should
the argument that general game playing artificial intelligesnce be thought of primarily as a system for expressing the supra-

will require a generalised player model. This is because gaes Speciﬁc elements that app|y to all p|ayer3’ especia”y [t(]g'n

are inherently human artefacts which therefore, as a classfo emqtion and personality. The specific implementation then
problems, contain cases which require a human-style probia depends on the game

solving approach. | relate this argument to the performance
of state of art general game playing agents. | then describe a As well as advancing the state of aft [1]] [2] demonstrate,
concept for a formal category theoretic basis to a general&d directly and indirectly, that human-level performance $jre-

player model. This formal model approach integrates my exi8ng  cific problems) is different to human-level capability. The

'Behavlets’ method for psychologically-derived player malelling: : ,
Cowley, B.. & Charles, D. (2016). Behavlets: a Method for senior author of both papers (they each come from Google’s

Practical Player Modelling using Psychology-Based PlayeTraits DeepMind lab) hinted at this [4]:
and Domain Specific FeaturesUser Modeling and User-Adapted | think for perfect information games, Go is

Interaction, 26(2), 257—-306. . ..
' @ the pinnacle... There are other games — no-limit
|. INTRODUCTION poker is very difficult, multiplayer has its challenges

Atari (7=, $7-9, or 7 ¥ ) nominalized form of because it's an imperfect information game. And

o - - L then there are obviously all sorts of video games
ataru (5725, H7=%, or 7 7 1) (verb), meaning: that humans play way better than computers, like

"to hit the target” StarCraft... Strategy games require a high level

, . ) of strategic capability in an imperfect information
With great fanfare and much publicity, recent studies have \,orq — "partially observed,” it's called.

claimed solutions to two important landmarks of game-pigyi . ) _
artificial intelligence (Al) - competitive world-class Giijjand ' "€ Specifics of the two systems nicely illustrate the prob-

(constrained) generalised game playifg EZ]Each of these Iem. In both cases, theif solution is Iargely a method to deal

problems is an exemplar ‘difficult problem’ in Al, and eacVith very large possibility spaces, which were tackled by

solution uses variations on the 'deep neural network’ liegrn constraint of_the_search space and learning from large ataoun

method. However despite this leap of progress, there remafil d"’fta’, but in dlfferent ways. _

the need to move beyond the constraints exploited by thesdll’s ‘alphaGo’ system represented the Go board with a

deep learning methods. 19 x 19 matrix, and used Monte Carlo tree search (MCTS)
Beyond the recent advances in game playing Al lie twgnhanced by deep convolutional neural networks, to redece t

still more daunting challenges: to build Al that can react t€arch space and determine play strategy. The algorithi firs
used supervised learning from existing games; then pegdrm

LAlthough seel[B] for criticism of the claimed originality. unsupervised reinforcement learning (RL) by playing agfain
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itself. | term this the ’strategic approach’, learning byedly a) to capture information about player psychology (cogmitio
examining playing strategies (in the MCTS rollouts). It doeemotion and personality) and activitys) to represent that
not generalise well because large quantities of humaneplaynformation in the context of the game. Pa} constrains
games need to be used in the supervised part of training. the model of player behaviour to well-understood theoagtic
[2]'s 'Atari’ system presented a deep RL algorithm withconstructs; parb) presents the model as input to a learning
a 84 x 84 x 4 map of pixels of the game screen from 4&lgorithm.
Atari games. The algorithm then played a very large numb/gr
of games to learn a policy. The performance was expressed S )
proportional to a human expert, achieving0% in 26 games. A general mod_el should provide insight |nt(_)_d|ff_erent fesc_et
At the other end of the scale, authors state thertiporally ex- of pIaygr behaviour, for example the cqgnmve mform_atlon
tended planning strategies still constitute a major chages. ~ Processing 'style’ of a player. It thus requires a foundaé
Indeed, examining the lowest scoring game< Q%) shows parame_ters that describe the _subjectwe experience c_xfl_'jim/
that they all share the features of an extensive game worigundation will draw on established modelling tools, irthg
and the need to manage resources or tokens across this w@ideast: i) psychology of behaviour; ii) general game desig
Thus the 'general approach’ does not handle strategy wéll'd iii) actions in the context of a given game. _
Especially in the two lowest scoring gamedontezuma's | Previously proposed th@&ehavletsmethod [7] to build
Revengeand Private Eye the relationship between currenf@Cets i) to iii) above into composite features of game-play
task and overall possibility space is quite non-linear,lagers defined over .ent|re actlon_ sequences. The aim is to create
must track back and forth through the game world to seard}{2yer-modelling features linked to valid psychologidedary.

