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—— Abstract

We formulate and analyze a novel seed-driven algorithm SeedHam for PPM learning. To learn
a PPM of length ¢, the algorithm uses the most frequent /-mer of the training data as a seed,
and then restricts the learning into the f-mers of training data that belong to a Hamming neigh-
bourhood of the seed. The PPM is constructed from background corrected counts of such ¢-mers
using an algorithm that estimates a product of ¢ categorical distributions from a (non-uniform)
Hamming sample. The SeedHam method is intended for PPM learning from large sequence
sets (up to hundreds of Mbases) containing enriched motif instances. A variant of the method
is introduced that decreases contamination from artefact instances of the motif and thereby al-
lows using larger Hamming neighbourhoods. To partially solve the motif orientation problem in
two-stranded DNA we propose a novel seed finding rule, based on analysis of the palindromic
structure of sequences. Test experiments are reported, that illustrate the relative strengths of
different variants of our methods, and show that our algorithm outperforms two popular earlier
methods.

Availability and implementation: A C++ implementation of the method is available from
https://github.com/jttoivon/seedham/
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1 Introduction

Position probability matrix (PPM), introduced by Stormo et al [13, 12], is a simple prob-
abilistic model for motifs in biological sequences. PPM represents a product of mutually
independent categorical variables, and it is currently the most popular representation, for
example, of the DNA motifs for binding sites of transcription factors (collected in motif
databases such as Transfac [18] and Jaspar [11]) as well as of motifs in RNA and in pro-
tein sequences. Besides PPMs, several other representations of sequence motifs have been
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proposed, most of them being various generalizations of the consensus sequence of a motif.
Motif representations and their discovery from sequence data is surveyed, e.g., in [9, 14].

In this paper we formulate and analyze a seed-driven algorithm SeedHam for PPM
learning. Seed-driven means that a selected seed sequence is used as a starting point of a
search that constructs the PPM by analyzing the segments of training data which are similar
to the seed. This is in contrast with the well-known alignment method to learn a PPM of
length ¢. This method takes a collection of f-mers, that are supposed to be (somehow verified)
instances of the motif, and aligns the -mers which gives ¢ columns of bases A, C, G, and
T. The frequency of each base on each column is counted which gives a position frequency
matrix of size 4 x . When normalized column-wise, this matrix gives the probability matrix
f for the motif. Assuming that the collection of /-mers is an unbiased sample from the
distribution of the motif instances and assuming mutual independence of different positions
of the motif, this very simple procedure gives an unbiased estimate of motif distribution.

While verified samples of motif instances are not easily available, there is currently lots of
sequence data in which instances of motif(s) are enriched within longer background sequences.
Such sequence sets are produced, for example, by high-throughput SELEX [5, 8, 15] or by
variants of ChIP-seq [10]. It is possible to learn PPMs from such sequences, by analyzing
their over-represented /-mers that are considered instances of the motif. This is what we do
in our seed-driven approach to learning PPMs.

We assume that the training data D for learning a PPM is a collection of one or several
DNA sequences that contain a relatively high number of instances of the target motif X.
Different instance variants should be present in D according to the probability distribution
to be learned but the exact locations of the instances within D are not known. The rest of
D outside the motif instances is assumed neutral background (although in practice it may
contain instances of some other motifs).

Our method locates plausible motif instances in D using the following rule. A most
frequent f-mer s of D is taken as the seed. Here the motif length ¢ is a user-given constant.
Then s as well as the f-mers of D within a short Hamming distance d from s are taken
as instances of the target motif X. Using background corrected counts of such ¢-mers we
estimate a PPM that represents X. The aforementioned simple alignment method cannot
be used as such because the restriction to a Hamming neighbourhood yields a non-uniform
sample of the target distribution.

Our algorithm, called SeedHam, does not contain an iterative search. It is therefore very
fast and can learn from large high-throughput sequence sets. An early version of SeedHam
method was used for learning PPMs from HT-SELEX sequence sets [5]. Here we present
a complete formal definition of a general version of the algorithm as well as extensions for
correcting self-overlaps and how to decide the orientation of the motif in two-stranded case.
The ’seed-and-wobble’ procedure [2] independently developed for the analysis of protein
microarray data is analogous to (restricted) SeedHam.

