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Abstract

Background: Users of a personalised recommendation system face a dilemma: recommendations can be improved
by learning from data, but only if other users are willing to share their private information. Good personalised
predictions are vitally important in precision medicine, but genomic information on which the predictions are based
is also particularly sensitive, as it directly identifies the patients and hence cannot easily be anonymised. Differential
privacy has emerged as a potentially promising solution: privacy is considered sufficient if presence of individual
patients cannot be distinguished. However, differentially private learning with current methods does not improve
predictions with feasible data sizes and dimensionalities.

Results: We show that useful predictors can be learned under powerful differential privacy guarantees, and even
frommoderately-sized data sets, by demonstrating significant improvements in the accuracy of private drug sensitivity
prediction with a new robust private regression method. Our method matches the predictive accuracy of the state-of-
the-art non-private lasso regression using only 4x more samples under relatively strong differential privacy guarantees.
Good performance with limited data is achieved by limiting the sharing of private information by decreasing the
dimensionality and by projecting outliers to fit tighter bounds, therefore needing to add less noise for equal privacy.

Conclusions: The proposed differentially private regression method combines theoretical appeal and asymptotic
efficiency with good prediction accuracy even with moderate-sized data. As already the simple-to-implement
method shows promise on the challenging genomic data, we anticipate rapid progress towards practical applications
in many fields.

Reviewers: This article was reviewed by Zoltan Gaspari and David Kreil.

Keywords: Differential privacy, Linear regression, Drug sensitivity prediction, Machine learning

Background
The widespread collection of private data, in the health
domain both by individuals and hospitals, creates a major
opportunity to develop new services by learning predic-
tive models from the data. Privacy-preserving algorithms
are required and have been proposed, but for instance
anonymisation approaches [1–3] cannot guarantee pri-
vacy against adversaries with additional side information,
and are poorly suited for genomic data where the entire
data vector is identifying [4]. Guarantees of differential
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privacy [5, 6] remain valid even under these conditions [6],
and differential privacy has arisen as the most popularly
studied strong privacy mechanism for learning from data.
Genomics is an important domain for privacy-aware

modelling, in particular for precision medicine. Many
people wish to keep their and also their relatives’ genomes
private [7], and simple anonymisation is not sufficient to
protect the privacy since a genome is inherently identifi-
able [4]. Furthermore, individual genomes can be recov-
ered from summary statistics [8] as well as phenotype
data such as gene expression data [9]. Hence, the hospi-
tal or clinic holding the genomic data will need to be very
cautious about privacy risks when releasing any genomic
data, even though the data would be needed and use-
ful for future diagnoses and treatment decisions. These
findings have motivated a number of privacy-preserving
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methods for genome-wide association studies, based on
differential privacy [10–12] as well as relaxations that
provide more accurate modelling results under weaker
privacy guarantees [13]. Previous research in drug dosing
for personalised medicine has shown that inefficient dif-
ferentially private models may put the patients at severe
risk [14].
Our work for this paper is motivated by modelling for

personalised medicine. One possible learning scenario in
this field is illustrated in Fig. 1 where the party devel-
oping the predictive model has unrestricted access to at
most a very limited data set (bottom left), for example
from local patients willing to share their data or from
large public research projects with liberal data sharing
practices. At the same time there are potentially a lot
more data available from other sources (top), but access
to those is constrained by privacy concerns. A similar set-
ting was considered previously in [15], which presents
a simple mechanism for combining public and private
data for logistic regression, but the results they obtain
are quite inaccurate. In contrast, our approach for linear
regression is asymptotically efficient and yields signifi-
cantly more accurate results for reasonably-sized privacy-
protected data sets than any previous method. This
creates a promise for new type of data sharing that can
find effective compromises between the utility of the data
for learning new models and the privacy of the data
subjects.

Approach
Efficient differentially private learning
Differential privacy [5, 6] is a formulation of reasonable
privacy guarantees for privacy-preserving computation.
It gives guarantees about the output of a computation

Learning

Data

Non-private data
(optional)

Predictive model

Privacy wall

Fig. 1 Typical modelling setup for differentially private learning of a
predictive model. In many applications most data (top) are available
for learning only if their privacy can be protected

and can be combined with complementary cryptographic
approaches such as homomorphic encryption [16] if the
computation process needs protection too. An algorithm
M operating on a data setD is said to be differentially pri-
vate if for any two data setsD andD′, differing only by one
sample, the ratio of probabilities of obtaining any specific
result c is bounded as

p(M(D) = c)
p(M(D′) = c)

≤ exp(ε). (1)