transport and use tokens such as keys. Compared to tjae Behavlet process integrates descriptive models for tem
the strategy the authors actually describe their algorigen Perament theory, game design patterns, and patterns drplay
having found in Breakout, a totally deterministic and petfe actions. The core concept is to capture behaviours witlaicert
information game, is trivial. known bias of personality; e.g. aggression, caution; am th

The poor performance (compared to a human) in this tylggserve the players’ self—expressic_m. Behavletg _havem
of open problem is mirrored of the work ofl[5]. Givento model players for, e.g. personality type classificatijrahd

feedback, humans were shown to achieve close-to-optin%?ve prediction[[9]. Thus | use the Behavlets method to fulfil

solutions on certain classes of computationally hard ol Part&) above.

e.g. Travelling Salesman, by heuristically exploitingusture B. Formalism

in the 'typical instances’. _ _ How best to represent Behavlets (or any other psychological

[6] has also pointed out how the DeepMind Atari playef,agel) 'in the game’, i.e. in a manner both machine- and
exploits constraints in its problem domain: human-comprehensible? In principle, this should be done
in the Atari game system, data is very cheap. by simulation As stated in the inspirational work of [10],

You can play the game over and over again...get simulation "models’ main purposes are to leave out certain

Behavlets

gigabytes of data very quickly, with no real cost. aspect of complex systems to facilitate study of those syste
in the Atari system, ...you have [only] eighteen Note that games can be neatly modelled as a mathematical
choices at any given moment. system because they rely on rule-based interactions defimed

He contrasts this with learning problems of unconstrain

choices and sparse data, e.g., when trying to learn fr o . . .
P g ying Restricting the games under consideration to those with

a human or a real-world scenario. Computer games mal¥. .y
. . strictly bounded rules, observe that a state at timés
never be as noisy and unconstrained as real-world sceparigs

: ; . : etermined by the game state at timel. Thus the game can
modern games with multiplayer interaction are frequenta/Sually be represented by a finite-state Markov proEesAs

very complex. Althoughl[2] used games for humans, thg E}te-based model is often used for game representatidn, an

were nevertheless from an era of much greater tecmomgiﬁff‘arkov methods are often used for computational intellagen
constraint, such that their dimensional reduction to &hbitity in games P @e

was straightforward - modern games will not allow that. .
: . . . . However, observe that play involves spaces and control sys-
Thus the field of computational intelligence in games faces . ; . :
ems; these can be either discrete, or approximately aomtis

a research question which | state RQ1: how can general . . . '

. : with minimum lower bound, sometimes defined by the frame
game playing Al cope with human-level games and huma
players? rate of e.g. 60fps or 16.67ms per frame.

