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Trade-offs in life-history traits are a central tenet in evolutionary biology, yet their ubiquity and relevance to realized

fitness of populations remains questioned. Trade-offs in pathogens are of particular interest because they may constrain

the evolution and epidemiology of diseases. Here, studies that have measured life-history trade-offs in pathogens (fungi,

oomycetes and viruses) of agricultural crops, as well as pathogens attacking wild host plants, are reviewed. The major-

ity of studies report a penalty associated with high virulence as is evidenced by lower performance during subsequent

life-history stages. However, costs are not pervasive, and the strength and even shape of life-history correlations can

vary according to host genotype, and abiotic environment. Importantly, life-history trade-offs are shown to have pro-

found epidemiological implications ranging from lower disease prevalence of strains harbouring unnecessary virulence,

to increased extinction risk at the metapopulation level. From an evolutionary perspective, costs of virulence are shown

to constrain the range of R genes, and hence host genotypes, a given strain can adapt to. Moreover, costs of virulence

play an important role in limiting the host range of pathogens. Hence, analysis of pathogen life history plays a key role

in identifying means of battling disease, from breeding durable resistance to epidemiological intervention strategies.
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Introduction

Variation in pathogen fitness is ubiquitous across multi-
ple spatial and temporal scales (Tack et al., 2012). The
observed variation in key traits that underlie host–patho-
gen interactions is puzzling. For pathogens, the ability to
infect hosts is the prerequisite of their survival and repro-
duction, and hence, high virulence should always be
favoured. Yet, pathogen populations typically contain
strains that are inferior in their pathogenicity traits com-
pared to other co-occurring strains (Tack et al., 2012).
Genetic variation in patterns of host susceptibility and
pathogen virulence and aggressiveness are essential
underlying factors influencing disease epidemiology
(Wolfe, 1985; Garrett & Mundt, 1999; Mundt, 2002;
Laine, 2004) and the emergence and spread of new dis-
eases (Parker & Gilbert, 2004; Friesen et al., 2006;
Fisher et al., 2012). Hence, understanding what pro-
cesses maintain diversity in host–pathogen interactions is
at the heart of finding sustainable means of battling dis-
ease.
The current understanding of the maintenance of vari-

ation in resistance and pathogenicity is largely based on
theoretical predictions. Antagonistic co-evolution
between hosts and pathogens has been invoked as a key
driver of biological diversity (Bergelson et al., 2001; Tian
et al., 2003). The gene-for-gene (GFG) framework has
been proposed as the genetic mechanism by which hosts
and pathogens interact. According to the GFG model,

each corresponding host resistance (R) gene interacts spe-
cifically with an avirulence (AVR) gene in the pathogen
to determine infection outcome (Flor, 1956). An elicitor
carried by an AVR-pathogen is recognized by the host
R-allele product, triggering local and systemic defence
responses in the host (Dangl & Jones, 2001). Plants that
lack the R gene are susceptible (r), and pathogens with a
modified AVR factor are virulent (avr). A key character-
istic of the GFG mechanism is universal virulence of the
avr-allele because it is capable of infecting both R and r
host genotypes. The GFG hypothesis stimulated a series
of deterministic theoretical models exploring how the
frequencies of resistance and virulence genes change over
time in host and pathogen populations, respectively
(reviewed in Laine & Tellier, 2008). A consistent feature
of these models is a high cost associated with virulence
(or resistance) that is required to maintain diversity (La-
ine & Tellier, 2008).
Costs of virulence arise from trade-offs between life-

