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ABSTRACT
Ovarian cancer is a very severe type of disease with poor prognosis. Treatment 

of ovarian cancer is challenging because of the lack of tests for early detection 
and effective therapeutic targets. Thus, new biomarkers are needed for both 
diagnostics and better understanding of the cellular processes of the disease. Small 
molecules, consisting of metabolites or lipids, have shown emerging potential for 
ovarian cancer diagnostics. Here we performed comprehensive lipidomic profiling 
of serum and tumor tissue samples from high-grade serous ovarian cancer patients 
to find lipids that were altered due to cancer and also associated with progression 
of the disease. Ovarian cancer patients exhibited an overall reduction of most lipid 
classes in their serum as compared to a control group. Despite the overall reduction, 
there were also specific lipids showing elevation, and especially alterations in 
ceramide and triacylglycerol lipid species were dependent on their fatty acyl side 
chain composition. Several lipids showed progressive alterations in patients with 
more advanced disease and poorer overall survival, and outperformed CA-125 as 
prognostic markers. The abundance of many serum lipids correlated with their 
abundance in tumor tissue samples. Furthermore, we found a negative correlation 
of serum lipids with 3-hydroxybutyric acid, suggesting an association between 
decreased lipid levels and fatty acid oxidation. In conclusion, here we present a 
comprehensive analysis of lipid metabolism alterations in ovarian cancer patients, 
with clinical implications.
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INTRODUCTION

One of the most fundamental differences between 
cancer and non-malignant cells is their metabolism [1]. 
Besides the most established rewiring of central carbon 
metabolism, cancer cells exhibit alterations in lipid 
metabolism. Indeed, most solid tumors increase de novo 
synthesis of fatty acids to sustain the demand of membrane 
lipids in rapidly proliferating malignant cells [2]. Other 
types of tumors, including ovarian cancer, increase the 
utilization and oxidation of exogenous fatty acids as 
energy source [3]. This peculiar metabolic reprogramming 
is supported by the observation that ketone bodies and acyl 
carnitines are elevated in tumor and/or serum samples 
from ovarian cancer patients [4, 5].

Ovarian cancer is characterized by a very poor 
prognosis, mostly because the disease is detected at a 
late stage, leaving only limited therapeutic opportunities. 
Since patients with stage I disease have significantly better 
survival rate than patients with stage III or IV ovarian 
cancer, early diagnosis is critical [6]. The metabolic 
alterations of ovarian tumors has prompted several 
metabolomics and lipidomics studies to investigate the 
diagnostic potential of small molecules in body fluids. 
One of the first metabolomic studies on ovarian cancer 
was performed using Nuclear Magnetic Resonance 
(NMR). This analysis showed a good separation of serum 
samples from epithelial ovarian cancer patients from 
healthy controls or patients with benign ovarian cysts [7]. 
Subsequently, LC-MS profiling revealed that metabolite 
profiles not only distinguish patients from controls, but can 
also separate early-stage patients from late-stage patients 
[5]. A more recent study found that 16 small molecules, 
including many lipids, can distinguish patients with serous 
ovarian carcinomas from normal healthy controls [8].

To further improve the strength of this approach, 
we recently performed a comprehensive metabolomics 
analyses of blood and tissue samples from high-
grade serous ovarian cancer patients and found that 
hydroxybutyric acids can be used both as diagnostic and 
prognostic biomarkers [9]. Here, we performed untargeted 
lipidomic profiling from the same study cohort to fully 
assess the changes in lipid metabolism in these patients 
and to find novel small molecule biomarkers.

RESULTS

Ovarian cancer patients exhibit decreased serum 
levels of distinct lipid classes

To investigate the alterations in the lipid profile 
of ovarian high-grade serous carcinoma patients, we 
performed a comprehensive lipidomic analysis of 
serum samples from 147 ovarian cancer patients and 98 
control subjects with benign ovarian tumors and non-
neoplastic diseases (Supplementary Table 1). In ovarian 

cancer patient samples a consistent decrease of most 
of the analyzed lipid classes was observed, including 
phosphatidylcholines (PCs), phosphatidylethanolamines 
(PEs), phosphatidylinositols (PIs), cholesterylesters 
(CEs), diacylglycerols (DAGs), sphingomyelins (SMs), 
cerebrosides (glucosyl/galactosylceramides (Glc/GalCers), 
lactosylceramides (LacCers)), globotriasoylceramides 
(Gb3s) and sphingosine-1-phosphates (S1Ps) (Figure 1A, 
Supplementary Table 2). To exclude the possibility that 
patient age could explain the observed lipid alterations, we 
also calculated age-adjusted p-values for the comparison 
of ovarian cancer patients vs. control subjects. The 
results confirmed that most of the lipids associated with 
malignancy remained significant after adjustment with age 
(Supplementary Table 2).