Because of similarity between D and D′ the probabili-
ties need to be similar to satisfy the condition. Differential
privacy is preserved in post-processing, which makes it
flexible to use in complex algorithms. The ε is a privacy
parameter interpretable as a privacy budget, with higher
values corresponding to less privacy preservation. Differ-
entially private learning algorithms are usually based on
perturbing either the input [5, 17], output [5, 18] or the
objective [19, 20].
Here we apply differential privacy to regression. The

aim is to learn a model to predict the scalar target yi
from d-dimensional inputs xi (Fig. 1) as yi = f (xi) + ηi,
where f is an unknown mapping and ηi represents noise
and modelling error. We wish to design a suitable struc-
ture for f and a differentially private mechanism for effi-
ciently learning an accurate private f from a data set D =
{(xi, yi)}ni=1.
We argue that a practical differentially private algo-

rithm needs to combine two things: (i) it needs to provide
asymptotically efficiently private estimators so that the
excess loss incurred from preserving privacy will diminish
as the number of samples n in the data set increases; (ii) it
needs to perform well on moderately-sized data.
It was recently shown that perturbation of sufficient

statisics of an exponential family model leads to asymp-
totically efficient differentially private Bayesian inference
[21, 22]; to cover the second equally important crite-
rion the methods of this paper are additionally needed.
Asymptotic efficiency is nevertheless important because
such methods always allow reaching stronger privacy with
more samples.
While asymptotic efficiency is a nice guarantee, alone it

is of little help for a specific learning problem with a fixed
finite data set with size far from the asymptotic regime. It
is difficult to prove the optimality of a method on finite
data so performance needs to be studied empirically. We
argue that for a method to perform well it needs to be
designed to control the amount of shared private infor-
mation. This has two components: (a) the dimensionality
needs to be reduced, to avoid the inherent incompatibil-
ity of privacy and high dimensionality which has been
discussed previously [23], and (b) robustness needs to
be introduced by bounding and transforming each vari-
able (feature) to a tighter interval. Controlling the amount
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of shared information also introduces a trade-off: com-
pared to the non-private setting, decreasing the dimen-
sionality may degrade the performance of the non-private
approach (at least when reducing to a very low dimen-
sionality), while a corresponding low-dimensional private
algorithm may attain higher performance than a higher-
dimensional one. This behaviour can be seen in the results
of Fig. 6a where higher-dimensional differentially private
algorithms perform worse than lower-dimensional ones,
while for non-private algorithms a higher dimensionality
would be better.
The essence of differential privacy is to inject a suffi-

cient amount of noise to mask the differences between the
computation results obtained from neighbouring data sets
(differing by only one entry). The definition depends on
the worst-case behaviour, which implies that suitably lim-
iting the space of allowed results will reduce the amount
of noise needed and potentially improve the results. In the
output perturbation framework this can be achieved by
bounding the possible outputs [18].
Here we propose a more powerful approach of bound-

ing the data by projecting outliers to tighter bounds. The
current standard practice in private learning is to lin-
early transform the data to desired bounds [20]. This is
clearly sub-optimal as a few outliers can force a very small
scale for the other points. Significantly higher signal-to-
privacy-noise ratio can be achieved by setting the bounds
to cover the essential variation in the data and projecting
the outliers separately inside these bounds. This approach
also robustifies the analysis against outliers as the projec-
tion can be made independent of the outlier scale. When
applied to linear regression, we call the resulting model
robust private linear regression. It is illustrated in Fig. 2.

Algorithm overview
We incorporate differentially private learning into
Bayesian linear regression. The linear regression model
for scalar target yi, with d-dimensional input xi and fixed
noise precision λ, is defined by

yi|xi ∼ N
(
xTi β , λ

)
(2)

β ∼ N(0, λ0I), (3)

where β is the unknown parameter to be learnt. The λ

and λ0 are the precision parameters of the corresponding
Gaussian distributions, and act as regularisers. Assum-
ing the precision parameters are known and fixed, then
given an observed data set D = {(xi, yi)}ni=1, all informa-
tion about the data can be summarised by the sufficient
statistics nxx = ∑n

i=1 xixTi and nxy = ∑n
i=1 xiyi, which

together with the prior completely determine the result-
ing posterior distribution. Instead of fixing the precision
parameters, they can be assigned prior distributions. In

Fig. 2 The effect of bounding data for differentially private learning of
a regression model. Top: Bounding the data increasingly tightly (by B;
green square) brings 1D robust private linear regression models (blue
lines illustrating the distribution of results of the privacy-preserving
algorithm) closer to the non-private model (black line) as less noise
needs to be injected. Blue points: data. Bottom: The data are
bounded in robust private linear regression by projecting outliers
within the bounds (red lines; shown only for a subset of the points)

that case, given an observed data set and sufficient statis-
tics nxx, nxy and nyy = ∑n

i=1 y2i , we can use auto-
matic differentiation variational inference (ADVI) [24] to
fit a variational distribution to the posterior and then
draw samples from the fitted distribution. We use ADVI
because it gives similar results as Hamiltonian Monte
Carlo sampling but significantly faster.
The robust private linear regression is based on per-

turbing these sufficient statistics. We use independent
εi-differentially private Laplace mechanisms [5] for per-
turbing each statistic with εi = piε for each i = 1, 2, 3 and
p1 + p2 + p3 = 1. By the differential privacy composition
theorem they together provide an ε-differentially private
mechanism.
To improve the robustness of themethod, we project the

outliers in the private data sets to fit the data in the inter-
vals [−Bx,Bx] and [−By,By]. A more detailed description
of the learning is in “Methods” section.