history traits, whereby allocation of limited resources in
one trait has a negative impact on another trait, and it is
a generally accepted phenomenon in evolutionary biol-
ogy (Stearns, 1989). The trade-off model provides an
intuitive framework for explaining how adaptation of
populations to new environments may be constrained,
and how different life-history strategies evolve, depend-
ing on where limited resources are allocated (Maynard
Smith, 1966; Rausher, 1984; Roff, 1992). In GFG inter-
actions, a mutation from avirulence to virulence is
always associated with an increase in fitness in the pres-
ence of a matching R gene, as it enables the pathogen to
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survive and reproduce on a host genotype that was previ-
ously unavailable to the pathogen. As virulence often
evolves via mutational loss of function of genes that
would otherwise elicit a defence reaction of the host
(Vera Cruz et al., 2000), this advantage of malfunction-
ing can turn into a disadvantage if these genes also func-
tion during subsequent development of infection (White
et al., 2000; Leach et al., 2001; Luderer & Joosten,
2001; Skamnioti & Ridout, 2005). Vanderplank (1968)
advocated this mechanism to explain how virulence poly-
morphism can be maintained in pathogen populations
exposed to hosts with R genes.
Here, literature on plant–pathogen interactions is

reviewed to determine whether there is support for the
trade-off hypothesis in plant pathogens. More specifically,
this review aims to: (i) describe how fitness costs are mea-
sured in plant pathogens; (ii) quantify the types and extent
of costs that have been detected in various pathosystems;
(iii) assess whether costs are fixed, or whether their
expression is mediated by hosts or abiotic environmental
conditions; and (iv) examine what the evolutionary and
epidemiological consequences of such costs are.

Literature search

Studies from the literature were gathered by browsing
the ISI Web of Science database using a combination of
search terms such as ‘fungus’, ‘virus’, ‘plant’, ‘cost’,
‘trade-off’, ‘aggressiveness’, ‘virulence’ or ‘infectivity’.
Additional studies were collected by screening references
of key papers on the same topic, and by checking papers
citing these key articles. Reviews and theoretical articles
were discarded, resulting in 31 studies that were relevant
for the present paper. The following information was
extracted from each study: (i) host and pathogen species
name, (ii) the measured traits (virulence, aggressiveness,
spore production/viral content, size of lesion, latent per-
iod, transmission success rate and other traits), and (iii)
whether some evidence of trade-off between different
pathogen traits was detected in the study. These data are
compiled into Table 1. The cost of avirulence genes on
fitness of bacterial plant pathogens has been reviewed by
Leach et al. (2001) and is therefore not included in this
study. Overall, 24 pathogen species (and formae specia-
les) were considered on 19 different plant hosts. Some
pathosystems have been studied for different trade-offs,
as for example the interaction between Solanum tubero-
sum and Phytophthora infestans which has been investi-
gated for the relationship between virulence and a fitness
measure accounting for several pathogen life-history
traits (Montarry et al., 2010), and for the relationship
between overwintering and aggressiveness (Montarry
et al., 2007). The same type of trade-off has been investi-
gated for different pathogen species colonizing the same
host species. For example, studies of Puccinia graminis f.
sp. tritici (Grant & Archer, 1983), Puccinia triticina
(Kolmer, 1993) and Puccinia striiformis f. sp. tritici
(Bahri et al., 2009) infecting Triticum aestivum provide
contrasting results regarding trade-offs.

Defining pathogen traits and trade-offs

To prevent confusion in terminology, the definitions in
this review are explicitly spelled out here. Virulence is
defined in line with the original GFG framework,
whereby virulence is the ability of a pathogen to over-
come host resistance; aggressiveness is the extent of dam-
age to the host (often used also to convey transmission
capacity; Pariaud et al., 2009). Specific life-history stages
describe the extent of within-host growth (e.g. latent per-
iod, spore production). Some studies have further con-
structed fitness measures based on the measured
pathogen life-history stages corresponding to the basic
reproduction number (R0) in mathematical and evolu-
tionary epidemiology (e.g. Montarry et al., 2010).
Studies that have investigated trade-offs can be divided

into two main categories. The first category (14 studies)
explores trade-offs between virulence and other fitness
traits of the pathogen. The majority of these studies
involve fungal species (nine articles), followed by viral
pathogens (four studies) and one study concerns an
oomycete species. The second category (seven studies)
measures the trade-off between pathogen between-host
transmission and aggressiveness, although in two studies
(Pag�an et al., 2007; Agudelo-Romero et al., 2008) the
transmission rate is only indirectly estimated by measur-
ing the viral content. Four of these studies investigate
this trade-off for viral species, two articles deal with
oomycete species and one involves a fungal pathogen.