. . For purpose of player modelling, the difference between
Both ll]’. [2] imposed WeII?choser? constraints on the prOt%;igproximate and truly continuous is not as important as the
lem domain to enable their solutions. Constraints can b

dimensionality reduction, and can also bienulation of the 2With a non-rational learning human player at the core of gaaye(who

original system, according to some simplifying theory. may display highchoice variance i.e. infer different predicates based on
A d ab | h lised ol the same observations), game processes are usuallyystraritMarkovian;
S stated above, | propose that a generalised player mo%llever they can still be given Markovian representations asimplifying

gives a partial solution. There are two parts to the solutioassumption.

possibility space, and the mechanics of play are esdgntial
ﬁpctions over that space.



player's understandingof the nature of the play space. Td13], [14], to describe the intrinsic motivation of games in
create a general player model we must capture the playd@gsms of the cognitive neuroscience of information proicess
understanding, and deal with "approximately continuowdad and learning. However the specification of games themselves
If the model must capture every frame of the game, it isas lacking in detail. Jarvinen [15, pp.99-247] built ayga
hardly an efficient simulation. Far more parsimonious to usxperience model on top of a game decomposition theory. The
a modelling framework that can handle continuous entities.model has two concepts: game experiences are composed of
For example, consider Go played with clocks. Players makequences of emotions; and game elements embody conditions
a single discrete move while their clock elapses continuotigt elicit emotions.[[16] define a formalisation of ‘syntice
time. The elapsed time value can be captured with a simgmotions using Decision Theory, to be used for player mod-
integer, but the elapsed psychological experience cannot. elling or for communication of Al agent states to the player.
Fortunately, the required tools are alreadylin [11]'s catgg Methods which codify game mechanics allow a model to
theory framework to model interactive control systems. Thapture player-game interactions. [[17] attempts thispgusi
framework in [11] models both discrete and continuous adntrthe object oriented programming paradigm to define game
systems, in hybrid form and as abstraction simulations.nmechanics as "methods invoked by agents”] [18] developed a
will draw on the definition of hybrid control systems (HCS)formal modelling toolset to analyse player behaviour byoact
following [10] and building on[[11]. sequence mining. The method finds all action sequences and
[1Q] is an excellent complement for the reader; it work#heir frequency in a game log, representing common segsence
lucidly through the foundational technical aspects of gimgl as features, which are selected by ranking according to thei
this formalism to games. It also concludes at about the poimutual information with the class variable.
where | aim to depart: the composition of micro-games (e.g.Formal specification of the play space can support the
Behavlets) to form complete games (e.g. player models). Timgegration of game and psychological models.| [19] defined
approach is more applied thein [10], but as in that paperll sifame theory, which gives useful tools to analyse player
aim to produce a simulation model with reduced complexityehaviour: assuming that players are rational agents veth d
compared to the original game. finable utilities for action. Such assumptions do not sewe o
[10] described thehow of game specification using HCSpurpose to learn from real human behaviour. More generally,
methods, but he himself questionadly one would wish to formal methods such as category thedry| [20], enable specifi-
do it. | am interested in providing this motivating vision.  cation and verification of the objects and actions of the play
space, and thus support rigorous testing of system coherenc
Category theory was applied to game specification[in [10],
In this paper | aim to provide a notation to represeryhich leveraged[[11]'s system of notation for abstractions
Behavlets as action sequences in a formally defined siroulatin [10]'s abstract specification, a game "consists of olsject
of a game system, by extending [11]. The motivation is t@hich change their state during the play, where the evaiutio
generate a representation of possible player actions, fEnd ¢f their state is governed by rules and influenced by the ptaye
archetypal behaviour traits that can shape those actioeh, sor other objects”.[[10] defined a game asraple(S, M, F),
that the representation can be used as input for a learniggere S is a set of game statesy! is a monoid describing
system. Ultimately, the goal is to learn from real humathe inputs to the system; anfl is an action of the monoid
behaviour. on the set, i.e. the ruleg, [10] also showed how the operation
In the rest of the paper, | first give a brief literature reviewf composition defined if [11] could be used to create novel
in the next section. In sectiénlll | describe a formal model @yames; this was a useful abstract discussion.
a game system, before showing briefly in secfidn V how it can s approach is flexible, but the complexity of the domain
be use_d to represent some Behavlets_ taken ftom [7]. Final‘!i(,ses a large problem for this methad.[10] agrees: "desgyib
in section( V], | suggest some future directions of work. 3 game with this formalism seems to be a cumbersome task”.
The task is cumbersome because the approach relies too much
o on one system; any such system will be either unwieldy or
A general player model has the difficult task to account fgrgfficiently descriptive. In a multi-step modelling appch,
the vquatlon between players, var|§b|llty in their belwaNi ethods for action-tracking [18], design pattern analj&i3,
over time, and the reciprocal relationship of players to thg,q player psychology profiling[7] can first describe the gam
game. For example, such a model should account not oRly parta) above. These descriptions can then be associated

