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Abstract

Background: Continuous time movement models resolve many of the problems with scaling, sampling, and
interpretation that affect discrete movement models. They can, however, be challenging to estimate, have been
presented in inconsistent ways, and are not widely used.

Methods: We review the literature on integrated Ornstein-Uhlenbeck velocity models and propose four fundamental
correlated velocity movement models (CVM’s): random, advective, rotational, and rotational-advective. The models
are defined in terms of biologically meaningful speeds and time scales of autocorrelation. We summarize several
approaches to estimating the models, and apply these tools for the higher order task of behavioral partitioning via
change point analysis.

Results: An array of simulation illustrate the precision and accuracy of the estimation tools. An analysis of a
swimming track of a bowhead whale (Balaenamysticetus) illustrates their robustness to irregular and sparse sampling
and identifies switches between slower and faster, and directed vs. randommovements. An analysis of a short flight of
a lesser kestrel (Falco naumanni) identifies exact moments when switches occur between loopy, thermal soaring and
directed flapping or gliding flights.

Conclusions: We provide tools to estimate parameters and perform change point analyses in continuous time
movement models as an R package (smoove). These resources, together with the synthesis, should facilitate the
wider application and development of correlated velocity models among movement ecologists.

Keywords: Correlated velocity movement, Velocity autocovariance function, Correlated random walk, Integrated
Ornstein-Uhlenbeck process, Balaenamysticetus, Thermal soaring, Falco naumanni

Background
All moving organisms, from unicellular organisms to
whales, display heterogeneity in behavior, with multiple
movement modes serving different functions. In outlining
a paradigm formovement ecology, Nathan et al. [1] argued
that a unified approach to movement ecology must rely on
an “elemental view of a movement track,” making an anal-
ogy to genetics and the enviably discrete and countable
amino acid base pairs. Unlike a strand of DNA, however,
even at the most fundamental level the movements of liv-
ing organisms are extremely diverse: they can be roughly
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linear, tortuous, circular, directed, random, stationary or
some combination of the above. Only one, nearly tauto-
logical, aspect of movement can be said to be universal:
all organisms are always located somewhere in continu-
ous space and time, and all movements therefore occur in
continuous space and time.
The properties of movement data are similarly variable

in accuracy, precision and resolution. At the extremes
are highly resolved and regular data (e.g., video data in
controlled settings), and irregularly sampled data with
significant errors (e.g., ARGOS satellite data on marine
organisms, which are opportunistically collected when an
animal is at the surface). Improved portability of power,
ever more novel biologging technology, and ubiquity of
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coverage are yielding data that are increasingly precise and
sampled at ever-higher temporal resolutions.
Given the increasing resolution of data and the intrinsic

continuous nature of the movement process, one might
suppose that the dominant paradigm for movement mod-
eling would be continuous. However, the most commonly
used models of animal movements are still discrete [2, 3].
In particular, the correlated random walk (CRW), first
proposed by Patlak [4] and reintroduced by Kareiva and
Shigesada [5], models observed location data in terms
of distributions for step lengths and turning angles. The
observed axial persistence of most movements (at some
unspecified scale) is modeled with a parameter that quan-
tifies the extent to which turning angles cluster around
zero degrees. In most applications of CRWs, consecu-
tive turning angles and step-lengths are assumed to be
independent [2, 6] (though see [7]).
In many cases, a discrete movement model is a natu-

ral choice, for example in Shigesada and Kareiva’s earliest
application to flights of butterflies between flowers [5],
mostly linear elk movements between feeding craters in
winter [8], or daily stop-overs during a bird’s migration.
However, when the CRW is applied to raw telemetry data
it becomes a model of a sampling from a continuous
movement process. This can be problematic for several
reasons. First, the parameters – usually, a shape and scale
parameter for step lengths and a clustering parameter of
turning angles – have no clear interpretation. At differ-
ent discretizations (or subsamplings, or interpolations),
the parameters have different values: the higher the tem-
poral resolution, the less skewed the step lengths and the
higher the clustering of the turning angles, with no simple
scaling relationships (though see [3, 9]). This ambiguity
reflects the fact that step-length and turning angle distri-
butions do not capture a fundamental, biological property
of continuous movement, but are artifacts of the sampling
resolution, much as an estimated fractal dimension of a
path is an artifact of the sampling rate [10]. The CRW
is also problematic for irregularly sampled data (e.g. data
from marine satellite telemetry [11, 12]), in which case
movement datamust be either thinned or interpolated [6].
Finally, and perhaps most importantly, for high resolution
data the common assumption of serial independence is
certain to be incorrect, with important consequences for
false inference [2, 6].
In principle, continuous-timemovementmodels resolve

these drawbacks because they can be defined in terms of
scale-invariant parameters and can be estimated regard-
less of sampling [3, 12, 13]. The closest continuous time
equivalent to simple CRW models are ones in which
velocities are modeled as two-dimensional Ornstein-
Uhlenbeck (OU) processes, essentially continuous time
equivalents of first order auto-regressive time series. It is
straightforward to incorporate directional bias [3, 12, 14]

or rotational tendencies to these models [14, 15], cap-
turing additional, potentially important, features. These
models, which we have referred to collectively as corre-
lated velocity models (CVM’s, [9, 16]) have been described
and applied for animal (or sub-organismal) movements
for several decades. More recently, tools have been devel-
oped to estimate parameters of continuous time mod-
els, notably the “continuous time correlated random
walk” of [12] and the “continuous time movement mod-
els” [13, 17] (and, respectively, the crawl [18] and
ctmm [19] R packages). Nonetheless, the use of contin-
uous time movement models has been limited in the
broader movement ecology community, in part because
of the unfamiliar nature of the stochastic differential
equations that underlie the models, inconsistencies in
how the models have been presented in the literature,
and the unclear biological interpretation of some of the
parameters.
Our primary goal in this paper is to argue for the flexibil-

ity and appropriateness of CVMmodels as a “fundamental
unit” of movement. To that end, we first present and
review the literature on integrated OU velocity models,
all fundamentally similar but parameterized in divergent
and possibly confusing ways. We propose a unifying, hier-
archical family of CVM models defined in terms of bio-
logically intuitive parameters, notably speeds and charac-
teristic time scales. We review the statistical properties of
these models and present several approaches to estimat-
ing the parameters, providing examples both for simulated
data and the highly irregularly sampled track of a bowhead
whale (Balaena mysticetus).
The estimation of a few parameters to characterize

