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Abstract
The total least squares (TLS) method is a successful approach for linear
problems if both the right-hand side and the operator are contaminated by
some noise. For ill-posed problems, a regularisation strategy has to be con-
sidered to stabilise the computed solution. Recently a double regularised TLS
method was proposed within an infinite dimensional setup and it reconstructs
both function and operator, reflected on the bilinear forms Our main focuses
are on the design and the implementation of an algorithm with particular
emphasis on alternating minimisation strategy, for solving not only the double
regularised TLS problem, but a vast class of optimisation problems: on the
minimisation of a bilinear functional of two variables.

Keywords: ill-posed problems, noisy operator, noisy right-hand side,
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1. Introduction

In [2], the authors described a new two-parameter regularisation scheme for solving an ill-
posed operator equation. The task consists of the inversion of a linear operator  →A :0

defined between Hilbert spaces

=A f g . (1)0 0

In contrast to standard inverse problems, where the task is to solve (1) from given noisy
data, a more realistic setup is considered where both data and operator are not known exactly.
For the reconstruction, a cost functional with two penalisation terms based on the TLS (total
least squares) technique is used.

This approach presented in [2] focuses on linear operators that can be characterised by a
function, as it is, e.g. the case for linear integral operators, where the kernel function deter-
mines the behaviour of the operator. Moreover, it is assumed that the noise in the operator is
due to an incorrect characterising function. A penalty term is not only used to stabilise the
reconstruction of the unknown solution, as it is the case in [10–12], but also to stabilise the
unknown operator. As a drawback, the regularisation scheme becomes nonlinear even for
linear equations. However, the potential advantage is that not only the unknown solution is
reconstructed, but also a suitable characterising function and thus the governing operator
describing the underlying data. Additionally, convergence rates for the reconstruction of both
solution and operator have been derived.

The double regularised total least squares (dbl-RTLS) approach allow us to treat the
problem in the framework of Tikhonov regularisation rather than as a constraint minimisation
problem. More precisely, the regularised solution is obtained by minimising a nonlinear,
nonconvex and possibly non-differentiable functional over two variables, which is compu-
tationally not always straightforward. Thus the goal of this paper is the development of an
efficient and convergent numerical scheme for the minimisation of the Tikhonov-type
functional for the dbl-RTLS approach.

The rest of paper is organised as follows: in section 2 we formulate the underlying
problem and give a short summary of the dbl-RTLS method. Section 3 is dedicated to the
development of an algorithm based on an alternating minimisation strategy, as well as its
convergence properties. In section 4, numerical results for the proposed algorithm are pro-
vided and the efficiency of the method is discussed. For the convenience of the reader in
appendix we display important concepts and fundamental results used throughout this article.

2. Problem formulation and the dbl-RTLS method

As mentioned above, we aim at the inversion of the linear operator equation (1) from noisy
data δg and an incorrect operator ϵA . Additionally we assume that the operators

 →ϵA A, :0 , where  and  are Hilbert spaces, can be characterised by functions
∈ϵk k,0 ,  also a Hilbert space. To be more specific, we consider operators

 ⟶
⟼

A

v B k v

:
( , ),

k

i.e. ≔A v B k v( , )k , where B is a bilinear operator

  × →B:
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fulfilling, for some >C 0, the inequality

  ∥ ∥ ⩽ ∥ ∥ ∥ ∥B k f C k f( , ) . (2)

From (2) follows immediately

  ∥ ∥ ⩽ ∥ ∥→B k C k( , · ) . (3)

Associated to the bilinear operator B, we also define the linear operator

 ⟶
⟼

C

u B u f

:

( , ),
f

i.e. ≔C u B u f( , )f .
From now on, let us identify A0 with Ak0 and ϵA with ϵAk . From (3) we deduce

immediately

∥ − ∥ ⩽ ∥ − ∥ϵ ϵA A C k k , (4)0 0

i.e. the operator error norm is controlled by the error norm of the characterising functions.
Now we can formulate our problem as follows:

=A f g aSolve (5 )0 0

δ∥ − ∥ ⩽δ δg g g bfrom noisy data with (5 )0

ϵ∥ − ∥ ⩽ϵ ϵk k k cand noisy function with . (5 )0

Please note that the problem with explicitly known k0 (or the operator A0) is often ill-posed
and needs regularisation for a stable inversion. Therefore we will also propose a regularising
scheme for the problem (5a)–(5c).

Due to our assumptions on the structure of the operator A0, the inverse problem of
identifying the function f true from noisy measurements δg and an inexact operator ϵA can now
be rewritten as the task of solving the inverse problem find f s.t.

=( )B k f g, (6)0 0

from noisy measurements ϵ δk g( , ) fulfilling

 δ− ⩽δg g a, (7 )0

and

 ϵ− ⩽ϵk k b. (7 )0

In most applications, the ‘inversion’ of B will be ill-posed (e.g. if B is defined via a Fredholm
integral operator), and a regularisation strategy is needed for a stable solution of the
problem (6).

For the solution of (6) from given data ϵ δk g( , ) fulfilling (7), we use the dbl-RTLS
method proposed in [2], where the approximations to the solutions are computed as

≔ +α β
δ ε δ ε

α βJ k f T k f R k f aarg min ( , )
1

2
( , ) ( , ), (8 )

k f( , )
,
, ,

,

where

γ= − + −δ ε
δ ϵT k f B k f g k k b( , ) ( , ) (8 ), 2 2
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and

α β= ∥ ∥ +α βR k f Lf k c( , )
2

( ). (8 ),
2

Here, α and β are the regularisation parameters which have to be chosen properly, γ is a
scaling parameter (arbitrary but fixed), L is a bounded linear and continuously invertible
operator and  ⊂ → +∞X: [0, ] is a proper, convex and weakly lower semi-continuous
functional. The functional α β

δ εJ ,
, is composed as the sum of two terms: one which measures the

discrepancy of data and operator, and one which promotes stability. The functional δ εT , is a
data-fidelity term based on the TLS technique, whereas the functional α βR , acts as a penalty
term which stabilises the inversion with respect to the pair (k, f). As a consequence, we have
two regularisation parameters, which also occurs in double regularisation, see, e.g. [17].

