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Summary

1. The rapid advancement in genome sequencing techniques allows the dissection of complex traits of non-

model organisms of importance in evolutionary biology, conservation genetics, breeding and medicine. This

advancement requires new statistical analysis tools that can handle large amount of sequencing data efficiently.

2. We propose an analytic Bayesian implementation of the mixed linear model which allows rapid and robust

inferences of heritability. The twomain features of the method are (i) breeding values and residual variance com-

ponent are analytically integrated out of themodel and (ii) the parameter space of the variance ratio parameter is

discretized so that a Gibbs sampling distribution can be utilized. We propose further two separate methods to

infer breeding values that acknowledge uncertainty of the learned heritability. The benefit of the method com-

pared to a standard Markov Chain Monte Carlo (MCMC) method is visualized on public data sets: two simu-

lated data sets and oneWheat (Triticum aestivumL.) pedigree.

3. Results show that while the accuracy of inferred heritability obtained by the proposed and standard

methods are almost identical, the computational performance is very encouraging: up to hundred fold speed up

and the possibility to make parallel implementation is particularly appealing here, which may further speed up

computations.

4. The method allows analysis using a non-invertible relationship matrix so that ad hocmanipulation is avoided

which can be important as our results imply.We completely avoid convergence andmixing problems here: this is

a well-known problem ofMCMC simulation, which sometimes can severely reduce the inferential power. Bayes

factors for model comparisons can be conveniently calculated as a by-product of the inference procedure. The

source code will be available for download at http://www.rni.helsinki.fi/�mjs.

Key-words: analytic Bayesian inference, Bayes factors, breeding value, complex trait analysis,

Gibbs sampling distribution, Markov Chain Monte Carlo, mixed-effects models, SNP, Triticum

aestivum

Introduction

One fundamental population parameter of interest in ecology,

in medical genetics, in breeding and conservation genetics, and

in evolutionary biology is heritability (Lynch & Walsh 1998;

Visscher, Hill & Wray 2008). In a population under study, if

heritable genetic variation underlies the trait of interest, a

response to natural or artificial selection is expected. This will

alter the distribution of phenotypes in the population so that

changes due to selection are passed on to future generations.

Changes in selection pressure could, for example, involve eco-

logical factors such as climate changes which, in turn, can have

evolutionary implications.

Statistical methods for estimating heritability (and breeding

values, BV) have therefore received much attention in the

quantitative genetic literature (Meuwissen, Hayes & Goddard

2001; Sorensen & Gianola 2002; Thompson 2008; Sillanp€a€a

2011). One example of a convenient and popular method is the

animal model, which has been utilized during many decades in

the field of animal breeding (Henderson 1975, 1984; Wang,

Rutledge &Gianola 1993). The animal model (i.e. a mixed lin-

ear model) combines individual phenotypic records with pedi-

gree and/or genetic marker information to infer parameters of

interest. Typically, the pedigree information is incorporated

into the form of the additive genetic relationship matrix, AP

(subscript P stands for pedigree), which is included as a covari-

ance matrix in the mixed model analysis. Either, pedigrees are

known as in controlled breeding designs or inferred indirectly

based on genetic marker data through relatedness estimators*Correspondence author. E-mail: mjs@rolf.helsinki.fi
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(Ritland 2000; Pemberton 2008; Riester, Stadler & Klemm

2009). Recently, there has been a rise in the use of animal mod-

els to analyse data collected from wild populations (Kruuk

2004; Brommer, Rattiste & Wilson 2008; Frentiu et al. 2008).

Another area of application is genomewide association studies

where the animal model has been used to correct false-positive

association due to cryptic relatedness in the analysed popula-

tion (Yu et al. 2006; Aulchenko, de Koning & Haley 2007;

Kang et al. 2010) and to infer the ‘missing’ heritability from

associated SNPs (Yang et al. 2010; Golan & Rosset 2011; Si-

llanp€a€a 2011).

The Bayesian paradigm has recently gained popularity in

complex trait studies (Gianola & van Kaam 2008; Gasbarra

et al. 2009;Crossa et al. 2010;Hallander et al. 2010; Steinsland

& Jensen 2010; Mathew et al. 2012). An appealing property of

Bayesian methods is that parameter uncertainty is naturally

incorporated in the analysis. Since a probabilistic framework is

adopted, output is given as probability distributions which are

easy to interpret and credible regions can directly be obtained

without the need for making asymptotic assumptions. To

obtain estimated marginal posterior distributions of the

unknown parameters in the statistical model, a class of power-

ful methods named Markov Chain Monte Carlo (MCMC)

have been successfully employed (Gilks, Spiegelhalter & Rich-

ardson 1995). To draw inferences in animal models, MCMC

methods have been widely used since the early/mid-1990s, for

example, the standard additive polygenic model (Wang,

Rutledge & Gianola 1993), the non-additive genetic model

(Waldmann et al. 2008;Mathew et al. 2012), interaction mod-

els such as genotype by environment (Bauer et al. 2009). One

particular advantage of Bayesian inference methods in animal

model frameworks is that scale and location parameters are

jointly inferred and uncertainty is thus acknowledged, as

opposed to the frequentist counterpart, wheremaximum likeli-

hood estimates of variance components are first obtained and

then used as though the point estimates were the true values, to

obtain best linear unbiasedprediction (BLUP)ofBV (Sorensen

& Gianola 2002). In addition, there is no need to find good

starting values as required in restricted maximum likelihood

(REML) techniques which might have an impact on the con-

vergence of the algorithm (Piepho et al. 2012).

Recent breakthroughs in molecular genetics have made

dense marker panels available in many non-model species of

interest to ecologists (Santure et al. 2010), breeders (Resende

et al. 2012) and human geneticists (International HapMap

Consortium 2007). These marker panels can be utilized to infer

genomic relationships in the animal model framework by esti-

mating the realized or genomic relationship matrix, AG

(denoted G in VanRaden 2008), to be used in place of AP, as

for example shown by VanRaden (2008), Daetwyler et al.

