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Abstract
We present a deterministic algorithm that constructs in linear time and space the LZ-End parsing
(a variation of LZ77) of a given string over an integer polynomially bounded alphabet.
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1 Introduction

Lempel–Ziv (LZ77) parsing [34] has been a cornerstone of data compression for the last 40
years. It lies at the heart of many common compressors such as gzip, 7-zip, rar, and lz4.
More recently LZ77 has crossed-over into the field of compressed indexing of highly repetitive
data that aims to store repetitive databases (such as repositories of version control systems,
Wikipedia databases [31], collections of genomes, logs, Web crawls [8], etc.) in small space
while supporting fast substring retrieval and pattern matching queries [4, 7, 13, 14, 15, 23, 27].
For this kind of data, in practice, LZ77-based techniques are more efficient in terms of
compression than the techniques used in the standard compressed indexes such as FM-index
and compressed suffix array (see [24, 25]); moreover, often the space overhead of these
standard indexes hidden in the o(n) term, where n is the length of the uncompressed text,
turns out to be too large for highly repetitive data [4].

One of the first and most successful indexes for highly repetitive data was proposed
by Kreft and Navarro [24]. In its simplest form LZ77 greedily splits the input text into
substrings (called phrases) such that each phrase is a first occurrence of a single letter or
the longest substring that has an earlier occurrence. The index in [24] is built upon a small
modification of LZ77 parsing called LZ-End (introduced in [22]) which assumes that the end
of an earlier occurrence of each phrase aligns with the end of some previous phrase. This
enables much faster retrieval of substrings of the compressed text without decompression.

While basic LZ77 parsing is solved optimally in many models [2, 9, 17, 18, 21, 26, 30], the
construction of LZ-End remains a problem. Kreft and Navarro [24] presented an algorithm
that constructs the LZ-End parsing of a string of length n in O(n`(log σ+log logn)) time and
O(n) space, where ` is the length of the longest phrase in the parsing and σ is the alphabet
size. They also presented a more space efficient version that works in O(n` log1+ε n) time
and uses O(n log σ) bits of space, where ε is an arbitrary positive constant. This construction
algorithm provides unsatisfactory time guarantees: it is quadratic in the worst case.

In [19] we described an algorithm that builds the LZ-End parsing of a read-only string of
length n in O(n log `) expected time and O(z+ `) space, where z is the number of phrases and
` is the length of the longest phrase. In this paper we present an optimal-time deterministic
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53:2 LZ-End Parsing in Linear Time

algorithm constructing the LZ-End parsing. We assume that the input string (of length n) is
drawn from a polynomially bounded integer alphabet {0, 1, . . . , nO(1)} and the computational
model is the standard word RAM with Θ(logn)-bit machine words.

I Theorem 1. The LZ-End parsing of a string of length n over the alphabet {0, 1, . . . , nO(1)}
can be computed in O(n) time and space.

The paper is organized as follows. In Section 2 we describe an algorithm that constructs
the LZ-End parsing in O(n log logn) time and linear space; we believe that this intermediate
result is especially interesting for practice. In Section 3, we obtain an O(n log2 n)-time
algorithm based on a completely different approach. Finally, we combine the two developed
techniques in Section 4 and thus obtain a linear algorithm.

Preliminaries. Let s be a string of length |s| = n. We write s[i] for the ith letter of s and
s[i..j] for s[i]s[i+1] · · · s[j]. The reversal of s is the string ←s = s[n] · · · s[2]s[1]. A string u is
a substring of s if u = s[i..j] for some i and j; the pair (i, j) is not necessarily unique and we
say that i specifies an occurrence of u in s. A substring s[1..j] (resp., s[i..n]) is a prefix (resp.
suffix) of s. For any i, j, the set {k ∈ Z : i ≤ k ≤ j} (possibly empty) is denoted by [i..j].
Our notation for arrays is similar: e.g., a[i..j] denotes an array indexed by the numbers [i..j].

Hereafter, s denotes the input string of length n over the integer alphabet {0, 1, . . . , nO(1)}.
We extensively use a number of classical arrays built on the reversal ←s (the definitions
slightly differ from the standard ones to avoid excessive mappings between the positions
of s and ←s ): the suffix array SA[1..n] such that

←−−−−−−−
s[1..SA[1]] <

←−−−−−−−
s[1..SA[2]] < · · · <

←−−−−−−−
s[1..SA[n]]

(lexicographically), the inverse suffix array ISA[1..n] such that SA[ISA[i]] = i for i ∈ [1..n],
and the longest common prefix (LCP) array LCP[1..n−1] such that, for i ∈ [1..n−1], LCP[i]
is equal to the length of the longest common prefix of

←−−−−−−
s[1..SA[i]] and

←−−−−−−−−−
s[1..SA[i+1]]. We

equip the array LCP with the range minimum query (RMQ) data structure [10] that, for
any i, j ∈ [1..n] such that ISA[i] < ISA[j], allows us to compute in O(1) time the value
min{LCP[k] : ISA[i] ≤ k < ISA[j]}, which is equal to the length of the longest common suffix
of s[1..i] and s[1..j]. For brevity, this combination of LCP and RMQ is called the LCP
structure. It is well known that all these structures can be built in O(n) time (e.g., see [6]).

The LZ-End parsing [22, 23, 24] of a string s is a decomposition s = f1f2 · · · fz constructed
by the following greedy process: if we have already processed a prefix s[1..k] = f1f2 · · · fi−1,
then fi[1..|fi|−1] is the longest prefix of s[k+1..|s|−1] that is a suffix of a string f1f2 · · · fj
for some j < i; the substrings fi are called phrases. For instance, the string ababaaaaaac
has the LZ-End parsing a.b.aba.aa.aaac.

2 First Suboptimal Algorithm

Our first approach is based on two combinatorial properties of the LZ-End parsing that were
observed in [19]. First, the definition of the LZ-End parsing easily implies the following lemma
suggesting a way how to perform the construction of the LZ-End parsing incrementally.