The domain of the functional  ∩ × ⟶α β
δ εJ X: ( ),
, can be extended over  × by

setting  =+∞k( ) whenever ∈ ⧹k X . Then  is proper, convex and weak lower semi-
continuous functional in  .

It has been shown that the sequence of the pair of solutions k f( , )n n of (8) converges to a
minimum-norm solution when δ ϵ →( , ) (0, 0), i.e. it is a regularisation method (see [2, the-
orem 4.5]). However, the task of finding minimisers of (8) has not been addressed properly,
which will be done in the following sections.

3. An algorithm for the minimisation of the dbl-RTLS functional

In this section, we will formulate the first-order necessary condition for critical points of the
functional α β

δ εJ ,
, , which requires in particular the derivative of the bilinear operator B. The core

of this section is to design an algorithm to minimise α β
δ εJ ,
, , which is not a trivial task, as the

functional is most likely nonconvex and nonlinear.

3.1. Optimality condition

It is well known that the study of local behaviour of nonsmooth functions can be achieved by
the concept of subdifferentiality which replaces the classical derivative at non-differentiable
points.

The first-order necessary condition based on subdifferentiability is stated as the fol-
lowing: if k f( ¯, ¯ ) minimises the functional α β

δ εJ ,
, then

∈ ∂ α β
δ ε ( )J k f(0, 0) ¯, ¯ . (9),

,

We denote the set of all subderivatives of the functional α β
δ εJ ,
, at (k, f) by ∂ α β

δ εJ k f( , ),
, and we

name it the subdifferential of α β
δ εJ ,
, at (k, f). For a quick revision on subdifferentiability we refer

to the apppendix.
The first result gives us the derivative of a bilinear operator B.

Lemma 3.1. Let B be a bilinear operator and assume that (2) holds. Then the Fréchet
derivative of B at  ∈ ×k f( , ) is given by

′ = +
= +

B k f u v B k v B u f
A v C u

( , )( , ) ( , ) ( , )
.k f

Moreover, the derivative is Lipschitz continuous with constant C2 .
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Proof. We have to show

+ + = + ′ + ∥ ∥B k u f v B k f B k f u v o u v( , ) ( , ) ( , )( , ) ( ( , ) ).

Since B is bilinear, we have

+ + − = + +B k u f v B k f B k v B u f B u v( , ) ( , ) ( , ) ( , ) ( , ),

and we observe ∥ ∥ = ∥ ∥B u v o u v( , ) ( ( , ) ): As B fulfills (2), we have

∥ ∥
∥ ∥

⩽ ∥ ∥∥ ∥

∥ ∥ + ∥ ∥
⩽ ∥ ∥∥ ∥

( )
B u v

u v

C u v

u v

C
u v

( , )

( , ) 2
( ) ,

2 2 1 2
1 2

which converges to zero as →u v( , ) 0.
We further observe

′ − ′ = + − +

= − + −

( )( ) ( ) ( )
( ) ( )

B k f u v B k f u v B k v B u f B k v B u f

B u f f B k k v

( , )( , ) ˜, ˜ ( , ) ( , ) ( , ) ˜, , ˜

, ˜ ˜,

which implies

′ − ′ = − + −

⩽ − + −

⩽ ∥ ∥ − + − ∥ ∥

( ) ( ) ( )
( ) ( )

B k f u v B k f u v B u f f B k k v

B u f f B k k v

C u f f C k k v

( , )( , ) ˜, ˜ ( , ) , ˜ ˜,

, ˜ ˜,

˜ ˜

Using the inequality + ⩽ +a b a b( ) 2( )2 2 2 we get

′ − ′ ⩽ ∥ ∥ − + − ∥ ∥

⩽ ∥ ∥ + ∥ ∥ − + −

= ∥ ∥ − −

( )
( )( )

( )

( )

B k f u v B k f u v C u f f k k v

C u v k k f f

C u v k k f f

( , )( , ) ˜, ˜ ( , ) 2 ˜ ˜

2 ˜ ˜

2 ( , ) ˜, ˜

2 2 2 2 2 2

2 2 2 2 2

2 2 2

and thus

′ − ′ = ′ − ′

⩽ − −
∥ ∥=

( ) ( )

( )

B k f B k f B k f u v B k f u v

C k k f f

( , ) ˜, ˜ sup ( , )( , ) ˜, ˜ ( , )

2 ˜, ˜ .

u v( , ) 1

□

Note that the adjoint operator ′B k f( ( , ))* of the Frechét derivative ′B k f( , ) exists and is a
bounded linear operator whenever both  and  × are Hilbert spaces.