Measuring fitness costs

The most common method for assessing life-history
trade-offs in plant pathogens is through controlled inocu-
lation experiments. Inoculation studies can be divided
into two groups: (i) studies that estimate the relative fit-
ness of genotypes with avr or AVR alleles in experiments
under controlled conditions without detailed knowledge
of the genetic background (e.g. Thrall & Burdon, 2003),
and (ii) studies that compare infection components in
near-isogenic pathogen isolates (Bahri et al., 2009;
Huang et al., 2010; Montarry et al., 2010) or using
strains that have been genetically characterized (Montarry
et al., 2010). Control of the genetic background effect can
also be fulfilled by using a genome sequencing approach
(Desbiez et al., 2003) or by crossing isolates that contrast
in their virulence and testing the progeny for fitness costs
of unnecessary virulence (Bronson & Ellingboe, 1986;
Kolmer, 1993). In addition to inoculation of strains alone,
competition experiments have been employed to detect
virulence trade-offs (e.g. Bahri et al., 2009).
It is well established that infection development may

strongly depend on both host genotype and the abiotic
environment (Salvaudon et al., 2008; Wolinska & King,
2009). Hence, whilst there may be evidence for negative
correlations within a particular environment, correlations
can shift when pathogens encounter different environ-
mental conditions (van Noordwijk & de Jong, 1986;
Sgr�o & Hoffmann, 2004). Several studies have accounted
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for this by measuring the shape of trade-offs across dif-
ferent host genotypes (Susi & Laine, 2013) and abiotic
gradients (Huang et al., 2010). Moreover, monitoring
changes in avr gene frequencies in field populations of
pathogens yields direct evidence for how trade-offs may
impact on epidemiological dynamics. Variation in fitness
detected in the laboratory does not always reflect the
degree of variation expressed under field conditions.
Under natural conditions, stress can increase the genetic
variance in fitness, whilst controlled laboratory condi-
tions may mask underlying variation (Sgr�o & Hoffmann,
2004). For example, in P. striiformis f. sp. tritici, field
assays revealed even stronger fitness differences between
the competing isolates than measurements under con-
trolled conditions (Bahri et al., 2009).
Molecular biology provides powerful tools for quanti-

fying pathogen levels in the host (e.g. RNA quantifica-
tion; Fraile et al., 2011), for controlling for relatedness
between strains (Montarry et al., 2010), and for follow-
ing the relative performance of strains in competition
experiments (strain-specific qRT-PCR method; Jenner
et al., 2002a). Serological tests have also been used for
quantifying viral levels in the infected host (Desbiez
et al., 2003).

Fitness costs of virulence under controlled
conditions

Many of the studies that measured fitness costs of viru-
lence also found evidence for such costs. In P. striiformis
f. sp. tritici, a pairwise competition experiment of near-
isogenic genotypes that differed by a single virulence fac-
tor (vir4, vir6 and vir9) revealed that two out of three
virulence factors imposed substantial fitness costs in the
absence of the corresponding resistance genes. The most
probable cause of this competitive disadvantage is a
reduction in the ability to develop on the host and pro-
duce spores and, at least for the vir9 virulence gene,
direct evidence confirms a cost to sporulation (Bahri
et al., 2009). In the pepper-infecting tobamoviruses, fit-
ness penalties of virulence were also confirmed experi-
mentally. Multiplication rates in singly infected
susceptible hosts were significantly higher for the aviru-
lent isolate (P0) than for the virulent isolates, and in
competition experiments, pathotype P0 isolates were
competitively superior (Fraile et al., 2011). A reduction
in spore production of virulent strains has also been
detected in Melampsora lini infecting wild flax (Thrall &
Burdon, 2003).
Fitness costs of virulence have also been documented

