
On the Size of Lempel-Ziv and Lyndon
Factorizations∗

Juha Kärkkäinen1, Dominik Kempa2, Yuto Nakashima3,
Simon J. Puglisi4, and Arseny M. Shur5

1 Helsinki Institute for Information Technology (HIIT), Helsinki, Finland; and
Department of Computer Science, University of Helsinki, Helsinki, Finland
juha.karkkainen@cs.helsinki.fi

2 Helsinki Institute for Information Technology (HIIT), Helsinki, Finland; and
Department of Computer Science, University of Helsinki, Helsinki, Finland
dominik.kempa@cs.helsinki.fi

3 Department of Informatics, Kyushu University, Fukuoka, Japan; and
Japan Society for the Promotion of Science, Japan
yuto.nakashima@inf.kyushu-u.ac.jp

4 Helsinki Institute for Information Technology (HIIT), Helsinki, Finland; and
Department of Computer Science, University of Helsinki, Helsinki, Finland
simon.puglisi@cs.helsinki.fi

5 Dept. of Algebra and Discrete Mathematics, Ural Federal University,
Ekaterinburg, Russia
arseny.shur@urfu.ru

Abstract
Lyndon factorization and Lempel-Ziv (LZ) factorization are both important tools for analysing
the structure and complexity of strings, but their combinatorial structure is very different. In this
paper, we establish the first direct connection between the two by showing that while the Lyndon
factorization can be bigger than the non-overlapping LZ factorization (which we demonstrate by
describing a new, non-trivial family of strings) it is always less than twice the size.

1998 ACM Subject Classification F.2.2 [Nonnumerical Algorithms and Problems] Pattern Match-
ing, G.2.1 [Combinatorics] Combinatorial Algorithms

Keywords and phrases Lempel-Ziv factorization, Lempel-Ziv parsing, LZ, Lyndon word, Lyndon
factorization, Standard factorization

Digital Object Identifier 10.4230/LIPIcs.STACS.2017.45

1 Introduction

Given a string (or word) x, a factorization of x partitions x into substrings f1, f2, . . . ft, such
that x = f1f2 . . . ft. In the past 50 years or so, dozens of string factorizations have been
studied, some purely out of combinatorial interest (e.g. [12, 1, 22, 2]) and others because the
internal structure that they reveal allows the design of efficient string processing algorithms.
Perhaps the two most important factorizations in string processing are the Lempel-Ziv (LZ)
factorization [26] and the Lyndon factorization1 [10].

∗ This research was partially supported by the Academy of Finland through grant 294143 and by the
RFBR grant 16-01-00795.

1 Also known as the Standard factorization.

© Juha Kärkkäinen, Dominik Kempa, Yuto Nakashima, Simon J. Puglisi, and Arseny M. Shur;
licensed under Creative Commons License CC-BY

34th Symposium on Theoretical Aspects of Computer Science (STACS 2017).
Editors: Heribert Vollmer and Brigitte Vallée; Article No. 45; pp. 45:1–45:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/157586228?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.STACS.2017.45
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

45:2 On the Size of Lempel-Ziv and Lyndon Factorizations

The LZ factorization has its origins in data compression, and is still used in popular file
compressors2 and as part of larger software systems (see, e.g., [7, 16] and references therein).
More recently it has been used in the design of compressed data structures for indexed
pattern matching [13] and other problems [5]. Each factor fi in the LZ factorization must
be as long as possible and must be either the first occurrence of a letter in x or occur in
f1 . . . fi−1.3 The Lyndon factorization, on the other hand, was first studied in the context
of combinatorics on words [20, Sect. 5], and later found use in algorithms; for example,
in a bijective variant of the Burrows-Wheeler transform [14, 18], in suffix sorting [21] and
in repetition detection [4]. Each factor fi in the Lyndon factorization must be a Lyndon
word: a string that is lexicographically smaller than all its proper suffixes; and the factors
must be lexicographically non-increasing. Lyndon words themselves have deep combinatorial
properties [20] and have wide application [6, 9, 11, 15, 18, 19, 20, 23].