In order to analyse the optimality condition (9) we shall compute the subdifferential of a
functional over two variables. As pointed out in [6, proposition 2.3.15] for a general function
h the set-valued mapping  ∂ ⇉h: * the set ∂h x x( , )1 2 and the product set
∂ × ∂h x x h x x( , ) ( , )1 1 2 2 1 2 are not necessarily contained in each other. Here, ∂ hi denotes the
partial subgradient with respect to xi for =i 1, 2. However this is not the case for the
functional we are interested in as will be shown in the following theorem.
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Theorem 3.2. Let  × →J: be a functional with the structure

φ ψ= + +J u v u Q u v v( , ) ( ) ( , ) ( ), (10)

where Q is a (nonlinear) differentiable term and φ →: , ψ →: are proper convex
functions, φ∈u dom and ψ∈v dom . Then

φ ψ∂ = ∂ + ′ × ∂ + ′
= ∂ × ∂

{ } { }
{ } { }

J u v u Q u v v Q u v

J u v J u v

( , ) ( ) ( , ) ( ) ( , )

( , ) ( , ) .
u v

u v

Proof. In general the subdifferential of a sum of functions does not equal the sum of its
subdifferentials. However, if Q is differentiable, φ and ψ are convex some inclusions and
even equalities hold true (combining [6, proposition 2.3.3; corollary 3; proposition 2.3.6]), as
for instance,

φ ψ∂ = ∂ + + ∂J u v u v Q u v( , ) ( ( ) ( )) ( , ).

Since Q is differentiable, calling the previous results, the (partial) subderivative is unique
[6], proposition 2.3.15] and therefore

∂ = ∂ × ∂
= ′ ′( )

Q u v Q u v Q u v

Q u v Q u v

( , ) ( , ) ( , )

( , ), ( , ) .
u v

u v

Note that the subderivative of the sum of two separable convex functionals satisfies

φ ψ φ ψ∂ + = ∂ ∂u v u v( ( ) ( )) ( ( ), ( ))

see [18, corollary 2.4.5].
Altogether, we can compute the subderivative as follows

φ ψ
φ ψ

∂ = ∂ ∂ + ′ ′

= ∂ + ′ × ∂ + ′
( )

{ } { }
J u v u v Q u v Q u v

u Q u v v Q u v

( , ) ( ( ), ( )) ( , ), ( , )

( ) ( , ) ( ) ( , ) . (11)

u v

u u v v

The last implication of this theorem,

∂ = ∂ × ∂{ } { }J u v J u v J u v( , ) ( , ) ( , )u v

follows straightforward by the definition of partial subderivative and (11). □

Please note that the above proof holds for all definitions of subdifferentials introduced in
the appendix, as for convex functionals all the definitions are equivalent, and for differenti-
able (possibly nonlinear) terms the subdifferential is a singleton and the subderivative equals
the derivative. Based on theorem 3.2 we can now calculate the derivative of the functional
which is the gist for building up the upcoming algorithm; please give heed to the structure of
(10) and the proposed functional α β

δ εJ ,
, :

Corollary 3.3. Let α β
δ εJ ,
, the functional defined in (8), then

γ βζ α∂ = − + − + × − +α β
δ ε

δ ϵ δ{ }{ }( ) ( )( )J k f C C k g k k A A f g L Lf( , ) *f f k k,
, * *

where ζ ∈ ∂ k( ).
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Proof. The result follows straightforward from lemma 3.1 and theorem 3.2. Observe that the
sum γ βζ− + − +δ ϵC C k g k k( ) ( )f f

* is well-defined in the Hilbert space  , since the
subderivative ζ∂ k( ) is also an element of  . □

Up to now, we did not specify the functional , it is only required to be convex and
lower semi-continuous. We are particularly interested in, e.g. the Lp norm or the weighted ℓp
norm, denoted by  = ∥ ∥k k( ) w p, . Its subdifferential is given in section 4. An easy way to
compute the subderivatives of functionals  with a specific structure is given by the fol-
lowing lemma.

Lemma 3.4. [(3, lemma 4.4)] Let  Ω μ= L d( , )2 where Ω is a σ-finite measure space. Let
  → −∞ +∞: ( , ] be defined by


⎧
⎨⎪
⎩⎪

∫ μ
=

∞
Ωu

h u d
( )

( ) if the integral is finite

else,
(12)

where  →h: is a convex function. Then ξ ∈ is an element of ∂ u( ) if and only if
ξ ∈ ∂x h u x( ) ( ( )) for almost every Ω∈x (with the identification  = 2).

3.2. An alternating minimisation algorithm

Coordinate descent methods are based on the idea that the minimisation of a multivariable
function can be achieved by minimising it along one direction at a time. It is a simple and
surprisingly efficient technique. The coordinates can be chosen arbitrarily with any permu-
tation, but one can also replace them by block coordinates (for more details see [16] and
references therein). This method is closely related to coordinate gradient descent (CGD),
Gauss–Seidel and SOR methods, which was studied previously by several authors and
described in various optimisation books, e.g. [1, 14]. In the unconstrained setting the method
is called alternating minimisation (AM) when the variables are split into two blocks.

The computation of a solution of dbl-RTLS is not straightforward, as determining the
minimum of the functional (8) with respect to both parameters is a nonlinear and nonconvex
problem over two variables. Nevertheless we shall overcome this problem by applying some
coordinate descent techniques.

In the following we shall denote the dbl-RTLS functional by J instead of α β
δ εJ ,
, , as the

parameters of the functionals are kept fix for the minimisation process.
In the AM algorithm, the functional is minimised iteratively with two alternating mini-

misation steps. Each step minimises the problem over one variable while keeping the second
variable fixed:

∈+

∈
( )f J k f k aarg min , (13 )n

f V

n1

∈+

∈

+( )k J k f f barg min , . (13 )n

k U

n1 1

The notation ∣J k f u( , ) means we minimise the function J with u fixed, where u can be
either k or f. Thus we minimise in each cycle the functionals

α= − + ∥ ∥δ( )J k f k A f g Lf, ,n
k

2 2
n
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and

γ β= − + − +δ ϵ
+ +( )J k f f C k g k k k, ( ).n

f
1 2 2

n 1

We highlight some important facts:

1. For each subproblem, the considered operators are linear, and the functional is convex.
Thus a local minimum is global.