Learning a PPM is complicated by two issues of combinatorial nature. First, if motif X
is strongly self-similar, then D may contain lots of artefact instances that overlap the true
instances of X [3]. We give an instance elimination technique and associated background
correction that decrease contamination from artefacts. Second, in two-stranded DNA the
orientation of instances has to be decided. If the Hamming neighbourhoods with radius d
of s and its reverse complement 5 do not intersect, we get a heuristic rule for deciding the
orientation. We show that if the so-called palindromic index of the seed is large enough, then
the neighbourhoods become separate for a given d. Algorithm SeedHam+ finds a seed that
has high-enough palindromic index at the expense of having sub-maximal count.
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The experimental tests illustrate relative strengths of different variants of our methods.

We demonstrate the algorithms’ capacity to relearn the PPM from simulated data that
contains implanted instances of the motif represented by the PPM. The experiments show
that the accuracy depends on the Hamming radius d such that the optimal d increases when
motif length ¢ increases but decreases when the number of training instances increases.

We compared our methods experimentally with two earlier algorithms, DREME [1] and
DECOD [4]. Both are seed-driven, discriminative PPM learning methods that start from
a seed and make a heuristic search (beam search in DREME and hill-climbing search in
DECOD) to find a PPM that maximizes the discriminative power of the motif to separate
between positive and negative training data sets. In a large majority of cases, SeedHam and
SeedHam+ relearned the PPM from generated data more accurately than the two other
methods.

The paper is organized as follows. After preliminaries in Section 2, Section 3 gives
the basic SeedHam algorithm and its artefact eliminating variant. Section 4 introduces
palindromic index and its application in selecting orientation, implemented in algorithm
SeedHam+. Experimental tests are reported in Section 5.

2 Preliminaries of PPM models

A PPM representing a motif of length ¢ in the DNA alphabet ¥ = {A,C,G,T} is a 4 x ¢
,,,,, ¢ such that 6,; gives the occurrence probability of base a € ¥ in
position j of the motif. Hence each column 6; = (6.;) of 6 defines a categorical distribution
Cat(f;) of . The entire matrix § represents a random variable X = X (6) which is a product
of ¢ mutually independent categorical random variables Xj:

matrix 0 = (04)acx j=1

X=X xXox...x Xy,

where X; ~ Cat(6;), and the values of X are in X,
As the component variables are assumed mutually independent, the probability P(u) =
Pp(u) of u=uy...us € % of X is

P(X =Uui.. .UZ) = P(Xl = Ul)P(XQ = ’u,g) . --P(Xg = ug) = Qul,lﬂubg .. .GuM.

Learning of PPMs from DNA sequence data is complicated by the two-stranded structure
of DNA. The reverse complement u of a sequence u = uy ... up € vlis sequence Uy . . . u; where
u; denotes the complementary base of base u;. Sequence w is palindromic if u; = wy—;17 for
Jj=1,...,[¢/2]. Similarly, a PPM 6 is palindromic if 6,; = 65 ¢_ ;41 for all (a, j). Note that
P(u) = P(w) if 6 is palindromic.

3 SeedHam Algorithm

3.1 Finding a seed and locating motif instances from training data

Let D be the training data (a collection of sequences in ¥*) that contains enriched amounts
of instances of a target PPM motif X of length ¢, and let s be a sequence of length ¢. Let
Hy(s) = {u € $¥h(s,u) < d} be the Hamming d-neighbourhood of the sequence s. Here
h(s,u) is the Hamming distance of (equal-length) sequences s and u, and the radius d is an
integer < /. If the given training data is of two-stranded origin, we always denote by D the
original data and its reverse complement combined.

Seed-driven motif discovery then proceeds in the following general steps.

25:3

WABI 2017



25:4

Seed-driven Learning of Position Probability Matrices from Large Sequence Sets

1. s+ a most frequent {-mer of D. Sequence s is selected as the seed.
2. For each f-mer u € Hy(s), count(u) <— number of occurrences of u in D.
3. Estimate PPM 6 for motif X from the sequences u € Hy(s) and their counts count(uw).