For some problems each factorization (Lempel-Ziv or Lyndon) leads to quite different
solutions. Perhaps the best known example of this is the computation of all the maximal
repetitions – also known as the “runs” – in a string. In 1999 Kolpakov and Kucherov proved
that ρ(n), the number of runs in a string of length n, is O(n), and showed how to exploit
the structure of the LZ factorization to compute all the runs in linear time [17]. Much more
recently, Bannai et al. [3] used properties of the Lyndon factorization to obtain a much
simpler constructive proof that ρ(n) < n. This later result also leads to a straight-forward
linear-time algorithm for computing the runs from the Lyndon factorization [4].

Our overarching motivation in this paper is to obtain a deeper understanding of how
these two fundamental factorizations – Lempel-Ziv and Lyndon – relate. Toward this aim,
we ask: by how much can the sizes of the factorizations of the same word differ? Here the
size of the Lempel-Ziv factorization s = p1 · · · pz is z and the size of the Lyndon factorization
s = fe1

1 · · · fem
m , where each ei is positive and each fi is lexicographically strictly greater

than fi+1, is m. For most strings, the number of Lyndon factors is much smaller. Indeed,
any string has a rotation with a Lyndon factorization of size one. So the actual question
is how big can m be with respect to z. For a lower bound, we show that there are strings
with m = z + Θ(

√
z). Our main result is the upper bound: the inequality m < 2z holds

for all strings. This result improves significantly a previous, indirect bound by I et al. [25],
who showed that the number of Lyndon factors cannot be more than the size of the smallest
straight line program (SLP). Since the smallest SLP is at most a logarithmic factor bigger
than the LZ factorization [24, 8], this establishes an indirect, logarithmic factor bound, which
we improve to a constant factor two.

2 Basic Notions

We consider finite strings over an alphabet Σ = {a1, . . . , an}, which is linearly ordered:
a1 ≺ a2 ≺ · · · ≺ an. For strings, we use the array notation: s = s[1..|s|], where |s| stands
for the length of s. The empty string ε has length 0. Any pair i, j such that 1 ≤ i ≤ j ≤ |s|
specifies a substring s[i..j] in s. A string u equal to some s[i..j] is a factor of s (a prefix, if
i = 1, and a suffix, if j = |s|). A prefix or suffix of s is called proper if it is not equal to s. A
factor u may be equal to several substrings of s, referred to as occurrences of u in s. The
occurrences of a given factor u are totally ordered by their positions in s, so we can speak
about “leftmost” or “previous” occurrence. By uk we denote the concatenation of k copies of
string u. If k = 0 we define uk = ε.

2 For example gzip, p7zip, lz4, and snappy all have the LZ factorization at their core.
3 This is the non-overlapping version of the LZ factorization.

J. Kärkkäinen, D. Kempa, Y. Nakashima, S. J. Puglisi, and A.M. Shur 45:3

A string u over Σ is lexicographically smaller or equal than a string v (denoted by u � v)
if either u is a prefix of v or u = xaw1, v = xbw2 for some strings x,w1, w2 and some letters
a ≺ b. In the latter case, we refer to this occurrence of a (resp., of b) as the mismatch of
u with v (resp., of v with u). A string w is called a Lyndon word if w is lexicographically
smaller than all its non-empty proper suffixes. The Lyndon factorization of a string s is its
unique (see [10]) factorization s = fe1

1 · · · fem
m such that each fi is a Lyndon word, ei ≥ 1,

and fi � fi+1 for all 1 ≤ i < m. We call each fi a Lyndon factor of s, and each Fi = fei
i a

Lyndon run of s. The size of the Lyndon factorization is m, the number of distinct Lyndon
factors, or equivalently, the number of Lyndon runs.