2. The first step is a standard quadratic minimisation problem.

First we will show a monotonicity result for the sequence k f{( , )}n n
n of iterates:

Proposition 3.5. The functional J is non-increasing on the AM iterates,

⩽ ⩽+ + +( ) ( ) ( )J k f J k f J k f, , , .n n n n n n1 1 1

Proof. The iterates are defined as

∈+

∈
( )f J k f karg min ,n

f V

n1

and

∈+

∈

+( )k J k f farg min , .n

k U

n1 1

Therefore,

⩽ ∀ ∈+( ) ( )J k f J k f f V, ,n n n1

and

⩽ ∀ ∈+ + +( ) ( )J k f J k f k U, , ,n n n1 1 1

and in particular, setting =f f n and =k kn,

⩽

⩽

+

+ + +

( )
( ) ( )

( )J k f J k f

J k f J k f

, ,

, , ,

n n n n

n n n n

1

1 1 1

and

⩽ ⩽+ + +( ) ( ) ( )J k f J k f J k f, , , .n n n n n n1 1 1

□

The existence of a minimiser of the functional J has already been proven in [2, theorem
4.2]. The goal of the following results is to prove that the sequence generated by the alter-
nating minimisation algorithm has at least a subsequence which converges towards to a
critical point of the functional. Throughout this section, let us make the following
assumptions.
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Assumption A.

(A1) B is strongly continuous, i.e. if ⇀k f k f( , ) ( ¯, ¯ )n n then →B k f B k f( , ) ( ¯, ¯ )n n .
(A2) The adjoint of the Fréchet derivative B′ of B is strongly continuous, i.e. if

⇀k f k f( , ) ( ¯, ¯ )n n then ′ → ′B k f z B k f z( , )* ( ¯, ¯ )*n n , ∀ ∈ ′Dz B( )

Additionally to the standard norm for the pair  ∈ ×k f( , )

∥ ∥ = ∥ ∥ + ∥ ∥k f k f( , ) 2 2 2

we define the weighted norm for given γ > 0 as

γ∥ ∥ = ∥ ∥ + ∥ ∥γk f k f( , ) .2 2 2

Proposition 3.6. For given regularisation parameters α<0 and β , the sequence
+ +

+k f{( , )}n n
n

1 1
1 of iterates generated by the AM algorithm has at least a weakly

convergent subsequence ⇀+ +k f k f( , ) ( ¯, ¯ )n n1 1j j , and its limit fulfils

⩽ ⩽( ) ( ) ( ) ( )J k f J k f J k f J k f¯, ¯ ¯, and ¯, ¯ , ¯ (14)

for all ∈f and for all ∈k .

Proof. As the iterates of the AM algorithm can be characterised as the minimisers of a
reduced dbl-RTLS functional, see (13a), (13b) we observe





α γ β

γ β

+ − + ⩽

=

⩽

= + − +

ϵ

δ ϵ

+ +( )( )
( )

( )

( )

Lf k k k J k f

J k f k

J k

g k k k

,

min ,

, 0

n n n n n

f

n

n

n n

1 2 2 1

2 2

and

α γ

γ α

+ − ⩽

=

⩽

= + +

ϵ

δ ϵ

+ + + +

+

+

+

( )
( )

( )

Lf k k J k f

J k f f

J f

g k Lf

,

min ,

0,

.

n n n n

k

n

n

n

1 2 1 2 1 1

1

1

2 2 1 2

Keeping in mind that the operator L is continuously invertible, the first inequality gives

α
⩽ δ

+

−
f

L
g

1
.n 1 2

1 2

2

Using the second estimate above and the standard inequality
∥ + ∥ ⩽ ∥ ∥ + ∥ ∥a b a b2( )2 2 2 we have
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γ γ⩽ +δ ϵ
+k g k2 4 .n 1 2 2 2

Thus, the sequence + +
+k f{( , )}n n

n
1 1

1 is bounded

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

γ

γ
α

α
γ

= +

⩽ + +

= + +

γ

δ ϵ δ

δ ϵ

+ + + +

−

( )k f k f

g k
c

g

L
g k

,

2 4
1

2
1

4

n n n n1 1
2

1 2 1 2

2 2

2

2

1 2

2 2

and by Alaoglu’s theorem, it has a weakly convergent subsequence
⇀+ +

+k f k f{( , )} ( ¯, ¯ )n n
n

1 1
1

j j
j .

Since +f n 1j minimises the functional J k f( , )n j for a fixed knj , it holds

⩽ ∀ ∈+( ) ( )J k f J k f f, ,n n n1j j j

and thus

α α− + ⩽ − + ∥ ∥δ δ
+ +( ) ( )B k f g Lf B k f g Lf, , .n n n n1

2
1 2 2 2j j j j

Using the fact that J is w-lsc and the strong continuity of B, we observe

⎧⎨⎩
⎫⎬⎭

⎧⎨⎩
⎫⎬⎭

α

α

α

α

α

α

α

− +

⩽ − +

⩽ − +

⩽ − + ∥ ∥

⩽ − + ∥ ∥

= − + ∥ ∥

= − + ∥ ∥

δ

δ

δ

δ

δ

δ

δ

→∞
+ + +

→∞
+ +

→∞

→∞

→∞

{ }

( )

( )

( )

( )

( )

( )

( )

B k f g Lf

B k f g Lf

B k f g Lf

B k f g Lf

B k f g Lf

B k f g Lf

B k f g Lf

¯, ¯ ¯

lim inf ,

lim inf ,

lim inf ,

lim sup ,

lim ,

¯, (15)

n

n n n

n

n n n

n

n

n

n

n

n

A

2 2

1 1
2

1 2

1
2

1 2

2 2

2 2

2 2

( 1) 2 2

j

j j j

j

j j j

j

j

j

j

j

j

Therefore,

⩽ ∀ ∈( ) ( )J k f J k f f¯, ¯ ¯, .