Detailed implementation of above steps 1 and 2 is possible using elementary techniques
that often are fast enough in practice. For big D or ¢ more elaborate implementation
techniques from string algorithmics may be needed. We will describe such methods in
Subsection 3.3.

The more interesting step 3 is the topic of the next subsection.

3.2 Learning PPM in Hamming neighbourhoods

As the target motif X (6) is a product of mutually independent categorical variables X1, ..., Xy,
it follows that, for any 1 < 7 < ¢,

P(X;) = P(X|Xy - X1 X4 Xo). (1)

Consider now the multiset of all £-mers of D. This multiset is a mixture sample of /-mers,
some of which are coming from X and the rest come, fully or partially, from the background.
Our goal is to learn column 6; of 0, i.e., we want to estimate the parameters of X, for some
fixed j. It follows from Equation (1), that by conditioning X on ¢-mer positions other than 7,
we get a sample of X, possibly contaminated by the background. Let a j-condition be any
w = (wp,,wg) such that wy, € X771 and wr € X7, We let count;(a,w) denote the number
of f-mers wyawg in the data, that is, the number times the symbol a € ¥ occurs in context
(w,;, wR) in D.

Then, omitting for a moment the correction for background, we could estimate

count; (a, w)

Gaj ~

Yees count (¢, w)’ @)
This immediately generalizes to a set of j-conditions, i.e., to several different w combined.
We will use conditions taken from a Hamming neighbourhood of the seed s. To minimize
contamination from background noise, we restrict the learning to f-mers of D that belong to
a small Hamming neighbourhood of s. By the properties of products of categorical variables,
such /-mers are likely to have a relatively high count which comes mostly from X and not
only from the background as they are small variants of s whose count is the highest.

We restrict the learning of 6 to a Hamming neighbourhood Hy(s) of s in D, by using the
implied set of j-conditions. For learning 6;, the set of j-conditions becomes

W;a(s) = {(wr,wr) € ¥~ x 279 | h(s,wpcwg) < d for all ¢ € X}.
As samples for different j-conditions can be combined, (2) becomes

u; ~ . count;(a) 7 3)
ces count;(c)
where we have written count;(c) = Xy,ew, ,(s) count;(c, w).

We have to evaluate (3) for all j = 1,...,£. It is convenient to organize this such that the
contribution of each u € Hy(s) to the counts is accumulated in one pass that scans through
u. Recall that count(u) denotes the number of occurrences of u = uy - -ug € Hg(s) in D.
Then it is not difficult to see that the rule for accumulating variables count;(c) becomes
as follows: if h(s,u) < d, then u contributes count(u) to count;(u;) for all j; if h(s,u) =d,
then it contributes count(u) to count;(u;) only for j such that u; # s;.
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As data D is only partially covered by ¢-mers from signal X, and the rest is background,
we have at first to correct the counts count(u) by subtracting estimated contribution from
the background. We use here a simple 0-order background model ¢ = (qa, qc, gc, gT) where
each ¢, is the frequency of ¢ in D. The background probability of a f-mer u = wuy - - - uy is
Py(u) = [; qu,, and the expected number of occurrences of u in a random dataset of the
same size as D is Ecount(u) = NP, (u), where N is the number of ¢-mer positions in D.

So we get the following PPM learning algorithm. We say that this algorithm uses basic
counting of £-mer occurrences, to separate from the counting used in the algorithm variant
to be given in Section 3.4.

Algorithm SeedHam

Input: Set of sequences (with reverse complements) D, length of PPM ¢, Hamming radius d
Output: PPM 6

1. s+ a most frequent £-mer of D
2. for all u € Hy(s) do count(u) < max(0, number of occurrences of v in D — Ecount(u))
3. for j«1,....,fand a € ¥ do count,;(a) + 0
4. for all u=wu;---us € Hy(s) do
if h(s,u) < d then

for j < 1,...,¢ do count;(u;) + count;(u;) + count(u)
else
for j < 1,...,¢ do if u; # s; then count;(u;) < count;(u;) + count(u)

[&,]

for all j < 1,...,/ and a € ¥ do 0,; < count;(a)/ >, 5 count;(b)