for player learning, but also player emotions’ impact onyplaiih a coding formalism for rigour, i.e. palt) above.
There are many relevant fields of study in that problem, and |

have previously reviewed literature contributing to gatised
player modelling [[1P]. Here | briefly review literature on [1l. FORMAL MODEL
formal models.

Various descriptivemodels of game play have tried to in- Here, | extend the full HCS defined by [11]. A game
clude aspects of player psychology, such as emotions. For exmodelled as a HCS; some rectifying operations are also
ample, | proposed the User-System-Experience (USE) modefined, to force the HCS to behave as games do.

C. Summary

Il. BACKGROUND



A. Model Foundation In order to more flexibly create games, it helps to exploit
modularity; for this we can use the operatioomposition of
monoids Composition implies that, given two monoids(;
and M5, we can form the compositiodM’ = M; ® Mo,

Definition: A gameG = (X, M, ®), consisting of:
o the state spac&’ = {X;}co

o amonoidM =[], .y (U* U X*)" which is also a monoidM’ has all possible evolutions of the
« a partial action® of M on X, such that there exist composed monoids and no interaction between their parts.
invariants/nv(q) C X, For such a modglt', M, ®)as described, a common short-

) . . . Hand notation isb x, denoting®y : X x M, — X. With this
_Note. Here,A'is a Set.Of smooth mamfolds parametrise otation, and composition, we can thus describe a basic game
by discrete stateg € Q); this allows modelling of any simu- ®,, and compatible game-parsy, and &, and obtain a
lated spaces with entities, such as a game’s 3D environmggfnplete game by compositiof X Bxa X o — B rap.
with typical player-controlled unit(s) and opponent(s). The goal is that such game-parts are (:Jsed to repregent Be-
Note: Monoid M is defined as the product union thavlets, as described below, section IV.

the setsU™, the set of smooth manifold inputs, andf, the o ever as[[10] pointed out, with such a framework it is
set of discrete m_p_u@; which allows modelling of combined o yet possible to build any reasonably interesting game, i
analogue and digital inputs, such as a JPVSECk and buttoRge sense of a system which produces meaningful decisions
Individual inputs are d?{'o;[ed, by, a map inNg, defined as 4 outcomeg[22]. This is because the composition operator
a;:gmposnpn of f'n'taf  with f”'“t? o1..j- In this system, q4es not impose any interaction on the composed partsnigavi
u' indexes time, with "embedded’ discrete inputs fram, if e resultant system causally heterogeneous and un-gameli
modelling game time is required. Composition should additionally impose constraints on the
Note: The partial action® implies a ruleset that can becomposed monoids, such that the inputs of each are influenced

defined over a subset of the state space; this allows moglell'tgy the other. Additionally, tracking activity patterns atls
of rules such as power-ups, which alter some core functionyg to see more clearly how the defined influences work in
a restricted area of state-space, i.e. after a power-uph@n practice. Therefore, two more concepts will complete oueco
been consumed, and perhaps within limited time/space. toolset:composition with restriction, andorbits.

This general-form model may be revised to obtain the pefinition: Composition with restriction, denotedw,
core framework for specific games. For example perfeGiom [17], imposes a restriction @y to a subset off @ M,
information purely-discrete games, such as chess and ®o, §gch that the composed monoids are forced to synchronise by

be obtained wherk), is a singleton and/ = {). the restriction.