I Lemma 2. Let f1f2 · · · fz be the LZ-End parsing of a string s. If i is the maximal
integer such that the string fz−ifz−i+1 · · · fz is a suffix of a string f1f2 · · · fj for j < z − i,
then, for any letter a, the LZ-End parsing of the string sa is f ′1f ′2 · · · f ′z′ , where z′ = z − i,
f ′1 = f1, f

′
2 = f2, . . . , f

′
z′−1 = fz′−1, and f ′z′ = fz−ifz−i+1 · · · fza.

Secondly, it turns out that the number of phrases that might “unite” into a new phrase
when a letter has been appended (as in Lemma 2) is severely restricted.
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I Lemma 3 (see [19]). If f1f2 · · · fz is the LZ-End parsing of a string s, then, for any letter
a, the last phrase in the LZ-End parsing of the string sa is 1) fz−1fza or 2) fza or 3) a.

The algorithm presented in this section builds the LZ-End parsing incrementally. When
a prefix s[1..k] is processed, we have the LZ-End parsing f1f2 · · · fz of s[1..k] and we are to
construct the parsing for the string s[1..k+1]. By Lemma 3, if fz−1fz (resp., fz) is a suffix of
f1f2 · · · fj for some j < z − 1 (resp., j < z), then the last phrase in the parsing of s[1..k+1]
is fz−1fzs[k+1] (resp., fzs[k+1]); otherwise, the last phrase is s[k+1].

To process the cases of Lemma 3 efficiently, we maintain a bit array M [1..n] that marks
those prefixes in the lexicographically sorted set of all reversed prefixes of s that end at
phrase boundaries: for i ∈ [1..n], M [i] = 1 iff s[1..SA[i]] = f1f2 · · · fj for some j ∈ [1..z] in
the LZ-End parsing f1f2 · · · fz of the current prefix s[1..k]. We equip M with the van Emde
Boas data structure [33] that allows us to compute, for any given i, the maximal j < i (resp.,
the minimal j′ > i) (if any) such that M [j] = 1 (resp., M [j′] = 1); we use a dynamic version
of this data structure that occupies O(n) space and supports queries on M and modifications
of the form M [i]← 1 or M [i]← 0 in O(log logn) deterministic time (e.g., see [5]).

Let us describe how to check whether fz has an earlier occurrence in s[1..k] = f1f2 · · · fz
that ends at a phrase boundary. We first find in O(log logn) time the maximal j < ISA[k]
and the minimal j′ > ISA[k] such that M [j] = 1 and M [j′] = 1. Suppose such j and j′

exist (the case when either M [1..ISA[k]−1] or M [ISA[k]+1..n] consists of all zero is similar
but simpler). Using the LCP structure, we compute in O(1) time the length t (resp., t′)
of the longest common suffix of s[1..k] and s[1..SA[j]] (resp., s[1..k] and s[1..SA[j′]]). It is
straightforward that fz has an earlier occurrence in s[1..k] ending at a phrase boundary iff
max{t, t′} ≥ |fz|.

Analogously, to check whether fz−1fz has an earlier occurrence in s[1..k] ending at a
phrase boundary different from the boundary |f1f2 · · · fz−1|, we temporarily unmark the bit
M [ISA[k − |fz|]] modifying the van Emde Boas data structure accordingly, then obtain the
numbers t and t′ in the same way as above, and restore M [ISA[k − |fz|]] with the van Emde
Boas data structure, all in O(log logn) time; fz−1fz has the required earlier occurrence iff
max{t, t′} ≥ |fz−1fz|. Finally, by Lemmas 2 and 3, we obtain the LZ-End parsing of the
prefix s[1..k+1] by removing, based on the above computations, zero, one, or two last phrases
from the list of all phrases and adding a new last phrase. The array M and the van Emde
Boas data structure are modified accordingly. Thus, we have proved the following lemma.

I Lemma 4. The LZ-End parsing of a string of length n over the alphabet {0, 1, . . . , nO(1)}
can be computed in O(n log logn) time and O(n) space.

This algorithm provides good time guarantees (unlike the algorithms of Kreft and
Navarro [24]) and seems to be of practical interest.

It is easy to see that the van Emde Boas data structure that is required to search
predecessors and successors in the dynamic bit array M is the bottleneck of the described
algorithm. It is known that for the insertion-only bit arrays there is an analogous data
structure (the split-find data structure discussed below) that works in O(n) overall time.
Then, it is natural to ask whether the array M really requires a lot of deletions in the worst
case or, based on the LZ77 intuition1, only a few phrases in the LZ-End parsing of the
current prefix might be removed in the future. The following example shows that a significant

1 A similar incremental construction procedure for LZ77 would, at each step, append a letter to the end
of the current string and then modify only the last phrase of the currently built parsing.
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· · · fi−2 fi−1 fi · · · fj+1

f ′
︸ ︷︷ ︸ fi−1 fi

p+1
Figure 1 Case (2) in Lemma 6; fi occurs at position p+1 located inside the phrase fj+1.

amount of phrases from the LZ-End parsing of the current prefix can be removed in the final
parsing and, therefore, the described approach strongly relies on the dynamic predecessor
structure, which is known to require ω(1) query time [1, 28].

I Example 5. Choose an integer k > 0. Define sk = ak and si = aibi+1si+1 for i =
k−1, . . . , 2, 1, where ai and bi are distinct letters. Define ti = ckck−1 · · · ci, where ci are
letters different from ai and bi. Our example is the string s = sktksk−1tk−1 · · · s2t2s1t1b2s2
(notice the ending b2s2). The string s is depicted below with separators “|”, which are not
real letters, at the end of each phrase of the LZ-End parsing of s (for readability, s is split
into lines corresponding to the substrings siti and the lines are aligned):

ak|ck|
ak−1|bk|akckck−1|
. . . . . . . . . . . .

a2|b3|a3b4a4 · · · bk−2ak−2bk−1ak−1bkakckck−1ck−2 · · · c2|
a1|b2|a2b3a3b4a4 · · · bk−2ak−2bk−1ak−1bkakckck−1ck−2 · · · c2c1|
b2a2|b3a3|b4a4| · · · bk−2ak−2|bk−1ak−1|bkak|.