Note that SeedHam algorithm differs from the basic alignment method already mentioned in
the introduction that aligns the ¢-mers in the sample, counts the number of occurrences of
each element of ¥ on each column, and normalizes these counts to get #. That this algorithm
would not estimate 6 correctly in a Hamming neighbourhood can be seen, for example, by
considering data D that has no motif embedded, the data being background only. A seed s
can still be found, but then the standard algorithm applied on, say, H;(s) would produce a
PPM that gives for s a clearly higher probability than for the other /-mers while the correct
model should give uniform distribution. Algorithm SeedHam produces such a uniform model
in this case; an illustration is given in Figs 1a and 1b. The standard algorithm does so only
if the Hamming neighbourhood does not leave any data out, that is, if Hy(s) is used.

3.3 Implementation and complexity

A most frequent £-mer s as well as the counts count(u) for f-mers u € Hy(s) can be found
in linear time O(|D]) using for example suffix-trees (or suffix arrays): First, construct the
suffix-tree of D, and associate with each node x of the tree the number S(z) of leaves in the
subtree of  and the length L(x) of the sequence represented by the path from the root to
2. This can be done in linear time using well-known algorithms [17, 7, 16]. Second, find
from the suffix-tree the most frequent ¢-mer s of D. This can be done by finding the node
2 such that L(x) > ¢ and S(x) is largest possible. Then s is the prefix of length ¢ of the
sequence represented by the path from the root to x. This again takes linear time. Third,
find the counts of f-mers u € Hy(s) by a depth-first traversal of the tree. Each branch is
followed until the Hamming distance between s and the sequence spelled out by the current
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depth-first search node is > d, or a {-mer u € Hy(s) is found. Then count(u) = S(z) where
x is the node corresponding to u.

Obviously, this search finds all members of Hy(s) that occur in D. Then the learning part
(Steps 3, 4) of Algorithm SeedHam can be performed. The search and learning takes time
proportional to the total length of different ¢-mers of D. Hence the total time requirement
becomes O(|D| + ¢ - min(|D], Y25, (3) (15 = 1))

As the overhead of suffix-tree algorithms may be large, a straightforward tabulating
algorithm, possibly with hashing techniques, can be used for D of modest size to find
counts count(u) and the seed s, after which the learning part of Algorithm SeedHam can be
performed. Again, the running time becomes O(¢|D]).

3.4 Elimination of artefact instances

Here we make a more accurate analysis of the mixing of instances of X and the background
on training data D. The multiset of ¢-mers of D consists of three types of f-mers: (i) £-mers
that are instances of X; (ii) -mers that are completely outside the instances of X; (iii) -mers
that overlap both an instance of X and background.

When X has strong self-overlaps, D has tendency to have artefact instances of X in
category (iii). As an extreme example, consider X = AAAAAAAA i.e, each position of
X has A with probability 1. Then D has lots of 8-mers AAAAAAAA and, by one-symbol
shift, lots of 8-mers CAAAAAAA, GAAAAAAA, and TAAAAAAA. If not eliminated, such
artefact instances at distance 1 from the seed would leak to the learned X such that C, G,
and T will get clearly non-zero probability at position 1.

To avoid counting self-overlapping artefact instances, we introduce a dominance relation
of /-mers. Let g be a positive integer giving maximum shift in a self-overlap that is still
considered significant (note that if a shift is large and hence the self-overlap is short, then
the implied bias in counts rapidly gets very small). We say that the ¢-mer u in position i of
D dominates, if h(s,u) < h(s,v) for all -mers v that are located in +¢ proximity of ¢ in D,
that is, in positions ¢ —g¢g,...,i — 1,4+ 1,...,794+ g of D.

For an example of dominance, consider a single-stranded data in the setting ¢ = 4,
s = AACG, g = 2, and d = 2. When counting the dominating occurrences of the 4-mer
AGTG € Hy(s), we need to take the context of the occurrence into account. If we see a
string TTAGTGAA in the data, we count this occurrence of AGTG as it dominates here: all
the other 4-mers of this string obviously have Hamming distance from the seed greater than
2. But in the context TAAGTGAA the 4-mer AGTG is not counted, because, for instance,
h(TAAG, s) = 2 as well.