Example: Let us model the game ddoughts & Crosses Definition: An orbit is a setO, containing all points
(TicTacToe in American) as a demonstration. visited on an evolution starting at and controlled by some
o Xxo = (posy){pei...9}, the set of3 x 3 board positions, inputm € M. Formally,O, = {2/ € X : 2/ = ®x(x,m’) for

uniguely ordered by the magic square= 3 A. some prefixn’ of m}. [20] defines an orbit as the behaviour
o Myo = oxey U0ocy, the act of placing ax or ano. of an imperative progranfi, i.e. the effect of a series of inputs
e O,o =0¢:{1,2,3}, a map to three 'rules’, a on an initial stater, such thatf,;(z;—1) = ;.

1) oy x 0o —» 4Py, paired player turns involve sam-. For our purposes, an orbit of monoid, will represent

pling without replacement from the magic squar@Stances whenever the game-play activity pattern defiryed b
n =3, up to four times dy is played. For example, in Noughts & Crosses there

2) x No = 0, choices are disjoint are well-known tactics, which when played according to the
3) win <:> TR =15 winni,ng condition such COrrect selection criteria will generate a perfect gameeseh
that player wins if and only if 3 choices sum to 15include Play Centey Block Fork and others defined in_[23].

Although Noughts & Crossesis a trivial child's game, They can be modelled with a triplet defining: the player’s

o - . e move, the state of the board, plus a test to determine the type
it is a simple matter to adapt this specification to model P yp

Gomoky which is also amm,n, k-game. From there, it is Of tactic played.
straightforward to model Go, at least fo&’, M). To define In the game of Go there are also various well-known

® for the core Go rules, which we will not state here for th Ia;]tt?rr]ns .?;ez?goﬁléghtsaﬁzn’ biof:zvtsdrzgnée Jgjﬂg :? least
sake of brevity, would require significant effort but trama ghting. P y P y ’

. . ) where the analysis of the pattern characteristics is dlgaic
complexity because the rules are all simply derived from the ; . .
board and input definition&”, M gnd tractgble (in G_o, an element of expert judgement is often
A involved in assessing such patterns).

3Although continuous systems are constrained to have finitatidn of To make. a well—for_med _map from games to mOdels' an orbit
input times, they may have infinite number of inputs definedetor field fOr modelling behaviour is under two constraints. It cannot
maps from an input manifold. This permits a model consistsith the be a cycle, as cycles are not game-like: considerkiheule
player’s point of view, which is an important part of creagtipsychologically in Go. It cannot consist only of a stable state, as this cannot
relevant models. L . .

4This is a rare occasion when a magic square becomes a magie (dir evolve (by def'n!t|0n [23])’ anq is therefore umntereSﬁm
the sense of Huizinga, not Yang Hui)! a player modelling point of view.



B. Complete Model right monoid for the Behavlet is quite straightforward. The

Based on this framework | propose a modelling scheme fiiStantiation orbitOx; is equivalent to the Behavlet logic,
game behaviour, which is descriptive rather than generatif€fined in [7]. Further, the orbit starting conditidg, zo);
i.e. the aim is to simulate the game components that relatelfduivalent to the Behavlet concept otanstraint harness

player actions, rather than deriving a simulation of ganay pl d€fined inil7]. _ _
from a model of the engine mechanics. An example will illustrate the approach, for which | will

Definition: A game (¥ is a composition of HCS® ., take already peer-reviewed [71 and empirically testzd [9]
1 <i<k where each®; is used to model a distinct Behavlets, derived for the garRac-Man (Namco, 1980). The

game play pattern, and the composition (by the propertiesgfma! framework for the Behavlets model of a given gaime
composition of monoids) is also a HCS. is obtained and used with the following five step process:

The 'base’ monoid® y, represents the core game frame- 1) define basis monoid fdr
work, with no orbit restrictions. A single game play pattern 2) define compositiondl' play pattern monoids, each with
is represented by a monoi@,y; : (X;, M;, ®;), instantiated associated temperament trait
by an orbitO.;, with a starting conditior(¢, zo);, an inital ~ 3) define modeinstanceas label for play personality ifi
condition from X,; which corresponds to the opening state 4) model reduction by the operation simulation giving
of the game pattern. Such monoids are constrained from representations of behaviour patternsIidike games

having initial or terminal objects (as defined by [20]), besa which can be compared o _
they would then be allowed to define only a single function, 5) obtain generalised player model by iterating this preces
violating the principle that games should be uncertain. I will apply this process to the Pac-Man Behavlets using

Modelling of the complete game is achieved by compositicthe Pac-Man specification from my previous work (see e.g.
with restriction, where three restriction operators arnéel. appendix D to[[8]). This specification was totally statedahs
1) X,; C X, 1, i.e. state space is reduced every time bgbstracting the smooth movement aspect of original Pac-Man
composition. This models the progression of games, i.BhUs, as with chess or Go, this Pac-Man does not iEe@nd
the fact that a game can generally be modelled as a tr¥eiS singleton. For brevity, | will make a number of further

traversal, such that every move will reduce the remainirggmplifications which do not relate to the example Behavlet.
possible moves. I model only a single level, to avoid extra complications

2) m;®m;_1 iff m;_, is a prefix ofm;, such that e.g. in a surroundingests that would be needed to model end-of-level
time-indexed systemm,: > m — 1,1, i.e. the start time Or loss of lives (for a description of test function constioig,
of the orbit for the next monoid to be composed mugee €.9.[[20, pp.46]). | do not provide extra state variables
be greater than or equal to the prior monoid, such thi& model the bonus Fruit item, a cherry; or record the points
game progression is modelled. scored, or Pac-Man’s lives (these values are referenced but

3) O # Ogi_1 Where(q,z0); N (¢,20)i—1 # 0 without left undefined). | also refrain from modelling any driver of
any other restriction om € Ox;. |.e. monoids composed Ghost behaviour, which in the prior specification is simply a
such that their orbits have overlapping time sequencéobabilistic map to adjacent positions, weighted towaad-P
shall not be isomorphic. Man in normal play and away from Pac-Man when a power

Thus, based on this approach, a gafiés a basis monoid pill is in effect. All these features can be trivially addedthe

Dy : (Xp, Mo, Pg), which provides the complete state spac@Odel'
and time reg|strat|on, W|th.o_ut inputs. The basis mo_n0|d is First, the basis monoid for a Pac-Man gafe
composed withl..x — 1 additional game pattern monoids, to Definition: p — (Xno Moy &

describe those activities in the game that reduce the ptitysib efinition: ®p = (Xpo, Mpo, Ppo),

space until game end. Each pattern monbjds restricted to ~ * Xpo = {mat,zy,}, where mat = (hpos,) U
join the base monoid in a time-ordered fashion, without over ~ (vposy), {z,y € N,1...20} the Pac-Man 'map’ matrix
lap of isomorphs, and without expanding the game tree with With values drawn fron{(), wall, pill, powerpill}; and

nodes excluded by previously composed monds;_; . xy, IS a set of current position values for Pac-Man and
the Ghosts{zy, | p € PM,G1.4},
IV. BEHAVLETS-BASED FORMAL MODEL o« Mpo=m: {11 =} XXoyprs =y a map from