Results
Optimal privacy budget split on synthetic data
We find the optimal privacy budget split by generating an
auxiliary data set of size n samples (here n = 500) using
the method described in “Methods” section. As illustrated
in Fig. 3, the optimal split gives the largest proportion
of the privacy budget to the term nxy (60%), the second
largest proportion to the term nxx (35%), and the smallest
possible proportion to the term nyy (5%).
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Fig. 3 Optimal privacy budget split between sufficient statistics.
Accuracy on a synthetic data set improves as a bigger proportion of
the fixed privacy budget is assigned for nxy. The best performance is
achieved by assigning term nyy the smallest proportion 5%, term nxy
a large 60% proportion, and term nxx the remaining 35% proportion
of the privacy budget. Accuracy has been evaluated with 10-dimensional
synthetic data, measured by Spearman’s rank correlation between
the predicted and true values (higher values are better)

Effectiveness of data bounding on synthetic data
The importance of the projection is illustrated by the sim-
ulation results shown in Fig. 4. The simulation shows that
aggressive projection can lead to clear improvement in
the prediction accuracy. The figure shows the accuracy
of simulated experiments as a function of the projection
threshold represented as standard deviations away from
the mean. As shown in the figure, the optimal threshold
can be less than 0.5 sd away from the mean which implies
that a significant majority of the data points get projected.

Drug sensitivity prediction
Methods We applied the robust private linear regression
model to predict drug sensitivity given gene expression
data, in a setup where a small internal data set can be
complemented by a larger set only available under pri-
vacy protection (Fig. 1). We used an experimental setting
similar as in the recent DREAM-NCI drug sensitivity pre-
diction challenge [25]; we also evaluate the results with the
same measures, that is, Spearman’s rank correlation and
weighted probabilistic concordance (wpc) index.
The data are from the Genomics of Drug Sensitivity

in Cancer (GDSC) project [26, 27] (release 6.1, March
2017, http://www.cancerrxgene.org). Sensitivity measure-
ments of 265 drugs for a panel of 985 human cancer cell
lines are combined with gene expression data for the cell
lines. The dimensionality of the RMA-normalised gene

Fig. 4 The effect of data bounding on regression model accuracy. The
figure illustrates the effect of projecting the outliers to within the
bounds in linear regression, for different sample sizes n with
10-dimensional synthetic data, evaluated by Spearman’s rank
correlation between the predicted and true values (higher values are
better), both for DP (solid lines) and non-private regression (dashed
lines). The lines show a minor decrease in accuracy of the non-private
algorithm as the projection threshold becomes increasingly tight.
This minor decrease is eclipsed by a dramatic increase in the accuracy
of the DP algorithm. Similar plots with higher dimensional data, and
samples from a heavy-tailed distribution are included as Additional
file 1: Figures S1 and S2

expression data was reduced from d = 17, 490 down to
64 based on prior knowledge about genes that are fre-
quently mutated in cancer, provided by the GDSC project
at http://www.cancerrxgene.org/translation/Feature. We
further ordered the genes based on their mutation counts
as reported at http://cancer.sanger.ac.uk/cosmic/curation.
Drug responses were quantified by log-transformed IC50
values (the drug concentration yielding 50% response)
from the dose response data measured at 9 different con-
centrations. The mean was first removed from each gene,
xij := xij −mean(x1:n,j), and each data point was then nor-
malised to have L2-norm ‖xi‖2 = 1, which focuses the
analysis on relative expression of the selected genes, and
equalises the contribution of each data point. The mean
was removed from drug sensitivities, yi := yi−mean(y1:n).
The sensitivity to each drug was predicted with Bayesian

linear regression. We compared the proposed robust
private linear regression to state-of-the-art differentially
private linear regression approaches that are based on
output perturbation [18] and the functional mechanism
[20]. Output-perturbed LR learns parameters β using the
same LR model in Eq. (2), but instead of statistics the

http://www.cancerrxgene.org
http://www.cancerrxgene.org/translation/Feature
http://cancer.sanger.ac.uk/cosmic/curation
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parameters are perturbed, in a data-independent man-
ner. Our implementation of output-perturbed LR makes
use of the minConf optimisation package [28]. For func-
tional mechanism LR we used the code publicly available
at https://sourceforge.net/projects/functionalmecha/.
We carried out a 50-fold Monte Carlo cross-validation

process for different splits of the data set into train and
test sets using different random seeds. For each repeat, we
randomly split the 985 cell lines to two sets: 100 for testing
and the rest for the training. We further randomly par-
titioned the training set to 30 non-private cell lines and
used the rest as the private data set. In the experiments, we
tested non-private data sizes from 0 to 30, and private data
sizes from 100 to 800. After defining each split, the sam-
ples with missing drug responses were dropped, making
the number of cell lines different across different drugs.
The hyperparameters for the Gamma priors of precision
parameters λ, λ0 in Eq. (9) were set to a = b = a0 = b0 =
2. The Gamma(2, 2) distribution has mean 1 and variance
1/2 and defines a realistic distribution over sensible values
of precision parameters which should be larger than zero.
We implemented the model and carried out the infer-
ence with the PyMC3 Python module [29]. Using ADVI,
we fitted a normal distribution with uncorrelated vari-
ables to the posterior distribution. We computed the drug
response predictions using m = 5000 samples from the
fitted variational distribution. The optimal privacy budget
split was based on prediction performance averaged over
five auxiliary data sets of 500 synthetic samples (approxi-
mately half of the GDSC data set size) and five generated
noise samples, and for each split, the optimal projection
thresholds were chosen similarly based on average perfor-
mance over five auxiliary data sets and five noise samples.
The prediction for each split was computed using m =
5000 samples drawn from the variational distribution fit-
ted with ADVI. The final optimal projection thresholds
for each test case were chosen using the optimal budget
split and based on average prediction performance over
20 auxiliary data sets and 20 noise samples. All auxiliary
data sets were generated by fixing the precision parame-
ter values to the prior means, λ = λ0 = 1. The prediction
for each pair of projection thresholds was also computed
using fixed precision parameters as in Eqs. (6) and (7), as
generating samples from the fitted variational distribution
for all test cases would have been infeasible in practice.