The non-overlapping LZ factorization (see [26]) of a string s is its factorization s = p1 · · · pz
built left to right in a greedy way by the following rule: each new factor (also called an LZ
phrase) pi is either the leftmost occurrence of a letter in s or the longest prefix of pi · · · pz
which occurs in p1 · · · pi−1.

3 Upper Bound

The aim of this section is to prove the following theorem.

I Theorem 1. Every string s having Lyndon factorization s = fe1
1 · · · fem

m and non-
overlapping LZ factorization s = p1 · · · pz satisfies m < 2z.

Let us fix an arbitrary string s and relate all notation (fi, ei, Fi, pi,m, z) to s. The main
line of the proof is as follows. We identify occurrences of some factors in s that must contain a
boundary between two LZ phrases. Non-overlapping occurrences contain different boundaries,
so our aim is to prove the existence of more than m/2 such occurrences. We start with two
basic facts; the first one is obvious.

I Lemma 2. For any strings u, v, w1, w2, the relation uw1 ≺ v ≺ uw2 implies that u is a
prefix of v.

I Lemma 3. The inequality j < i implies fj � Fi.

Proof. We prove that fj � fki for any k, arguing by induction on k. The base case k = 1
follows from the definitions. Let fj � fk−1

i . In the case of mismatch, fj � fki holds trivially.
Otherwise, fj = fk−1

i x for some x 6= ε. If x = fi or x ≺ fi, then x ≺ fj , and so fj is not a
Lyndon word. Hence x � fi and thus fj = fk−1

i x � fki . Thus, the inductive step holds. J

The next lemma locates the leftmost occurrences of the Lyndon runs and their products.

I Lemma 4. Let d ≥ 1 and 1 ≤ i ≤ m− d+ 1, and assume that FiFi+1 · · ·Fi+d−1 has an
occurrence to the left of the trivial one in s. Then:
1. The leftmost occurrence of FiFi+1 · · ·Fi+d−1 is a prefix of fj for some j < i;
2. FiFi+1 · · ·Fi+d−1 is a prefix of every fk with j < k < i.

Proof. (1) Let j be the smallest integer such that the leftmost occurrence of FiFi+1 · · ·Fi+d−1
in s overlaps Fj . Suppose first that the leftmost occurrence of FiFi+1 · · ·Fi+d−1 is not entirely
contained inside a single occurrence of fj . Then there exists a non-empty suffix u of fj that
is equal to some prefix of one of the factors fi, . . . , fi+d−1, say fi′ . We cannot have u = fj
because then fj � fi′ which is impossible since j < i′. Thus u must be a proper suffix of fj .
But then u � fi′ ≺ fj , which contradicts fj being a Lyndon word.

Suppose then that the leftmost occurrence of FiFi+1 · · ·Fi+d−1 in s is entirely contained
inside fj but is not its prefix, i.e., fj = vFiFi+1 · · ·Fi+d−1w for some strings v 6= ε and w.

STACS 2017

45:4 On the Size of Lempel-Ziv and Lyndon Factorizations

Fj · · · Fi−1 Fi · · · Fi+d−1

d

extdomd(Fi)
domd(Fi)

a b b a b b a b a b b a b a b b b a b a b b a b a

1
1

2
1, 2, 3

s[i]:
i: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Figure 1 Left: Graphical notation used to illustrate domd(Fi) = Fj · · ·Fi−1. Also shown is
extdomd(Fi) = Fj · · ·Fi+d−1. Right: all non-empty domains for the example string with the Lyndon
factorization of size 5. Note that due to Lemma 6 there are no non-trivial intersections between
domains.