The second inequality in (14) is proven similarly: since +kn 1j minimises the functional
+J k f( , )n 1j for fixed +f n 1j it is

⩽ ∀ ∈+ + +( ) ( )J k f J k f k, , ,n n n1 1 1j j j
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which is equivalent to




γ β

γ β

− + − +

⩽ − + − +

δ ϵ

δ ϵ

+ + + +

+

( ) ( )
( )

B k f g k k k

B k f g k k k

,

, ( ).

n n n n

n

1 1
2

1 2 1

1
2 2

j j j j

j

Again, we observe










⎧⎨⎩
⎫⎬⎭

γ β

γ β

γ β

γ β

γ β

− + − +

⩽ − + − +

⩽ − + − +

= − + − +

= − + − +

δ ϵ

δ ϵ

δ ϵ

δ ϵ

δ ϵ

→∞
+ + + +

→∞
+

→∞
+

( ) ( )

( )

( )

( ) ( )

( )

B k f g k k k

B k f g k k k

B k f g k k k

B k f g k k k

B k f g k k k

¯, ¯ ¯ ¯

lim inf ,

lim inf , ( )

lim , ( )

, ¯ ( ), (16)

n

n n n n

n

n

n

n

2 2

1 1
2

1 2 1

1
2 2

1
2 2

2 2

j

j j j j

j

j

j

j

and thus

⩽ ∀ ∈( ) ( )J k f J k f k¯, ¯ , ¯ , .

□

In summary, the AM algorithm yields a bounded sequence + +k f{( , )}n n
n

1 1 and hence a
weakly convergent subsequence. The next two results extend the convergence on the strong
topology, for both +k{ }n

n
1j

j and
+f{ }n

n
1j

j
, respectively.

Proposition 3.7. Let + +k f{( , )}n n
n

1 1j j
j
be a weakly convergent (sub-) sequence generated

by the AM algorithm (13), where ⇀+k k̄n 1j and ⇀+f f̄n 1j . Then there exists a subsequence
+k{ }n

n
1jm

jm
of +k{ }n

n
1j

j such that →+k k̄n 1jm and ∈ ∂ J k f0 ( ¯, ¯ )k .

Proof. Inequalities (16) in the proposition 3.6ʼs proof reads





⎧⎨⎩
⎫⎬⎭γ β

γ β

− + − +

= − + − +

δ ϵ

δ ϵ

→∞
+ + + +( ) ( )

( )

B k f g k k k

B k f g k k k

lim inf ,

, ¯ ( ).

n

n n n n1 1
2

1 2 1

2 2

j

j j j j

for any k. Setting =k k̄ yields in particular





⎧⎨⎩
⎫⎬⎭γ β

γ β

− + − +

= − + − +

δ ϵ

δ ϵ

→∞
+ + + +( ) ( )

( ) ( )

B k f g k k k

B k f g k k k

lim inf ,

¯, ¯ ¯ ¯ .

n

n n n n1 1
2

1 2 1

2 2

j

j j j j

As the limes inferior exists, we can in particular extract a subsequence + +k f( , )n n
n

1 1jm jm
jm
of

+ +k f( , )n n
n

1 1j j
j
such that
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



⎧⎨⎩
⎫⎬⎭γ β

γ β

− + − +

= − + − +

δ ϵ

δ ϵ

→∞
+ + + +( ) ( )

( ) ( )

B k f g k k k

B k f g k k k

lim ,

¯, ¯ ¯ ¯ . (17)

n

n n n n1 1
2

1 2 1

2 2

jm

jm jm jm jm

For the sake of notation simplicity we denote for the remainder of the proof the index +n 1jm

by +m 1. By (A1) we observe

− = −δ δ→∞
+ +( ) ( )B k f g B k f glim , ¯, ¯

m

m m A1 1
2 ( 1) 2

As all summands in (17) are positive, we have thus and

 


γ β γ β

γ β

− + = − +

= − +

ϵ ϵ

ϵ

→∞
+ +

→∞
+

→∞
+{ }( ) ( )

( )

k k k k k k

k k k

lim lim lim

¯ ¯ . (18)

m

m m

m

m

m

m1 2 1 1 2 1

2

Now let us show that +km 1 converges strongly. As the sequence converges weakly, it is
enough to show

=
→∞

+k klim ¯
m

m 1 2 2

Equivalently, we can also show − = −ϵ ϵ→∞
+k k k klim ¯m

m 1 2 2
. Again due to the weak

convergence of +km 1 it is sufficient to prove

− ⩽ −ϵ ϵ
→∞

+k k k klim sup ¯ .
m

m 1 2 2

Let us assume that

μ ≔ − > −ϵ ϵ
→∞

+k k k klim sup ¯ .
m

m 1 2 2

holds. Rewriting (18) yields

 




⎛
⎝⎜

⎞
⎠⎟β γ β

γ μ β

β

= − − − +

= − − +

<

ϵ ϵ

ϵ

→∞

+

→∞

+

( )
{ }( ) ( )

( )
( )

k k k k k k

k k k

k

lim sup ¯ lim sup ¯

¯ ¯

¯ . (19)

m

m

m

m1 2 1 2

2

However, since  is w-lsc, we observe

  ⩽ ⩽
→∞

+

→∞

+( ) ( )( )k k k¯ lim inf lim sup ,
m

m

m

m1 1

which is in contradiction to (19). Thus we have shown the convergence of +km 1 to k̄ in norm.
The last part of this proof focus on the convergence of the partial subdifferential of J with

respect to k.
Since +km 1 solves the sub-minimisation problem (13b), the optimality condition reads as

∈ ∂ + +J k f0 ( , )k
m m1 1 , or equivalently, there exists an element

ξ
β

γ≔ − − + −δ ϵ
+ + +

+ +( )( ) ( )C C k g k k
1

(20)k
m

f f
m m1 * 1 1

m m1 1

such that  ξ ∈ ∂ ⊂+ +( )kk
m m1 1 ; see corollary 3.3.
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Now, on the limit, ∈ ∂ J k f0 ( ¯, ¯ )k , means that

ξ
β

γ ξ≔ − − + − ∈ ∂δ ϵ( )( ) ( ) ( )C C k g k k k¯ 1 ¯ ¯ and ¯ ¯
f f
*̄ ¯

holds, i.e. the right hand-side of (20) converges and the limit of the sequence of
subderivatives belongs also to the subdifferential set ∂ ( )k̄ .