for a range of other life-history traits. In Leptosphaeria
maculans, there is a measurable fitness cost for avrLm1
compared to AvrLm1 isolates in terms of number of
lesions, size of lesions, distance grown through leaf tissue
towards the petiole in controlled experiments and sys-
temic growth from leaf lesions to stems in field experi-
ments. It has also been shown in this pathosystem that
fitness costs of virulence alleles varied for different AVR
genes (Huang et al., 2006, 2010). In P. infestans, fitness

was assessed by combining several life-history traits
(latent period, spore density and lesion growth rate) mea-
sured on leaflets of the potato cultivar Bintje, which
lacks resistance genes. A statistically significant fitness
cost was found in isolates virulent to the R10 resistance
gene. Similar trends, although not statistically significant,
were observed for the other genes tested (Montarry
et al., 2010). A high cost to competitiveness was detected
in Potato virus Y (PVY) on host plants devoid of Pvr4
resistance (Janzac et al., 2010).

Fitness costs of other pathogen life-history
traits

Whilst costs of virulence are among the most studied,
there is also evidence for trade-offs in other life-history
stages in plant pathogens (Table 1). In Zucchini yellow
mosaic virus, the aggressive mutants were more fit than
wildtype strains in mixed infections of tolerant zucchini,
but they presented a drastic fitness loss in mixed infec-
tions of susceptible zucchini or melon. Thus, aggressive
variants may be selected against in susceptible crops
(Desbiez et al., 2003). In PVY, adaptation to quantitative
resistance was associated with a fitness cost (virus con-
centration) on the susceptible cultivar, but had no effect
on aggressiveness, which could be explained by a high
tolerance level, or on aphid transmission efficiency
(Montarry et al., 2012). Doumayrou et al. (2013) con-
firmed, in accordance with the classical trade-off hypoth-
esis, a positive correlation between transmission and
aggressiveness in Cauliflower mosaic virus. However, no
correlation was found between within-host accumulation
of the pathogen and aggressiveness or transmission. This
is probably a result of the existence of two groups of
strains with very different within-host accumulation pro-
files. In P. infestans, no trade-off was detected between
isolate aggressiveness and overwinter survival of infected
tubers. This suggests that the relative frequency of
aggressive strains should gradually increase in P. infe-
stans populations, unless a trade-off occurs at another
stage of the life cycle (Montarry et al., 2007).
In Arabidopsis thaliana, Hyaloperonospora parasitica

infections that sporulated more rapidly (short latent per-
iod) transmitted spores less well, revealing a phenotypic
trade-off between these important life-history traits. This
phenotypic trade-off may help explain how variation is
maintained in the latent period in nature (H�eraudet
et al., 2008). A similar genetic trade-off was identified in
the interaction between P. triticina and wheat (Pariaud
et al., 2013). Interestingly, in this pathosystem the rela-
tionship between latent period and spore production var-
ies depending on the host genotype. A positive
correlation between virus multiplication and aggressive-
ness was found in the A. thaliana–Cucumber mosaic
virus interaction for a small number of the accessions
analysed (Pag�an et al., 2007). This finding supports the
classic trade-off hypothesis whereby within-host parasite
multiplication has negative consequences on host fitness,
and hence aggressiveness is an unavoidable consequence

Plant Pathology (2013) 62 (Suppl. 1), 96–105

100 A.-L. Laine & B. Barr�es



of parasite growth and reproduction (Anderson & May,
1982). Other studies have not detected this trade-off
(Sacrist�an et al., 2005; Salvaudon et al., 2005).