The parsing of any substring siti, for i ∈ [2..k], consists of three phrases: two phrases
corresponding to the letters ai and bi+1 that did not occur before and the phrase si+1ti+1ci,
where si+1ti+1 is the previous line and ci is a letter that did not occur before. Now consider
the parsing of the last line b2s2. For i < k, there is only one occurrence of ai before the last
line that is succeeded by a separator “|” and this occurrence is preceded by ci+1. Analogously,
for i ≤ k, the only earlier occurrence of bi succeeded by “|” is preceded by ciai−1. This
observation easily implies that the parsing of the last line consists of k−1 phrases biai.

Now consider the string st0 = sckck−1 · · · c0. The last phrase of the LZ-End parsing of
st0 is b2s2t0 because b2s2t1 is a suffix of the substring s1t1 (kth line). Thus, this last phrase
“absorbs” k − 1 last phrases of the parsing of s. It remains to notice that the length of s is
Θ(k2) and the number of phrases in the parsing of s is Θ(k).

3 Second Suboptimal Algorithm

Our second algorithm follows the definition of the LZ-End parsing constructing phrases
greedily one by one from left to right. The algorithm itself is inefficient but we will show in
Section 4 that its techniques can be combined with the incremental solution of Section 2 in
order to obtain a linear algorithm.

Suppose that f1, f2, . . . , fj are the first j phrases of the LZ-End parsing of s and f is
a candidate for a new phrase, i.e., f1f2 · · · fjf is a prefix of s and f [1..|f |−1] is a suffix of
f1f2 · · · fk for k ∈ [1..j]. Our method “grows” f relying on the following lemma (see Fig. 1).

I Lemma 6. Suppose that f1f2 · · · fz is the LZ-End parsing of a prefix of s. If, for j ∈
[1..z−1], the phrase fj+1 is not present in the LZ-End parsing of the whole string s, then there
exists i ∈ [1..j] such that either (1) fj+1 is a suffix of the phrase fi or (2) f1f2 · · · fi has a suffix
f ′ such that f1f2 · · · fjf ′ is a prefix of s, fj+1 is a prefix of f ′, and 0 < |f ′| − |fi| < |fj+1|.
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Proof. Since fj+1 is not a phrase of the LZ-End parsing of s, it follows from Lemma 2
that there exists j′ ∈ [1..j] such that the first j′+1 phrases of the LZ-End parsing of s are
f1, f2, . . . , fj′ , f , where f [1..|f |−1] contains fj+1 as a substring. By definition, there exists
i′ ∈ [1..j′] such that f [1..|f |−1] is a suffix of f1f2 · · · fi′ . Suppose that the corresponding copy
of fj+1 in f1f2 · · · fi′ occurs at position q. Then, by construction, the suffix of f1f2 · · · fi′
starting at position q occurs at position |f1f2 · · · fj |+1. Hence, if s[q..q+|fj+1|−1] = fj+1 is
a suffix of a phrase or is “intersected” by a phrase boundary, we easily obtain, respectively, (1)
or (2). Otherwise, there is a phrase f̂ such that s[q..q+|fj+1|−1] = fj+1 is a substring of
f̂ [1..|f̂ |−1] and the suffix of f̂ starting at position q occurs at position |f1f2 · · · fj |+1. In
other words, this situation is analogous to the situation with f and we can analogously
consider the “source” of f̂ [1..|f̂ |−1] and the corresponding copy of fj+1 in this source. Then
we repeat the analysis. Since this recursive procedure moves us to the left every time, it
cannot continue forever and we will eventually find that either (1) or (2) holds. J

To extend f according to the case (1) of Lemma 6, we store all constructed phrases
f1, f2, . . . , fj in the lexicographically sorted order of their reversals, i.e., we store a permutation
i1, i2, . . . , ij of [1..j] such that

←
f i1 ≤

←
f i2 ≤ · · · ≤

←
f ij . By the binary search in this sorted

set, we find in O(logn) time, using the LCP structure, whether f is a suffix of fi for some
i ∈ [1..j]. This part is similar to the incremental approach of Section 2 (but less efficient).

To extend f according to the case (2) of Lemma 6, we process every position p of the
considered occurrence of f in s and try to find a phrase fi such that, as it is depicted in
Figure 1 (assuming fj+1 = f), i ∈ [1..j], fi occurs at position p+1 embracing the last position
of f (i.e., p + |fi| ≥ |f1f2 · · · fjf |), and the prefix of f ending at position p is a suffix of
f1f2 · · · fi−1 (the details follow). Let us describe the data structures required to find such fi.

Auxiliary data structures. First, we build the suffix tree of the string s (see the definition
in, e.g., [6]); note that, unlike the suffix array SA that was built for the reversal ←s , the suffix
tree is built for the string s itself and, thus, contains the suffixes s[1..n], s[2..n], . . . , s[n..n].
For simplicity, assume that s[n] is a special letter that does not occur in s[1..n−1] and, hence,
the suffixes of s are in the one-to-one correspondence with the leaves of the tree. We build
an array of pointers mapping suffixes of s to the corresponding leaves. It is well known (e.g.,
see [6]) that the suffix tree of s with this array can be constructed in O(n) time.

Recall that the suffix tree has explicit and implicit vertices. The string depth of an
(explicit or implicit) vertex is the length of the string written on the path connecting the
root and the vertex. We augment the suffix tree with the following dynamic data structure.

I Lemma 7. In O(n) time one can build on the suffix tree of s a data structure supporting
the following operations:
1. for a given number w ∈ [1..n] and (explicit or implicit) vertex v, mark v and assign the

weight w to v, all in O(logn) time;
2. for given numbers i, j, d and a leaf, find a marked vertex v that is an ancestor of this leaf,

has weight w ∈ [i..j], and has string depth at least d, all in O(log2 n) time.

Proof. The heavy path decomposition [32] is a decomposition of all vertices of the suffix tree
into disjoint paths (called heavy paths), each of which descends from a vertex to a leaf, so
that all ancestors of any given leaf belong to at most logn distinct heavy paths. It is shown
in [32] that the heavy path decomposition can be constructed in O(n) time.