As mentioned, the intention is to formalise the Behavlets’ the four directions of movement to the matrix position
method of player modelling. As indicated in the formal model ~ adjacent to Pac-Man’s current position,
definition, this can be done by using orbits to represent thee ®ro = ¢ : {1,2,3}, a map to three rules’,
play patterns which arise in the game. Here | elaborate this 1) m x pill — {4+5pints, Xuypn = 0}, Pac-Man

idea. passes through a matrix position with a pill: increase
A Behavlet is essentially a game play pattern associated points by +5, position becomes empty,

with a temperament trait. Thus, a well-chosen monoid repre- 2) m x powerpill — {+10points, Xpy,,, = 0, ¢ =

sentation of a pattermb x;, can also represent a Behavlet, and ¢ {1,2,3'},t : (1..n)}, similar effects aspill;

thereby be associated with a temperament trait. To select th also transition to the mag’, where vulnerability of



Pac-Man to the Ghosts is inverted for a limited timgames between which simulation is well-defined. Proving thi

n, is clearly a matter for future work.
3) mxzyg1.4a — —1i., Pac-Man and a Ghost enter
the same matrix position: Pac-Man loses a life, V. DiscussIiON

3" mxwyci.a — {+50pointsxi,i € (1..4),2y6; = The approach | described for a generalised player model
yoc, }, Pac-Man and a Ghost enter the same M@g,\s on the Behavlet method to create psychologicallgdas
trix position: +50 points (multiplied by consecutivese oy res of game play, and redefines them as parts of a cptegor
Ghost order), Ghost returns to starting position  yheretic formal model. The value of this approach is that, u

der a formal framework, Behavlet models of particular games

Second, the Behavlets.them_selves are modelled. To illysy, pe further generalised by the operation of simulation.
trate, | select a Behavlet listed inl [7, pp.298]._Hunt Close

To Ghost HouseBehavletAl (for short) tracks how often A, Potential applications

a player follows the Ghosts right up to their house while

attacking them ipowerpill mode.
Definition: ® 41 = (2/,m’,Opa1),

The primary use case for the described method is to capture
player variation. Consider that, if we model Behavlets anga
parts @y, then by the Behavlets methad [7], ea®h; will

o o' = V1.4,di st (zyc,,2yoc;) < 3, the manhattan have an associated behaviour trait. Thus, a game instance
distance of each Ghost to its own starting position is thrg@ith a specific® composition will reflect the 'character’ of
or less, a particular player’s play style. Potentially, charactcs of

o m' C MpoVt(1. ), the orbit elapses for all inputs untilhuman play can be learned through enough such instances.
the end of thepowerpill timer, Also consider that the method allow abstraction and speci-

o Opar = {2’ € Xpg : 2’ = Ppo(x,m’), an orbit defined ficity: we can build a canonical game model and also simulate
on the Pac-Man basis monoid game instances quite easily from the same definitions. This

allows exploration of the space of possible games.

Third, the composited game is produceld, = ®4; ® This might be termed personality profiling, but skill and
®p = Ppay1. Game instances where this Behavlet monoigtrategy are also a relevant considerations. Based on the
appears can be labelled as examplesaftious play with a  work of [5] where humans achieved near-optimal solutions on
quantification scheme as described above. hard problems, we can expect to find many problems where

human skills can provide the seed for improved computationa

Fourth, model reduction by simulation creates a simplgputions. For example], [24] used a gamification to learmfro
representation without reference to the specifics of theegamymans solutions, creating heuristic optimisation meshfoa
Thus we do not need to define, for example, the dimensionsd:gjantum computing problems which outperform traditional
game space state;, only to define theypeof spaces as they my|ti-parameter numerical methods. The problem remains to
appear to the player. In this way, we can make an equivalenggyracterise player activity in a manner which is flexible to
between models for Pac-Man, Go, even Noughts & Crossgg |evel and type of detail required, a problem to which |
if we wish. Given the game produced by composition wit§yggest that simulation is well suited. Thus, given a corit@os
restrictions®p 41, we define two simulations of the composeghodel of Behavlet-based game parts, defining play-segsence
parts, 541 and 8. The mapy which defines eacly is an  gych as the Noughts & Crosses or Go tactics described, the
abstraction of the part of the modehich is not relevant to zctyally-played components can denote the level of insight
comparison with another simulated games are composed the player into the game problem.
by restriction to produce a more general version of the model p fyrther consequence of this flexibility is the capacity to