Results The prediction accuracies of the compared
methods are illustrated in Fig. 5. Unlike the earlier dif-
ferentially private methods, the proposed robust private
linear regression can improve the prediction accuracy
(ranking of new cell lines [25] to sensitive vs insensitive
as measured by Spearman’s rank correlation and the wpc-
index) over the baseline of using only a small internal data
set, when feasible amounts of privacy protected data are

received. The output-perturbed linear regression is able
to learn something from the private data too, but its per-
formance is significantly worse than with the proposed
approach. Results with more stringent privacy (ε = 1
instead of ε = 2) in Additional file 1: Figure S3 show over-
all lower accuracy for the private methods but are again
qualitatively similar.
The comparison includes non-private lasso regression

which was the best-performing method in the DREAM
drug sensitivity prediction challenge [25] using only
expression data. Non-private lasso regression is clearly
superior to the other methods for Spearman’s rank cor-
relation. With the more relevant wpc-index, non-private
linear regression is on par with non-private lasso regres-
sion and the proposed robust private linear regression
is quite close behind. Overall, our differentially private
method using 800 samples is on par with non-private lasso
regression with 200 samples, suggesting we can match the
accuracy of the state-of-the-art non-private predictions
under differential privacy with a reasonable increase in the
number of samples needed. The good performance of the
lasso regression which ultimately uses a linear model also
suggests that with better feature selection, private linear
regression could potentially do even better.
Among the state-of-the-art differentially private algo-

rithms, the output perturbation method [18] is the most
accurate one, but it is still significantly less accurate than
the proposed method. The relatively poor performance
of the output perturbation method on our benchmark
compared to their previously reported results is due to
the difficulty and higher dimensionality of our prediction
task.
To improve prediction performance in differentially pri-

vate learning, trade-offs need to be made between dimen-
sionality and the amount of data (Fig. 6a), and between
the strength of privacy guarantees and the amount of data
(Fig. 6c). In our experiments the amount of optional non-
private data matters significantly only when there is very
little private data (Fig. 6b), which is probably due to the
fact that every sample gets equal weight in the model
regardless of its origin.
To understand the reason for the success of the robust

private linear regression, we also tested it without the
projection step. The proposed non-linear projection of
the data to tighter bounds is clearly the key to the suc-
cess of the method, as without it the method performs
very poorly (green line for Private LR in Fig. 5), and
is not able to improve prediction performance using
the available data. Because of the different formulations
they are based on, the alternative differentially private
algorithms considered here cannot directly benefit from
the projection to decrease the amount of injected noise
and hence would not experience a similar improvement in
accuracy.

https://sourceforge.net/projects/functionalmecha/
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Fig. 5 Accuracy of drug sensitivity prediction increases with amount of private data for the proposed robust private linear regression. The
state-of-the-art methods fail to improve over just using the non-private data under strict privacy conditions, with reasonable data amounts. The
baselines (horizontal dashed lines) are learned on 10 non-private data points; the private algorithms additionally have privacy-protected data
(x-axis). The non-private algorithm (LR) has the same amount of additional non-privacy-protected data. Accuracy is measured by Spearman’s rank
correlation coefficient over ranking cell lines by sensitivity to a drug (left; higher is better) and by weighted probabilistic concordance index
(wpc-index; right; higher is better). All methods use 10-dimensional data except the gray baseline showing the best performance with 10
non-private 64-dimensional data points. Private methods use ε = 2. Corresponding results for ε = 1 are in Additional file 1: Figure S3 and results
including non-private robust LR in Additional file 1: Figure S4. The results are averaged over all drugs and 50-fold Monte Carlo cross-validation; error
bars denote standard deviation over 50 Monte Carlo repeats

Fig. 6 Key trade-offs in differentially private learning. Relative
improvements over baseline (10 non-private data points). a, As the
dimensionality increases, more data are needed to improve
performance of the private methods. b, With enough private data,
adding more non-private data does not significantly increase the
performance. c, More data are needed if privacy guarantees are tighter
(privacy parameter ε is smaller). Data dimensionality is 10, the size of
non-private data is 10, and ε = 2 (except when otherwise noted)

The effect of the projection is studied further in
Additional file 1: Figure S4 which includes a non-private
robust linear regression using the projection approach.
The performance of this approach is slightly worse than
that of the regular linear regression. This verifies our
assumption that best private learning methods are not
direct translations of best non-private methods but new
methods that take into account the privacy constraints.