a homogeneous section of movement track is only the
starting point of an analysis. As fundamental units of
movement, CVM’s can serve as a basis for higher level
analysis of movement tracks.We illustrate this by focusing
on the problem of identifying multiple behavioral modes
[20, 21], an important exploratory step with respect to
higher-level questions related to energetics, time budget-
ing, responses to environmental cues and habitat use,
and mechanisms of navigation. Widely used tools for
behavioral partitioning include behavioral change point
analysis (BCPA [11, 22]), the Bayesian partitioning of
movement models (BPMM [23]), and analyses of first-
passage and residence times (FPT, RT [24, 25]). Of
these tools, only the BCPA is explicitly designed to
be robust to irregularly sampled data. However, none
of the tools provide a parameterized movement pro-
cess as an outcome [20], as all analyze some derived
statistics of the movement process. Discrete movement
models have a broad range of applications as a basis
for more complex models of behavior, including behav-
ioral switching [26], step-selection (i.e. tactic responses
to environmental covariates) [27], biased movements to
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unknown centers of attraction [28] and inferring move-
ment processes from data with error [7, 29].
Here, we develop a method for the behavioral partition-

ing of movement tracks based on estimating shifts in the
parameters and type of CVM. In this way complex (and
arbitrarily sampled) movement tracks can be estimated in
terms of biologically meaningful parameters. We perform
the partitioning on the bowhead whale data, identifying
transitions from exploratory movements to intensive for-
aging. We also partition a highly detailed portion of the
lesser kestrel (Falco naumanni) flight track, identifying
moments at which the flight transitions from autocorre-
lated random movement to advective movement to loopy
thermal soaring, including changes between clockwise
and counterclockwise rotations. To facilitate the adoption
of continuous time movement models by ecologists, we
provide an R package (smoove) for estimating the CVM
models and performing the behavioral partitioning.

Methods
General formulation and review
The correlated velocity movement models we discuss
in this paper can all be expressed as a continuous
stochastic model for velocity v(t) that is integrated to
obtain the position in time: z(t) = z(0) + ∫ t

0 v(t
′)dt′.

A simple continuous-time velocity model is a multi-
variate Ornstein-Uhlenbeck (OU) process [30]. In two-
dimensions, this model is formulated most generally as
the stochastic differential equation

dv = α(μ − v) dt + β dwt (1)

where α is a parameter that captures both the relax-
ation time (i.e. autocorrelation time scale) and a possi-
ble rotational component, μ is the asymptotic expected
mean of the velocity (typically a constant 2D vector, or
0), β is the magnitude of the stochasticity and dwt is
a two-dimensional independent Gaussian perturbation
with variance dt.1 Note that the dwt term has units of
time1/2. In order to give the entire expression consis-
tent units of velocity, the β parameter must have units
of distance × time−3/2, a unit with no clear biological
interpretation. Essentially, this model describes a velocity
process that is continuously fluctuating while attempting
to relax to a velocity μ at some rate related to α. The
position, in turn, is the integral of the velocity and there-
fore a smooth random process that is well-defined and
differentiable in continuous time.
With some variations (and a variety of acronyms), an

integrated OU velocity process has been used to model
a wide array of animal movements. In the earliest such
application we are aware of, Dunn and Brown [32], pro-
posed the model as a fundamental one for movements
of cells and noted the equivalence of this model to a
first order autoregressive moving average (ARMA(1,1))

model, commonly used in time-series analysis. Alt [15]
introduced complex number notation to the Dunn-Brown
model, elegantly introducing rotation and advection, and
discussed the predicted velocity autocovariance function
of these models. Gurarie et al. [14] extended the formula-
tion of [15] to model and estimate three-dimensional heli-
cal trajectories of a motile alga (Heterosigma akashiwo).
Zattara et al. [33] applied the unbiased model the char-
acterize the movements of cells in regenerating annelids.
Brillinger and Stewart [34] modelled the movements of an
elephant seal (Mirounga angustirostris) by modifying the
integrated Ornstein-Uhlenbeck model for the surface of a
sphere and incorporating points of attraction. Johnson et
al. [12] presented this model as the continuous time corre-
lated random walk model (CTCRW), provided likelihood
estimates of the parameters and developed an efficient
Kálmán filter-based method for estimating the parame-
ters. Their formulation also allowed for the inclusion of
advection and the separation of the underlying process
from observation errors in a state-space modeling frame-
work. The study organisms motivating their study were,
again, pinnipeds: northern fur seals (Callorhinus ursi-
nus) and harbor seals (Phoca vitulina). Fleming et al. [13]
introduced and estimated an autocorrelated model that
hybridizes a spatial OU process with a velocity OU pro-
cess (the OUF process), such that the unbiased (μ = 0)
CVM is a special case in which the spatial time scale of
autocorrelation approaches infinity [17].
We summarize these models and their applications in

Table 1. Note that there is considerable (and potentially
confusing) variability in the way models are parameter-
ized. For example, the α in [32], β in [34], and σ in [12]
all refer to the same quantity (denoted β in Eq. 1, with the
same awkward units), while each of those symbols refers
to something else entirely in other formulations.
It is noteworthy that integrated Ornstein-Uhlenbeck

velocity process have mainly been applied either to
microorganisms videotaped in laboratory settings or
to marine mammals traveling over spatial scales of
hundreds or thousands of kilometers. These applications
– near the absolute extremes of the scales at which
organisms move – reflect two advantages of continu-
ous time movement models: their explicit ability to deal
with highly autocorrelated data sampled at high temporal
resolution (e.g. videography), and their ability to han-
dle irregularly sampled data, typical for marine telemetry
where locations can only be obtained when the animal is
(unpredictably) at the surface.

Four fundamental models
We present here a consolidation of integrated OU veloc-
ity models into a unified, hierarchically structured family
of CVM’s formulated in terms of biologically meaning-
ful parameters. All of the models are special cases of the
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general process in Eq. 1. We describe these models qual-
itatively here, summarizing the notation and parameters
in Table 2, with more details provided in Additional file 1:
Appendix A.
Unbiased correlated velocity model (UCVM): The

unbiased CVM (Fig. 1a) is a continuous time analogue of
an unbiased CRW. It is obtained by making the substitu-
tions α = 1

τ
and β = 2ν√

πτ
:

dv = 1
τ
v dt + 2ν√

πτ
dwt (2)

In this formulation, ν simply represents the mean actual
speed of movement and τ is a characteristic time scale
of auto-correlation [12, 14, 15]. We refer to this model as
UCVM(τ , ν). As τ → 0, the UCVM approaches uncorre-
lated random Brownian motion. As τ → ∞ the UCVM
approaches perfectly linear motion. Thus, the UCVM is a
simple, two parameter model that spans the entire range
of possible tortuosities and speeds. An alternative param-
eterization of the UCVM is in terms of the root mean
squared speed η = 2ν√

π
, also a useful measure (as seen

below).
Advective CVM (ACVM): The ACVM (Fig. 1b) has a
mean non-zero advective velocity μ (where the bold-
facing represents a two-dimensional vector), and is use-
fully expressed as ACVM(τ , η,μ). The mean squared
speed of an ACVM process is tidily decomposed into the
random and advective components: |v2| = η2 + |μ|2,
where the vertical bars indicate the magnitude of the
advective velocity: |μ|2 = μ2

x+μ2
y . Note that with the ran-

dom r.m.s. speed, the time scale, and the two components
of the advective velocity, this model is specified by four
parameters.
Rotational CVMs (RCVM and RACVM): It is similarly
straightforward to introduce a rotational component to
the CVM [9, 15] by substituting a two by two matrix:

[
1/τ −ω

ω 1/τ

]

for the α parameter in Eq. 1. This term

combines the decay to the mean along the main coor-
dinates with a nudge that is perpendicular to the direc-
tion of movement. With no advection, we denote this
model RCVM(τ , η,ω) where ω is a mean radial veloc-
ity (rotations × time−1). With advection, the model is
denoted RACVM(τ , η,ω,μ) (Fig. 1c and d). A character-
istic spatial scale of rotation can be defined as ρ = η/ω,
i.e. the ratio between the random speed component and
the angular speed, which is closely related to the circling
radius used to characterize helical soaring flights [35].
With somewhat different parameterizations, rotational
and advective-rotational models have been analyzed to
model cellular movement [15] and helical trajectories of
unicellular algae [14].
Decomposed into x and y components, the complete

RACVMmodel is expressed:

dvx =
(
1
τ

(μx − vx) − ω(μy − vy)
)

dt + η√
τ
dwx,t (3)

dvy =
(
1
τ

(μy − vy) + ω(μx − vx)
)

dt + η√
τ
dwy,t

Setting μx = μy = 0 gives the RCVM, setting ω = 0
gives the ACVM, and setting μx = μy = ω = 0 gives the
UCVM (with the η parameterization).
It should be noted that all of these processes are con-

ditioned on an initial velocity v0. If the initial velocity is
“extreme”, the process needs some time (governed by the
magnitude of τ ) to settle into its asymptotically stationary
behavior. The initial speed parameter is of little biological
interest in practice, as we typically assume that a sampled
CVM is already in its stationary state (see Additional file
1: Appendix C.3 for more details).

Statistical properties
Key statistical properties (expectations, variances, auto-
correlations) of the CVM processes are summarized in

Table 2 Notation, parameters, units and derived properties of correlated velocity movement models

Model Parameter (units) Mean speed Mean squared speed Velocity auto-covariance function

τ - characteristic time scale (time)

Unbiased CVM

UCVM(τ , ν) ν - mean speed (dist/time) ν 2
π

ν2 2ν2
π
e− t

τ

UCVM(τ , η) η - random rms speed (dist/time)
√

π
2 η η2 η2e− t

τ

Advective CVM

ACVM(τ , η,μ) μ - advective velocity (2D - dist/time) eq. A6 η2 + |μ|2 |μ|2 + η2e− t
τ

Rotational CVM

RCVM(τ , η,ω) ω - angular speed (radians/time) - η2 η2e− t
τ cos(ωt)

Rotational-advective CVM

RACVM(τ , η,ω,μ) - η2 + |μ|2 |μ2| + η2e− t
τ cos(ωt)
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Fig. 1 Four sample trajectories (left panels) and corresponding velocity auto-covariance functions (right panels) of CVM movement models. In all
trajectories, the characteristic time scale τ = 5, the randommean squared speed η = 3 and the sampling intervals are 0.01. Start and end of each
trajectory is represented with filled circles and x’s, respectively. Regions of darker and lighter grey within the track indicate locations where the speed
is slower or faster. In panel a, the mean velocity and rotation are equal to 0, in panels b and d, there is a mean component of velocity μx = 2, and in
panels c and d there is a rotational component ω = 2. In the right panels, black lines are the empirical estimates of the velocity auto-covariance
function (EVAF), the red dashed line is the theoretical prediction (Equation A15), and the horizontal dashed grey line is the predicted asymptote |μ2|,
reflecting the advective term in the process

Additional file 1: Appendix B. These properties directly
inform the estimation procedures.
In brief, both the position and velocity are Gaussian,

with the long-termmean of the location (|z(t � τ)|) equal
to the initial location |z(0)| for the non-advective UCVM
and RCVM, and equal to the advective velocity times time
μ t for the ACVM and RACVM. At long time frames (t �
τ ), the variance of the process increases linearly with time
(as for any unconstrained random movement) in propor-
tion to the random mean squared speed η2. This linearly
increasing variance is characteristic of unconstrained ran-
dom walks [9, 16]. At intermediate time ranges, both the
positions and velocities are correlated with magnitudes
controlled by the time scale parameter τ .

Velocity autocovariance functions
A useful measure for visualizing the structure of
CVM processes is the velocity autocovariance function
(VAF [9, 15, 36]). Defined as the expected dot product of
the velocity vectors over different lags, the VAF is directly
analogous of the familiar autocovariance function for dis-
crete one-dimensional time series. Theoretical VAF’s of

the four CVM processes have convenient and simple
expressions (Table 2). At lag zero, they are all equal to
|v2|. At increasing lags they decay exponentially with rate
1/τ to |μ|2. Rotational processes contain an additional
oscillatory component with frequency ω.
Empirical velocity autocovariance functions (EVAF’s)

can be computed by taking means of observed dot prod-
ucts across lags. Because of its intrinsic smoothing, the
EVAF provides a useful visual exploratory tool for recog-
nizing these fundamental processes (Fig. 1, right panels).
There is a strong analogy between analysis of velocity
autocovariance and the use of variograms for position
data [17, 37]: the variogram similarly smooths across time
lags, and known theoretical forms of the curve are used to
identify fundamental ranging processes. The key
difference between the two tools – that one is based on
velocities while the other is based on positions – suggests
an important caveat for the application of VAF’s, namely
that VAF’s are obtainable only for data that is sufficiently
high resolution (i.e. T � τ , where T is a time inter-
val). Inferring the VAF from irregular position data is a
topic for future work.
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Estimation methods
Given the raw ingredients of movement data, a vector of
2D positions (Zi = {Xi,Yi}) and a vector of times (Ti),
there are several approaches to estimate or approximate
CVM parameters. We describe these methods here in a
qualitative way, referring the reader to Additional file 1:
Appendix C for technical details. Broadly, there are two
approaches: phenomenological methods that match some
statistical property of the observed trajectory, analogous
to method of moments estimation, and maximum likeli-
hood methods that exploit the distribution of the position
or velocity processes.

Method ofmoments estimators
For a movement process that is sampled relatively coarsely
(i.e. the intervals between observations are approximately
equal to or greater the time scale of autocorrelation),
the most straightforward approximation of the UCVM
parameters is to match those parameters to correlated
random walk (CRW) parameters. Specifically, the UCVM
speed and time scale parameters can be expressed in
terms of the ratio between the variance and mean of
discrete step lengths (parameter λ), the mean interval
between observations (T), and the mean cosine of
the turning angles (κ) via a straightforward set of for-
mulas (Additional file 1: Appendix C.1). The equations
are derived from matching the characteristic movement
scales of the processes [14]. Because the CRW process is
not exactly equivalent to a UCVM this method is gener-
ally biased and useful only as a rough approximation for
data that are coarsely sampled. Themain advantage of this
method is that it is very fast to compute, and can be used
to translate reported CRW parameters in older studies to
velocities and time-scales.
For data that are high resolution (i.e. where time scales

are larger than sampling intervals), fitting EVAF curves
to their theoretical predictions can be an effective way to
obtain parameters for any of the four models (Fig. 1). In
particular, the high-lag stabilization value of the EVAF is
an excellent estimate of (the square of) advective speeds,
and any rotational component is usually evident and easy
to fit in the VAF. This approach was suggested by Alt [15]
and applied to model helical movements of motile alga
[14]. Additional details of VAF fitting, including expres-
sions for computing the EVAF and techniques for dealing
with autocorrelated residuals are provided in Additional
file 1: Appendix C.2.