(2010) and Resende et al. (2012). The elements in AG contain

the realized proportion of the genome that is identical by des-

cent (IBD) between pairs of pedigree members. Estimating this

proportion of IBD requires sufficientmarker coverage of geno-

typed individuals. Even though the idea of using dense marker

panels in animal models is very promising, some hurdles

remain to be overcome.

First, the required computational time is unfortunately mas-

sive. Most traditional methods for drawing inferences in ani-

mal models rely on sparse solvers, since most entries in the

pedigree-derived A�1
P are zero (Henderson 1984). With the

introduction of dense marker panels, however, most pairwise

relationships in A�1
G will be nonzero, making sparse matrix

techniques unpractical and slow from a computational per-

spective, as computing the likelihood requires substantial

efforts (Legarra & Misztal 2008). Truncating relationships

close to zero in A�1
G would increase sparseness but at the

expense of introducing biases (i.e. an ill-defined, non-convex

likelihood surface) and numerical instability which could cause

convergence problems. When applying MCMC methods to

draw inferences, in particular, the standard single-site Gibbs

sampler (Sorensen&Gianola 2002), the high posterior correla-

tion may in some case cause mixing problems and thus prevent

converge of the MCMC. This problem may require a large

number of iterations which typically is time-consuming. In

addition, estimation of posterior distribution based on

MCMC sampling is done from dependent samples which may

have reduced accuracy (due to low effective sample size) when

there is lot of dependence among the samples (i.e. for

non-sparse data).

Secondly, standard pairwise relationship estimation meth-

ods may cause AG to be singular and therefore non-invertible.

This makes mixed model analysis problematic and ad hoc

methods might be needed to make the matrix invertible which,

in turn, might lead to biased genetic parameter estimates. Van-

Raden (2008) suggested that a small proportion of AP, which

is always invertible for known pedigrees, could be added toAG

to avoid the singularity problem. One obvious drawback,

apart from the possible introduction of bias, is that pedigrees

are seldom known in wild populations and AP is, therefore,

not available. Alternative strategies to avoid singularity have

been proposed, such as ridge regression or G-BLUP (Piepho

2009), variable transformations (Piepho et al. 2012), matrix

bending techniques (Maenhout, DeBaets & Haensert 2009)

and reducing the rank by spectral decomposition (Frentiu

et al. 2008). Although these approaches have shown to

improve numerical stability, they result in approximate infer-

ences (matrix bending and reduced rank decomposition) or

depend on user input (i.e. fine tuning of input in ad hocmanip-

ulation). Piepho et al.’s (2012) suggestion of a transformation

of the random genetic effects, which makes it possible to infer

the heritability without inverting the original relationship

matrix (Waldmann et al. 2008), results in exact inference, as

well as the ridge regression technique. The problem of develop-

ing models to infer heritability for non-definite relationship

matrices in a computationally efficient way requires more

attention.

The aim of the current paper is to develop a rapid method

for analysing large marker data of quantitative traits and

make inferences of BV and heritability. The presented method

consists of two main steps: first, location parameters and the

residual variance component are analytically integrated out of

the likelihood. The range of values for the remaining parame-

ter (a ratio of genetic and residual variance) is discretized so
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that a discrete fully conditional (Gibbs sampling) distribution

can be rapidly calculated for obtaining posterior probabilities

at different values of the variance ratio, which is proportional

to the heritability of the pedigree. BV can then be obtained as

a second step by standard sampling-basedMCMC procedures

and uncertainty in inferred heritability is taken into account.

In order to visualize the improvement in speed of the

developed model, two simulated pedigrees and a real

Wheat pedigree, previously published by Lund et al. (2009),

Meuwissen & Goddard (2010; shown in Appendix S1) and

Crossa et al. (2010) with dense marker maps available, are

analysed and results are compared with those obtained from

a traditional MCMC method (Sorensen & Gianola 2002)

and a REML method (Meyer 2007). We show how a model

selection analysis can be executed in order to evaluate com-

peting genetic relationship structures (shown in Appendix S2).

Additional sensitivity analyses are shown in Appendix S3.

Finally, the two random effects case is shown in Appendix S4

for joint inference of heritability and dominance genetic

proportion.

Materials andmethods

STATIST ICAL MODEL

WithGaussian assumptions, wemade use of the following linearmixed

effectmodel

y ¼ Xbþ Zuþ e; eqn 1

where y is a vector of size n 9 1 containing phenotypic records of a

continuous trait for all members in the population. Following the

Bayesian view (Sorensen & Gianola 2002, pp. 313), fixed effects are

treated as random and are considered to have distributional assump-

tions. Thus, b is a vector of size p 9 1 containing systematic environ-

mental effects (i.e. fixed effects) that follows a multivariate normal

distribution with zero mean vector, and prior covariance matrix Br2b,
whereB is a non-singular unscaled covariance matrix of size p 9 p and

r2b is the scale parameter. Here,Br2b is treated as known. u is a vector of
size n 9 1 containing genetic effects that follow a multivariate normal

distribution with zero mean vector, and covariance structure AGr2u,
whereAG is the genomic relationship matrix of size n 9 n and r2u is the
genetic variance component. Known incidence matrices X and Z are

relating phenotypic records to respective location parameters included

in (1), and e is a vector containing independent residual errors that fol-

low a multivariate normal distribution with zero mean vector, and

covariance structure Ir2e , where I is the identity matrix of order n.

Throughout the paper, we will use the one genetic (random) effect case

in all equations, but it is straight forward to generalize the model to

handle multiple random effects. See Appendix S4 for how two random

effects could be handled to rapidly infer heritability and dominance

genetic proportion for the realWheat pedigree.