Lysophospholipids, including lysophosphatidylcholines 
(LPCs) and lysophosphatidylethanolamines (LPEs), as well as 
ceramides (Cers), triacylglycerols (TAGs) and plasmalogens 
showed variable trend depending on the specific lipids of 
these lipid classes. In particular, the response of ceramide 
species was dependent on the fatty acyl (FA) side chain 
composition: all the analyzed ceramides, including those 
with d16:1, d18:0, d18:1 and d18:2 backbones, with 16:0, 
18:0, 20:0 and 24:1 FAs were increased, while those 
containing 23:0 and 24:0 FAs were decreased (Figure 1B). 
This phenomenon was particularly prominent for the most 
abundant d18:1 ceramides. The trend of TAG lipid species 
was also dependent on the FA side chains, as lipids with 
short FA side chains were decreased, whereas long chain 
TAGs were at the same level or increased in the serum of 
ovarian cancer patients as compared to control subjects 
(Figure 1C). The trend was less apparent with respect to 
TAG FA saturation level, although TAGs with 6 or 8 double 
bonds showed high elevation in ovarian cancer patients 
(Figure 1D). No trend was observed for DAG lipid species 
(Supplementary Figure 1).

We then investigated whether lipids can improve 
the predictive value of diagnosis of malignancy, alone 
or in combination with CA-125, the cancer biomarker 
currently used in the clinic [6]. CA-125 showed very 
high AUC value of 0.968 in this dataset, and none of 
the lipids outperformed this (Supplementary Table 2). 
However, slight improvement was observed when 
lipids were combined together with CA-125 in a 
logistic regression model, and the best AUC of 0.981 
was reached with combination of CA-125 and PE 
O-36:1. Also, combination of CA-125 with other lipids, 
including e.g. several plasmalogens, Glc/GalCers 
and lysophospholipids, outperformed CA-125 alone 
(Supplementary Table 2).

Distinct lipid species are associated with 
progression of the disease

We then assessed which of the lipids could be used 
as markers of disease progression. First, we investigated 
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which lipids were associated with either complete or 
incomplete tumor removal during the surgery, in terms of 
macroscopic residual mass. Lipids that were statistically 
significantly altered in patients with malignant disease and 
showed consistent direction of change when comparing 
patients with incomplete vs. complete tumor reduction 
are shown in Supplementary Table 3. In particular, lipids 
belonging to the CE, SM, LPC, PC, PC O and PE O lipid 
classes were decreased in all ovarian cancer patients, and 
progressed to lower levels especially in patients where 
the whole macroscopic tumor could not be removed 
during the surgery, as illustrated for one lipid, SM 41:1, in 
Figure 2A. Ceramide species showed consistent behavior, 
i.e. ceramides elevated in cancer patients continued 
to increase during disease progression (Figure 2B, 
Supplementary Table 3).

Second, we investigated which lipids were 
associated with overall and progression-free survival using 
cox regression models and log-rank test with median split. 
Most of the lipids that were decreased in ovarian cancer 
patients were also found in lower levels in patients with 
worse overall survival, and the opposite phenomenon was 

observed only for some of the ceramide and TAG species. 
Table 1 presents lipids that were significantly altered in 
patients with malignant disease and showed consistent 
and significant result in adjusted (with age and success of 
tumor reduction) cox regression models and log-rank test. 
This lipid panel consisted especially of LPC, ceramide, 
PC and PC-O lipid classes. Example Kaplan-Meier plots 
are presented for SM 41:1 and Cer(d20:1/24:1) lipids 
(Figure 2C, 2D). The most significant lipids and CA-125 
are visualized in Figure 2E; when lipids in all the cancer 
patients are divided into quartiles, in many cases either 
in the highest or lowest quartile the risk of death within 
1-year follow-up is less than 5%, whereas in the quartile 
of opposite end more than 20%. In contrast, CA-125 did 
not show any prognostic value. Several LPC and PC lipid 
species remained significant, when the cox model was 
adjusted additionally with FIGO stage (Supplementary 
Table 4). Only occasional lipids showed significant 
result for progression-free survival, but it is noteworthy 
that Cer(d18:1/16:0) showed significant hazard ratio 
both in overall and progression-free survival analyses 
(Supplementary Table 2).