Condition-dependent fitness costs

Given that disease expression is determined by pathogen
genotype, host genotype, the environment and their inter-
action – as summarized in the disease triangle (Stevens,
1960) – it is not surprising that host genotype and abi-
otic environment impact on the shape and direction of
life-history correlations in pathogens. A number of stud-
ies have found that, whilst there may not be evidence of
a general trade-off, strong fitness costs of pathogens are
detected on some host genotypes (Salvaudon et al., 2005;
Pag�an et al., 2007; H�eraudet et al., 2008; Huang et al.,
2010). Hence, there is a need to use a range of plant
genotypes to detect pathogen fitness costs that may be
rare or even absent on some genotypes (Huang et al.,
2010; Pariaud et al., 2013). In the interaction between
Plantago lanceolata and its powdery mildew, Podosphae-
ra plantaginis, Susi & Laine (2013) found that trade-offs
are mediated by adaptation to the host. Positive correla-
tions between virulence and subsequent life-history stages
were detected on sympatric host plants, but on allopatric
hosts these correlations disappeared and even became
negative. Together, these results imply that the trade-off
hypothesis should not be discarded for any particular
pathosystem unless sufficient genetic variation of both
the host and the pathogen has been included in the
experimental design.
It is well known that temperature is one of the key

external determinants of infection development, and that
pathogen genotypes may differ in their sensitivity to vari-
ation in ambient temperature (Laine, 2007). Huang et al.
(2010) demonstrated that in L. maculans there were dif-
ferences in the optimal temperature range for leaf infec-
tion between AvrLm1 and AvrLm4 isolates, with the
optimal temperature range for leaf infection being 15–
25°C for AvrLm4 isolates and 10–20°C for AvrLm1 iso-
lates. These results are supported by a field experiment.
The increase of frequency of AvrLm4 isolates between
the leaf infection stage in autumn and the stem canker
stage before harvest was greater in a hotter growing sea-
son (2002/03) than in a cooler one (2003/04), suggesting
that AvrLm4 isolates may be more fit than avrLm4 iso-
lates at higher temperatures. Hence, global warming may
impact on disease epidemiology and evolution indirectly
by changing the shape of pathogen life-history correla-
tions (Evans et al., 2008).

Pathogen local adaptation and host
specialization

Adaptation to host genotypes

No parasite exploits all potential host species. Many, if
not most, parasites are further restricted in their host
range to particular host populations, and even individual

host genotypes. Two different levels of host range limita-
tions by parasites have received much attention: special-
ization on particular species (Futuyma & Moreno, 1988;
Joshi & Thompson, 1995) and local adaptation on par-
ticular populations (Hoeksema & Forde, 2008; Tack
et al., 2012). Both patterns may be the consequence of
adaptation to particular host genotypes, and they may
arise if there are trade-offs in performance on different
host species or populations (Rausher, 1984).
Adaptation to specific host genotypes is expected to

arise via a co-evolutionary arms race of host defence and
parasite counterdefence. Parasites are expected to have the
upper hand because of their larger population sizes,
shorter generation times and higher mutation and migra-
tion rates compared to their hosts. Hence, parasites are
usually expected to be locally adapted to sympatric hosts
(Dybdahl & Storfer, 2003; Kawecki & Ebert, 2004).
There is considerable support for parasite local adaptation
(for reviews, see Hoeksema & Forde, 2008; Tack et al.,
2012). Whilst local adaptation via major gene interactions
has received considerable attention, far less is known
about the ability of pathogens to adapt to quantitative
polygenic plant resistances, and the consequences of these
potential adaptations on other pathogen life-history traits.
Using PVY and two pepper genotypes (one susceptible and
one with quantitative resistance), an experimental evolu-
tion study showed that adaptation to quantitative resis-
tance was possible and resulted in resistance breakdown.
This adaptation was associated with a fitness cost on the
susceptible cultivar (Montarry et al., 2012).