In the present paper, we propose a two-step approach for rapid infer-

ence of the parameters in the animalmodel (1). If y is assumed to follow

a Gaussian distribution, with e identically and independently distrib-

uted, according to Sorensen & Gianola (2002), the resulting likelihood

function is

pðyjb; u; r2eÞ ¼ ð2pÞ�n=2r�1
e

exp � 1

2r2e
ðy� Xb� ZuÞTðy� Xb� ZuÞ

� �
:

eqn 2

The joint posterior density of all unknown parameters is proportional

to the likelihood multiplied with the prior distribution of the unknown

parameters in the hierarchical model according to

pðb; u;r2b; r2u;r2e jyÞ / pðyjb; u;r2eÞpðbjr2bÞpðujr2uÞpðr2bÞpðr2uÞpðr2eÞ
eqn 3

In order to derive a more parsimonious model, one trick is to perform

marginalization of (3), where both b and u can be treated as nuisance

parameters and, consequently, be integrated out from the hierarchical

model (Searle, Casella & McCulloch 1992). The following marginal

density can then be obtained

pðr2b;r2u; r2e jyÞ ¼
Z

pðb; u;r2b;r2u; r2e jyÞdbdu / pðr2bÞpðr2uÞpðr2eÞZ
pðyjb; u;r2eÞpðbjr2bÞpðujr2uÞdbdu:

eqn 4

Here, proper prior distributions for b and u need to be specified, such

as bjB;r2b �MVNð0;Br2bÞ and ujAG;r2u � MVN ð0;AGr2uÞ: integra-
tion over these distributions are one. The integration over the likeli-

hood function results in

pðyjRÞ ¼
Z

pðyjb; u;r2eÞpðbjr2bÞpðujr2uÞdbdu

¼ ð2pÞ�n=2 detðRÞ�1=2 exp � 1

2
yTR�1y

� �
;

eqn 5

where R ¼ XBXTr2b þ ZAGZ
Tr2u þ Ir2e . This likelihood function

(5) does not contain b and u and is similar to that presented by several

authors (Sorensen & Gianola 2002, pp. 313–316; Aulchenko, de

Koning & Haley 2007). In the corresponding REML likelihood, BV

are marginalized and fixed effects are made orthogonal (i.e. having no

influence), which is an analogous operation (Thompson 2008). The

obtained joint posterior distribution can bewritten as

pðr2b; r2u;r2e jyÞ / pðyjr2b; r2u;r2eÞpðr2bÞpðr2uÞpðr2eÞ: eqn 6

Here, we assume that the analyst will pre-specify the prior variance of

systematic environmental effects so that pðr2bÞ ¼ 1.

ANALYTIC INTEGRATION OF RESIDUAL VARIANCE

COMPONENT FROM THE LIKEL IHOOD

Gasbarra et al. (2009) showed how to integrate r2e out of the likeli-

hood of a model of the form y � MVN(0,Σ) (O’Hagan & Forster

2004, Ch. 11). We assign an inverse gamma prior to r2e , which is a

convenient choice, since this prior is the conjugate prior distribution

for the normal variance (Gelman et al. 2004). In the present paper,

the covariance matrix, Σ, can be rewritten as

R ¼ r2eðXBXT r
2
b

r2e
þ ZAGZ

T r
2
u

r2e
þ IÞ ¼ r2eR

H: eqn 7

For simplification, let ku ¼ ðr2eÞ=ðr2uÞ and kb ¼ ðr2eÞ=ðr2bÞ so that

R ¼ r2eR
H ¼ r2eðXBXTk�1

b þ ZAGZ
Tk�1

u þ IÞ. The heritability h2

can be expressed as a function of ku by combining h2 ¼ ðr2uÞ=ðr2pÞ,
ku ¼ ðr2eÞ=ðr2uÞ and r2p ¼ r2u þ r2e , which gives

h2 ¼ 1

ð1þ kuÞ : eqn 8

FollowingGasbarra et al. (2009), the likelihood is obtained as

pðyjRHÞ ¼ ð2pÞ�n=2 detðRHÞ�1=2 ða=2Þd=2Cððdþ nÞ=2Þ
ðaH=2ÞðdþnÞ=2Cðd=2Þ

; eqn 9

© 2013 The Authors. Methods in Ecology and Evolution © 2013 British Ecological Society, Methods in Ecology and Evolution, 4, 1037–1046
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where aH ¼ a þ yTðRHÞ�1
y, a and d are hyperparameters of the

inverse gamma prior for r2e and Γ(.) is the gamma function.We assume

that k�1
b is a constant having a large value (i.e. k�1

b ¼ 1000), which

reflects uninformative prior knowledge of group level effects as

r2b � r2e . Throughout the analysis, the k
�1
b is kept constant: this guar-

antees a uniform prior which resembles what is assumed for fixed

effects in a classic REML analysis. In making this assumption, we

assume in addition that k�1
b and k�1

u are mutually independent. A simi-

lar assumption was made by Gasbarra et al. (2009) for QTL and poly-

genic variance ratios. Hence, the only unknown parameter left in our

model is ku, and the corresponding joint posterior distribution is

pðk�1
u jyÞ / pðyjk�1

u Þpðk�1
u Þ: eqn 10

CALCULATING DISCRETE GIBBS SAMPLING

DISTRIBUTION FOR LAMBDA

In order to speed up the genetic analysis, parameter space of k�1
u is dis-

cretized on a finite number of categories in the range of interest. As we

only have one unknown parameter in the model (k�1
u ), the Gibbs sam-

pling distribution equals directly the posterior distribution. Bayesian

inference of ku is given by Bayes theorem, where the posterior probabil-

ity of the jth single category can bewritten as

pðk�1
u; jjyÞ ¼

pðyjk�1
u; jÞpðk�1

u; jÞPN
k¼1 pðyjk�1

u; kÞpðk�1
u; kÞ

; eqn 11

where N is the total number of categories in the range of k�1
u (i.e.