We equip each heavy path with an (initially empty) dynamic 2-dimensional orthogonal
range reporting data structure of [3]. To mark a given vertex v and assign a weight w ∈ [1..n]
to it, we simply insert in O(logn) time [3] the pair (d,w), where d is the string depth of v,

ESA 2017
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into the range reporting data structure corresponding to the heavy path containing v. In
order to answer a query for given numbers i, j, d and a leaf, we consecutively process each of
O(logn) ancestral heavy paths of this leaf starting from the deepest one: for each path, we
perform in O(logn) time [3] the range reporting query [d..d′]× [i..j], where d′ is equal to the
string depth of the vertex having the “head” of the previously processed heavy path as a
child and d′ = n for the path containing the leaf. It is easy to see that one of these range
reporting queries must find (if any) the required marked ancestor whose weight is in the
given range [i..j] and whose string depth is at least d. Auxiliary structures organizing all
fast navigation on the heavy paths can be easily constructed in O(n) time. J

Also we utilize the following data structure, which can be viewed as a simplified version
of the weighted ancestor data structures from [16, 20].

I Lemma 8 (see [16, 20]). In O(n) time one can build on the suffix tree of s a data structure
that, for a given leaf and a number d, allows us to find in O(logn) time the ancestor (explicit
or implicit) of the leaf with the string depth d.

To find an (explicit or implicit) vertex corresponding to a substring s[i..j], one can
perform the query of Lemma 8 on d = j − i+ 1 and on the leaf corresponding to s[i..n].

Algorithm. At the beginning, the algorithm builds in O(n) time the LCP structure and
the suffix tree of s equipped with the data structures of Lemmas 7 and 8. We maintain the
following invariant: if the first j phrases f1, . . . , fj of the LZ-End parsing of s are already
constructed, then, for each i ∈ [1..j], the vertex (implicit or explicit) of the suffix tree of s
corresponding to the string fi is marked and has weight ISA[|f1 · · · fi−1|]; we also store in a
dynamic balanced tree a permutation i1, . . . , ij of the set [1..j] such that

←
fi1 ≤ · · · ≤

←
fij .

Suppose that we have already constructed j phrases f1, f2, . . . , fj and f is a candidate
for the new phrase fj+1, i.e., f [1..|f |−1] is a suffix of f1f2 · · · fk for some k ∈ [1..j]. First,
using the LCP structure and the balanced tree containing i1, . . . , ij , we perform in O(logn)
time the binary search in the sorted set

←
fi1 , . . . ,

←
fij and find whether f is a suffix of fi for

some i ∈ [1..j]. If such fi exists, then we “grow” f by one letter according to the case (1)
of Lemma 6 and the string fa, where a = s[|f1 · · · fjf |+1], becomes a new candidate for
fj+1. Otherwise, we consecutively process from left to right each position p in the considered
occurrence of f (i.e., |f1f2 · · · fj | < p < |f1f2 · · · fjf |) and check whether there is a phrase
fi, for i ∈ [1..j], such that the prefix u of f ending at p (i.e., u = s[|f1f2 · · · fj |+1..p]) is a
suffix of f1f2 · · · fi−1 and fi occurs at position p+1 embracing the position |f1f2 · · · fjf | (i.e.,
p+ |fi| ≥ |f1f2 · · · fjf |); the procedure finding such fi for a given p works in O(log2 n) time
and is described below in Lemma 9. Once such fi is found for a position p, we “grow” f
according to the case (2) of Lemma 6 so that the string s[|f1f2 · · · fj |+1..p+|fi|+1], which
contains f as a proper prefix, becomes a new candidate for fj+1. Obviously, if we processed
a position p in this way and could not extend f , then there is no reason to consider p in the
future. Hence, the whole left to right processing of the positions of f can start not from the
first position |f1f2 · · · fj |+1 of f but from the last processed position of f (if any).

It follows from Lemma 6 that if we could not grow f neither by the processing of all
positions p inside f nor by the processing of the case (1) of Lemma 6 described above, then
f is the new phrase fj+1. In this case, to maintain the invariant, we find the (explicit or
implicit) vertex corresponding to the string f = fj+1, mark this vertex, and assign the
weight ISA[|f1f2 · · · fj |] to it; all this is done in O(logn) time using the data structures from
Lemmas 7 and 8. Further, using the binary search and the LCP structure, we insert the
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string
←
f j+1 in an appropriate place of the sorted set

←
fi1 , . . . ,

←
fij and modify the balanced

tree storing i1, . . . , ij accordingly, all in O(logn) time. Finally, the string s[|f1 · · · fj+1|+1]
becomes a candidate for the next phrase fj+2 and we continue the construction.

Once we have performed in O(log2 n) time the procedure finding an “extending” phrase fi
for a given position p inside f (see Lemma 9 below), we either grow the current candidate f
by at least one letter or we do not grow f and this was the last processing of this position. By
this observation, the overall running time of the algorithm is O(n log2 n). The procedure itself
is described in the following lemma, assuming that h−1 = j, fh = f , and S = {f1, f2, . . . , fj};
the lemma is formulated in a more general form that will be useful below in Section 4.

I Lemma 9. Let f1f2 · · · fh be the LZ-End parsing of a prefix of s. Suppose that, for each
fi from a subset S of phrases, the vertex of the suffix tree of s corresponding to fi is marked
and has weight ISA[|f1f2 · · · fi−1|]. Then, for any position p such that |f1f2 · · · fh−1| < p <

|f1f2 · · · fh|, one can find in O(log2 n) time fi ∈ S (if any) such that p+ |fi| ≥ |f1f2 · · · fh|,
fi occurs at position p+1, and s[|f1f2 · · · fh−1|+1..p] is a suffix of f1f2 · · · fi−1.