Host range

Adaptation to multiple hosts has important implications
both for applied and basic research. In recent years,
emerging diseases have represented an important threat
to agriculture (Anderson et al., 2004). Host specializa-
tion represents the reduction in the number of potential
host species on which a parasite can successfully survive
and reproduce. It is widely accepted that adaptation to a
specific host is often coupled with fitness losses in alter-
native ones (Fry, 1996), and understanding how patho-
gen life-history trade-offs constrain pathogen host ranges
is critical for understanding conditions that enable host
shifts. Results of an experimental evolution study of
Tobacco etch virus demonstrate how trade-offs constrain
adaptation. Lineages evolved in novel hosts experienced
substantial increases in virulence and virus accumulation
in sympatry, but suffered reduced virulence and virus
accumulation in the ancestral host. By contrast, lineages
evolved in the ancestral host did not increase virulence
or viral load on either host (Agudelo-Romero et al.,
2008). Colletotrichum lindemuthianum is a fungal patho-
gen of two bean species, Phaseolus vulgaris and Phaseo-
lus coccineus. An inoculation study comparing infectivity
and aggressiveness on local versus allopatric plant–fun-
gus combinations revealed that, for the two fitness traits,
a positive correlation between the degree of specializa-
tion and the degree of local adaptation was found,
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suggesting that host specialization can be reinforced by
local adaptation (Sicard et al., 2007).

How costs impact on epidemiological dynamics

Given the penalties of virulence on other life-history
traits affecting disease transmission, selection should be
expected to eliminate unnecessary virulence from patho-
gen populations and favour strains with avr genes that
match the resistance structure of their host population
(Vanderplank, 1968). Several studies of agricultural
pathosystems support this hypothesis. In tobamovirus
populations, virulence-associated costs were supported
by field data of pathotype frequencies, with the fre-
quency of virulent types decreasing when the specific
pathogenicity was unnecessary (Fraile et al., 2011). In
line with predictions of trade-offs maintaining diversity
in the presence of resistance (Vanderplank, 1968), higher
genetic diversity of the more pathogenic pathotypes was
favoured in the presence of resistance alleles but not
when most of the host population was susceptible in the
field populations (Fraile et al., 2011). When the relative
fitness of the Turnip mosaic virus (TuMV) isolate UK 1
was compared with more virulent wildtype isolates CZE
1 and CDN 1, the UK 1 outcompeted the virulent iso-
lates in a mixture of susceptible hosts. The observed
greater fitness of UK 1 suggests that there may be a fit-
ness cost to TuMV overcoming resistance genes of bras-
sica crops. This may explain the frequency of naturally
occurring isolates, in that pathotype 1 isolates are found
much more frequently than isolates of other pathotypes
(Jenner et al., 2002b). Potentially strong selections
against unnecessary virulence, as evidenced by decreased
frequencies under field trials, have also been reported for
other pathosystems (Leach et al., 2001; Sacrist�an &
Garc�ıa-Arenal, 2008; Bahri et al., 2009).
Far less is known about how trade-offs may impact on

disease dynamics in natural populations. The trade-off
between virulence and spore production in M. lini (Thrall
& Burdon, 2003) may explain why populations domi-
nated by particularly infectious strains had lower disease
prevalence than populations dominated by avirulent
strains (Thrall et al., 2012). Powdery mildew P. plantagi-
nis persists as a highly dynamic metapopulation in a large
network of host populations of P. lanceolata (Laine &
Hanski, 2006; Soubeyrand et al., 2009). Susi & Laine
(2013) found that positive correlations between virulence
and subsequent life-history traits measured on sympatric
host plants became negative on allopatric hosts. The epide-
miological prediction of this change in life-history rela-
tionships in allopatry is lower disease prevalence in newly
established pathogen populations. This was confirmed by
an analysis of the natural pathogen metapopulation: dis-
ease prevalence was lower in newly established pathogen
populations and they were more prone to go extinct dur-
ing winter than older pathogen populations. Hence, life-
history trade-offs mediated by pathogen local adaptation
may influence epidemiological dynamics at both popula-
tion and metapopulation levels.

No fitness costs detected – why?