Discussion
A key question which needs to be answered before apply-
ing differentially private methods in practical personalised
medicine, is whether they can compromise patient safety
as previously warned [14]. If there are sufficient amounts
of data available without restrictions on their use, the
more accurate non-private methods are certainly prefer-
able. However, we believe in more realistic scenarios the
amount of non-restricted data is limited, and larger sets
are only available under privacy restrictions. As demon-
strated by our results, the proposed differentially private
methods can provide more accurate predictions in this
case. Furthermore, because of the asymptotic efficiency of
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the method, the extra “price” for privacy diminishes as the
size of the data set increases.
At the heart of any privacy-aware data analysis is a

trade-off between privacy and utility of the data in the
analysis. The only way to ensure perfect privacy is not to
use the data at all, which corresponds to zero utility. The
interesting question is how much utility can be obtained
under reasonable privacy guarantees. Asymptotically effi-
cient differentially private methods always allow reaching
a utility arbitrarily close to that of the corresponding non-
private model by adding more samples. In the context of
the results reported here the asymptotic efficiency of the
method means that larger data sets available in the future
will allow higher prediction accuracy, stronger privacy
guarantees or some combination of both.
The modelling setup of Fig. 1 and the ability of our

method to effectively combine data sets under different
privacy requirements creates a promise of newmethods of
sharing and utilising privacy-sensitive data. Because there
have not been learning algorithms capable of leveraging
on privacy-protected data sets, data owners have not had
reasons to share data in a privacy-protected manner. Now
we hope that new methods, including the ones presented
in this paper, will help motivate more differentially private
data sharing that can then in turn increase their utili-
sation, which will enable better predictions and further
better healthcare and services even more generally.
In this paper we have focused on scalar targets in regres-

sion. There is a trivial extension of the same algorithm
that yields a (q+ 1)ε/2-differentially private algorithm for
q-dimensional targets, which is non-ideal when q is large.
A simple way around this is to increase the number of
samples as doubling the number of samples allows halving
ε with equivalent accuracy. Still, careful selection of which
targets to model or some dimensionality reduction in the
target space will likely be useful for large q.
Robust private linear regression treats non-private and

scrambled private data similarly in the model learning.
An interesting next step for further improving the accu-
racy on very small private data would be to give different
weights to the clean and privacy-scrambled data by incor-
porating knowledge of the injected noise in the Bayesian
inference, as has been proposed for generative models
[30], but which is non-trivial in regression.

Conclusions
We presented methodology that can make use of per-
sonal genomic data for precision medicine modelling
under a strict differential privacy quarantee. Through
improvements in the previously unappreciated data scal-
ing and projection, the simple-to-implement method con-
stitutes a foundation for designing practical differentially
private learning methods. We were able to obtain dramat-
ically more accurate predictions in the very challenging

drug sensitivity prediction task, utilising moderate-sized,
privacy-protected data. Moreover, being asymptotically
efficient, the loss in performance relative to non-private
approach will diminish as the amount of data grows. The
differentially private modelling will likely have a signifi-
cant impact not only in precision medicine but also in
machine learning more generally and change the way
sensitive data are stored and utilised.

Methods
Robust private linear regression
We project the outliers in the private data sets to fit the
data in the intervals [−Bx,Bx] and [−By,By] as

xij = max(−Bx, min(xij,Bx))

yi = max(−By, min(yi,By)). (4)

After the projection, ‖xi‖∞ ≤ Bx and |yi| ≤ By, where
‖xi‖∞ = maxj xij. We add noise to the sufficient statistics
as

nxx + L1, L1 ∼ Laplace
(
0,

(d2 + d)B2
x

p1ε

)

nxy + L2, L2 ∼ Laplace
(
0,

2dBxBy
p2ε

)

nyy + L3, L3 ∼ Laplace
(
0,

B2
y

p3ε

)
. (5)

This generalises earlier work on bounded variables [21]
to the unbounded case by introducing the projection.
It can be shown that this yields a valid differentially
private mechanism (Additional file 1: Supplementary
Information).

Posterior inference and prediction
If the precision parameters λ and λ0 are assumed to be
known and fixed, then given an observed data set D =
{(xi, yi)}ni=1 with sufficient statistics nxx = ∑n

i=1 xixTi
and nxy = ∑n

i=1 xiyi, the posterior distribution of β is
Gaussian, p(β|D) = N(β ; μ∗,�∗), with precision

�∗ = λ0I + λnxx (6)

and mean

μ∗ = �−1∗ (λnxy). (7)

After learning with the training data setDtrain, the predic-
tion of yi given xi is computed as follows:

ŷi = xTi μ∗. (8)

Amore robust alternative is to define prior distributions
for the precision parameters. In our case, a Gamma prior
is assigned for both:

λ ∼ Gamma(a, b)
λ0 ∼ Gamma(a0, b0). (9)
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A variational normal distribution is fitted to the poste-
rior with ADVI. The precision parameters and correlation
coefficients β are then sampled from the fitted distribu-
tion. For this purpose, the data likelihood in Eq. (2) needs
to be expressed in terms of the sufficient statistics nxx, nxy
and nyy = ∑n

i=1 y2i , which results in

p(y|X,β , λ)=
(

λ

2π

)n/2
exp

(
−λ

2

(
βTnxxβ−2βTnxy + nyy

))
.