Figure 1: Alteration of serum lipids in ovarian cancer patients. (A) Summary of increased and decreased lipid classes in ovarian 
cancer patients. (B) Heatmap showing increase and decrease of ceramide species with different backbone (d16:1, d18:0, d18:1, d18:2) 
and fatty acyl (FA) side chains in ovarian cancer patients vs. control subjects. (C) Mean relative change of triacylglycerol (TAG) lipids 
according to the total number of carbons in the FA side chains. (D) Mean relative change of TAG lipids according to the total number of 
double bonds in the FA side chains. In panels C and D red color indicates statistically significant ( p < 0.05) result.
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Effect on general nutritional and health status 
on lipidomic profiles

Given the important role of diet and nutritional 
state in regulating lipid profiles, we investigated whether 
the observed lipidomic changes were correlated with 
nutritional parameters. Data (nutritional intake, BMI 
and weight alteration) were available for 26 patients. 
The lipids associated with ovarian cancer survival did 
not correlate with BMI, while some were negatively 
associated with weight change of the cancer patients 
(Supplementary Table 2), suggesting that the nutritional 
status did not have major effect on the lipidomic results. 
Most of the lipids decreased in cancer patients were 
not associated with patient-reported food intake, also 
supporting that the overall lipidomic alterations are 
not associated with nutritional status of the patients. 
However, many of the survival-associated lipids, 
especially SMs and LPCs, correlated with the patient-
reported food intake. Based on the present data it is 
not possible to conclude the direction of causality, i.e. 
whether lipids correlating with the severity of the disease 

affect appetite or whether poorer nutrition intake affects 
survival and the concentration of these lipids.

Most of tumor tissue lipids do not associate with 
overall survival

We also analyzed lipid profiles of tumor samples 
and investigated their association with overall and 
progression-free survival. In tumor tissue analyses we 
used a lipidomic platform with more restricted number 
of lipids analyzed. First, it was noted that the total sum 
of triacylglycerols was considerably lower in those tumor 
samples obtained from ovaries than from intestine and 
peritoneum (Supplementary Figure 2). Inclusion of all the 
samples would have caused a bias in the analysis, and for 
this reason the survival analyses were performed only for 
those patients whose tumor tissue samples were obtained 
from ovaries. The results showed that majority of the 
lipids were not significant in the cox regression analysis 
(Supplementary Table 5), suggesting that lipid levels 
measured from tumor tissues cannot be used to predict 
survival of the patients.

Figure 2: Examples of significant lipids in tumor reduction and overall survival. Panels (A) and (B) present the levels of SM 
41:1 and Cer(d20:1/24:1) in control subjects and in patients with partial or complete tumor reduction during the surgery, and panels (C) 
and (D) Kaplan-Meier curves for overall survival for the same lipids. (E) Heatmap demonstrating the risk of death within 1 year, when the 
patients have been split into quartiles based on the top-ranking lipids for overall survival or CA-125.
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Concentration of sphingomyelins correlate 
between serum and tumor tissue samples

We then analyzed the correlation of lipid 
distribution between serum and tumor tissue. To this aim 
lipidomic datasets were aligned and Pearson correlation 
coefficient was determined for each lipid. However, due 
to challenges in the alignment of the two datasets from 
different matrices and methodological differences, all 
serum lipids could not be explicitly matched with tumor 
tissue samples. Nevertheless, it appeared that lipids from 
the PC, SM and TAG lipid classes follow each other in 
tumor tissue most significantly (Supplementary Table 6). 

Notably, among the four most correlated lipids there 
were two SMs, SM 32:1 and SM 34:2 that are presented 
in Figures 3A and 3B.