RANGEðk�1
u Þ ¼ ½pðk�1

u;1jyÞ; pðk�1
u;2jyÞ; . . .; pðk�1

u;NjyÞ�). All N probabili-

ties are computed so that a discrete posterior distribution is obtained

for ku. The denominator of (11), themarginal likelihood, is the normal-

izing constant, which is an important part in Bayesian model selection

(Kass &Raftery 1995). In Appendix S2, we show a simple approach to

comparemarginal likelihoods of competingmodels.

We used the following prior probability: pðk�1
u Þ � Uð0; 4Þ, which

corresponds to a range of h2 covering most applications in quantitative

trait analysis (0 � h2 � 0�8). Note that if h2 ! 1, k�1
u ! 1. In

Appendices S3 and S4, we show an alternative discretization of h2

directly, which allows the entire parameter space to be evaluated (i.e.

0 � h2 � 1�0). Conditional posterior probabilities are obtained by

combining the likelihood (9) and prior U(0,4) using (11). In order to

calculate detðRHÞ, standard formulas were used (Golub & van Loan

1996).

INFERENCES OF POSTERIOR DISTRIBUTION FOR

LOCATION PARAMETERS

The posterior distribution of location parameters, h ¼ ½b; u�T, is amix-

ture distribution according to

pðb; ujk�1
b ; yÞ ¼ pðb; ujk�1

b ; k�1
u ; 1 ¼ lu; yÞpðk�1

u ; 1 ¼ lujyÞ
þ pðb; ujk�1

b ; k�1
u ; 2 ¼ 2lu; yÞpðk�1

u ; 2 ¼ 2lujyÞ þ . . .þ
þ pðb; ujk�1

b ; k�1
u ;N ¼ Nlu; yÞpðk�1

u ;N ¼ NlujyÞ;
eqn 12

where lu is the bin size for k�1
u (equal bin size is assumed here, but see

Appendix S3 for a model with assigned prior on h2, which results in

unequal bin size for k�1
u ), pðk�1

b jyÞ ¼ 1 and is omitted from (12). Note

that pðb; ujk�1
b ; yÞ is marginalized over k�1

u in (12). The posterior mean

of the above mixture distribution (12) can be obtained by the following

set of equations (i.e. the Bayesian version of Henderson’s mixed model

equations)

XTXþ B�1kb XTZ

ZTX ZTZþ A�1
G ku;i

� �
b

u

� �
¼ XTy

ZTy

� �
; eqn 13

where index i refers to the ith bin in the discrete lambda distribution.

The coefficientmatrix on the left hand side in (13) is denotedC. In addi-

tion, the solution of linear system (13) provides the mean of the fully

conditional posterior distribution of the location parameters (Sorensen

& Gianola 2002). As k�1
b is set to an arbitrary large constant (vague

knowledge of group level effects), we only need ku;i; i ¼ 1. . .N, in order

to obtain posterior mean of b and u. Thus, to obtain conditional expec-

tations (CE) of b and u, the approach is fully Bayesian and no approxi-

mations is introduced. To obtain the predicted error variance (PEV) of

each location parameter, we need to introduce approximations into

our approach, since the posterior distribution of the error variance

component, r2e , is needed (i.e. needs to be separated from r2u in k�1
u ).

First, we need an estimate of the group level effect, b̂, which can be

obtained using ordinary least square (OLS) technique: b̂ ¼ ðXTXÞ�1

XTy (Lynch & Walsh 1998, p. 200). Then, we estimate the empirical

phenotypic variance using r̂2y ¼ ðy� Xb̂ÞTZAGZ
Tðy� Xb̂Þ=ðn� 1Þ

and compute the posteriors of genetic and residual variance as

r2u ¼ h2r̂2y and r2e ¼ r̂2y � r2u. As this step does not involve the poster-

ior distribution of r2y and b, but point estimates, this is an empirical

Bayes estimation step. Furthermore, we acknowledge that OLS

estimates can be sensitive to small pedigree sizes, unbalanced mating

designs in artificial populations and presence of selection bias. PEV is

calculated by extracting the diagonal of the inverted coefficient matrix,

C�1, in (13) andmultiply it withr2e .Wewill denote thismethod, to infer

posterior distribution for location parameters, CE.

If the full posterior of BV is of inferential interest, anMCMCGibbs

sampler could be applied. By estimating the posteriors of r2u and r2e , as
mentioned above, we would utilize (12) as a mixture distribution for

obtaining the estimated posterior p(h|y) after replacing k�1
u and k�1

b

with the corresponding scale parameters. The only parameters to be

updated in the model are the location parameters, as posteriors of the

scale parameters are already estimated (through k�1
u , where r2u and r2e

needs to be separated by an OLS estimate of r2y as above). The condi-
tional posterior distribution of the location parameters is obtained

from Sorensen & Gianola (2002) as hjr2u;r2e ; y � MVNðĥ;C�1r2eÞ.
Since samples are drawn from the discrete posterior (Gibbs) distribu-

tion whichmakes parameters independent, we do not need any burn-in

and only a small to moderate number of MCMC iterations is needed:

the size of the chain is proportional to the inverse of the standard errors

caused by the Monte Carlo procedure. The number of MCMC itera-

tions was 5000 throughout the study. We denote this approach

blMCMC, which stands for blockedMCMC. It should be pointed out

that this approach is not fully Bayesian as it involves the point estimates

of r2y and b. Note that we re-estimate b by solving (13).