(10)

The prediction of yi is computed using xi and averaging
over a sufficiently large number m of sampled regression
coefficients β(k) as

ŷi =
∫

p(y|β ,Xtest,i)p(β|Dtrain)dβ ≈ 1
m

m∑
k=1

xTtest,iβ
(k). (11)

For evaluation we keep a part of the data set D aside
as Dtest (not used for training), and after predicting ŷi,
we evaluate the error between the actual ytest,i and ŷi. In
this paper, we do this using Spearman’s rank correlation
coefficient to evaluate how well the predictions separate
sensitive and insensitive cell lines.

Determining the privacy budget split and projection
thresholds
The privacy budget proportions p1, p2, p3 and the pro-
jection thresholds Bx and By are important parameters
for good performance. We propose finding the optimal
parameter values on an auxiliary synthetic data set of the
same size, which was found to be effective in our case.
We generate the auxiliary data set of n samples using a
generative model similar to the one specified in Eq. (2):

xi ∼ N(0, I)

yi|xi ∼ N
(
xTi β , λ

)

β ∼ N(0, λ0I), (12)

where d is the dimension.
For all possible combinations of (p1, p2, p3) ∈

{0.05, 0.1, . . . , 0.90}3, where p1 + p2 + p3 = 1, we project the
data using thresholds for the current split, and we perturb
the sufficient statistics according to the current budget
split. We compute the prediction as in Eq. (11) using
samples drawn from the variational distribution fitted
with ADVI and compute the error with respect to the
original values. The error measure we use is Spearman’s
rank correlation between the original and predicted val-
ues. The split which gives the minimum error is used in
all test settings.
We parametrise the projection thresholds as a function

of the data standard deviation as

Bx = ωxσx, By = ωyσy (13)

ωx,ωy ∈ {0.1ω}20ω=1, (14)

where the σx and σy are the standard deviations of x (con-
sidering all dimensions) and y, respectively. With all 400
pairs of (Bx,By) as specified above, we apply the outlier
projection method of Eq. (4). We fit the model using the
projected values and then compute the error with respect
to the original values. The pair of (ωx,ωy) which gives the
minimum error is used to define the (Bx,By) for the real
data as in Eq. (13). As the error we used Spearman’s rank
correlation between original y1:n and predicted ŷ1:n based
on the model learnt with projected values.

Combining internal and external data sets
Our modelling setup (Fig. 1) allows combining non-
private data (also called internal data) with data requiring
privacy protection. Multiple data sets can be combined
in the Bayesian modelling framework by adding the suffi-
cient statistics nxx, nxy and nyy arising from various data
sets together to produce aggregate sufficient statistics for
the combined data. Data sets requiring privacy protection
can be protected by adding noise to the corresponding
sufficient statistics as described.

Algorithm details
We first determine the optimal budget split p1, p2, p3 and
then choose the optimal parameters ωx, ωy using the syn-
thetic auxiliary data method as described above. We test
the algorithm using Monte Carlo cross-validation. For
each repeat, we normalise the data and compute the stan-
dard deviation σx of the input data and σy of the target
data from the normalised private data set. The projection
thresholds Bx, By are then computed as in Eq. (13) and
both the private and non-private training data are pro-
jected using the same acquired thresholds as in Eq. (4).
The prediction for the test data is computed from ADVI
samples as in Eq. (11). The precision is computed between
the predicted and actual yi for the test data.

Alternative interpretation: transformed linear regression
The outlier projection mechanism can also be interpreted
to produce a transformed linear regression problem,

φy(yi)|xi ∼ N
(
φx(xi)Tβ , λ

)
, (15)

where the functions φy() and φx() implementing the outlier
projection can be defined as

φy(yi) = max(−By, min(By, yi)) (16)

φx(xi) = max(−Bx, min(Bx, xi)). (17)

The normalisation of data can also be included as a
transformation. This interpretation makes explicit the
flexibility in designing the transformations: the differen-
tial privacy guarantees will remain valid as long as the
transformations obey the bounds

φy(yi) ∈ [−By,By
]
, φx(xi) ∈ [−Bx,Bx] . (18)
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Reviewers’ comments
Reviewer’s report 1: Zoltan Gaspari, Pazmany Peter
Catholic University, Hungary
While the manuscript might be of interest to the statis-
tics community, in its present form it seems to provide
little biological significance. The paper describes how the
sensitivity of different linear regression models changes
as a function of the amount of anonymized data. The
fact that drug-sensitivity data are used is merely a techni-
cal choice, the manuscript provides no novel insights and
the obtained rank correlations (on real data) seem to be
irrelevant even in the best cases.
Authors’ response:We wish to thank the reviewer for express-