We then slightly modify the SeedHam algorithm: for each ¢-mer w, include into its
occurrence count only the dominating occurrences of u in D. This way of counting is called
dominance counting, and the resulting count of an ¢-mer w is denoted as countgominant (t)-
Intuitively, this rule means that the true instances of X are assumed to locate in D more
than g positions apart and to dominate in their +¢ proximity.

Dominance counting needs an accordingly modified background correction. We denote by
A € [0, 1] the relative abundance of the motif instances in D. Hence AN of the N f-mer sites
of D are from X. Then the expected artefact count of an f-mer u can be written as the sum
of occurrence counts in f-mer categories (ii) and (iii):

j=L+g—1
Ecountdominam,,\(u) = (1 — )\(2(6 + g) — 1))N . Pq (U) + AN Z PTj,dominant (u),

j=—(+g-1)
J#0
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where (* = { +2g and T} is a 4 x £* PPM built from ¢ and ¢ as described below. Note that
j = 0, which defines the category (i), is excluded. For any f-mer u and a 4 x £* PPM T,
Pr dominant (v) is defined as

g

Pr.dominant (u) = Z [v(0) = u] H H [h(v(5),8*) > h(u, )| Pr(v),

veELL” j=—gke{-1,1}
J#0

where [] are Iverson’s brackets, s* is the seed in direction k, and v(j) is the f-mer that
starts from position j of v. The PPMs T},j = —({ + g —1),...,{+ g — 1, are models for
the alternative ways how a string of length £* can overlap in D the boundary between motif
instance and background. PPM Ty has 6 in the middle, with g columns of ¢ before and after
it. PPM T for j > 0 has 0 shifted j positions to the left from the center and for j < 0, j
positions to the right. Note that our technique here is similar to DECOD [4].

As 6 is still unknown when the background correction has to be made, we use uncorrected
6 to build models T);. We solve the parameter A numerically from the equation

j=t—1
count(u) = Ecounty(u) := (1 — A(20 — 1))N - P,(u) + AN Z Pr, A(u),
j=-(-1)

where R is the background corrected PPM generated from corrected counts

Countdominant (U) - Ecountdominant,A (U) .

The running time of background correction is exponential in £* = £ + 2g. Therefore in
our implementation we do the correction only for £ < 10. Since for longer motifs the effect
of background is very small for typical data sizes, this restriction has no big effect on the
accuracy of the learned models. We have used g = 4 as a default.

Figs 1c and 1d give an example of the effect of dominance counting: for a PPM
AAAAAAAA, 10 000 instances were generated to create a total data of length 400 000
bp (hence A = 0.025). The PPM relearned by basic SeedHam shows clear contamination
from artifact instances while SeedHam with dominance counting removes it.

4  Motif Orientation in Two-Stranded Case: SeedHam+ algorithm

PPM discovery is in practice complicated by the two-strandedness of DNA. Although the
motif itself may have direction (for example, a transcription factor binds to DNA in a specific
orientation), it is not possible to infer the direction from motif instances that may occur
equally in both strands of the DNA. Moreover, an instance in one strand means that we see
the reverse complement of it in the other strand. In fact, the counts of a f-mer u and its
reverse complement @ are always equal if the counts are taken along both strands of DNA.

This symmetry should be broken such that we use in the PPM learning only ¢-mers that
have the same direction with respect to the underlying motif. Otherwise we would always
get palindromic PPMs.

4.1 Selection of the orientation

The following heuristic could be used for resolving the orientations: To select between u and
u, take the one whose Hamming distance to the seed s is shorter, that is, if h(s,u) < h(s, )
then take u, and if h(s,@) < h(s,u) then take .

For this rule to work it is necessary that h(s,u) # h(s,u), which means that s may not
be a palindrome. For palindromic seeds we have the following observation.
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ACCCTT SARARAAA

(a) Alignment algorithm. (c) Basic counting.

g AAAAAAAA
BXLACCAL

(b) SeedHam algorithm. (d) Dominance counting.

Figure 1 (a&Db) Learning a PPM from training data that has only uniform background but
no motif. Using a seed ACGGTTGG, the alignment algorithm finds a PPM in which the seed
dominates while SeedHam correctly finds a PPM that represents the uniform background. (c&d)
Contamination of the learned model due to artefact occurrences. SeedHam algorithm with basic
counting (above) and with dominance counting (below) was used. Both methods used Hamming
radius one, and the training data consisted of a single sequence that had the single motif instance
AAAAAAAA implanted at every 40th position 10 000 times. Other positions were filled with random
uniform background. Dominance counting effectively removes the contamination due to artefact
occurrences.