Maximum likelihood estimators
Maximum likelihood based estimates of CVM processes
have many fundamental advantages over method of
moment estimators. In particular, they provide tools to
assess and compare models and to quantify the accu-
racy of an estimate. The distributions of the velocity

and positions of the CVM processes catalogued in
Additional file 1: Appendix B can be leveraged directly
to write the likelihood of parameter values given
observations.
The simplest approach to likelihood estimation is to

use the estimated velocities, i.e. sequential displace-
ments of the process divided by the time intervals:
Vi = (Zi − Zi−1)/(Ti − Ti−1). The conditional dis-
tribution of the velocities (i.e. Vi|Vi−1) is Gaussian
(Additional file 1: Appendix C.3), and the joint distri-
bution of the vector of velocities can be numerically
maximized efficiently. This method works best for rel-
atively high frequency sampling, but the data need not
be regularly sampled. Directly computed velocities nec-
essarily underestimate the true velocity of the process
because they assume straight line movements between
locations. This bias can be mitigated, somewhat, by an X-
Y-T spline of the positions (Additional file 1: Appendix
Figure A1).
Finally, it is possible to estimate the parameters using

only the location data, without recourse to computed
velocities (Additional file 1: Appendix C.3). In order
to maximally leverage all the location data, all of the
correlations across all points are included into this “full-
position” maximum likelihood. A direct maximization of
the likelihood is typically computationally much more
intensive than the velocity likelihood. Johnson et al. [12]
developed an invaluable computational method for
maximizing this likelihood with the aid of a Kálmán
filter (see also the crawl R package [18]). We refer the
reader to the original article and the associated appen-
dices, noting that the parameters those authors refer to as
β and σ correspond in our parameterization to 1/τ and
η2/τ , respectively (Table 1).

Change point analysis
The CVM models are flexible characterizations of move-
ment paths controlled by a stable set of underlying
parameters. The particular model and parameter val-
ues can reflect fundamental behavioral modes which
serve particular functions, i.e. themovement phases sensu
Nathan et al. [1], which might be associated with directed
traveling, foraging, resting, escaping, or any other
important function. It is a common and important first-
order challenge when first confronting movement data
to attempt to identify and quantify those fundamental
phases [20, 21].
The likelihood based estimation of the CVM move-

ment models provides a framework for implementing an
exploration of movement phases using a variation of the
behavioral change point analysis (BCPA) [11, 20]. The
fundamental assumption behind the analysis is that a
movement phase is identified either by a unique funda-
mental model or by significant shift in parameter values at
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unknown times. We enumerate the steps of the heuristic
below:

1. Define a subset of the data of a certain sample size or
time duration (the window size) and subset of CVM
models which are of biological interest.

2. Find the time point within the window (the most
likely change point - MLCP) for which the likelihood
of fitting two models on either side of the window is
maximized.

3. Record the MLCP, move the window forward some
small step (the step size) and repeat step 2, logging
the MLCP at each scan. This set of MLCP’s can be
initially thinned by merging selected change points
that are within some time interval (cluster width).

4. For the final set of candidate MLCP’s, determine the
significance of a change point based on a comparison
of the BIC of fitted models on either side of the
candidate point to the BIC of a model with no change
point. Note that a BIC based model selection process
from the set of candidate CVM’s occurs within each
estimation. For example, consider a case where the
selected model for Phase I is ACVM, for Phase II is
RCVM and for the combined movement subset is
UCVM. In that case, the no-change point model has
only two parameters (ν and τ ) while the change point
model would have 8 parameters (4 for the
ACVM(τ , η,μx,μy), 3 for the RCVM(η, τ ,ω), and the
change point itself t∗). The BIC analysis will identify
two kinds of differences: Did the fundamental model
change (e.g. did the movement switch to an advective
movement from a random movement)? Or did the
values of the parameter change (e.g. did the
movement speed up, become more tortuous, etc.)?

The output of this analysis is a fully parameterized
sequence of fundamental movement phases, together
with the times (and locations) of the switches between
the phases. The method does require the setting of
two free parameters: the window size and the cluster
width. There are no hard and fast rules for the selection
of these criteria. Larger window size will mask very
short phases, while shorter windows will have a harder
time detecting significant changes. But for a reasonable
range of values, the results will generally be consis-
tent (see the package vignette in the Additional file 2
for a mini study of the sensitivity of the change point
analysis).
Code to simulate and estimate the CVM models and

perform a change point analysis is bundled in an R
package called smoove, available in the Additional file 1
as well as on GitHub at: https://github.com/EliGurarie/
smoove. The package vignette includes examples of
simulation and estimation of homegeneous CVM

processes and a step-by-step illustration of the change
point analysis.

Simulation study
To illustrate the autocorrelation structure of the velocities
in the general context of the CVM models, we simulated
four tracks at high resolution (500 steps at interval t =
0.01): a UCVM, ACVM(μx = 2), RCVM(ω = 2), and
RACVM(μx = 2,ω = 2) and compared the empirical
autocovariance function with the theoretical predictions.
We randomly sampled 400 points from the complete
tracks illustrated in Fig. 1 and used the position likelihood
method to obtain estimates of model parameters and to
select the different CVMmodels with BIC.
We also performed a more comprehensive simulation

experiment assessing the four estimationmethods accord-
ing to precision, accuracy and speed for regular and
irregular, high and low resolution tracks. The setup and
results of those simulations are detailed in Additional file
1: Appendix D.

Application to bowhead whale data
We analyzed a portion of movement data of a GPS tagged
female bowhead whale tracked in Disko Bay in western
Greenland (inset map in Fig. 3). The tag was a Fastloc GPS
retrievable data and dive logger (www.wildlifecomputers.
com). The track consists of 954 locations collected
between April 28 and May 21, 2008 (further details: [38]).
These data were an excellent candidate for testing the
methods developed here as they are highly precise (typ-
ical GPS error < 25 m), but very irregularly sampled
(mean interval between locations 34.5 min, median 23
min, minimum 6 min, maximum 10 h), thereby combin-
ing several common features of telemetry data on marine
organisms.
We performed two analyses of the bowhead whale data.