Proof. Suppose that the required phrase fi ∈ S indeed exists. By assumption, the
vertex v of the suffix tree that corresponds to the string fi is marked and has weight
ISA[|f1f2 · · · fi−1|]. The vertex v is an ancestor of the leaf corresponding to s[p+1..n]. De-
note u = s[|f1f2 · · · fh−1|+1..p]. Let [`u..ru] be the maximal subrange of the range [1..n]
such that, for each d ∈ [`u..ru], the string s[1..SA[d]] has a suffix u; the range [`u..ru] can be
calculated by the binary search in O(logn) time using the LCP structure. Since u is a suffix
of f1f2 · · · fi−1, the weight ISA[|f1f2 · · · fi−1|] of the vertex v lies in the range [`u..ru]. Using
the data structure of Lemma 7, we try to find in O(log2 n) time a marked ancestor v of the
leaf corresponding to s[p+1..n] such that the weight of v is in the range [`u..ru] and the
string depth of v is at least |f1f2 · · · fh|−p (so that the string fi corresponding to v occurs at
position p+1 and embraces the last position of fh; see Figure 1 assuming fj+1 = fh). If such
ancestor exists, we have found fi. Otherwise, we decide that such fi ∈ S does not exist. It is
straightforward that in this way we will necessarily find such fi ∈ S if it really exists. J

4 Linear Algorithm

Now we combine the two approaches described in Sections 2 and 3. On a high level, it is
convenient to think that our algorithm is incremental as in Section 2 but it is guaranteed that
only at most log3 n last phrases from the LZ-End parsing of the currently processed prefix can
be removed in the future. (In fact, any polylogarithmic threshold from ω(log2 n) will suffice.)
After the processing of a prefix s[1..k], we have the LZ-End parsing s[1..k] = f1f2 · · · fz and
the phrases of this parsing are split into two groups: a set of first phrases f1, f2, . . . , fj that
cannot be removed from the parsing in the future (this is similar to the approach of Section 3)
and at most log3 n last phrases fj+1, fj+2, . . . , fz that might be removed in the future. The
phrases from the former group are called static. When the number of non-static phrases
exceeds the threshold log3 n, the algorithm rebuilds the set of non-static phrases and, during
this process, possibly marks some of them as static (see the detailed discussion below).

The algorithm maintains a bit array M [1..n] defined as in Section 2 but only for the static
phrases: M [i] = 1 iff s[1..SA[i]] = f1f2 · · · fh for a static phrase fh of the current parsing
f1f2 · · · fz. It follows from the above high level description that one can modify M only
changing bits to ones. Therefore, the van Emde Boas data structure that answered prede-
cessor/successor queries on M can be replaced with the following split-find data structure [12]
(the settings of bits to ones can be viewed as splittings of continuous ranges of zeroes.)
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53:8 LZ-End Parsing in Linear Time

I Lemma 10 (see [12]). There is a (split-find) data structure that, for any i ∈ [1..n], can
find (if any) the maximal j ≤ i (resp., minimal j ≥ i) such that M [j] = 1 in O(1) time and
can perform (at most) n assignments M [i]← 1 in overall O(n) time.

I Lemma 11. For any p ∈ [1..n], one can find in O(1) time a static phrase fi for which the
length of the longest common suffix of s[1..p] and f1f2 · · · fi is maximal (among all static fi).

Proof. The procedure is the same as in Section 2 but now we use the structure of Lemma 10
for predecessor/successor queries. We omit the details as they are straightforward. J

An analogous data structure for predecessor/successor queries on non-static phrases is
organized using the so-called fusion tree [11].

I Lemma 12 (see [11, 29]). The fusion tree can maintain a set of at most log3 n integers
under the following operations, each of which takes O(1) time:
1. insert an integer x with user-defined satellite information into the set;
2. remove an integer x from the set;
3. for an integer x, find (if any) in the set the maximal y ≤ x (resp., minimal y ≥ x) with

the corresponding satellite information.

I Lemma 13. Suppose that, for each phrase fi from a set S of phrases, the fusion tree stores
the number ISA[|f1f2 · · · fi|] with the satellite information containing a pointer to fi. Then,
for any p ∈ [1..n], one can find in O(1) time a phrase fi ∈ S for which the length of the
longest common suffix of s[1..p] and f1f2 · · · fi is maximal (among all fi ∈ S).

Proof. The proof is analogous to the proof of Lemma 11. We omit the obvious details. J

During the incremental construction, the fusion tree stores the set of all non-static phrases
as described in Lemma 13. Suppose that we have processed a prefix s[1..k] and f1f2 · · · fz
is the LZ-End parsing of this prefix. To check whether fz has an earlier occurrence ending
at a phrase boundary, we temporarily remove fz from the fusion tree, apply Lemmas 11
and 13 thus obtaining, respectively, static and non-static phrases fi and fi′ described in these
lemma, and use the LCP structure to calculate the lengths of the longest common suffixes of
fz and f1f2 · · · fi, and of fz and f1f2 · · · fi′ ; then, fz has the required occurrence iff one of
these two computed lengths is greater than or equal to |fz|. To check whether fz−1fz has
an earlier occurrence ending at a phrase boundary, we do the same but also temporarily
remove fz−1 from the fusion tree. After this, the temporarily removed phrases fz−1 and fz
are restored. According to the results of the checking, we remove zero, or one (fz), or two
(fz−1, fz) phrases from the fusion tree and insert a new phrase, resp., s[k+1], or fzs[k+1],
or fz−1fzs[k+1], thus constructing the parsing of s[1..k+1]. The whole procedure takes O(1)
time. Clearly, such incremental algorithm works in O(n) overall time but sometimes we have
a problem: the new non-static phrase inserted in the fusion tree can exceed the limit of
log3 n elements. Such overflows of the fusion tree are fixed in two ways described below.

Overflows of the fusion tree 1. Let the fusion tree contain the phrases fj+1, fj+2, . . . , fz
of the LZ-End parsing f1f2 · · · fz of s[1..k]. Suppose that the fusion tree overflows when the
letter s[k+1] is appended; obviously, this can happen only if z − j = blog3 nc and the last
phrase of the parsing of s[1..k+1] is s[k+1]. We are to rebuild the current set of non-static
phrases fj+1, fj+2, . . . , fz (we assume that s[k+1] is not inserted in the fusion tree yet) in
order to fix the coming overflow. The algorithm maintains a variable t that contains the sum
of the lengths of all non-static phrases, i.e., t = |fj+1fj+2 · · · fz| at the given moment.
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We try to unload the fusion tree performing the following procedure consecutively for
each of the t positions k + 1, k + 2, . . . , k + t from left to right (for simplicity, assume that
k + t < n; the case k + t ≥ n is analogous): for a position p, we apply Lemmas 11, 13
and use the LCP structure in the same way as above in order to check in O(1) time
whether the string s[|f1f2 · · · fz−1|+1..p] is a suffix of a string f1f2 · · · fi for some i ∈ [1..z−1].
Suppose that this checking has succeeded and q ∈ [k+1..k+t] is the leftmost position
for which s[|f1f2 · · · fz−1|+1..q] is a suffix of f1f2 · · · fi for some i ∈ [1..z−1]. Then, it
follows from Lemma 3 that the parsing of the string s[1..q+1] is f1f2 · · · fz−1f , where
f = s[|f1f2 · · · fz−1|+1..q+1]. Hence, once such position q is found, we stop the processing
of the positions and modify the fusion tree in O(1) time removing the phrase fz and
putting the new phrase f inside. Since the modified fusion tree contains only the phrases
fj+1, fj+2, . . . , fz−1, f (i.e., the same number z − j), it is not overflowed and, therefore, our
incremental algorithm can continue the execution from the prefix s[1..q+1].