REFERENCE PARAMETER ESTIMATION METHODS

We implemented both the standard single-site Gibbs and the blocked

Gibbs sampler, as shown in Sorensen & Gianola (2002). In single-site

sampling, each parameter is drawn from its fully conditional posterior

distribution, ½hijh�i; r2u;r
2
e ; y�, where h�i is a vector containing all loca-

tion parameters except hi. The two variance components r2u and r2e are
drawn from scaled inverted chi-squared distributions and are assumed

to be conditionally independent of the location parameters h ¼ ½bT;
uT�T. The implemented single-site algorithm is described in Sorensen &

Gianola (2002, pp. 566–570). Here, the chains were run for 225 000

iterations with a thinning of 10 and a burn-in of 25 000 leaving the final

Markov chain to 20 000 samples. In blocked Gibbs sampling, h is

jointly drawn in a blockedwise way, hjr2u;r2e ; y given previously

© 2013 The Authors. Methods in Ecology and Evolution © 2013 British Ecological Society, Methods in Ecology and Evolution, 4, 1037–1046
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sampled values of r2u and r2e , which are separately drawn (Garcia-Cor-

tes & Sorensen 1996). Our implementation differ from the algorithm

suggested by Garcia-Cortes & Sorensen (1996; Sorensen & Gianola

2002, pp. 587–588) in that ĥ are obtained by a direct method using

Cholesky decomposition instead of an iterative method, where inver-

sion ofC is avoided. For example, inWaldmann et al. (2008), a Conju-

gate gradient iterative method was implemented to obtain ĥ in the

blocked sampling step, which is likely to be faster than the current

implementation. For blocked sampling, the chain was run for 25 000

iterations with a thinning of 2 and a burn-in of 5000 samples which

results in a chain of 10 000 samples. The heritability was computed as a

function of the MCMC for the variance components as h2 ¼ ðr2uÞ=
ðr2u þ r2eÞ. The standard MCMC was used for timing comparisons as

the Bayesianmethodswere implemented using the same numerical rou-

tines for solving equation systems (CLAPACK) and written in the same

programming language (ANSI C).

Furthermore, in order to verify the results obtained with our imple-

mented Bayesian methods, we made use of the publicly available soft-

ware package WOMBAT (Meyer 2007). WOMBAT fits linear mixed effect

models through REML. In all comparisons between the REML and

Bayesian methods, we used identical group level factors and relation-

ship structures in the animal model.

ANALYSED SYNTHETIC DATA 1

In the present study, we have analysed two simulated pedigrees, typical

for animal breeding stocks, where the first datawere published byLund

et al. (2009) and are freely available on http://www.computationalge-

netics.se/QTLMAS08/QTLMAS/DATA.html. In total, 5865 pedigree

members from seven generations were simulated, where both pedigree

and phenotype information are available of individuals for the first to

the fourth generation and SNP data are available for all individuals.

The trait was controlled by 48 QTLs, and 6000 SNPs were covering six

chromosomes at a distance of 0�1 cM between markers (i.e. 1000 SNPs

per chromosome). The simulated heritability of the pedigree was

h2 ¼ 0�3. The genomic relationship matrix was computed using the

second method proposed by VanRaden (2008). The observed allele

frequencies (pi) from the first generation in the current population

(i.e. the first 165 pedigree members as ordered in the pedigree file) were

used in the calculations. SNP genotypes are coded as 1, 0 and �1 for

the first arbitrary homozygote (i.e. allele value 2 in the data file), hetero-

zygote and second arbritrary homozygote, respectively. Because the

resulting AG was not positive definite and, hence, non-invertible, we

added a small fraction of the pedigree-derived relationship matrix, AP,

so that AH
G ¼ 0�99AG þ 0�01AP (VanRaden 2008). As fixed effect,

the sex of eachmember was used.

ANALYSED WHEAT DATA 2

The real data set is a collection of 599 historical CIMMYT Wheat

(Triticum aestivum L.) lines included in the global wheat breeding pro-

gramme and previously published by Crossa et al. (2010). The pheno-

type analysed here was the 2-year average grain yield of each of these

lines, standardized to a unit variance. For simplicity, we averaged the

phenotypes over four different environments. In total, 1279 Diversity

Array Technology (DArT) markers were available in the analysis after

removingmarkers withminor allele frequency< 0�05 (i.e. 1447markers

prior to exclusion). Thesemarkers are binary, denoted by their presence

(1) or absence (0) in the genome. In addition, the pedigree of the breed-

ing population was available so that the additive relationship matrix A

among the 599 lines could be computed (see http://cropwiki.irri.org/

icis/index.php/TDM_GMS_Browse). The realized relationship matrix

AG was calculated based on the DArTmarkers using the samemethod

as in the aforementioned examples. However, in order to make AG

invertible, we added a fraction of AP: A
H
G ¼ 0�99AG þ 0�01AP, as

when analysing the example data 1. The statistical model used was the

same as in the analysis of data set 2: y = 1l + u + e, although the

dimension of vectors y, 1, u, e was 599 9 1. Crossa et al. (2010)

obtained a average point estimate of h2 ¼ 0�353 averaged over the

four environments.

Results

ANALYSED SYNTHETIC DATA 1

Table 1 shows summary statistics obtained from the analysis

of pedigree 1 using both the analytic and standard MCMC

Gibbs sampling approaches. Here, we report h2 directly and

not k�1
u , as point estimates are straight forward to calculate

using (8). Our posterior point estimates of h2 and their 95%

credible interval (CI) regions closely agreed with those

obtained by the standard Gibbs samplers for 100, 250 and

1000 bins. This finding is strengthened by the low level of Kull-

back–Leibler (K–L) divergence (Kullback & Leibler 1951) of

the inferred posteriors and almost equal correlations of mean

posteriors of BV to true breeding values (TBV), as reported in

Table 1 and seen in Fig. 1. Note that all sets of bins gave

almost identical results, in particular mean and the standard

deviation of inferred posterior of h2 and correlations with both

obtained by standard Gibbs samplers and the TBV. Hence, in

the current example, there is no need to usemore than 100 bins

to span the parameter space of h2. In addition, to obtain

inferred BV, both suggested approaches (i.e. CE) and blocked

MCMC (blMCMC), resulted in equal correlations to both

TBV and posterior mean of BV obtained by single-site

MCMC. The estimated h2 obtained by the REML method

and results reported by Strand�en & Christensen (2011) agreed

closely to themean of inferred posterior obtained by the Bayes-

ian approaches. The blockedGibbs sampling method was very

computationally intense but resulted in similar point estimates

as the single-site method.