The first part of the statement above can be seen by using condition (A2). Whereas the
second part is obtained by the assumption that  is a convex functional, because in this case
the Fenchel subdifferential coincides with the limiting subdifferential, which is a strong-
weakly closed mapping (see appendix).

The strong convergence for the second variable is obtained as follows.

Proposition 3.8. Let m{ } be a subsequence of  such that the (sub-) sequence
+ +k f{( , )}m m

m
1 1 generated by AM algorithm (13) satisfies →+k k̄m 1 and ⇀+f f̄m 1 . Then

there is a subsequence of +f{ }m
m

1 such that →+f f̄m 1j and ∈ ∂ J k f0 ( ¯, ¯ )f .

Proof. Similarly as the previous theorem, by setting =f f̄ at (15) in the proposition 3.6ʼs
proof we obtain

⎧⎨⎩
⎫⎬⎭α

α

− +

= − +

δ

δ

→∞
+ + +( )

( )

B k f g Lf

B k f g Lf

lim inf ,

¯, ¯ ¯ .

m

m m m1 1
2

1 2

2 2

As the limes inferior exists, we can in particular extract a subsequence + +k f( , )m m
m

1 1j j
j
of

+ +k f( , )m m
m

1 1 such that

⎧⎨⎩
⎫⎬⎭α

α

− +

= − +

δ

δ

→∞
+ + +( )

( )

B k f g Lf

B k f g Lf

lim ,

¯, ¯ ¯ .

m

m m m1 1
2

1 2

2 2

j

j j j

Since both summands in the limit above are positive and due to (A1), we conclude that

=
→∞

+Lf Lflim ¯ .
m

m 1 2 2

j

j

Moreover, as L is a bounded and continuously invertible operator we have

=
→∞

+f flim ¯ ,
m

m 1 2 2

j

j

which in combination with the weak convergence of the subsequence gives its strong
convergence →+f f̄m 1j .

The second half of this proof refers to the convergence of the partial subdifferential of J
with respect to f and its limit.

Since +f m 1 solves the sub-minimisation problem (13a), the optimality condition reads as
∈ ∂ +J k f0 ( , )f

m m 1 . However we are interested on the partial subderivate at the pair
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+ +k f( , )m m1 1j j . Namely, with help of corollary 3.3 the subderivative (which is a unique
element) ξ ∈ ∂+ + +J k f( , )f

m
f

m m1 1 1j j j is computed3 as

ξ α≔ − +δ
+ + +

+ +( )A A f g L Lf* ,f
m

k k
m m1 * 1 1

m m1 1

which may not be necessarily null for each cycle of the AM algorithm (13), otherwise the
stoping criteria would be satisfied and nothing would be left to be proven. Therefore we shall
prove that it converges towards zero.

So far we have strong convergence of both sequences +{ }km
m

1 and +{ }f m
m

1 .

Additionally, the assumption A implies that both linear operators Ak and Ak
* are also strongly

continuous, therefore

ξ α

α

= − +

= − +

δ

δ

→∞
+

→∞
+ +

+ +{ }( )
( )

A A f g L Lf

A A f g L Lf

lim lim *

¯ * ¯ . (21)

m
f
m

m k k
m m

k k

1 * 1 1

¯
*

¯

m m1 1

Our goal is to show that the limit given in (21) is zero. Let’s suppose by contradiction
that ∉ ∂ J k f0 ( ¯, ¯ )f . Since this set is singleton we conclude that

α− + ≠δ( )A A f g L Lf¯ * ¯ 0.k k¯
*

¯

This means that f̄ does not fulfil the normal equation associated to the standard Tikhonov
problem

α− + ∥ ∥δA f g Lfminimise ,
f

k̄
2 2

which is a necessary condition to be a minimiser candidate to the underlying functional.
Therefore the functional J k( ¯, · ) for a given fixed k̄ does not attain its minimum value at

f̄ and there is at least one element f such that <J k f J k f( ¯, ) ( ¯, ¯ ).
Moreover this functional is convex and it has a global solution, here denoted by f̃ . By

definition

⩽( ) ( )J k f J k f¯, ˜ ¯,

for all ∈f V .
In particular, since f̄ is not a minimiser for J k( ¯, · ), the inequality above is strict,

<( ) ( )J k f J k f¯, ˜ ¯, ¯ . (22)

On the other hand, from propostion 3.6 it also holds

⩽( ) ( )J k f J k f¯, ¯ ¯,

for all ∈f V . Setting ≔f f̃ in this inequality we get

⩽ ( )( )J k f J k f¯, ¯ ¯, ˜ ,

which leads to a contradiction to (22).
Therefore for f̄ the optimality condition holds true, i.e. in the limit the source condition is

fulfilled and the limit of the partial subderivative sequence is zero, i.e. ∈ ∂ J k f0 ( ¯, ¯ )f , which
completes the proof. □