ing his opinion but respectfully disagree. Far from being merely a
technical choice, solving the drug sensitivity prediction task was our
primary motivation when developing the method, and we strongly
believe the drug sensitivity modelling community would benefit sig-
nificantly from the work as a proof of principle that this kind of
privacy-preserving modelling is possible. This finding could have
far-reaching implications to future data generation and sharing for
similar tasks, given the privacy concerns with broad availablity of
human genomic data. Given the risk of model inversion attacks,
even highly refined published models carry a risk of leaking private
data used in the training.
It is not clear how the method relates to previously

published ones (http://www.nature.com/nbt/journal/v32/
n12/fig_tab/nbt.2877_T1.html?foxtrotcallback=true) and
whether it is comparable to those at all.
Authors’ response: The results are not directly compara-

ble because we are using a different data set with more samples
but fewer features. We have now added a new comparison to
non-private lasso regression that was the best method using only
expression data in the DREAM challenge (linked above). As shown
in Fig. 5, non-private lasso regression performs really well on the
Spearman’s rank correlation, but with the more relevant weighted
probabilistic concordance index its results are quite similar to
non-private linear regression and our private method is not too
far behind. In summary, our differentially private method using
800 samples is on par with non-private lasso regression with 200
samples, suggesting we can match the accuracy of the state-of-
the-art non-private predictions under differential privacy with a
reasonable increase in the number of samples needed.
The biological relevance of the bounding of the values

and the omission of data in order to reduce the dimen-
sions should also be justified. It is not at all trivial that
these steps are allowed without losing relevant biological
information and insights.
Authors’ response: All models are simplifications of the world

and ours is no different. Interpretability and prediction accuracy
of a model are often at odds. We believe our model attains a good
compromise in this respect because ultimately we only combine
non-linear clipping transformations of scalar variables with easily
interpretable linear regression. Finding new and even better com-
promises that yield accurate predictions while maintaining even

higher biological interpretability is an interesting avenue for future
research.
I recommend that the work should be presented in a

way that allows the judgment of the biological relevance of
the resulting analysis and the possible loss of information
introduced by the transformations. It is highly desirable
that the description of the approach includes a case with
real data where both retaining the biological significance
and the privacy issues can be clearly and effectively shown.
Authors’ response: As noted above, we have added a new

comparison with the top-performing method from the DREAM
challenge using only expression data. All experiments have been
performed with the largest available collection of real data, so we
believe we are addressing the question as well as possible without
extensive and very expensive new data collection.

Reviewer’s report 2: David Kreil, University of Warwick, UK
Increasingly, there are not just academic analyses but also
public concerns about the privacy of patient data. For
instance, data sharing arrangements between a company
developing modern algorithms for precision medicine
(DeepMind) and a group of hospitals of the U.K. National
Health Service were vocally objected, with the privacy of
patient data questioned in the public press [*]. Especially
in this context, the recent work of Honkela et al. reported
in their manuscript on Efficient differentially private
learning improves drug sensitivity prediction are of gen-
eral interest andmay have substantial impact beyond their
immediate field of research.
Machine learning algorithms preserving differential

privacy need to strike many trade-offs, and the devel-
opment of approaches that guarantee some degrees of
privacy while inferring accurate models for prediction is
a novel and highly active field of research [**]. Established
approaches include randomly perturbing the input, the
objective, or the output of a model in training. Besides
questions of privacy guarantees and learning efficiency,
there is a practical aim of effectively exploiting a combi-
nation of private and public data sets with the hope of
deriving better models than can be learned from public
data alone. The authors seek to address this challenge in
the context of linear regression models.
It would be interesting if the authors could relate their

analysis to prior work looking into combining public
and private data, such as distributed differentially private
regression [***].
Authors’ response: Thanks for pointing this out. Ji et al. [15]

have combined public and private data in a different problem,
using a naive algorithm. They have a clever idea of only using the
public data to compute the Hessian matrix needed for Newton–
Raphson optimisation of logistic regression as this can be more
sensitive to the DP noise, but otherwise the algorithm is highly
suboptimal and the classification accuracy is not high. We have
now discussed this at the end of Background section.

http://www.nature.com/nbt/journal/v32/n12/fig_tab/nbt.2877_T1.html?foxtrotcallback=true
http://www.nature.com/nbt/journal/v32/n12/fig_tab/nbt.2877_T1.html?foxtrotcallback=true
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The authors propose and assess a novel feature map-
ping that clips extreme data values to specified bounds.
Together with adding noise to a set of sufficient statistics,
this yields a differentially private mechanisms (as shown
in a Supplement to an identically entitled arxiv deposition
of the authors). The analysis then proceeds to characterize
this approach, both in terms of the response to parameter
choices for the method as well as its properties for differ-
ent private and public data set sizes. Nicely, this clipping of
unusual data points reduces the amount noise that the dif-
ferentially private regression mechanism requires to meet
its privacy guarantees. The authors emphasize that while
the method performs better with more data as required,
they already obtain good results for realistic, reasonably
small data sizes. For sufficiently large private data sets,
the relative penalty for differential privacy begins to van-
ish. The authors take great care in determining method
parameters in a principled way, examining robustness,
and cross-validating their results. While the simulations
to determine an optimal privacy budget splice between
the different sufficient statistics may use data that look
different to ‘real’ data, this will not affect the validity of
the subsequent characterization of their method. If any-
thing, conclusions will be conservative. The real-world
data used for characterizing their approach make use of a
recent release of the Genomics of Drug Sensitivity in Can-
cer (GDSC) project, and thus an up-to-date and topical
use case is employed.
It might in addition also be interesting to see how