Since fj is a Lyndon word we have fj ≺ FiFi+1 · · ·Fi+d−1w. Consider the position of the
mismatch of FiFi+1 · · ·Fi+d−1w with fj . If the mismatch occurs inside FiFi+1 · · ·Fi+d−1,
we can write fj = Fi · · ·Fi′−1f

e
i′x where i ≤ i′ < i + d, 0 ≤ e < ei, and x is a suffix of

fj that satisfies x ≺ fi′ ≺ fj , which contradicts fj being a Lyndon word. On the other
hand, the mismatch inside w implies that fj begins with FiFi+1 · · ·Fi+d−1, contradicting the
assumption that the inspected occurrence of FiFi+1 · · ·Fi+d−1 is the leftmost in s.

(2) We prove this part by induction on d. Let d = 1. By Lemma 3 we have fj � fk � Fi.
Since fj begins with Fi by statement 1, so does fk by Lemma 2. Assume now that the claim
holds for all d′ < d. From the inductive assumption Fi and Fi+1 · · ·Fi+d−1 are both prefixes
of fk. Let y, y′, and z be such that fj = FiFi+1 · · ·Fi+d−1y, fk = Fi+1 · · ·Fi+d−1y

′ = Fiz.
We have j < k and thus fk ≺ fj must hold which, since Fi is a prefix of both fj and
fk, implies z ≺ Fi+1 · · ·Fi+d−1y. On the other hand, since fk is a Lyndon word, we have
fk = Fi+1 · · ·Fi+d−1y

′ ≺ z. By Lemma 2, Fi+1 · · ·Fi+d−1y
′ ≺ z ≺ Fi+1 · · ·Fi+d−1y implies

that Fi+1 · · ·Fi+d−1 is a prefix of z or equivalently that FiFi+1 · · ·Fi+d−1 is a prefix of fk. J

3.1 Domains
Lemma 4 motivates the following definition.

I Definition 5. Let d ≥ 1 and 1 ≤ i ≤ m − d + 1. We define the d-domain of Lyndon
run Fi as the substring domd(Fi) = FjFj+1 · · ·Fi−1, j ≤ i of s, where Fj is the Lyndon
run (which exists by Lemma 4) starting at the same position as the leftmost occurrence of
FiFi+1 · · ·Fi+d−1 in s. Note that if FiFi+1 · · ·Fi+d−1 does not have any occurrence to the
left of the trivial one then domd(Fi) = ε. The integers d and i− j are called the order and
size of the domain, respectively.

The extended d-domain of Fi is the substring extdomd(Fi) = domd(Fi)Fi · · ·Fi+d−1 of s.

Lemma 4 implies two easy properties of domains presented below as Lemma 6. These
properties lead to a convenient graphical notation to illustrate domains (see Fig. 1).

I Lemma 6. Let domd(Fi) = Fj · · ·Fi−1, j ≤ i. Then:
For any d′ > d, domd′(Fi) is a suffix of domd(Fi);
For any d′ ≥ 1, domd′(Fk) is a substring of domd(Fi) if j ≤ k < i.

I Definition 7. Consider domd(Fi) for some d ≥ 1, 1 ≤ i ≤ m − d + 1, and let α =
Fi · · ·Fi+d−1. We say that the leftmost occurrence of α in s is associated with domd(Fi).

For example, in Fig. 1, s[7..9] is associated with dom2(s[23..24]); s[7..17] is associated
with dom1(s[7..17]) even though it is not shown, since dom1(s[7..17]) = ε. Observe that due

J. Kärkkäinen, D. Kempa, Y. Nakashima, S. J. Puglisi, and A.M. Shur 45:5

to Lemma 6 this implies that domd(s[7..17]) = ε for any d > 1, and hence for example the
substring of s associated with dom2(s[7..17]) is s[7..22].

A substring s[i..i+k], k ≥ 0 is said to contain an LZ phrase boundary if some phrase of
the LZ-factorization of s begins in one of the positions i, . . . , i+k. Clearly, non-overlapping
substrings contain different phrase boundaries. Furthermore, if the substring of s does not
have any occurrence to the left (in particular, if it is the leftmost occurrence of a single
symbol), it contains an LZ phrase boundary, thus we obtain the following easy observation.