The computational time required for both approaches var-

ied greatly depending on the number of bins in the analytic

approach. For 100 bins, the analytic approach outperformed

the single-siteMCMCby a factor of 25- to 4-fold reduced com-

putational time at the same accuracy. For 1000 bins, however,

the required computational time was marginally better for the

analytic approach. The inference method to obtain estimates

of BV resulted in similar computational time, although CE

seemed more beneficial for a fewer number of bins, where-

as blMCMC seemed favoured by a larger number of bins.

Reducing the number of MCMC iterations in blMCMC from

5000 to 1000 slightly reduced the correlationwith TBV: for 100

bins, corðBV1000;TBVÞ ¼ 0�863 compared to corðBV5000;

TBVÞ ¼ 0�865 (Table 1). On the other hand, the computa-

tional time was much reduced: t1000 ¼ 47�30 min compared

to t5000 ¼ 136�33 min. All analyses were carried out on an

Intel(R) Core(TM)2 Duo CPU processor (2�26 GHz) with
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3 MB of RAM. Further sensitivity analysis is shown in

Appendix S3. The impact of prior assumptions on estimated

posterior distributions is shown in Fig. S1. Results of the

analysis of the second simulated data set are shown in

Appendix S1.

Table 2 shows effective sample sizes (ESS; Kass et al. 1998),

that is, sample size adjusted for autocorrelation and autocorre-

lations of the obtainedMCMC using the standard Gibbs sam-

plers. The difference in ESS and autocorrelation was

dependent on the pedigree size, where the smallest pedigree

resulted in the best mixing and lowest level of autocorrelation

between samples in the MCMC. The MCMC analysis of data

set 1, however, resulted in low ESS and considerable autocor-

relations. The convergence statistics was calculated within the

R packages CODA (Plummer et al. 2006) and boa (Smith

2007).

ANALYSED WHEAT DATA 2

Summary statistics of inferred posterior distributions for h2

and BV on the analysed data set 2 is shown in Table 3. The

performances of the analytic and the standard MCMC

approaches were similar in terms of accuracy of inferred

parameters. The posterior mean of h2 obtained with the ana-

lytic method was, however, slightly higher than corresponding

point estimates obtained with MCMC and REML. On the

other hand, the K–L divergence between inferred posteriors of

h2 was very low, for example close to zero. Furthermore, the

correlation between posteriormean of BV obtained by analytic

andMCMCmethods was practically one. Worth noting is the

relatively poormixing and lowESS of the chains obtainedwith

the standard methods, both for single-site and blocked sam-

pling, as seen in Table 2. The standard blocked MCMC sam-

pler required about 30–60 and three times more computational

time compared to the time required by the analytic and single-

site Gibbs sampler, respectively.

A low number of bins (i.e. 20) was needed to obtain the same

accuracy as with, for example, 1000 bins. As a result, the

required computational time of the analytic method was much

less: up to 100-fold of the computational time required by the

standardMCMC. Accurate point estimates of both h2 and BV

are obtained after approximately 6 s, which was even faster

than the REMLmethod. The precision was, however, reduced

in the 20 bin case due to the large bin size (i.e. wider 95% credi-

ble region). To infer point estimates of BVs, the computational

time required by the CE approach was much less, when the

number of bins were either 20 or 100, than required by the

blMCMC approach. The opposite was found when analysing

1000 bins: the blMCMC approach outperformed the CE

approach. An extensive sensitivity analysis is shown in

Fig. 1. Correlations of mean of inferred breeding values (BV) and true

breeding values (TBV) in data set 1 obtained with analytic and stan-

dard Markov Chain Monte Carlo approaches. The black circles are

correlations obtained by the analytic approach using conditional

expectations to infer BV. The red circles are obtained by the single-site

Gibbs sampling method. The line corresponds to a one to one relation-

ship of inferred and true BV.

Table 1. Analysed data 1

Model nbins

Heritability Correlations Computational time

Mode Mean SD 95%CI K–L

cor

(BV,

TBV)

cor

(BVA,

BVSM) DtC DtM th2 tBV;C tBV;M

Analytic 100 0�351 0�351 0�022 [0�296, 0�383] 0�013 0�865 1�000 155�83 207�05 70�62 85�21 136�43
Analytic 250 0�347 0�351 0�022 [0�304, 0�391] 0�014 0�865 1�000 359�76 297�13 155�79 203�97 141�34
Analytic 1000 0�348 0�351 0�022 [0�307, 0�394] 0�020 0�865 1�000 1346�80 773�80 552�10 794�70 221�70
MCMC1 – 0�351 0�347 0�023 [0�304, 0�391] – 0�863 – – 1630�76 – – –
MCMC2 – 0�350 0�348 0�023 [0�302, 0�394] – 0�863 – – � 37 days – – –
REML – 0�348 – – – – 0�865 – – – – – –

Summary statistics of inferred h2 obtained from analysis of data set 1,MCMC1 andMCMC2 are the single-site and blocked Gibbs sampling meth-

ods, respectively, nbins is the number of bins of h2, SD is the standard deviation, CI is the credible interval, K–L is the Kullback–Leibler divergence
of inferred posteriors of h2 obtained from analytic and standardMCMCmethods. Correlation between inferred breeding values (BV) using the vari-

ous Bayesian and restricted maximum likelihood (REML) approaches, and true breeding values (TBV) is denoted as cor(BV, TBV). Correlation

between inferred BV using the analytic approach and standard single-site Gibbs sampler is denoted cor(BVA, BVSM) for both conditional expecta-

tions (CE) and blMCMC inferencemethods, as bothmethods resulted in equal correlations. The total computational time for the analytic approach

with either CE or blMCMC is denoted DtC and DtM, respectively. The computational time for the heritability estimation, CE and blMCMC to

obtain inferred BVs is denoted th2 , tBV;C and tBV;M. All time units are given inminutes. The parameter range of h2 is between 0 and 0�8.
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Appendix S3. The impact of prior assumptions on estimated

posterior distributions is shown in Fig. S2. A two random

effects case with additive and dominance genetic effects is

shown inAppendix S4.