TAGs and PCs correlate with a ketone body

In our previous study we observed that 
hydroxybutyric acids were key metabolite biomarkers 
for ovarian cancer [9]. As the present and previous 
study were performed from the same serum samples, 
in patients with malignant disease we correlated 
3-hydroxybutyric acid, a ketone body, with all the 
analyzed lipids in order to understand if the lipidomic 

Lipid name Lipid class
Cox regression Log-rank

UHR (95% CI) p-value MHR (95% CI) p-value p-value

CE 14:1 CE 0.77 (0.61, 0.98) 0.033 0.77 (0.60, 0.99) 0.038 0.020
CE 17:0 CE 0.77 (0.63, 0.95) 0.013 0.80 (0.64, 0.99) 0.043 0.005
CE 22:3 CE 0.75 (0.59, 0.94) 0.012 0.79 (0.63, 0.98) 0.034 0.015
Cer(d16:1/23:0) Cer d16:1 0.76 (0.61, 0.95) 0.015 0.78 (0.62, 0.97) 0.028 0.020
Cer(d18:1/16:0) Cer d18:1 1.47 (1.15, 1.87) 0.002 1.36 (1.06, 1.75) 0.014 0.001
Cer(d20:1/24:1) Cer d20:1 1.54 (1.21, 1.97) 0.001 1.32 (1.03, 1.71) 0.031 0.001
LPC 14:0_sn1 LPC 0.72 (0.57, 0.90) 0.004 0.79 (0.62, 1.00) 0.046 0.029
LPC 18:2_sn1 LPC 0.67 (0.52, 0.84) 0.001 0.75 (0.58, 0.97) 0.027 0.007
LPC 18:2_sn2 LPC 0.67 (0.53, 0.85) 0.001 0.75 (0.58, 0.96) 0.021 0.013
LPC 20:0_sn2 LPC 0.69 (0.54, 0.88) 0.003 0.76 (0.59, 0.98) 0.035 0.005
LPC 20:2_sn1 LPC 0.73 (0.58, 0.91) 0.004 0.78 (0.62, 0.98) 0.031 0.000
LPC 20:2_sn2 LPC 0.72 (0.58, 0.90) 0.004 0.78 (0.62, 0.98) 0.031 0.014
LPC 22:0_sn1 LPC 0.70 (0.55, 0.89) 0.004 0.78 (0.61, 0.99) 0.044 0.000
LPC 24:0_sn2 LPC 0.65 (0.50, 0.84) 0.001 0.70 (0.54, 0.91) 0.008 0.021
LPE 18:2_sn2 LPE 0.68 (0.53, 0.88) 0.004 0.72 (0.56, 0.94) 0.016 0.023
PC 34:3b PC 0.74 (0.59, 0.94) 0.014 0.79 (0.63, 0.99) 0.042 0.032
PC 34:5 PC 0.67 (0.51, 0.88) 0.004 0.68 (0.52, 0.90) 0.006 0.025
PC 35:0 PC 0.74 (0.59, 0.92) 0.008 0.74 (0.59, 0.92) 0.007 0.004
PC 35:2b PC 0.79 (0.63, 1.00) 0.049 0.79 (0.63, 0.98) 0.035 0.038
PC 35:3a PC 0.75 (0.59, 0.96) 0.024 0.79 (0.62, 1.00) 0.047 0.033
PC 37:3 PC 0.74 (0.60, 0.93) 0.009 0.79 (0.64, 0.97) 0.025 0.002
PC 38:6a PC 0.73 (0.58, 0.92) 0.007 0.80 (0.64, 1.00) 0.046 0.001
PC O-36:1 PC O 0.76 (0.62, 0.94) 0.011 0.78 (0.63, 0.97) 0.028 0.047
PC O-38:1 PC O 0.71 (0.57, 0.88) 0.002 0.77 (0.63, 0.96) 0.017 0.001
PC O-38:2 PC O 0.65 (0.51, 0.82) 0.000 0.70 (0.56, 0.88) 0.002 0.000
PI 32:0 PI 0.70 (0.51, 0.98) 0.037 0.70 (0.50, 0.98) 0.036 0.009
SM 41:1 SM 0.70 (0.58, 0.86) 0.001 0.78 (0.63, 0.96) 0.019 0.001
TAG(18:1/18:1/20:4) TAG 1.38 (1.10, 1.74) 0.006 1.32 (1.03, 1.69) 0.026 0.001
CA-125 Clinical 1.24 (0.90, 1.71) 0.190 1.12 (0.80, 1.57) 0.510 0.590