I Lemma 8. Each substring associated with a domain contains an LZ phrase boundary.

3.2 Tandem Domains
I Definition 9. Let d ≥ 1 and 1 ≤ i ≤ m−d. A pair of domains domd+1(Fi), domd(Fi+1) is
called a tandem domain if domd+1(Fi) ·Fi = domd(Fi+1) or, equivalently, if extdomd+1(Fi) =
extdomd(Fi+1). Note that we permit domd+1(Fi) = ε.

For example, dom3(s[18..22]), dom2(s[23..24]) is a tandem domain in Fig. 1, because we
have extdom3(s[18..22]) = extdom2(s[23..24]) = s[7..25].

I Definition 10. Let domd+1(Fi), domd(Fi+1) be a tandem domain. Since Fi+1 · · ·Fi+d is a
prefix of Fi by Lemma 4, we let Fi = Fi+1 · · ·Fi+dx. The leftmost occurrence of Fi · · ·Fi+d in
s can thus be written as Fi+1 · · ·Fi+dxFi+1 · · ·Fi+d. We say that this particular occurrence
of the factor xFi+1 · · ·Fi+d is associated with the tandem domain domd+1(Fi), domd(Fi+1).

I Remark. Note that the above definition permits domd+1(Fi) = ε. If domd+1(Fi) 6= ε, then
α, the substring of s associated with domd+1(Fi), domd(Fi+1), is (by Lemma 4) a substring
of Fj , where Fj , j < i is the leftmost Lyndon run inside domd+1(Fi). Otherwise, α overlaps
at least two Lyndon runs. In both cases, however, α is a substring of extdomd+1(Fi).

I Lemma 11. Each substring associated with a tandem domain contains an LZ phrase
boundary.

Proof. Let domd+1(Fi), domd(Fi+1) be a tandem domain and let u = xFi+1 · · ·Fi+d be the
associated substring of s. Suppose to the contrary that u contains no LZ phrase boundaries.
Then some LZ-phrase pt contains u and the letter preceding u. Since we consider a non-
overlapping LZ variant, the previous occurrence of pt in s must be a substring of p1 · · · pt−1.
Note, however, that u is preceded in s by the leftmost occurrence of Fi+1 · · ·Fi+d, which is
the prefix of Fj (see Definition 10). Thus, the leftmost occurrence of u in s either immediately
precedes the associated substring, or overlaps it, or coincides with it. This, however, rules out
the possibility that the previous occurrence of pt occurs in p1 · · · pt−1, a contradiction. J

We say that a tandem domain domd+1(Fi), domd(Fi+1) is disjoint from a tandem domain
dome+1(Fk), dome(Fk+1) if all i, i+ 1, k, k + 1 are different, i.e., i+ 1 < k or k + 1 < i.

I Lemma 12. Substrings associated with disjoint tandem domains do not overlap each other.

Proof. Let domd+1(Fi), domd(Fi+1) and dome+1(Fk), dome(Fk+1) be tandem domains
called the d-tandem and e-tandem, respectively. Without the loss of generality let i+ 1 < k.

Case 1: domd+1(Fi) 6= ε and dome+1(Fk) 6= ε. First observe that if the d-tandem and
e-tandem begin with different Lyndon runs, then the associated substrings trivially do
not overlap by the above Remark. Assume then that all considered domains start with
Fj , j < i. By Definition 10 we can write Fj as Fj = Fi+1 · · ·Fi+dxFi+1 · · ·Fi+dy, where
|Fi+1 · · ·Fi+dx| = |Fi| and xFi+1 · · ·Fi+d is the substring of s associated with the d-tandem.