3 For sake of notation we continue to denote the subsequence’s indices by +m 1 instead of +m 1j .
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Remark 3.9. One alternative proof would be assuming that the sequence +k{ }m
m

1 fulfils

− →+k k 0. (23)m m1

More specifically, we have

α− + =δ
+ +( )A A f g L Lf* 0k k

m m* 1 1
m m

from the optimality condition, but we would like to show

α− + =δ→∞
+ +

+ +{ }( )A A f g L Lflim * 0.
m k k

m m* 1 1
m m1 1

Subtracting the latter expression from the first one, we get

− + − δ
+

+ + +( ) ( )A A A A f A A g .k k k k
m

k k
* * 1 * *

m m m m m m1 1 1

Note that by assuming the condition (23) the expression above converges to zero and the
proof would be complete. Nevertheless we cannot guarantee that subsequent elements of the
original sequence will be selected for the subsequence. As an alternative one can verify
numerically if the sequence provided from the AM algorithm satisfies this assumption.
Moreover, if we restrict the problem to the simple case that the characterising function is
known, then the assumption (23) is trivial, the problem becomes the standard Tikhonov
regularisation and the theory is carried on.

The forthcoming and most substantial result within this section shows that the limit k f( ¯, ¯ )
of the sequence generated by the AM algorithm is a critical point (pair) of the functional J.

Theorem 3.10 (Main result). Let m{ } an index set of  such that the sequence generated by
AM algorithm →+ +k f k f{( , )} ( ¯, ¯ )m m

m
1 1 and ξ ξ ⇀+ +( , ) (0, 0)k

m
f
m1 1 . Then there is

subsequence converging towards to a critical point of J, i.e.

∈ ∂ ( )J k f(0, 0) ¯, ¯ .

Proof. The proposition 3.7 guarantees that →+k k̄m 1 and ξ ∈ ∂ ++ k( )k
m 1m 1 (or

equivalently, ∈ ∂ + +J k f0 ( , )k
m m1 1 ) such that ∈ ∂ J k f0 ( ¯, ¯ )k . Likewise, proposition 3.8

guarantees that the sequence →+f f̄m 1 and ξ ∈ ∂ + ++ J k f( , )f
m m1 1m 1 such that ∈ ∂ J k f0 ( ¯, ¯ )f .

Combining this with the strong-weakly closedness property of the subderivative (see
appendix) and theorem 3.2 we have

∈ ∂ = ∂ × ∂( ) ( ) ( )J k f J k f J k f(0, 0) ¯, ¯ ¯, ¯ ¯, ¯
k f

on the limit. □

4. Numerical experiments

In the previous sections we proposed an algorithm to minimise the functional J over two
variables. Here we want to discuss the practical realisation of the algorithm, which has been
implemented in MATLAB.
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For our test computations we choose  to be the weighted lp norm of the coefficients of
the characterising function k with respect to an orthonormal basis ϕλ λ{ } of  , so

∑∥ ∥ ≔
λ

λ λk w k , (24)w p
p p

,

where ϕ= ∣ ∣λ λk k , . For all possible choices of p it is well known that the choice p = 1
promotes sparsity [8], in the sense that the minimiser of the related Tikhonov functional has
only few nonzero coefficients with respect to the underlying bases. We are particularly
interested in wavelets bases, as many signals (1D) or images (2D) exhibit piecewise smooth
behaviour punctuated by transients.

One cycle of the alternating minimisation problem (13) consists of two steps, where each
step consists of the minimisation of a linear and convex functional. Firstly, solving (13a) we
fix k n and find the solution +f n 1 through, e.g. a conjugate gradient method. Secondly, solving
(13b) we fix +f n 1 from the previous step and solve the shrinkage minimisation problem
described on [8] and get +kn 1.

We test the performance of our algorithm for a 2D convolution problem

∗ =f k g .true
0 0

More precisely the image f true is represented numerically as a matrix of size ×256 256,
using the command imread to read the original JPEG image4 file composed by three levels
of grey. The blurring kernel k0 is described by a Gaussian function

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟= −

− + −
k x y a

x x y y

c
( , ) exp

( ) ( )

2
0

0
2

0
2

2

evaluated in the mesh − × −π π π π[ , ] [ , ]
2 2 2 2

, where a is the amplitude constant, ∈c and x0
and y0 define the centre, which in our case is located in the upper-left corner. Finally the
convolution operator is evaluated using the fast Fourier transform in 2D and it creates a
shifted and blurred image as seen in the figure 1.

Numerical experiments are performed from given measurements in order to reconstruct
both the function and the kernel. An example of the initial noisy data and noisy kernel is
illustrated on figure 2, where we added 8% relative white noise.

The figure 3 illustrates the significant improvement from the initial given noisy data (see
figure 2 (right) with 8% relative noise, =SNR 4.199) compared to the one obtained from the
dbl-RTLS solution. For comparison, we also give a reconstruction result obtained by using
Tikhonov regularisation applied to the linear convolution problem where the noisy kernel is
fixed. The reconstruction result shows that our approach which considers both the function
and the kernel as variable leads to a better reconstruction. However, this effect becomes less
prominent when the noise becomes considerably small.

The numerical results are given in figure 4, which displays in each row three graphics:
the approximated image, the reconstructed kernel and its convolution. It plots a collection of
numerical solutions computed from four samples with 8%, 4%, 2% and 1% relative error
(RE) on both measurements, respectively in each row from top to bottom. Moreover, we
compare the numerical reconstruction with the true image and kernel; the errors in norm are
displayed in the table 1. Either numerically or visually one can conclude that dbl-RTLS is
indeed a regularisation method, since its reconstruction and computed data improve as the
noise level decreases.