Table 1: Overall survival results for lipids that were significant both in the overall survival and malignant vs. benign 
analyses
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alterations could result from fatty acid oxidation in 
the tumor cells. Indeed, especially PC and short chain 
TAG molecules showed negative correlation with serum 
3-hydroxybutyric acid (Supplementary Table 7 and 
Figure 3C), suggesting that these lipids are consumed 
in tumors that are producing the ketone bodies. Among 
the most significantly correlating lipids, a positive 
correlation was observed only for a long chain TAG and 
acylcarnitine molecules.

Lipid metabolism gene expression analyses

Our final aim was to investigate which lipid 
metabolism-related genes associate with overall survival 
of the ovarian cancer patients. To this end we analyzed 
174 genes from relevant KEGG pathways and used 
TCGA data to investigate the association of expression 
and copy number with survival. A gene was considered 
significant if it had consistent association with survival 
both in the TCGA gene expression data (KM curves based 
on quartiles) and data obtained from online data analysis 
tool [10] (median split). With these criteria, only six genes 
were significant: low expression of ABCD1, CEL, LPIN2 
and PLA2G2D genes and high expression of ADH1B and 
ASAH1 genes were associated with poor survival of the 
patients (Table 2, Supplementary Figure 3). These genes 
encode proteins related to sphingolipid metabolism, fatty 
acid import and oxidation and glycero(phospho)lipid 
metabolism.

DISCUSSION

In this study we characterized the lipidome of 
serum and tumor samples from ovarian high-grade serous 
carcinoma patients. An overall decrease of lipid levels of 
most of the analyzed lipid classes was observed in ovarian 
cancer patient serum samples as compared to the controls. 
Our metabolomics analyses performed using the same 

sample series did not reveal such a systematic decrease 
[9], and therefore this phenomenon seems to be specific 
to lipid metabolism. Our data is consistent with other 
recent reports that have shown decrease of TAGs [11] and 
glycerophospholipids [12] in ovarian cancer patients. The 
global decrease of lipids can be at least partly explained 
by altered lipoprotein levels. For instance, HDL particles 
are rich in phospholipids and decreased HDL-cholesterol 
[13] and Apolipoprotein A-I (ApoAI) [14] levels have been 
reported in ovarian cancer patients. For other lipoproteins, 
LDL and VLDL, the direction of change in ovarian cancer 
patients is less clear [13, 15]. A limitation of our study was 
that we did not have clinical cholesterol measurements 
available from the samples, and therefore further lipoprotein 
and lipidomic studies are needed to understand the in-depth 
alterations of lipoprotein lipids in ovarian cancer patients. 
Another limitation was that data for BMI, a potential factor 
affecting the lipidome, was available for only 26 patients, 
and results from more extensive studies are needed to 
confirm our current findings which did not show association 
of ovarian cancer affected lipids with BMI.

Despite the global decrease of lipids, there were 
also exceptions showing consistent increase due to 
ovarian cancer, and especially in patients with more 
advanced disease. This was particularly prominent 
for ceramides, where the 16:0, 18:0, 20:0 and 24:1 FA 
containing ceramides were increased, while ceramides with 
23:0 and 24:0 FAs were decreased. This pattern is strikingly 
similar with coronary artery disease patients having high 
risk of cardiovascular death, as we have shown that higher 
Cer(d18:1/16:0), Cer(d18:1/18:0), Cer(d18:1/20:0) and 
Cer(d18:1/24:1) ceramides predict increased risk, while 
Cer(d18:1/24:0) is a protective lipid for cardiovascular 
events [16, 17]. Indeed, ovarian cancer patients are reported 
to be at an increased risk of developing ischemic stroke 
[18], which may be even first sign of the disease [19]. 
This phenomenon could be explained by paraneoplastic 
thrombocytosis, as malignant ovarian tumors have 
been shown to produce cytokines promoting platelet 

Figure 3: Correlation of lipids in serum and tumor tissue and with 3-hydroxybutyric acid. Correlation of SM 32:1 (A) and 
SM 34:1 (B) concentration in serum and tumor tissue samples of ovarian cancer patients. (C) Correlation of PC 32:2 and 3-hydroxybutyric 
acid in serum samples of ovarian cancer patients.
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production, which then induce tumor growth [20]. 
However, it is tempting to speculate that the alteration 
of ceramide profile may be also involved in the 
development of increased risk for ischemic strokes.