STACS 2017

45:6 On the Size of Lempel-Ziv and Lyndon Factorizations

Similarly we have Fj = Fk+1 · · ·Fk+ex
′Fk+1 · · ·Fk+ey

′ where |Fk+1 · · ·Fk+ex
′| = |Fk| and

x′Fk+1 · · ·Fk+e is the substring of s associated with the e-tandem. However, by Lemma 4,
Fk · · ·Fk+e is a prefix of Fi+1 and thus |Fk+1 · · ·Fk+ex

′Fk+1 · · ·Fk+e| ≤ |Fi+1|, i.e., the
substring of s associated with the e-tandem is inside the prefix Fi+1 of Fj and thus is on the
left of the substring associated with the d-tandem.

Case 2: domd+1(Fi) = Fj · · ·Fi−1, j < i, and dome+1(Fk) = ε. In this case the substring
associated with the e-tandem begins in Fk by the above Remark and thus is on the right of
the substring associated with the d-tandem.

Case 3: domd+1(Fi) = ε and dome+1(Fk) = ε. This is only possible if i + d < k since
otherwise Fk (and thus also Fk+1 · · ·Fk+e) occurs in Fi, contradicting dome(Fk+1) = Fk.
Then, extdomd+1(Fi) does not overlap extdome+1(Fk), and the claim holds by above Remark.

Case 4: domd+1(Fi) = ε and dome+1(Fk) = Fj · · ·Fk−1, j < k. Then, the substring of
s associated with e-tandem is a substring of Fj . If i > j, then clearly extdomd+1(Fi) does
not overlap Fj . On the other hand, if i < j, it must also hold i+ d < j since otherwise Fj
(and thus also Fk · · ·Fk+e) occurs in Fi, contradicting dome+1(Fk) = Fj · · ·Fk−1, and thus
again, extdomd+1(Fi) does not overlap Fj . In both cases the Remark above implies the claim.
Finally, if i = j, we must also have i+ 1 < k from the assumption about the disjointness of
d- and e-tandem. By Lemma 4 we can write Fi = Fi+1 · · ·Fi+dx, Fi+1 = Fk · · ·Fk+ex

′ and
hence also Fi · · ·Fi+d = Fk · · ·Fk+ex

′Fi+2 · · ·Fi+dxFi+1 · · ·Fi+d. In this decomposition, the
substring associated with the e-tandem occurs inside the prefix Fk · · ·Fk+e, and the substring
associated with the d-tandem is the suffix xFi+1 · · ·Fi+d, which proves the claim. J

3.3 Groups
We now generalize the concept of tandem domain.

I Definition 13. Let d ≥ 1, 2 ≤ p ≤ m, and 1 ≤ i ≤ m − d − p + 2. A set of p
domains domd+p−1(Fi), domd+p−2(Fi+1), . . ., domd(Fi+p−1) is called a p-group if for all t =
0, . . . , p−2 the equality domd+p−1−t(Fi+t)·Fi+t = domd+p−2−t(Fi+t+1) holds or, equivalently,
extdomd+p−1(Fi) = . . . = extdomd(Fi+p−1). Note that we permit domd+p−1(Fi) = ε.

I Lemma 14. Substrings associated with tandem domains from the same group do not
overlap each other.

Proof. Consider a p-group, p ≥ 3 and assume first that p = 3. By Lemma 4 we have Fi =
Fi+1 · · ·Fi+d+1x

′ and Fi+1 = Fi+2 · · ·Fi+d+1x for some words x′ and x. We can thus write the
leftmost occurrence of Fi · · ·Fi+d+1 in s as Fi+2 · · ·Fi+d+1xFi+2 · · ·Fi+d+1x

′Fi+1 · · ·Fi+d+1.
It is easy to see that those occurrences of xFi+2 · · ·Fi+d+1 and x′Fi+1 · · ·Fi+d+1 are associated
with (resp.) tandem domains domd+1(Fi+1), domd(Fi+2) and domd+2(Fi), domd+1(Fi+1),
and thus the claim holds.