First, we tested the robustness of the likelihood estimation
by estimating the UCVM parameters on random subsam-
ples of the bowhead data, drawing between n = 100 and
the maximum n = 954 observations, such that the mean
sampling intervals ranged from 5.3 to 0.57 h. For each sub-
sampling, we estimated the mean speed ν and the time
scale τ of the movement.
Second, we performed a change point analysis of the

whale’s movement, testing for unbiased and advective
movements, with a window size of 50 and a cluster width
of 0.5 h using the full 954 observation dataset. Addition-
ally, we explored the consistency of the change point anal-
ysis against subsampling by repeating the analysis with 75,
50 and 25% of the data. In order tomake the analyses com-
parable, we scaled the window size to the subsampling,
using windows of 100, 75, 50, and 25 data points for the
100, 75, 50 and 25% subsampling (details in Additional
file 1: Appendix G).

https://github.com/EliGurarie/smoove
https://github.com/EliGurarie/smoove
www.wildlifecomputers.com
www.wildlifecomputers.com


Gurarie et al. Movement Ecology  (2017) 5:13 Page 9 of 18

Application to kestrel data
We analyzed the flight path of a lesser kestrel (Falco
naumanni) tracked in southwestern Spain using high fre-
quency (1 second) GPS dataloggers [39–41]. Like other
birds, lesser kestrels can fly either by flapping their wings
or by soaring-gliding through harvesting kinetic energy
from the atmosphere. In thermal soaring, birds rise in a
circular pattern when soaring on a heated thermal and
then glide down to catch another thermal pocket. Thus,
lesser kestrels alternate between directed flapping or glid-
ing flight and loopy thermal soaring and the track is a
complex mixture of unoriented, advective, and advective-
rotational movements.
To explore the basic estimation and selection of CVM

models, we analyzed the segments of a flight that were (a)
clearly advective, (b) rotational-advective and (c) random,
using AIC as a criterion for the model selection.
We then performed a comprehensive CVM change

point analysis across the entire 7 minute kestrel
flight track, identifying moments at which the bird
switched between advective, rotating, rotating-advective
and unbiased movements. In the change point analy-
sis, we used a window size of 50 and a cluster width
of 1 sec.

Results
Simulation study
Simulated high-resolution tracks (Fig. 1) have charac-
teristically “smooth” trajectories with speeds that vary
along the tracks (darker and lighter colors in the figure).
The corresponding empirical and theoretical velocity
autocovariance functions illustrate the main kinds of
information that can be derived from their inspec-
tion: the characteristic rates of decay of autocorrelation,
the mean speeds (tracks B and D) and the periodicity
(tracks C and D).
For the likelihood estimation of the randomly sub-

sampled tracks with n = 400, all the true simulation
parameters were within the 95% confidence intervals of
the estimates (Table 3). The estimates of τ were the
least precise, whereas the estimates of the advective bias
and rotation were very precise, within a few percent of
the true values. The AIC based model selection cor-
rectly selected the true model in all cases, with the
strongest relative signal (greatest AIC) for the rotational
models, suggesting that it is easier to pick out a move-
ment with consistent rotational bias than with consistent
advective bias.

Whale movement analysis
The estimates for the UCVM parameters of the whale
track using all n = 954 datapoints were τ̂ = 10.4
min (95% CI: 9.5-11.5) and ν̂ = 2.07 km/h (95% CI:
1.93-2.20). Estimates of ν were consistent between 1.7

and 2.6 km/h across sampling rates (Fig. 2b). Estimates
of the time scale were also mostly consistent for the
random subsampling, ranging from 10.2 to 18.6 min,
but tended to be somewhat higher for the more sparse
subsamplings (Fig. 2a).
The change point analysis suggested a division into

12 phases of homogeneous behavior across the 33 day
track (Table 4, Fig. 3). Four of those phases (II, IV, VII,
IX) were identified as advective, while the remaining
eight were unbiased. The random root mean squared
speed η tends to be lower when there is a significant
advection, as expected since including a mean compo-
nent of velocity absorbs some of the total magnitude
of variation. For ACVM models with parameters ν and
μ, the estimated mean speed of movement is given
by equation A6. We report this speed for each phase
in Table 4.
The whale began its movement on April 28 with a fast

(mean 2.01 km/h), and highly correlated random move-
ment (τ = 1.2 h) before switching, still at relatively
high speed, to a directed southward movement for 0.8
days (Phase II, medium blue), followed by a less cor-
related (τ = 0.3 h) and extended 3.3 day long Phase
III (light blue) with a slow drift eastward. On May 3
(at around 18:00) it began a sudden, highly directed
and rapid (mean speed 2.14 km/h) northeast transition
(Phase IV, pale green color), traveling 81 km over an eigh-
teen hour period. This was followed by, essentially, 17
days of behaviors that were highly tortuous (time scales
between 0.01 and 0.22 h), variable, and relatively slow
(under 1.5 km/h mean speeds). During this period, we
detected two periods of directed movement towards the
north and the southwest (Phases VII and IX, respec-
tively, red and yellow colors), but these were also slow
(less than 1 km/h).
The intervals between observations (mean 27 min)

were generally larger than the estimates for τ (Table 4),
requiring the use of the position likelihood to obtain reli-
able estimates. There were no relationships between τ

estimates across the behavioral phases, suggesting that
they represent distinct features of the whale’s behavior.
Furthermore, there were no relationships between the
mean sampling intervals and the estimates of τ and ν

(Table 4), suggesting that within the range of the mean
sampling intervals in the eight identified phases (20 to
416 min) the sampling intensity was not confounding the
estimates.
Results for the subsampling validation of the bowhead

change point analysis are presented in Additional file
1: Appendix G. Generally, there was good agreement
between the timing of selected change points (Additional
file 3: Figure A4), though that deteriorated with more
sparse samples. Predicted estimates across particular sub-
samplings and the complete data were most correlated at
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Table 3 Table of four simulation tracks (Fig. 1 - see details of data sampling in text) and three segments of the kestrel flight data (Fig. 4)
with estimates and 95% confidence intervals of parameters (time scale τ , random rms speed ν , advective speed components μx and
μy and angular velocity ω). The model selection is based on comparing BIC values for the four models while the reported estimates are
only for the selected model. The kestrel portions are numbers VI, VIII and XII - orange, dark blue, and yellow portions in Fig. 1

Data Parameter values Model BIC

Simulation True values Estimates (C.I.)