Among other lipids, SMs showed correlation 
between tumor tissue and serum samples, and SMs were 
also elevated in patients with incomplete tumor reduction 
and poorer survival. It is plausible that the increased 
ceramide levels could originate from conversion of 
SMs to ceramides in the tumor tissue, although our gene 
expression analyses did not show association of any the 
sphingomyelinase genes to overall survival. The only 
significant gene regarding sphingolipid metabolism was 
acid ceramidase (ASAH1), which catalyzes the hydrolysis 
of ceramides to produce sphingosine, which can be 
subsequently phosphorylated to S1P [21]. Increase of 
S1P levels have been reported in ascites [22] and plasma 
[23] of ovarian cancer patients, and it would be logical 
to assume that accumulation of ceramides would lead to 
conversion into S1P by the acid ceramidase. S1P is known 
to be potential modulator of several tumorigenic processes 
in ovarian cancer, including promotion of invasion, 
migration and proliferation of cancer cells as well as 
participation to hypoxic, angiogenetic and inflammatory 
processes [24]. Surprisingly in our data instead of increase 
we recorded a decrease of S1P lipids in the serum of 

ovarian cancer patients, which was not supporting the 
concept of ceramide conversion to S1P. This is in contrast 
with previous data in plasma, and a confirmation study is 
needed to resolve whether ovarian cancer patients exhibit 
decrease or increase of S1P in their serum.

Another interesting finding was the decrease of 
TAGs with shorter/medium chain fatty acyl side chains 
in cancer patients, whereas the longer chain ones were 
not altered or showed an increase. We observed that 
3-hydroxybutyric acid negatively correlated especially 
with the TAGs with shorter fatty acyl side chains. This 
indirectly suggests that the fatty acyl side chains from 
TAGs are used in fatty acid oxidation producing ketone 
bodies. A possible reason for the different behavior of 
the longer fatty acyl side chains may stem from our gene 
expression findings. Low expression of ABCD1, the gene 
encoding for adrenoleukodystrophy protein (ALDP) was 
associated with worse overall survival. This protein is 
associated with transport of very-long-chain fatty acids 
into peroxisome for beta-oxidation [25]. Thus, it is 
possible that peroxisomal fatty acid oxidation is impaired. 
This is supported also by our previous metabolomics data 
which showed increase of metabolites that are found in 
peroxisomal disorder [9].

In summary, our analyses revealed that several 
lipid species, including ceramide, LPC, PC, SM 

Table 2: Results for lipid metabolism genes that showed significant association with survival both in the TCGA and 
KMplot.com data sets

Gene TCGA 
p-value

KMplot.
com 

p-value

Expression poor 
survival

CNA 
p-value Enzyme KEGG pathway

ABCD1 0.043 0.010 low NA
ATP-Binding Cassette, 
Sub-Family D (ALD), 

Member 1
hsa04146: peroxisome

ADH1B    0.027 <0.001 high 0.368

Alcohol 
Dehydrogenase 

1B (Class I), Beta 
Polypeptide

hsa00071: fatty acid 
degradation

ASAH1    0.003 0.007 high 0.067
N-Acylsphingosine 

Amidohydrolase (Acid 
Ceramidase) 1

hsa00600: sphingolipid 
metabolism

CEL      0.013 0.022 low 0.397 Carboxyl ester lipase hsa00561: glycerolipid 
metabolism

LPIN2    0.002 0.042 low 0.326 Lipin 2

hsa00561: glycerolipid 
metabolism; hsa00564: 

glycerophospholipid 
metabolism

PLA2G2D  0.002 0.003 low 0.304 Phospholipase A2, 
Group IID

hsa00564: 
glycerophospholipid 

metabolism

Also the p-values from the copy number analyses (CNA) are shown.
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and TAG lipid classes, showed both diagnostic and 
prognostic potential. Thus, it appears that the lipidomic 
alterations caused by ovarian cancer are profound 
and there are several potential candidates for further 
biomarker development. Lipids showed especially 
good performance in prognostic setting, and taken into 
account our previous data [9] it is reasonable to assume 
that measuring lipids and hydrophilic metabolites 
simultaneously would form a test with both diagnostic 
and prognostic value. Further research is needed to 
validate the most promising markers in independent 
cohorts and especially for early-stage patients that are 
not diagnosed with CA-125 measurements. Finally, 
mechanistic understanding behind the alterations may 
lead to potential therapeutic targets and possibilities for 
companion diagnostics.