4 DK Computational Mathematics’ logo from JKU Linz.
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Figure 1. From left to right: true image f true, blurring Gaussian kernel k0 and convolved
data g0.

Figure 2. Measurements: noisy kernel (left) and noisy data (right), both with 8%
relative white noise error.

Figure 3. Reconstruction with standard Tikhonov using the blurred kernel (left) and
reconstruction from the dbl-RTLS method (right).
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Figure 4. From left to right columns: deconvolution solution f n, the reconstruction of
the characterising function k n and the attained data gn. From the top to bottom each
row is the solution given by the AM algorithm initiated with 8%, 4%, 2% and 1%
relative error for both δg and ϵk .
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The pair of regularisation parameters α β( , ) was chosen as

α δ ϵ

β δ ϵ

= +

= +

μ

ν

c MN

c MN

2 log( ) ( )

2 log( ) ( ) ,

1

2

where c c,1 2, μ ν< ⩽0 , 1 have been picked heuristically. The ×M N matrix represents the
underlying function; in our numerical example = =M N 256.

Depending on the noise level, up to 5 AM cycles has been carried out. Each of the cycles
has been stopped whenever the related norms of the computed updates were below the
threshold 1e-4.
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Appendix

The most common concept of subderivative is addressed to convex functions. It was intro-
duced by Fenchel, Moreau and Rockafellar in early 1960 s, but it became popular after [15].
The Fenchel subdifferential of a convex function φ →: (or −∞ +∞[ , ]) at ∈ū is
defined as the set

 φ ξ φ φ ξ∂ = ∈ ∣ + − ⩾ 〈 〉 ∀ ∈{ }( )u u d u d d( ¯) * ¯ ( ¯) , .F

This definition was extended also to nonconvex functions by Clarke in 1973. It is based
on generalised directional derivatives for locally Lipschitz functions in Banach spaces [6].
The Clark subdifferential of φ at ū is defined by

 φ ξ φ ξ∂ = ∈ ∣ ⩾ 〈 〉 ∀ ∈◦{ }( )u u d d d( ¯) * ¯; ,C

where

φ φ φ= + −◦
→
↓

( )u d
u td u

t
¯; lim sup

( ) ( )
u u
t

¯
0

is the generalised directional derivative.
We add to this list two more definitions of subdifferentials. As before, for a set-valued

mapping  ⇉G: * between a Banach space  and its topological dual  *, the set

Table 1. Error with 2-norm and respective SNR (signal-to-noise ratio).

RE ϵk( ) RE δg( ) −k k̄n 2
−f f̄n 2

SNR fn SNR kn β α

8% 8% 3.6438e-01 1.7311e-01 8.6276 10.562 0.4525 0.1246
4% 4% 2.4185e-01 1.5036e-01 12.116 12.272 0.2262 0.0784
2% 2% 2.1545e-01 1.3648e-01 13.099 13.129 0.1131 0.0493
1% 1% 1.6754e-01 1.2596e-01 15.190 13.687 0.0565 0.0310
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ξ ξ ξ ξ= ∈ ∣ ∃ → ⇀ ∈ ∀ ∈
→

{ }( )G u u u G u nLim sup ( ¯) * ¯ and * with
u u

n n n n

¯

denotes the sequential Painlevé-Kuratowski upper/outer limit of a set-valued mapping. Given
a lower semi-continuous function φ, the ε-Fréchet subdifferential of φ at ū is defined by

⎧⎨⎩
⎫⎬⎭φ ξ

φ φ ξ
ε∂ = ∈ ∣

+ − − 〈 〉
∥ ∥

⩾ε
∥ ∥→

( )
u

u d u d

d
ˆ ( ¯) * lim inf

¯ ( ¯) ,
.

d 0

If φ∣ ∣ = ∞u( ¯) then φ∂ = ∅ε uˆ ( ¯) . When ε = 0 the set φ∂ uˆ ( ¯)0 will be denoted by φ∂ uˆ ( ¯).
The limiting subdifferential or Mordukhovich subdifferential of φ at ū is defined as

φ φ∂ = ∂

ε

ε
→
↓

φ
u u( ¯) Lim sup ˆ ( ¯)

u ū
0

where the notation →
φ

u ū means →u ū with φ φ→u u( ) ( ¯). This subdifferential corresponds
to the collection of weak-star sequential limiting points of the so-called ε-Fréchet
subdifferential.

In [7], the following inclusion property between the sets

φ φ φ∂ ⊂ ∂ ⊂ ∂u u u( ¯) ˆ ( ¯) ( ¯).F C

is shown. The set of subgradients φ∂ uˆ ( ¯) may be nonconvex, whereas the Clark

subdifferential is always a nonempty convex subset of  * whenever φ∈ū dom . It is
important to note that the subdifferential definitions generate the same set if the function is
convex [5].

Finally we list another property needed to prove convergence results: the concept of
strong-weak* closeness (also called sw*-closed) property of the subdifferential mapping’s
graph.

Given the subdifferential φ∂ of a proper lower semi-continuous function φ, saying its

graph is sw*-closed means whenever ζ φ∈ ∂u( , ) Gphn n converges in the sw*-topology to
ζu( ¯, ¯) it ζ φ∈ ∂uimplies( ¯, ¯) Gph . In other words, if →u ūn and ζ ζ⇀* ¯n with ζ φ∈ ∂ ( )un n

then ζ φ∈ ∂ u¯ ( ¯).

The subdifferential is indeed a sw*-closed set-value mapping, see for instance [6, pro-
position 2.1.5] or [9, corollary 5.1]. Moreover, this result holds true for any maximal
monotone point-to-set mapping and not only for the subdifferential set-value mapping case;
see [4, chapter 4].

For more details on the different types of subdifferential and its properties we refer to
[6, 9, 13, 15] and references therein.
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