A τ = 5 4.20 (2.65 - 6.03) UCVM 0

η = 3 2.19 (1.75 - 2.63) ACVM 2.00

RCVM 1.99

RACVM 4.00

B τ = 5 6.3 (3.74 - 10.61) UCVM 1.01

η = 3 2.71 (2.02 - 3.41) ACVM 0

μx = 2 1.91 (0.54 - 3.28) RCVM 2.17

μ_y = 0 0.08 (-1.29 - 1.46) RACVM 1.08

C τ = 5 7.22 (3.39 - 15.35) UCVM 830

η = 3 2.85 (1.78 - 3.92) ACVM 834

ω = 2 2.04 (1.94 - 2.15) RCVM 0

RACVM 4.79

D τ = 5 9.22 (5.0-17.0) UCVM 1300

η = 3 3.30 (2.31 - 4.3) ACVM 1287

μx = 2 1.99 (1.89 - 2.11) RCVM 629

μy = 0 0.04 (-0.07 - 0.15) RACVM 0

ω = 2 2.02 (1.95 - 2.09)

Kestrel Parameters (units)

Segment VI τ̂ (sec) 29.1 (8.7-97.2) UCVM 0

(n = 68) η̂ (m/sec) 7.7 (3.1 - 8.7) ACVM 4.4

RCVM 2.3

RACVM 6.1

Segment VIII τ̂ 38.9 (8.8 - 172.3) UCVM 246

(n = 69) η̂ 7.61 (2.02 - 13.2) ACVM 253

μ̂x (m/sec) 2.77 (2.24 - 3.31) RCVM 68.7

μ̂y (m/sec) -0.87 (-1.41 - -0.33) RACVM 0

ω̂ (rad/sec) 0.56 (0.52 - 0.60)

Segment XII τ̂ 14.4 (5.3 - 38.6) UCVM 4.8

(n = 31) η̂ 4.04 (2.04 - 6.05) ACVM 0

μ̂x -10.1 (-17.6 - -2.6) RCVM 8.0

μ̂y -8.8 (-17.3 - -0.35) RACVM 6.8

the highest subsampling (r2 = 0.89 for η and 0.80 for τ

at the 75% subsampling), but even at a 25% subsampling
agreement was high (r2 = 0.86 and 0.68 for η and
τ , respectively). The η estimates tended to be lower as
sparser subsamplings, the τ estimates were more variable
but less biased.

It is worth noting that the preprocessing of this dataset
was minimal. The only data that were removed were
observations at the beginning of the track with intervals
shorter than 5 minutes, which were an artifact of the tag-
ging process itself (i.e. transmitting on the vessel before
deployment).
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A

B

C

D

Fig. 2 Results of estimation of UCVM parameters for the Greenland bowhead whale (see inset in Fig. 3). Panels a and b indicate the full position
likelihood estimates of time scale τ and speed ν for a range of random subsamplings from 100 observations (illustrated in panel c) to the complete
dataset with 954 observations (panel d) intervals for the estimates. The vertical bars indicate the 95% confidence interval of the estimate, while the
horizontal grey bar shows the point estimate and confidence intervals for the compete data (i.e. n = 954) for comparison

Kestrel flight analysis
Themulti-model change point analysis broke the 7minute
kestrel flight into 14 phases varying in duration between
10 and 67 seconds (Fig. 4, Table 5). According to the
partitioning, the kestrel spent 56% of this flight engaged
in rotational advective movement (RACVM), likely

associated with thermal soaring. The partition identified
moments when the kestrel switched behaviors, e.g. from
directed flight (flapping or gliding) to soaring on a ther-
mal (phases I and II, Fig. 4), or within a thermal soaring
event between rotating clockwise and counter-clockwise
(e.g. two transitions between phases VII, VIII and IX).

Table 4 Table of bowhead change point analysis results (Fig. 3), presenting for each phase: the times of initiation and completion and
duration, estimates of the time scale parameter τ , and, in the right four columns, speed estimates: the random r.m.s. speed η, the x and
y components of the mean velocity μ, and the mean tangential speed of the process ν . All speeds are in km/h

Phase Model Start End Duration Time scale Random Advective Mean

(mm-dd hh:mm) (h) τ r.m.s. η μx μy ν

I UCVM 04-28 18:41 04-29 16:06 21.4 1.214 2.263 2.005

II ACVM 04-29 16:06 04-30 11:50 19.7 0.401 1.480 -0.49 -1.44 1.926

III UCVM 04-30 11:50 05-03 20:28 80.6 0.375 1.930 1.711

IV ACVM 05-03 20:28 05-04 14:22 17.9 0.234 1.361 1.49 1.14 2.144

V UCVM 05-04 14:22 05-07 02:04 59.7 0.036 1.247 1.105

VI UCVM 05-07 02:04 05-08 05:50 27.8 0.215 1.660 1.471

VII ACVM 05-08 05:50 05-09 14:19 32.5 0.196 1.010 -0.01 0.42 0.969

VIII UCVM 05-09 14:19 05-14 04:02 109.7 0.228 1.610 1.427

IX ACVM 05-14 04:02 05-15 03:24 23.4 0.017 0.733 -0.25 -0.24 0.721

X UCVM 05-15 03:24 05-18 05:58 74.6 0.114 1.430 1.267

XI UCVM 05-18 05:58 05-19 00:40 18.7 0.154 1.005 0.891

XII UCVM 05-19 00:40 05-21 14:26 61.8 0.263 1.647 1.460
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A

B D

E C

Fig. 3 Change point analysis of the bowhead track in Disko Bay, Greenland (inset map). In the left panels are the estimates of (a) random r.m.s. speed
η and (b) time scale τ . On the right panels, estimates of the (c) x and (d) y components of the advective velocity μ. These are non-zero only for those
four phases (II, IV, VII, IX) for which the advective CVM was selected over the unbiased CVM. Each color corresponds to a particular phase, matching
the mapped track (e), with enumerated phases (legend in panel (e)) reporting whether the movement phase was determined to be unbiased (U) or
advective (a). The arrows point to the first location of the four directed phases

When engaging in RACVM flight, the kestrel rotated
somewhat more often to the right (total: 143 sec. clock-
wise compared to 67 sec. counter-clockwise, at |ω| > 0.4).
The values of τ varied considerably, from an extreme out-
lier at 904 seconds (95% C.I. 48-16 760) in phase XIII, to a
particularly smooth and auto-correlated trajectory imme-
diately preceding the very distinct end of the kestrel’s
flight, i.e. phase XIV, with a corresponding τ of 1.99 sec
(95% C.I. 0.9 - 4.4).

Discussion
Integrated OU velocity models for movement have
been described for several decades (our greatest debt
is to Alt [15]) but have yet to be widely or routinely
applied. We propose a simple taxonomy and uniform
parameterization that encompasses a range of fundamen-
tal movement modes. By providing an R package (sup-
plementary materials) for the estimation of these models,
including the change point analysis, our aim is to lower the
barrier for the application of continuous time movement
models by movement ecologists.
We place particular emphasis on the biological inter-

pretability of the CVM parameters in terms of speeds
and characteristic time scales. For unbiased movements,
the combination of speed and autocorrelation time scale
gives perhaps the most succinct measure of the tortu-
osity, the quantification of which has defied consensus
in the literature [42]. These parameters have the fur-
ther advantage that their definitions are independent
of the sampling scale or the regularity of the sam-
pling, unlike CRW parameters [2], and that they link

large-scale dispersal and short-term ballistic motion in
a consistent and well-defined way not possible with dif-
fusion models [9]. Furthermore, these parameters are
sufficient to predict important ecological processes like
encounter rates [9, 16].