Discussion

New sequencing techniques allows obtaining genomewide,

dense marker maps for not only model species but also species

of interest to ecologists, conservation geneticists and breeders.

The amount of data is expected to increase rapidly in the near

future which, in turn, will require efficient and powerful statis-

tical inference methods in order to facilitate learning of param-

eters of interest. We have presented a novel Bayesian approach

for analysing complex traits and drawing inferences in animal

models. There are two major advantages of the proposed

approach compared to standard MCMC approaches. First,

the computational burden is reduced, sometimes considerably

so, on the data analysed here. Second, convergence is not a

concern here, which sometimes can be very problematic in

standard MCMC, in particular, if single-site updating of the

parameters is performed. Obtained results are very encourag-

ing: we obtain practically identical results as obtained with

standard MCMC and REML approaches over two simulated

example pedigrees and a Wheat pedigree with dense marker

maps available. Sensitivity analyses suggest that the proposed

method is robust to various prior assumptions on the inverse

lambda, which is proportional to the heritability. The straight

forward way to incorporate prior information on the heritabil-

ity, either indirectly via k�1
u or directly, highlights the benefit of

the approach over REML and, to some extent, over standard

MCMC approaches. Such prior information could for exam-

ple be obtained from a meta-analysis for the trait and species

under consideration.

It should be pointed out, though, that we used two standard

MCMC sampling implementations, via the Gibbs sampler, as

a reference samplers, which is often utilized for drawing infer-

ences in animal models (Sorensen & Gianola 2002). However,

there exist more efficient MCMC implementation methods

that reduce the computational burden by avoiding searching

the entire parameter space. These adaptive MCMC methods

make use of gradient information to propose a new parameter

proposal density, as for example the Langevin–Hastings algo-

rithm (Roberts & Tweedie 1996). In a comparative study on

the efficiency of various MCMC updating strategies on three

real pedigrees, Waagepetersen, Ib�anêz-Escriche & Sorensen

(2008) found that Langevin–Hastings reduced computational

time and suggested a joint Langevin–Hastings and normal

Table 2. MarkovChainMonteCarlo (MCMC) autocorrelation

Method Data Pedigree size Missing values ESS Lag 1 Lag 5 Lag 10 Lag 50

MCMC1 1 5865 1200 685�1 0�804 0�594 0�458 0�088
MCMC2 1 5865 1200 434�2 0�891 0�623 0�431 0�002
MCMC1 2 599 0 924�5 0�643 0�388 0�286 0�073
MCMC2 2 599 0 641�0 0�844 0�514 0�283 �0�012
MCMC1 3 700 0 3255�5 0�549 0�206 0�085 �0�001
MCMC2 3 700 0 1523�1 0�722 0�231 0�063 �0�011

Statistics onMCMC convergence of the analysed pedigrees where ESS is the effective sample size, Lag is the time lag of the thinnedMCMC chain.

Single-site updating method is denoted MCMC1, while blocked sampling method is denoted MCMC2. In total, 225 000 iterations were simulated

in each chainwhere the first 25 000were discarded and every 10th saved, leaving the size of the chain to 20 000. ForMCMC2, 25 000 iterations were

simulated where the first 5000 iterations were discarded and every 2nd saved leaving the size of the chain to 10 000.

Table 3. Analysed data 2

Model nbins

Heritability Correlations Computational time

Mode Mean SD 95%CI K–L cor(BVA, BVSM) cor(BVA, BVML) DtC DtM th2 tBV;C tBV;M

Analytic 20 0�333 0�351 0�059 [0�091, 0�474] 0�061 1�000 1�000 0�11 0�94 0�04 0�07 0�90
Analytic 100 0�333 0�351 0�059 [0�231, 0�462] 0�045 1�000 1�000 0�39 1�04 0�12 0�27 0�92
Analytic 1000 0�341 0�350 0�059 [0�232, 0�462] 0�050 1�000 1�000 3�62 2�26 0�94 2�68 1�32
MCMC1 – 0�330 0�333 0�059 [0�216, 0�447] – – – 18�06 – – – –
MCMC2 – 0�342 0�335 0�060 [0�216, 0�454] – – – 57�12 – – – –
REML – 0�339 – – – – – – – – – – –

Summary statistics of inferred h2 obtained from analysis ofWheat data set 2, where nbins is the number of bins of h2, SD is the standard deviation,

CI is the credible interval, K–L is the Kullback–Leibler divergence of inferred posteriors of h2 obtained from analytic and single-site MCMCmeth-

ods. Single-site updating method is denotedMCMC1, while blocked sampling method is denotedMCMC2. Correlation between inferred breeding

values (BV) using the analytic approach and single-site Gibbs sampler and restricted maximum likelihood (REML) is denoted cor(BVA, BVSM) and

cor(BVA, BVML), respectively, for both conditional expectations (CE) and blMCMC inference methods, as both methods resulted in equal correla-

tions. The total computational time for the analytic approach with either CE or blMCMC is denotedDtC andDtM, respectively. The computational

time for the heritability estimation, CE and blMCMC to obtain inferred BVs is denoted th2 , tBV;C and tBV;M. All time units are given in minutes. The

parameter range of h2 is between 0 and 0�8.
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approximation scheme based on Taylor expansion for both

saved computing time and maintaining small autocorrelations

throughout the estimation procedure. Other, related appro-

aches have been proposed that approximate the posterior

distribution using the Laplace approximation method and,

thereby, avoid using MCMC simulation (Hofer & Ducrocq

1997). See also the suggested method by Steinsland & Jensen

(2010) and a recent, user-friendly implementation of the

Laplace approximation method: the animal-INLA package

(Holand et al. 2013). One drawback with the Laplace appro-

ximation method, compared to ours, is that if the posterior

distribution is multimodal, maximization procedure will find

only a single mode and approximation with a normal distribu-

tion might severely bias credible regions and result in errone-

ous inference. Similar problems arises with classic REML

methods for unidentifiable likelihood functions.