Bpar. model multipleflavours of game rules. As defined by [22],
a game contains three different types of rule, Constiteativ
Bar ® Pp—— Bpar (written before play), Operative (emergent during playyl an
(1) Implicit (unspoken ’house’ rules between players). Go is
4 “"T T an example where all these rule types have been studied,
Py ®@ Pp— Ppay standardised, and written about in great detail, and thus we

available to the developers of alphaGo. For less well-stlidi

The complete approach to simulation is detailedir [11], arffMeS: the method I present can characterise them with some
is also discussed in_[10]. Here it is enough to note that,rgivé'ex'b'l'ty without loss of rigour.
proven models of games such as those described above,l_?thqssueS and considerations
reduction can be pursued and the simulations are then 'safé’

to study without reference to the messy details. This is a work at the concept stage, and like any concept
there are many details lacking. The state of the method

Fifth and finally, obtaining the generalised player modgiresented is probably sub-optimal, and this may frustfage t
from the given framework is perhaps possible for a class ofore engineering-minded reader; but the aim is initiate a



conversation. It is to be hoped that the concept will provides] B. Cowley, D. Charles, M. Black, and R. Hickey, “Usersssm-
fertile soil to grow more detailed methods. Experience Model for User Centered Design in Computer Gadmes

in Adaptive Hypermedia and Adaptive Web-Based Systeohs4018.

Despite the seeming complexity, what is required to build  pypin: LNCS, 2006, pp. 419-424.
such models is quite complementary to the developmei] —, “Toward an understanding of flow in video game€bmput.
process - defining the entities and operations of game-play, _ Entertain, vol. 6, no. 2, pp. 1-27, 2008.

When building such models, the user must take note

%?] A. Jarvinen,Games Without Frontiers: Methods for Game Studies and
Design Copenhagen: VDM Verlag, 2009.

whether the restrictions and constraints ever contradit [fil6] P. J. Gmytrasiewicz and C. L. Lisetti, “Modeling useeshotions during
game: this can help highlight flaws in either the game or the interactive entertainment sessions,” Stanford, CA, USA, B0-35,

- . 2000.
model, and facilitate the work of quality assurance. [17] M. Sicart, “Defining Game Mechanicsames Studiesvol. 8, no. 2,
p. Online, 2008.
VI|. CONCLUSION [18] S. Breining, H.-P. Kriegel, M. Schubert, and A. Zufle,cthon Sequence

Mining,” in Second International Workshop on Machine Learning and

| argue that in order to advance general game playing Al it Data Mining in Games, at European Conference on Machine tiegr

T. Croonenborghs, K. Driessens, and O. Missura, Eds., Ath@reece,

is necessary to include the player perspective, becausesgam 5911
are ultimately human artefacts and therefore contain ca$e® J. Von Neuman and O. Morgensterfiheory of games and economic
which benefit from a human-style problem solving approac%P] behavior New York: J. Wiley, 1944.

The argument implies creating a generalised player mod

R. Walters,Categories and computer scienceCambridge: Cambridge
University Press, 1991.

| have set out a method to do so, based on integrating May] S. Bjork and J. HolopainenPatterns in game design Hingham,
previously published Behavlets worki 7] with a formal model, Massachusetts: Charles River Media, 2005.

K. Salen and E. ZimmermamRules of play : game design fundamentals

of game play. The result isasionfor a general player model, London: MIT, 2004, vol. 1st.
rather than a complete and final work, which | hope will serV@3] K. Crowley, “Flexible strategy use in young childrenti-tac-toe,”
as inspiration. Cognitive Sciengevol. 17, no. 4, pp. 531-561, dec 1993.
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