Since each position is analyzed in O(1) time, the processing takes O(q − k) time if such
position q was found (and O(t) time otherwise). Therefore, if every overflow of the fusion
tree during the work of the algorithm is successfully fixed by the described method, then
the construction of the LZ-End parsing of the whole string s takes O(n) time. It remains to
consider the case when this method could not find the required position q.

Overflows of the fusion tree 2. As in Section 3, at the beginning, our algorithm builds
the suffix tree of s equipped with the data structures of Lemmas 7 and 8. We maintain the
following invariant: for each static phrase fi such that |fi| ≥ log3 n, the (explicit or implicit)
vertex of the suffix tree corresponding to fi is marked and has weight ISA[|f1f2 · · · fi−1|], i.e.,
the invariant is like in Section 3 but only for static and sufficiently long phrases.

Suppose that, after the fusion tree overflow occurred on the prefix s[1..k+1] of s, we
processed all t = |fj+1fj+2 · · · fz| positions k + 1, k + 2, . . . , k + t as above but could not
“grow” the last phrase fz of the parsing f1f2 · · · fz of s[1..k]. We say that a phrase fh of the
parsing is extendable if there is q ≥ |f1f2 · · · fh| such that s[|f1f2 · · · fh−1|+1..q] is a suffix
of f1f2 · · · fi for some i ∈ [1..h−1]. (Note that q cannot be equal to n since we assumed
that s[n] does not occur in s[1..n−1].) Since the positions k + 1, k + 2, . . . , k + t all were
unsuccessfully processed by the above procedure trying to “extend” fz, q must be greater
than k + t and, by Lemma 6, the phrase fi “extending” fh can be chosen so that fi starts
inside fh (as in Fig. 1) and has length at least t+ 1 ≥ log3 n. For simplicity of exposition,
we summarize this in the following lemma, which is an easy corollary of Lemma 6.

I Lemma 14. Let t be a positive integer. Denote by f1f2 · · · fz the LZ-End parsing of
a prefix s[1..k] of s. Suppose that, for each q ∈ [k..k+t], there is no i ∈ [1..z−1] such
that s[|f1f2 · · · fz−1|+1..q] is a suffix of f1f2 · · · fi. Then, for any extendable phrase fh with
h ∈ [1..z], there exist i ∈ [1..h−1] and a position p such that |f1f2 · · · fh−1| < p < |f1f2 · · · fh|,
p+|fi| > k+t, fi occurs at position p+1, and s[|f1f2 · · · fh−1|+1..p] is a suffix of f1f2 · · · fi−1.

Since t = |fj+1fj+2 · · · fz|, at most log2 n non-static phrases have length ≥ t/ log2 n and
most non-static phrases (≥ z − j − log2 n = blog3 nc − log2 n) have length < t/ log2 n. (The
choice of the threshold t/ log2 n is clarified below.) By a simple traversal of non-static phrases,
we find in O(z− j) ⊂ O(t) time the rightmost non-static phrase fh such that |fh| < t/ log2 n.
By Lemma 14, if fh is extendable, then it can be “extended” by a phrase fi of length >t such
that fi occurs at a position inside fh. Since |fi| > t and t is the sum of the lengths of all
non-static phrases, fi must be static. Therefore, by the invariant, the vertex of the suffix tree
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corresponding to fi is marked and has weight ISA[|f1f2 · · · fi−1|]. Based on this observation,
the algorithm decides whether fh is extendable processing each position of fh in O(log2 n)
time by the procedure of Lemma 9 (assuming that the set S from Lemma 9 corresponds
to the invariant) in the same way as in Section 3. The overall time of this processing is
O(|fh| log2 n) = O( t

log2 n
log2 n) = O(t). (That is why the threshold is t/ log2 n.) The further

overflow fixing procedure depends on whether the phrase fh is extendable.
Suppose that fh is not extendable (it is a simpler case). Then, the algorithm marks the non-

static phrases fj+1, fj+2, . . . , fh as static, sets M [ISA[|f1f2 · · · fh′ |]] ← 1, for h′ ∈ [j+1..h],
modifying the data structure of Lemma 10 accordingly, and removes these phrases from the
fusion tree. This is correct due to the following straightforward lemma.

I Lemma 15. Suppose that f1f2 · · · fz is the LZ-End parsing of a prefix s[1..k] of s. For
h ∈ [1..z], if the phrase fh is non-extendable, then so are all the phrases f1, f2, . . . , fh−1.

To maintain the invariant, for each new static phrase fh′ such that |fh′ | ≥ log3 n,
the algorithm finds in O(logn) time using the data structure of Lemma 8 the vertex of
the suffix tree corresponding to the string fh′ and marks this vertex assigning the weight
ISA[|f1f2 · · · fh′−1|] to it in O(logn) time using the data structure of Lemma 7. After this,
only phrases of length ≥t/ log2 n can remain in the fusion tree. Since there are at most log2 n

such phrases, the fusion tree is not overflowed and we can continue our incremental algorithm
from the prefix s[1..k+1] whose parsing is f1f2 · · · fzs[k+1]. (This case of non-extendable fh
makes the overall time estimation of the algorithm non-trivial; see the discussion below.)

Suppose that fh is extendable and we found q > k + t and a static phrase fi such that
s[|f1f2 · · · fh−1|+1..q] is a suffix of f1f2 · · · fi (it is important that fi is static). We are to
compute the LZ-End parsing of the string s[1..q+1] based on the following lemma.