Another major advantage with our approach in terms of

computational efficiency has not been utilized here, but is likely

to increase the efficiency of the approach. Each bin calculation

of the likelihood is independent, so that an analyst could, for

example, infer lambda inverse in which order of bins one pre-

fers, as opposed to MCMC where the parameter state in one

iteration is dependent on the state in the previous iteration, as

parameters are drawn from conditional posterior distributions.

The advantage, from a computational efficiency point of view,

is that the analysis could be parallelized on a multiple core

computer so that bin calculations are divided and executed on

separate threads. In doing so, the total computational time

required could be further reduced, probably considerably so,

depending on the hardware available and the size of the

analysed pedigree. This multicore computing procedure is

often proposed for regularMonte Carlo or resampling simula-

tions, where a large number of independent iterations need to

be executed.

A major issue with using regular MCMCmethods is identi-

fying when convergence of the chain is reached and howmany

samples are needed to ensure drawing from the stationary con-

ditional posterior distribution. High conditional posterior cor-

relations might introduce heavy dependencies in the chain

which results in poormixing. Typically, aGibbs samplermight

get stuck in a small subspace of the entire parameter space for

a large number of iterations. As a result, massive computa-

tional efforts are needed to reduceMC errors to acceptable lev-

els and to obtain a good estimation of the marginal posterior

distributions of all parameters of interest. This is a particular

issue with the single-site Gibbs sampler, implemented as refer-

ence sampler here, where high levels of autocorrelation and

low effective sample size were obtained. A blocked implemen-

tation of the Gibbs sampler, also implemented as a reference

sampler here, where all parameters in the model are updated

jointly (Garcia-Cortes & Sorensen 1996), has been shown to

improve mixing and reduce the autocorrelations. On the other

hand, the blocked sampler tends to be computationally expen-

sive as the large linear system of equations needs to be repeat-

edly solved. In order to implement an efficient Gibbs sampler,

both in terms of computational speed and mixing properties,

Waldmann et al. (2008) combined the single-site and blocked

samplers into a hybrid sampler and reparameterized the ran-

dom additive and dominance polygenic effects. Although the

resulting sampler reduced the computational time compared

to a pure block sampler and improved the mixing property

compared to the single-site sampler, the required computa-

tional effort was still massive. By our approach introduced

here, the convergence andmixing problems are avoided.

In an animal model framework, the inverse of the realized

relationship matrix, AG, is needed in order to infer heritability

and BV. In practice, obtaining the inverse may not be feasible

due to introduction of dependencies among columns inAG (i.e.

multicolinearity) which causes non-positive definiteness. This

problem might arise, for example, if AG has been calculated

based on too few markers, if clones or monozygotic twins are

present in the pedigree, the choice of allele coding and if depen-

dencies of marker profiles are present (Frentiu et al. 2008;

VanRaden 2008; Strand�en & Christensen 2011; Piepho et al.

2012). Themethod proposed here does not needAG to be posi-

tive definite, as diagonal elements are added to calculate RH.

Thus, the heritability can be learned based on the exact AG,

and no ad hocmethods are needed to make AG invertible. We

investigated the impact of using the exact AG on estimated

posterior of h2 compared to results obtained with the modified

AH
G and found conflicting pattern: in the analysed data set 1,

point estimates of h2 agreed closely, whereas a large discrep-

ancy of point estimates were found in the analysedWheat data

set. These results might reflect the difference in population size

and marker coverage of the analysed data, influencing the out-

come of the relationship estimator used here, which has been

proposed by Frentiu et al. (2008) and Sillanp€a€a (2011). Hence,

the problem of non-positive definiteness of the covariance

matrixmight bemore important in applications where the cov-

erage of themarkermap is not perfect and the size of the analy-

sed pedigree is small. Further test are needed to examine the

impact of marker density and pedigree size, preferably by anal-

ysing simulated data with known parameter values. Another

possible explanation to the obtained differences in inferred

parameters might be the use of the relationship estimator in

the artificial Wheat population. As the population consists of

variety lines, a deficiency of heterozygotes could bias estimated

relationships.

It is common, in animal model applications, that multiple

random terms are included in the linear model. For example,

maternal effects arise when the phenotype of the mother influ-

ences the phenotype of her offspring in addition to the additive

effect and non-additive genetic effects which introduces nonlin-

ear dependency between phenotypes and genotypes due to the

interactions within and between loci (Lynch & Walsh 1998;

Hallander & Waldmann 2007). Typically, these additional

effects are efficiently modelled within the animal model frame-

work as random effects (e.g. Lynch &Walsh 1998; Sorensen &

Gianola 2002; Kruuk 2004). In Appendix S4, we have shown

how two random effects can efficiently be handled in the

proposed approach to infer the joint posterior distribution

of two lambda parameters, proportional to the heritability

and the dominance genetic proportion, respectively. Although

we did not include the breeding value inference step, the
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computational efficiency of our approach in the two random

effects case seems encouraging. Further improvements in com-

putational efficiency could involve discretizing the parameter

space of k in two steps: one initial analysis where few bins are

utilized and a second analysis where new bins are introduced

near the bin having maximum posterior value. For multiple

random components, efficient search algorithms, such as the

simulated annealing technique, could help to find maximum

posterior value of each k. Furthermore, for models with a large

number of location parameters, and particular for low to med-

ium number of phenotypic observations, a well-known prob-

lem of MCMC inference is parameter identifiability and high

posterior correlation among inferred parameters (Sorensen &

Gianola 2002; Gelman et al. 2004; Waldmann et al. 2008). In

such situation, our approach will benefit from avoiding con-

vergence problems which, in turn, can result in more accurate

and robust learning of genetic parameters and reduced compu-

tational time. To handle multiple random effects with our sug-

gested approach and extend analysis to inference of BV (and

the additional location effects) needs further investigation in

the future.
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