strongly performance varies for different kinds of data
and regression problems to examine the effects of domain
specific types of noise (more or less heavy tailed), biases
and correlations in the data, as well as the effects of the
dimensionality of the regressors.
Authors’ response: We have studied the performance of the

proposed method using synthetic data, both higher-dimensional
data and also using a Student’s t distribution with 1 degree of free-
dom, which has much heavier tails than the normal distribution.
We have included two figures in the Supplementary correspond-
ing to these two experiments. The outcome of these experiments
regarding the effect of bounding threshold on data samples is simi-
lar to results in the main text (Fig. 4), but with different curvatures.
The authors in conclusion raise the possibility of future

follow-up work on further improving the algorithm’s
promising performance on very small private data sets.
The authors largely evaluate performance for a privacy
parameter epsilon=2. Their Fig. 6c explores a range of
epsilon=1..3. While other methods have already been fail-
ing for higher epsilon=5, Wu et al. [17] have shown
promising regression results for epsilon as low as 0.1.
What do the authors observe for their approach for such
low privacy budgets and reasonable data set sizes (assum-
ing patient numbers are fixed within a range as shown in
Fig. 5)?

Authors’ response: We have compared with the method by
[17] (now [18]) in our experiments: output perturbed LR (the blue
curve in Fig. 5). Among the state-of-the-art differentially private
algorithms, the output perturbation technique by [18] is the most
accurate one, but it is still clearly inferior compared to the pro-
posed method. It is worth noting that [18] was able to achieve a
very low mean squared error (MSE) over parameters on a very dif-
ferent dataset. Our dataset is quite different and more challenging,
for example due to higher dimensionality. Our evaluation metric
corresponds to the one used in the DREAM challenge and is more
relevant to the task than MSE. We have included this discussion in
the “Results” section.
Further to Fig. 5, I was struck by the relatively low

correlation coefficients achieved (0.1..0.3) even without
guarantees of differential privacy. This contrasts with the
much higher values achieved in simulation ( 0.7, Fig. 3).
If that is to be expected for these data, is Spearman rank
correlation perhaps not an ideal measure for prediction
performance?
Authors’ response: We have considered the evaluation policy

by [25] to use wpc-index and Spearman’s rank correlation coeffi-
cient. We believe these metrics focus better on the task of distinguis-
ing between suitable and unsuitable drugs for a particular patient
instead of wasting modelling effort on predicting specific effective
concentrations. The updated manuscript uses both metrics more
evenly.
Finally, what are the authors’ thoughts regarding the

challenge of model inversion attacks with improvedmodel
quality, as also discussed by Wu et al. [17]? Do the
robustification / bounding steps potentially contribute to
alleviating this issue somewhat?
Authors’ response: From the study by Wu et al. [17] (now

[18]), it is evident that vulnerability to inversion attacks is cor-
related with the privacy budget. That is, with lower value of the
differential privacy parameter (ε) the model is more robust to
attacks. This is a major motivation for our work; to find maximally
accurate models that work with as small ε as possible. Detailed
study of model inversion attacks for drug sensitivity prediction is
an important topic for future work.
References [*] https://www.cnbc.com/2017/07/03/google

-deepmind-nhs-deal-health-data-illegal-ico-says.html [**]
Aldeen et al. A comprehensive review on privacy pre-
serving data mining. SpringerPlus. 2015, and Dwork
& Roth. The Algorithmic Foundations of Differential
Privacy. FnT-TCS. 2014 [***] Ji Z, Jiang X, Wang S, Xiong
L, and L Ohno-Machado. (2014) Differentially private
distributed logistic regression using private and public
data. BMC Medical Genomics 7, S14. Numbered cita-
tions are to references cited in the original manuscripts
itself.
Editorial and minor points: The manuscript should be

self-sufficient, so instead of citing the Supplement of their
identically titled arxiv deposition that provides further
methodological, I think it would be better if the authors

https://www.cnbc.com/2017/07/03/google-deepmind-nhs-deal-health-data-illegal-ico-says.html
https://www.cnbc.com/2017/07/03/google-deepmind-nhs-deal-health-data-illegal-ico-says.html
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could please add this information to the Additional file 1
or appendix of this manuscript.
Authors’ response: We have included the information as

Additional file 1 to the current paper.
Page 2 “symmetry between D and” → “similarity”? Page

3 “we can automatic differentiation” → “we can use ...”?
Please introduce variables and symbols on first use; it
may also be helpful for some readers to define the norm
“‖xi‖∞ = maxi(|xi|)” on page 7 Figures should be shown
and numbered in the order in which they are refer-
enced in the text. Currently, the second figure referenced
is Fig. 6.
Authors’ response:We have rectified all of the above issues.

Additional file

Additional file 1: Supplementary Information for “Efficient differentially
private learning improves drug sensitivity prediction”. (PDF 342 kb)
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