While numerous examples of fitness costs to virulence
and other life-history traits have been described in this
review, in many other cases the detection of measurable
fitness costs has failed. The fitness of the most virulent
Plasmopara viticola strain was not reduced even on the
most susceptible host, suggesting that no costs are asso-
ciated with virulence (Toffolatti et al., 2012). In the fun-
gal pathogen, Mycosphaerella graminicola, experiments
demonstrated that the reproductive fitness and virulence
of strains were not correlated (Zhan et al., 2002).
Unnecessary virulence alleles did not affect fitness of
Blumeria graminis f. sp. tritici (Bronson & Ellingboe,
1986). In addition to not finding correlations, some stud-
ies have even detected positive relationships between
pathogen virulence and subsequent life-history traits.
Montarry et al. (2010) found that the latent period was
shorter in virulent isolates of P. infestans. Similar trends,
although not statistically significant, were observed for
the other genes tested (Montarry et al., 2010). In four
out of five C. lindemuthianum populations studied, posi-
tive values of local adaptation for both infectivity and
aggressiveness were observed, although these correlations
were not significant (Sicard et al., 2007). In P. plantagi-
nis, life-history traits were positively correlated on sym-
patric host genotypes, while on allopatric hosts trade-
offs appeared.
These findings either suggest that such costs can be

low in some pathogens, or that these pathogens evolved
compensatory mechanisms to restore the fitness of viru-
lent genotypes. Such compensatory mechanisms have
been proposed for P. infestans populations collected in
French potato production areas where, despite the
absence of local selection by the corresponding R genes,
the same complex virulence phenotypes dominate (Mon-
tarry et al., 2010). Bahri et al. (2009) also propose that
virulence alleles are not selected against because costs are
compensated for in the yellow rust pathogen P. striifor-
mis. Alternatively, given how condition-dependent trade-
offs are (see previously), it is possible that trade-offs may
be at play during field epidemics, but the range of abi-
otic/biotic variation that may impact on their expression
is absent from the experimental design. One important
biotic component that may strongly impact on disease
development, and hence expression of costs, is co-infec-
tion. It is becoming increasingly clear that many diseases
occur frequently as co-infections (L�opez-Villavicencio
et al., 2007; Tollenaere et al., 2012), and hence studying
individual strains may fail to capture how disease pro-
gresses under field conditions (cf. Zhan et al., 2002).
Competition experiments employed by some of the stud-
ies reviewed here (Jenner et al., 2002a; Desbiez et al.,
2003; Bahri et al., 2007; Janzac et al., 2010; Fraile
et al., 2011) allow the disentanglement of how co-infec-
tion may impact on trade-offs in pathogens.
Finally, while this review has not tested for publica-

tion bias, it is possible that studies that do not find
evidence of virulence costs are less likely to have been
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published than studies that support the trade-off
hypothesis.

Conclusions

Virulence costs are considered major ingredients of the
co-evolutionary process because they can prevent all-vir-
ulent pathogen genotypes from going to fixation, and
thereby preserve genetic diversity in pathogen popula-
tions. Moreover, as demonstrated here, pathogen life-his-
tory trade-offs play a major role in determining the
evolutionary trajectories of pathogens, as they constrain
the range of host genotypes and host species which
pathogens may adapt to. Costs of virulence are also
revealed during the spread of epidemics, as unnecessary
avr genes impact on disease dynamics at both within-
population as well as metapopulation levels.
The problem of R gene breakdown following patho-

gen adaptation, and the increasing threats imposed by
emerging and re-emerging diseases, place the study of
virulence costs at the heart of both basic evolutionary
biology and its applications. A mechanistic understand-
ing of these costs is required for the development of
predictive models and the design of prevention strate-
gies to control emerging disease outbreaks. The discov-
ery that temperature may impact on the expression of
trade-offs in pathogens suggests that climate change
may impact on disease threats in ways that are more
complex than what current models predict (Caubel
et al., 2012). To date, the results of life-history costs in
pathogens are highly variable, and hence, establishing
direct links between the fundamental axes of life-history
variation, their expression under variable conditions
and documenting realized epidemiological dynamics
offers an exciting future avenue of research, and is
needed to truly validate the relevance of the trade-off
theory for pathogens.
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