» Theorem 1. If the seed s in Algorithm SeedHam is a palindrome, then the resulting PPM
0 is palindromic.

Proof. Let s be a palindrome. Then H,(s) = H4(S), and a sequence u = ug ... up is in
Hg(s) iff w is in Hy4(s). Then u = uy...u;...u; contributes 1 to the count of 0, ; iff
U=T7yg...u;... uy contributes 1 to the count of 07z ;11 which is the element of ¢ that is
palindrome symmetric to 6, ;. This is because h(s-;,u-;) = h(35;,%=;), and hence u;
is used as a condition iff u—; is used, where u-; denotes the sequence uy ... uj_1Uj41 ... us.
Palindrome symmetric elements of 6 get equal counts which proves our claim. |

Palindromic index Pi(u) of a sequence u € X is defined as Pi(u) = h(u,w). If |u| = £ is
odd then Pi(u) > 1 as the symbols in the center position of u and @ are always different. For
even |ul, Pi(u) has an even value 0,2, ..., |u|. For odd |u|, Pi(u) has an odd value 1,3,.. ., |ul.

If Pi(u) = 0 (and hence |u| is even), then u is a (DNA) palindrome.

We call a set Q C X conflict-free if QN Q is empty, i.e., if u € Q then u ¢ Q. So if Hy(s)
is conflict-free then all uw € Hy(s) are such that h(s,u) < h(s,u). Hence Algorithm SeedHam
with such an Hy(s) implicitly applies our rule for choosing between w and .

» Theorem 2.

(a) If d < Pi(s)/2 then Hy(s) is conflict-free.

(b) IfPi(s) =2 and d = 1, then Hq(s) N Hq(3) contains exactly two sequences and these
sequences are palindromes.

Proof. (a) To derive a contradiction, let d < Pi(s)/2 and assume that there is a sequence
win Hgy(s) N Hy(S). Then Pi(s) = h(s,s) < h(s,u) + h(u,s) < 2d which contradicts the
assumption that d < Pi(s)/2.

(b) Pi(s) = 2 implies that ¢ must be even and that s; = 5;_;11 except for one value
Jj < £/2. Then s; # 5;—j+1 and hence 5; # s¢_j11. Then sequences s(s;|57—;+1) and
s(s¢—j4+1[5;) are different palindromes and have distance 1 from both s and 5.

A sequence in Hi(s) N H;(3) should be the intermediate sequence on the two step path
from s to 5 that transforms s to s using one symbol changes. There are exactly two such
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paths, one changing first s; and then s;—;11, and the other changing first s,_;;1 and then
s;. This gives the above two sequences. |

According to Theorem 2 (a), a conflict-free Hy(s) for Hamming radius d > 3 requires a
seed s such that Pi(s) > 2d + 1. To achieve this, one could use in Algorithm SeedHam as
seed s the f-mer that has the largest count among the /-mers whose palindromic index is
> 2d + 1, provided that the count of such a ¢-mer is sufficiently large. Note that increasing
the palindromic index of s may make the count of s smaller, which means that Algorithm
SeedHam would utilize a smaller fraction of the data.

For a large data D already Hamming radius d = 1 can give an accurate estimate of the
PPM. Then, by Theorem 2 (b), we only need a seed s such that Pi(s) > 2. However, H;(s)
is not conflict-free as Hy(s) N Hy(3) is not empty but contains palindromes. Fortunately,
deciding their orientation is not needed, as palindromes are symmetric and hence there is
only one orientation for them. One only has to divide their observed counts by two as each
occurrence of a palindrome also appears on the opposite DNA strand and hence is counted
twice.

To conclude the above discussion we give Algorithm SeedHam modified such that it uses
a seed with high-enough palindromic index to avoid orientation conflicts. Only step 1 needs
changes.