Utility of estimation methods
The most accurate and generally applicable methods
for parameter estimation are those based on likeli-
hoods. However, the phenomenological methods (VAF
fitting and CRW matching) provide useful insights. The
VAF method highlights the importance of exploring the
autocorrelation structure of velocities (Fig. 1 [2, 6]), a
powerful diagnostic tool for high-frequency movement
data. Examples of data for which a VAF based analysis is
most relevant includes videography [14, 15, 32], hydroa-
coustic telemetry of fishes, or biologged movements of
birds, where data are available at intervals on the order
of seconds. For most remote telemetry of large animals,
sampling resolutions are substantially lower and at least
somewhat irregular. In those cases, the empirical VAF will
generally be too noisy and difficult to estimate to provide
useful insights.
The CRW matching approach underlines the fact that

the UCVM model is a continuous time analogue of the
CRW and conversion between the two is straightforward.
Although CRW matching is applicable for regular data
sampled at frequencies more or less on the order of the
characteristic time scale of movement, it can be quite a
useful tool for exploring and simulating movement pro-
cesses. For example, Laidre et al. [43] used observed CRW



Gurarie et al. Movement Ecology  (2017) 5:13 Page 13 of 18

Fig. 4 Change point analysis of a lesser kestrel’s 7 min flight in southwestern Spain (inset map). The upper panel illustrates the track of the flight, with
the colors indicating 14 identified phases starting with the dark blue (phase I, at the indicated start) and cycling twice through high contrast rainbow
colors to the final red roost (phase XIV, finish). The legend indicates whether a particular portion of the track contained a significant advective (a) or
rotational component(R), both (RA), or neither (U). The lower panels indicate the estimated values of the five RACVM parameters for each phase over
time, with the width of the bars indicating 95% confidence intervals. Note that positive and negative values for ω represent clockwise and
counterclockwise rotation, respectively, and values of 0 for ω, μx and μy indicate that a non-rotational and/or advective model was selected

parameters for polar bear movements, sampled at 4-day
intervals (i.e. regular and weakly correlated), to generate
a range of UCVM tracks for a simulation-based analy-
sis of encounter rates. Furthermore, the conversions are
useful for interpreting reported CRW parameter esti-
mates in terms of approximate speeds and time scales of
movement.
The likelihood maximization tools are, in principle and

practice, the superior methods as they provide the most
natural framework for model comparison and selection
are are robust to irregular sampling. The position likeli-
hood fully exploits the dependency between all locations
directly, without the extra step of estimating velocities.
For sparsely sampled data, this is the only way to obtain

estimates of the movement speed for a tortuous path,
itself a useful application. Similar dense likelihood matri-
ces have been applied to fit movement models where
correlated velocities are coupled with spatial centers
of attraction [13] and to model Brownian movements
with errors [44]. The CVM models are spatially non-
stationary, requiring estimation to be conditioned on the
initial state (location and estimated velocity) which are
of little intrinsic biological interest. Recent innovations
allow for the estimation of the speed and time scale
parameters without this conditioning by taking the OUF
model [a mixed spatial and velocity OU model, see [13]]
and letting the spatial time scale of relaxation go to
infinity [17, 45].
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Table 5 Table of kestrel change point analysis results (Fig. 4). The data were collected at 1 second intervals for 7 minutes. The random
r.m.s. (η) and advective speeds (μx , μy) are in m/sec

Phase Model Duration (sec) τ (sec) η μx μy ω (sec−1)

I ACVM 14.5 3.43 5.62 11.9 -11.29

II RACVM 28.5 13.01 6.25 5.15 -1.65 0.64

III RCVM 39.4 16.63 8.67 -0.16

IV RACVM 9.6 44.1 9.57 2.23 -1.81 0.59

V RACVM 32.83 23.61 9.21 2.9 -2.46 -0.43

VI UCVM 66.17 30.49 8.03

VII RCVM 19.86 9.58 7.23 -0.37

VIII RACVM 67.02 33.99 7.74 2.69 -0.94 0.56

IX RACVM 34.96 13.97 8.53 2.77 -0.66 -0.50

X RACVM 14.17 1.89 1.3 -7.02 -7.6 0.42

XI RACVM 24.4 2.43 1.87 -3.43 3.78 0.44

XII ACVM 30.1 10.9 3.42 -9.45 -7.76

XIII RACVM 24 904.71 13.67 -7.59 -5.14 0.13

XIV UCVM 14.5 1.99 3.99

The main drawback of the position likelihood method is
the computational cost of maximizing over a dense matrix
[13]. The problem is largely mitigated by the Kálmán fil-
ter developed by Johnson et al. [12]. However, for many
applications the velocity likelihood is a useful compromise
between accuracy, speed, and simplicity. The change point
analysis we performed on the bowhead whale illustrates
how the relative strengths of the two likelihood methods
can be leveraged: the sweeping search of the change points
requires that estimates be obtained thousands of times
over a single time series. This is doable within minutes on
a typical laptop computer. But because the mean intervals
in the bowhead whale data were greater than the esti-
mated time scales, the position likelihood was necessary
in the second step: to obtain accurate estimates within the
identified phases.
The fact that sparse sub-samplings of the bowhead

whale data yielded consistent estimates is a testament to
the robustness of the likelihood method. In fact, an irreg-
ular sampling of observations can provide more precise
estimates than a regular sampling. This possibly counter-
intuitive result is explained simply by the fact that points
that are closer in time providing more information about
the autocorrelation structure than points that are more
separated.
Although we placed some emphasis throughout this

study on accuracy of parameter estimates, when applied
to real data, bias in movement parameters is often of sec-
ondary importance. Heuristically, it is more important to
analyze the structure, i.e. identify the moments in time or
causes for changes in the parameter values. With that in
mind, any of the methods, including more biased ones,

should be able to accurately identify changes in properties
of movement tracks.

Interpretation and applications
The estimation of scale-independent and biologically
meaningful parameters from data is increasingly impor-
tant as movement research is increasingly driven by
large data sets. Ever more individuals are tracked, with
ever more opportunities to make comparisons across
and within populations [46]. The methods developed
here allow for robust, consistent estimation of move-
ment parameters for variable data, thereby facilitat-
ing meta-analyses. It is straightforward to obtain and
compare these estimates for any number of individ-
uals across different populations or in different sea-
sons, without major concern for differences in sampling
regimes, thereby obviating the need for interpolation or
subsampling.
There are dangers, however, to fitting and interpreting

the CVM model blindly to data of long duration. The
CVM models are Markovian in velocity, which implic-
itly exclude the possibility of long term memory effects
or structures. Most organisms have a strong diel cycling
to their behavior, alternating between periods of activ-
ity and rest or returning to dedicated nesting, bedding
or denning sites, or are spatially constrained by home
ranges or territories. None of these phenomena are cap-
tured in the CVM model, which has neither periodicity
nor spatial constraints. The estimated parameters from
a behaviorally complex track, for example the complete
bowhead whale track, summarize all the behaviors (for-
aging, transitional, diving, non-moving), as well as the
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frequency of transitions between different states (a higher
rate of change will lower the time scale of autocorrelation).
For these reasons, the CVMs are, much like the CRW,