MATERIALS AND METHODS

Patients and samples

Lipidomic profiling was performed for serum 
samples of 98 subjects without malignant disease, i.e. 
control group, as well as for 147 ovarian high-grade serous 
carcinoma patient serum samples. Clinicopathological 
characteristics of the study are shown in Supplementary 
Table 1. Before lipidomic analyses, cancer patient and 
control group samples were combined into one set and 
randomized. Lipidomic profiling was also performed for 
tumor tissues obtained from 140 patients having matching 
serum samples in the study.

We have recently described the collection and 
preparation of the samples in detail [9]. In brief, all 
tissue and serum samples were from preoperative 
primary ovarian cancer patients and collected at the 
Tumor Bank Ovarian Cancer (www.toc-network.de) 
at the Charité Medical University (Berlin, Germany) 
between 09/2000 and 02/2011. The Ethics Committee 
approved the use of the samples for the study, and the 
patient’s informed consent was obtained prior sample 
collection and documentation of clinical and surgical 
data. The study population without ovarian cancer 
consisted of a group of pelvic mass patients with benign 
tumors, endometriosis, uterus myomatosus, adnexitis 
and other conditions.

Lipidomic analysis of serum samples (LC-MS/MS)

Lipidomic analyses were performed using 
two platforms, a global screening method and a 
phosphosphingolipid platform. Lipids for the screening 
method were extracted using a modified Folch extraction 
[26] and protein precipitation in methanol was used for the 
extraction of phosphosphingolipids. Prior to extraction, 
samples were thawed at +4°C, and Hamilton MICROLAB 
STAR system (Hamilton Robotics, Switzerland) was used 

for the extraction. For the screening method, samples 
(10 µl) were aliquoted into a 96-well plate, and internal 
standard mixture (20 µl) containing a known amount 
of synthetic internal standards (IS) was added followed 
by chloroform (450 µl). Organic phase separation was 
facilitated by adding 20 mM acetic acid and centrifuging 
the plate for 5 min at 500 × g. The lower organic phase 
(360 µl) was transferred into a new 96-well plate. The 
remaining water-containing phase was washed with 
additional chloroform (360 µl) followed by centrifugation 
and removal of the remaining organic phase. The two 
organic phases were pooled and evaporated under N2 
until dryness. The lipid extracts were then re-dissolved 
in chloroform:methanol (1:2, v/v). For the analysis of 
phosphosphingolipids,  samples (25 µl) were aliquoted 
into a 96-well plate, and ice-cold methanol containing 
0.1% BHT (500 µl) was added to each sample, followed 
by internal standard mixture (25 µl) containing a known 
amount of synthetic standards. Samples were mixed and 
incubated for 10 min. After centrifugation, supernatant 
(450 µl) was transferred into a new 96-well plate, 
evaporated under N2 until dryness and re-dissolved in 
methanol (200 µL).  