Algorithm SeedHam+

Input: Set of sequences (with reverse complements) D, length of PPM ¢, Hamming radius d,
count threshold m = max(20, N4=¢ + 2,/N4—¢(1 — 4-%)), i.e., two standard deviations more
than expected by uniform background and at least 20.

Output: PPM 6

1. r+ if d =1 then 2 else 2d + 1.
s + L-mer u such that Pi(u) = r and the count of u in D is largest possible. However, if
this count is < m then s < f-mer u with largest palindromic index among ¢-mers whose
count is > m.

2.-5. As Algorithm SeedHam.

5 Experimental evaluation

To compare the performance of algorithms SeedHam and SeedHam+ we randomly selected
from the article of Jolma et al [6] altogether 24 PPMs;, eight PPMs of each of lengths £ = 8, 13,
and 18. For each PPM, four data sets were randomly generated: number of motif occurrences
being either 100 or 10 000 and occurrences oriented either in single direction or in both

directions. The occurrences were placed starting at every 40th base in a single sequence.

Between motif occurrences uniform random background was used. This long sequence was
then used as training data D for SeedHam and SeedHam+ using either basic or dominance
counting. The learned PPMs were compared against the originals, and the learning error
was measured using the maximum norm (i.e., maximum absolute value of the difference of
the corresponding entries of the original and the learned PPM; a shift of -1, 0, +1 columns

was allowed and minimum of the max-norm over these shifts was taken as the learning error).

Hamming radii d € {1,...,5} were used in the experiments.
The results from these experiments are reported in Fig. 2. When comparing Figs 2a

and 2b, the difficulty of learning the model in the two-directional case is clearly visible.
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Table 1 Changes of palindromic index in the SeedHam+ experiments on generated data. For
each length, eight factors and two data set sizes and five Hamming radii give 80 experiments in total.
The table shows that the required palindromic index is difficult to reach. It is easier for d = 1 but
rapidly gets difficult with larger d.

Length 8 Length 13  Length 18

Need for increase 52/80 28/80 24/80
No increase possible 42/52 12/28 12/24
Did not increase enough 4/52 8/28 8/24
Increased enough 6/52 8/28 4/24

Introducing the seed with optimized palindromic index (Fig. 2¢) does help a little bit, but
with the motif length and dataset sizes we used, it was not always possible to optimize the
seed, see Table 1. This is because moving far away (in Hamming distance) from the most
common ¢-mer, decreases the count of seed s (and counts in H,(s)) too much, and hence
gives inaccurate estimate of the motif.

Algorithms are fast in practice. On average it took less than a second of CPU time for
the basic counting method and 7 minutes of CPU time for the dominance counting method
per PPM, when SeedHam was run on a generated data set with 10 000 occurrences (400 000
bp). The longer running time of dominance counting is due to the relatively slow background
correction. For motifs of length larger than 10 this correction can be lifted. Performance
testing was done using a single thread on Intel Xeon CPU X7350 running at 2.93 GHz.

We also applied SeedHam to real SELEX data. We used data sets from [6] that were
used by Jolma et al to obtain the previously mentioned 24 PPMs. SeedHam showed in these
experiments consistent and robust performance with quite small differences between different
variants of the method.

Our experimental evaluation suggests that in practice for large data already Hamming
radius d = 2 gives accurate results and larger d do not improve too much. For small data
this holds true for short motifs but for longer ones using larger d would improve accuracy.
For larger d the dominance version of SeedHam clearly improves accuracy.

Results of comparison of SeedHam with earlier algorithms DREME [1] and DECOD [4]
are given in Table 2. SeedHam used dominance counting in these experiments. The generated
training data contained 1000 instances of the motif, implanted into sequences of length 40.
The same motifs were used as in the experiments of Fig. 2. Hamming radius d used in the
experiments was 1, 3, and 5 for motif lengths 8, 13, and 18, respectively. SeedHam gives the
most accurate result in 21 cases out of 24, often with clear margin. We also tested SeedHam+
with dominance counting. Then the learning accuracy of the LMX1B motif improved to 0.14,
making this, too, the best among the compared results.