I Lemma 16. Let f1f2 · · · fz be the LZ-End parsing of a prefix s[1..k] of s. Suppose that,
for h ∈ [1..z] and q > k, s[|f1f2 · · · fh−1|+1..q] is a suffix of f1f2 · · · fi for a static phrase fi.
Then, the LZ-End parsing of s[1..q+1] has one of the following forms: (1) f1f2 · · · fmf , for
m < h, or (2) f1f2 · · · fmf ′f , for m < h− 1, such that f1f2 · · · fz is a prefix of f1f2 · · · fmf ′.

Proof. Suppose that the LZ-End parsing of s[1..q] coincides with the parsing of s[1..k] on the
first d phrases, i.e., s[1..q] = f1f2 · · · fdf ′1f ′2 · · · f ′c for some c ≥ 1. It follows from Lemma 2
that f1f2 · · · fz is a prefix of f1f2 · · · fdf ′1. Since fi is static, we have i ≤ d, i.e., the phrases
f1, f2, . . . , fi are presented in the parsing of s[1..q]. Therefore, by Lemma 2, the LZ-End
parsing of s[1..q+1] is either f1f2 · · · fdf ′1f (here, the new phrase f “absorbs” the phrases
f ′2, f

′
3, . . . , f

′
c; we put m := d and f ′ := f ′1) or f1f2 · · · fmf for some m ≤ d (the new phrase f

“absorbs” f ′1 and, probably, some of the phrases fd, fd−1, . . .). Since f necessarily “absorbs”
the phrases fhfh+1 · · · fz, we have d < h− 1 in the former case and, hence, m < h− 1. J

The main problem is to find f and f ′ from Lemma 16 (and to determine whether f ′
really exists). For this, we perform a version of the incremental algorithm for the positions
k+ t+ 1, k+ t+ 2, . . . , q from left to right; the difference is that, during this, we do not store
any auxiliary phrases that appear as substrings of s[k+1..q] because anyway, by Lemma 16,
they are not present in the final parsing of s[1..q+1]. Let us discuss this in more details.

Let Q = {q1, q2, . . . , qc} be the increasing sequence of all positions from [k+t+1..q] such
that the LZ-End parsing of s[1..qd+1], for any d ∈ [1..c], has the form f1f2 · · · fmd

f ′d for
some md ≤ z and some phrase f ′d. It is convenient to imagine an incremental algorithm
(as in Section 2) that builds the parsing of the string s[1..q+1] incrementally starting from
the parsing of s[1..k+t]; our goal is to determine the moments when this algorithm passes
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· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

t
k

· · · fh−3 fh−2 fh−1 fh fz

q5+1 q+1
· · · fh−3 f ′5 = f ′ f

q4+1

· · · fh−3 f ′4

q3+1
· · · fh−3 fh−2 f ′3

q2+1

· · · fh−3 fh−2 f ′2

q1+1
· · · fh−3 fh−2 fh−1 f ′1

Figure 2 Construction of the parsing from Lemma 16; here h = z − 1, c = 5, m1 = h− 1, m2 =
m3 = h−2, m4 = m5 = m = h−3. Each line depicts the parsing of s[1..q′+1] for q′ ∈ {q1, q2, q3, q4, q}.

the positions from Q (also see Fig. 2 for clarifications). By the choice of q, the string
s[|f1f2 · · · fh−1|+1..q] is a suffix of f1f2 · · · fi, for static phrase fi, and, therefore, if none
of the positions [k+t+1..q−1] belongs to Q, then q must belong to it. By definition of Q,
the case (1) of Lemma 16 is realized iff qc = q. Further, the phrases f ′, f and the number
m from Lemma 16 can be determined as follows: f = f ′c and m = mc if qc = q (case (1)),
and f ′ = f ′c, f = s[qc+2..q+1], m = mc otherwise (case (2)). Note that the “source” of the
phrase f found during the calculation of qc and mc below might differ from the “source”
f1f2 · · · fi and might have a longer common suffix with s[1..q]. Thus, it remains to compute
qc and mc through the imitation of the work of our imaginary incremental algorithm.

During the processing of the positions [k+t+1..q], our real algorithm maintains a variable
m that is equal to md for the last processed position qd ∈ Q (initially, m = z) and the
fusion tree stores only the phrases fj+1, fj+2, . . . , fm (so that, initially, it stores all non-static
phrases). For each p = k + t+ 1, k + t+ 2, . . . , q from left to right, we apply Lemmas 11, 13
and use the LCP structure (in the same way as in the beginning of this section) to find in
O(1) time a phrase fi′ such that fi′ either is static or is currently in the fusion tree and the
length ` of the longest common suffix of s[1..p] and f1f2 · · · fi′ is maximal (among all such
phrases fi′). Then, p belongs to Q iff ` ≥ p− |f1f2 · · · fm|. Further, if ` ≥ p− |f1f2 · · · fm−1|
and i′ 6= m, we remove the phrase fm from the fusion tree and decrease m by one; in the
special case when ` ≥ p − |f1f2 · · · fm−1| and i′ = m, we remove fm from the fusion tree,
repeat the processing of p, and, if m did not change in this second attempt, restore fm.
The variable m is decreased only by one since, as it follows from Lemmas 2 and 3, for any
d ∈ [1..c], we have either md = md−1 or md = md−1 − 1, assuming m0 = z. The described
algorithm computes the numbers qc and mc (and, thus, f , f ′, and m) in O(q − k) time.

We remove the phrases fm+1, . . . , fz from the fusion tree and put f and f ′ (if f ′ does
exist) in it. So, by Lemma 16, the set of non-static phrases of s[1..q+1] consists of either
fj+1, fj+2, . . . , fm, f , form < h, or fj+1, fj+2, . . . , fm, f

′, f , form < h−1. Since h−j ≤ z−j,
there are at most z − j = blog3 nc phrases in this set. Therefore, the fusion tree is not
overflowed anymore and the algorithm can continue the execution from the prefix s[1..q+1].

The correctness of the whole algorithm of this section should be clear at this point.