Lipidomics screening and phosphosphingolipid 
platforms were both analyzed on a hybrid triple quadrupole/
linear ion trap mass spectrometer (QTRAP 5500, AB Sciex, 
Concors, Canada) equipped with an ultra-high performance 
liquid chromatography (UHPLC) (Nexera-X2, Shimadzu). 
Chromatographic separation of the lipidomics screening 
platform was performed on Acquity BEH C18, 2.1 × 50 mm 
id. 1.7 µm column (Waters, Massachusetts, USA). Mobile 
phases consisted of (A) 10 mM ammonium acetate in LC-
MS grade water with 0.1% formic acid, and (B) 10 mM 
ammonium acetate in acetonitrile:2-propanol (3:4, V/V) 
with 0.1% formic acid (FA). The following LC gradient was 
used: 0.3 min at 45% B, linear increase of B from 45% to 
95% in 10 min, 95% to 100% B in 0.1 min, 2.5 min at 100% 
B, 100% to 45% B in 0.1 min and 1.5 min equilibration 
at 45% prior to the next injection. Flow rate was 600 µl/
min and column temperature 60°C. Injection volume 
of all samples was 2 µl. Chromatographic separation of 
phosphosphingolipid platform was performed on AQUASIL 
C18, 2.1 × 50 mm, 5 µm (Thermo Fisher, Massachusetts, 
USA), column set at 60°C. Mobile phases consisted of (A) 
10 mM ammonium acetate in LC-MS grade water with 
0.1% formic acid, and (B) 10 mM ammonium acetate in 
methanol:2-Propanol (1:2) with 0.1% formic acid. Flow rate 
was 1000 µl/min and sample volume 5 µl. First, solvent 
B was kept at 20% for 1 min, then linearly increased to 
100% in 4 min. The column was flushed with 100% B for  
3 min, followed by 2 min equilibration at 20% B.

For the MS analysis, a targeted approach in 
positive ion mode was used for both platforms. Data was 
collected using scheduled multiple reaction monitoring 
(sMRM™) algorithm for the lipidomics screening 
platform [27] and multiple reaction monitoring (MRM) 
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for phosphosphingolipids. Mass spectrometer parameters 
were optimized based on lipid class. Lipidomics data were 
processed using Analyst and MultiQuant 3.0 software 
(QTRAP 5500, AB Sciex, Concors, Canada), area or 
height ratios of analyte and its corresponding IS peak were 
normalized with IS amount and sample volume.

Only those lipids were subjected for statistical 
analyses that were found in at least 90% of all the samples.

Lipidomic analysis of tumor samples (LC-MS)

Lipidomic analysis of tumor samples was performed 
with a UPLC-MS-QTOF method, and in addition to the 
previously described LC-MS/MS method, this method was 
also used to analyze the serum samples so that correlation 
of lipids between tumor and serum was possible to 
perform. The details of this method have been described 
in Supplementary Materials and Methods.

Statistical analyses

All statistical analyses were performed using R, 
version x64 3.2.3. After log-transformation of the data, 
two group comparisons were performed by unpaired 
t-tests and calculating mean relative differences between 
the groups. For multiple group comparisons Analysis of 
Variance (ANOVA) was performed. Correlation analyses 
were performed by Pearson or Spearman method, 
as appropriate and specified in each case. Multiple 
hypothesis correction was evaluated by false discovery 
rate q-values. The results presented in the main text show 
unadjusted p-values, and p-values together with q-values 
are presented for all analyses in Supplementary Table 2. 
Association of the lipids to survival was investigated 
by cox proportional hazards regression models and 
Kaplan-Meier plots with a median split and logrank 
test (package survival). For cox regression models, 
the data was log-transformed and divided by standard 
deviation. Multivariable models were adjusted with age 
and incomplete/complete tumor reduction in surgery. For 
overall survival, also a model with additional adjustment 
of tumor stage was constructed. Age-adjusted p-values 
in malignant vs. benign comparison were obtained by 
logistic regression model incorporating both lipid and 
age in the model. Logistic regression models were also 
used to estimate the combined AUC values for lipids 
and CA-125, and the AUC values were calculated using 
ROCR library [28]. Heatmaps were visualized with 
Tableau software, version 10.1.1.

Survival analyses on those genes that were 
related to lipids with diagnostic or prognostic potential 
was performed based on gene expression and copy 
number data. The KEGG genes were selected from the 
following KEGG pathways: fatty acid degradation, 
sphingolipid metabolism, glycerolipid metabolism, 
glycerophospholipid metabolism and peroxisome (only 

lipid metabolism related genes). TCGA mRNA expression 
and clinical information for ovarian cancer patient samples 
were obtained from TCGA data portal [29]. Copy number 
alterations for tumors were obtained from cBioPortal 
[30]. When interpreting the results, the significance of the 
results was evaluated by both p-value and investigating 
the KM curves manually. Another independent data set 
and online tool was used to analyze the association of 
gene expression with survival in ovarian cancer patients 
(survival = overall survival, histology = serous carcinoma, 
follow up threshold = 10 years) [10]. In this data set those 
probes were selected that showed most significant p-value 
for each gene.
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