6 Discussion

We gave a general formulation and analyzed the PPM learning algorithm SeedHam that
restricts the use of the training data only to a small Hamming neighbourhood H(s) of a seed
s. We also introduced a dominance counting technique to correct for artifact occurrences of
self-similar motifs, as well as a novel seed selection rule, based on the palindromic index, that
gives seeds such that the orientation of the motif instances restricted to Hy(s) in two-stranded
DNA is unambiguous.

Even if we have chosen a seed with optimal palindromic index, there is still another source
of inaccuracy due to the two-strandedness of DNA. When we see a (putative) motif occurrence
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(c) Both directions using SeedHam+.

Figure 2 Two data sets were generated for each given PPM: one with 100 random occurrences
and another with 10 000 random occurrences of the motif. The occurrences were placed in the
same orientation starting at every 40th position. The gaps between the occurrences were filled
with uniform random background. The three columns of the figure correspond to experiments with
sets of 8 motifs of lengths 8, 13, and 18, respectively. The average maximum error between the
original and the relearned models is shown for each Hamming radius, each size of data set, and
both methods of counting the number of occurrences of sequences in the Hamming neighbourhood,
namely, the basic and dominance counting. Background subtraction was only applied to motif length
8. (a) Accuracy of SeedHam algorithm for data with single direction of motif occurrences. For motif
lengths 8 and 13 the benefits of the dominance counting over the basic counting becomes visible as
the Hamming radius increases. For length 18, the used Hamming radii were not large enough to
show any difference between the two counting methods. The accuracy of the learned models is very
good. Different motif lengths show different behaviour with respect to the Hamming radius. With
every motif length, increasing the Hamming radius initially gives more accurate result, but after
some point the increased contamination from the background starts to weaken the result. With
factor length 18, however, the dataset would have to be very large for the background to have an
effect on the learned motif. (b) Accuracy of SeedHam algorithm for data with motif occurrences in
random orientation. As expected, the learning error is larger than in the case of single direction;
note, however, that for £ = 13, data size 100, the accuracy is here better! (c) Accuracy of SeedHam+
algorithm for the same data as in panel (b), i.e., optimization of the palindromic index of the seed
enabled. The effect of higher palindromic index is in general minor, except for ¢ = 8,d = 1 in which
case we get here the best accuracy.
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Table 2 Comparison of SeedHam to DREME and DECOD. Data sets of 1000 sequences of length
40 were generated using original motifs of TFs indicated below (note that the factor RARA had
two distinct motifs). One occurrence of the motif was planted in each sequence. The distances
are maximum element-wise distances between the original PPM and the PPM relearned from the
generated data. DREME was only run for motifs of length 8 which is its maximum recommended
motif length.

Factor DREME DECOD SeedHam

dominance

DLX5 0.16 0.26 0.32

GATA3 0.38 0.50 0.10

ISL2 0.22 0.41 0.08

LMX1B 0.44 0.24 0.32

MEIS2 0.16 0.46 0.03

MSX1 0.08 0.35 0.08

NR2F1 0.04 0.55 0.04

OTX1 0.20 0.97 0.06

(a) Motif length 8.
Factor DECOD SeedHam Factor DECOD SeedHam
dominance dominance
DUXA 0.38 0.07 CUX1 0.18 0.23
EOMES 0.55 0.05 E2F3 0.44 0.03
LBX2 0.16 0.13 ETS1 0.22 0.09
LHX9 0.37 0.36 KLF13 0.50 0.04
NFKB1 0.88 0.05 MGA 0.14 0.06
NR2F1 0.50 0.06 MSX1 0.35 0.06
PRDM4 1.00 0.01 RARA 0.50 0.02
ZNF238 0.50 0.05 RARA 0.55 0.01
(b) Motif length 13. (c) Motif length 18.

u, that belongs to Hy(s), on a DNA strand, it is not possible to decide, without additional
information, whether or not the motif occurrence really is this u or the reverse complement
w on the opposite strand. In the latter case the occurrence should not be used when building
the model. Hence, the occurrence count is necessarily a mixture of counts from v and . It
is not possible to directly resolve the mixture as the mixing proportions of how much of the
count comes from u and how much from @ are unknown. Mixing proportion depends on the
probabilities P(u) and P(@) of u and @ to occur as motif instances. A subject for further
study is to incorporate into the SeedHam algorithm a maximum likelihood estimator for
improved resolution of the mixture.
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