best to consider as null models of movement most appli-
cable for the characterization of behaviorally homoge-
neous sections of movement data. They are analogous
to classical summary statistics, like means and variances,
the structure of which can be modeled and tested. We
applied the CVMmodels as fundamental behavioral units
in a change point analysis that provides multiple impor-
tant advantages over existing tools. First, the parameters
are more biologically meaningful than, e.g., the mean,
standard deviation and autocorrelation of the persistence
and turning velocities recommended in [11], the Brow-
nian diffusion parameter [22], or the step lengths of the
Bayesian partitioning (sensu [20, 23]). Second, CVM esti-
mates come with confidence intervals which help contrast
different behavioral modes and lead to broader infer-
ence. A movement counterpart to a classic t-test emerges
directly from these statistics. Third, the CVM family of
models facilitates identification of fundamentally differ-
ent modes of behaviors, including the directed swim-
ming of the whale and the looping flights of the kestrel,
whereas most previous methods assume a single funda-
mental movement model. Finally, the resulting estimates,
sets of selectedmodels, and confidence intervals, allow for
the simulation of realistic movements which can be use-
ful, for example, to simulate null distributions of animal
dispersal in space and time.
The kestrel analysis exemplifies a deep, model-based

exploratory analysis. The kestrel’s flight was highly struc-
tured, with multiple shifts not only in parameter values
but also in the fundamental movement model. This struc-
ture appeared to be well-captured by the (R/A)CVM
set of models. In conjunction with biologging devices,
such as tri-axial accelerometers, the results of the par-
titioning can be used to separate the signatures of dif-
ferent flight behaviors (flapping, soaring, gliding), which
can then be used to model the bioenergetics of bird
movement, even from 2D trajectories [47, 48]. Such fine-
scaled analysis can inform population-level understand-
ing. For example, it has been shown that some young
birds (e.g. vultures) are less efficient at thermal soar-
ing than adults [49], while individual level differences
(in, e.g., storks) in flight abilities can impact population
level processes by contributing to higher mortality during
migration [50].
It bears noting that it is difficult to quantify the accuracy,

sensitivity and robustness of the change point analysis
without a simulation or resampling-based analysis, as in
Additional file 1: Appendix G. A deeper exploration of
the theoretical properties of the change point analyses is
a potentially interesting problem to be pursued by applied
statisticians.

Future developments
Viewing the CVM models as a family of fundamental
behavioral modes allows for a wide array of potential
extensions. The output of change point analysis can be
combined with a clustering tool that pools movements
with similar parameters, informing an objective classifi-
cation of the number of fundamental movement states.
The basic model can be extended, such that its param-
eters are functions of covariates that may relate either
to the external environment (e.g. meteorological condi-
tions, intraspecific interactions) or internal states (age,
sex, etc.) of the individual. Alternatively, fundamental
movements and parameters might switch between val-
ues corresponding to specific states via a hidden Markov
model. Models can be extended hierarchically to explore
the structure of variation among individuals and among
populations.
While the overwhelming majority of animal movement

data is two-dimensional, both the whale and kestrel do
move in three dimensions, an aspect which we entirely
ignored (or lacked data on). As a rule, vertical move-
ments have rather different characteristics than move-
ments along the earth’s surface: they are much shallower
and constrained (e.g. to the surface for an air-breathing
marine organisms, or for a bird that roosts and rests). In
both of our examples the two-dimensional analysis did, in
fact, yield indirect insights into third-dimensional behav-
ior: the loopy thermal soaring of the bird occurs at higher
altitudes, and the more intensive feeding phase of the
whale is punctuated by a higher frequency of diving bouts.
That said, extending the basic correlated velocity model to
three dimensions should in principle be straightforward,
as many results presented here are valid in any spatial
dimension. For a narrow application to vertical helical
movements, see [14].
In contrast to terrestrial animals, the whale and the

kestrel are moving through media that are themselves
moving, with ocean and air currents both important com-
ponents of the overall movement. Under certain con-
ditions the bulk of the advective component might be
externally determined. Given independent information on
those currents, it would be straightforward to subtract
away those vectors and thereby isolate the component that
is determined by the animal itself.
One remaining challenge (that is generally under-

addressed in movement analysis) is the development of
diagnostic tools to assess the validity of CVMmodels. For
highly irregular data and a continuous stochastic model, it
is difficult to summarize or visualize the distributions or
to separate a deterministic term from a residual term. One
approach might be to simulate tracks using the estimated
parameters at the observed sampling regime and compare
the distribution of some derived quantities, like per-step
or total displacements.
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An additional forward-looking challenge in continuous-
time movement modeling is to provide an alternative
for the discrete step-selection function (SSF) framework
[27, 51], a powerful and widely implemented approach
for quantifying animal movement responses to environ-
mental covariates. As their name implies, step-selection
functions rely on a discrete and regularly sampled unit
of movement. Developing an analogous tool using a con-
tinuous time movement model as a fundamental, scale-
independent, unit would be a significant advance.

Conclusion
We review and unify a family of continuous time cor-
related velocity movement (CVM) models that allow for
combinations of random, advective, and rotational move-
ment with consistent and biologically meaningful param-
eterizations like time scales and speeds. We discuss the
importance of movement velocity autocovariance func-
tions and fundamental links to commonly used correlated
random walk (CRW) models and argue that they are par-
ticularly useful for fitting movement data that are highly
resolved and/or irregularly sampled. As one useful exam-
ple, fitting an unbiased CVM to a bowhead whale swim-
ming track provided a minimally biased estimate of actual
mean surface speeds, even at low sub-samplings of the
already irregular data. We argue that CVM’s are especially
suitable as fundamental, behaviorally homogeneous units,
and present an heuristic approach to applying them in
a likelihood-based behavioral change point analysis. The
resulting model fit yields detailed descriptions of complex
trajectories in terms of biologically meaningful param-
eters with accompanying confidence intervals, thereby
improving greatly on currently existing tools. When
applied to data, the analysis identified advective from
random foraging behavior in the bowhead whale track
and exact moments when a lesser kestrel switched from
loopy, advective thermal soaring to directed flights. In the
supplementary materials, we describe the mathematical
and statistical details of these models and their estima-
tion, and - importantly - provide an R package (smoove)
for the implementation of all the presented tools.We hope
this paper serves to make these models more compre-
hensible and accessible to movement ecologists, who are
constantly striving to make sense of highly structured and
often inconsistently collected data, even as sample sizes,
resolution and precision have increased with improving
technology.

Endnotes
1 The quantity wt - the integral of continuous indepen-

dent random fluctuations - is commonly referred to as
a Wiener process or Brownian motion, while its derivate
wt/dt is white noise [31].
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