Time estimation. The algorithm processes each position of s in O(1) time from left to
right until it reaches a position k+1 where the fusion tree overflows when the letter s[k+1]
is appended. The overflow is fixed in two ways. First, the algorithm processes each of the
positions k + 1, k + 2, . . . , k + t in O(1) time from left to right, for an appropriate value
of t, until it finds a position q such that our usual algorithm can continue the execution
from the prefix s[1..q+1] with the fixed non-overflowed fusion tree. It is obvious that all
fixing procedures of this kind take O(n) overall time. Thus, it remains to consider the
time required to fix the overflows in which the processing of the corresponding positions
k + 1, k + 2, . . . , k + t could not help; we refer to the overflows of this kind as hard overflows.
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· · · fh−3 fh−2 fh−1 fh fh+1 fh+2 fh′−1 fh′ fh′+1 fh′+2 fh′+3 fh′+4fh′+5 fh′+6
bi eiti

bi+1 ei+1ti+1
bi+2 ei+2ti+2

︷ ︸︸ ︷≤ log2 n phrases

Figure 3 The case in the proof of Lemma 17 when fh and fh′ both are not extendable. The
depicted phrases are from the LZ-End parsing of the prefix s[1..ei+2].

To maintain the invariant, the algorithm marks in the suffix tree the vertices corresponding
to the static phrases of length at least log3 n. As there are at most O(n/ log3 n) such phrases
and each marking takes O(logn) time, the overall time required for the maintenance of the
invariant is o(n) and, hence, we can exclude the time spent on these markings from the
consideration. Denote by ti the value of the variable t at the moment when the ith hard
overflow occurs. Suppose that the ith hard overflow occurs when the algorithm reaches a
prefix s[1..ki], for some ki, and tries to process s[1..ki+1]. The processing of this hard overflow
takes O(ti + qi − ki) time, where s[1..qi+1] is a prefix from which the algorithm continues its
execution after the fixing of the overflow. It is easy to see that

∑
i(ti+qi−ki) = O(n)+

∑
i ti

and, hence, it suffices to prove that, for any input string s[1..n], we have
∑
ti = O(n).

Consider the ith hard overflow. Suppose that it occurs on a prefix s[1..k] with the LZ-End
parsing f1f2 · · · fz and the fusion tree contains the phrases fj+1, fj+2, . . . , fz at this moment.
Denote bi = |f1f2 · · · fj |+ 1 and ei = |f1f2 · · · fz| (“b” and “e” are shortenings for “begin”
and “end”). Since ti = |fj+1fj+2 · · · fz|, we have ei = bi + ti − 1.

I Lemma 17. Suppose that d is the number of hard overflows occurred during the processing
of a string s. Then, for any i ∈ [1..d−2], we have bi+2 + ei+2 ≥ bi + ei + ti.

Proof. Note that the sequences {bi} and {ei} are non-decreasing and bi < ei for any i ∈ [1..d].
Recall that the ith hard overflow occurs after the processing of the prefix s[1..ei] and the
procedure fixing the overflow tries to “extend” a non-static phrase fh of the LZ-End parsing
of s[1..ei]. Due to Lemma 14, if fh is extendable, then the algorithm continues its execution
from a prefix s[1..q+1] for some q > ei + ti. Therefore, we obtain ei+1 ≥ q > ei + ti and,
hence, bi + ei + ti < bi + ei+1 ≤ bi+2 + ei+2.

Suppose that fh is not extendable. Then, the algorithm marks fh and all phrases to the
left of fh as static and only at most log2 n phrases (of length ≥ ti/ log2 n) remain in the
fusion tree (see Fig. 3 and 4). Now consider the (i+1)st hard overflow. It follows from the
above discussion that only at most log2 n first phrases of the fusion tree can contain phrases
of the parsing of s[1..ei] at this moment. The procedure fixing the (i+1)st hard overflow
analogously tries to “extend” a non-static phrase fh′ of the LZ-End parsing of s[1..ei+1].
This phrase fh′ is the rightmost phrase of length < ti+1/ log2 n. Since there are at least
blog3 nc − log2 n phrases of length < ti+1/ log2 n, the phrase fh′ cannot coincide with any
of the phrases from the parsing of s[1..ei] and, therefore, it must occur at a position to the
right of the position ei (see Fig. 3 and 4 for a clarification).

Suppose that fh′ is not extendable (see Fig. 3). Then, the algorithm marks fh′ and all
phrases to the left of fh′ as static. Hence, during the (i+2)nd hard overflow, bi+2 must
be greater than the rightmost position of fh′ and, thus, bi+2 > ei (see Fig. 3). Since
ei = bi + ti − 1, the later implies bi + ti ≤ bi+2 and, hence, bi + ei + ti ≤ bi+2 + ei+2.

Suppose that fh′ is extendable. Since ti ≤ (bi+1 − bi) + ti+1 (see Fig. 4), we derive
bi + ei + ti ≤ bi + ei + (bi+1− bi) + ti+1 = bi+1 + ei + ti+1 ≤ bi+1 + ei+1 + ti+1. By Lemma 14,
since fh′ is found to be extendable, after the (i+1)st hard overflow the algorithm continues
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· · · fh−3 fh−2 fh−1 fh fh+1 fh+2 fh′−1 fh′ fh′+1 fh′+2
bi eiti

bi+1 ei+1ti+1 ti+1
bi+2 ei+2ti+2

︷ ︸︸ ︷≤ log2 n phrases

q

Figure 4 The case in the proof of Lemma 17 when fh is not extendable and fh′ is extendable.
The depicted phrases are from the LZ-End parsing of the prefix s[1..ei+1].

its execution from a prefix s[1..q+1] for some q > ei+1 + ti+1. Therefore, we obtain ei+2 ≥
q > ei+1 + ti+1 (see Fig. 4), which implies bi + ei + ti ≤ bi+1 + ei+1 + ti+1 < bi+2 + ei+2. J

It follows from Lemma 17 that
∑d−2
i=1 ti ≤

∑d−2
i=1 (bi+2 + ei+2 − bi − ei) = bd + ed + bd−1 +

ed−1 − b1 − e1 − b2 − e2, which is obviously O(n). Therefore, since td + td−1 = O(n), we
obtain

∑d
i=1 ti = O(n). This finally proves Theorem 1.
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