For p > 3 it suffices to consider all subgroups of size three, in left-to-right order, to
verify that the substrings associated with all tandem domains occur in reversed order as a
contiguous substring and thus no two substrings overlap each other. J

The above Lemma is illustrated in Fig. 2. It also motivates the following definition which
generalizes the concept of associated substring from tandem domains to groups.

I Definition 15. Consider a p-group domd+p−1(Fi), domd+p−2(Fi+1), . . ., domd(Fi+p−1)
for some p ≥ 2. From Lemma 4, Fi+p−1 · · ·Fi+p+d−2 is a prefix of Fi. Thus, the leftmost
occurrence of Fi · · ·Fi+p+d−2 in s can be written as Fi+p−1 · · ·Fi+p+d−2xFi+1 · · ·Fi+p+d−2.

J. Kärkkäinen, D. Kempa, Y. Nakashima, S. J. Puglisi, and A.M. Shur 45:7

u · · · v w x y
w x y

x y
y

y
w

x
y

x y
y y

x y
y

y
s :

3
2

1

αxy αwx

u v
v

w
ww

w

x
xx

x
x

xx
x

y
yy

y
y

y y
y

s :

4
3

2

αwx αvw αuv

Figure 2 Illustration of Lemma 14. In the examples u, v, w, x, y are Lyndon runs from the
Lyndon factorization of s. The top figure shows a 3-group: dom3(w) = u · · · v, dom2(x) = u · · · vw,
dom1(y) = u · · · vwx. αwx is a substring associated with the tandem domain dom3(w), dom2(x),
and αxy is a substring associated with the tandem domain dom2(x), dom1(y). Observe that the
substrings associated with tandem domains occur as a contiguous substring and in reverse order
(compared to the order of the corresponding tandem domains in s). The bottom figure shows a
4-group: dom5(u) = ε, dom4(v) = u, dom3(w) = uv, dom2(x) = uvw and demonstrates the case
when the leftmost domain in a group is empty.

We say that this particular occurrence of the substring xFi+1 · · ·Fi+p+d−2 is associated with
the p-group domd+p−1(Fi), domd+p−2(Fi+1), . . ., domd(Fi+p−1).

It is easy to derive a formal proof of the following Lemma from the proof of Lemma 14.

I Lemma 16. The substring associated with a p-group is the concatenation, in reverse order,
of the p− 1 substrings associated with the tandem domains belonging to the p-group.

Our consideration of groups culminates in the next two results.

I Corollary 17. The substring associated with a p-group contains at least p− 1 different LZ
phrase boundaries.

We say that a p-group domd+p−1(Fi), . . ., domd(Fi+p−1) is disjoint from a p′-group
domd′+p′−1(Fk), . . ., domd′(Fk+p′−1) if i + p − 1 < k or k + p′ − 1 < i. By combining
Lemma 12 and Lemma 16 we obtain the following fact.

I Lemma 18. Substrings associated with disjoint groups do not overlap.

3.4 Subdomains
The concept of p-group does not easily extend to p = 1. If we simply define the 1-group
as a single domain and extend the notion of groups to include 1-groups then Lemma 18 no
longer holds (e.g. in Fig. 1 the substring associated with tandem domain dom3(s[18..22]),
dom2(s[23..24]) is s[10..14] and the substring associated with domain dom1(s[7..17]) is
s[7..17]). Instead, we introduce a weaker lemma (Lemma 20) that also includes single
domains.

STACS 2017

45:8 On the Size of Lempel-Ziv and Lyndon Factorizations

I Definition 19. We say that a domain dome(Fk) is a subdomain of a domain domd(Fi) =
Fj · · ·Fi−1, j ≤ i if k = i and e = d (i.e., the domain is its own subdomain), or j ≤ k < i

and extdome(Fk) is a substring of extdomd(Fi) (or equivalently, if k + e ≤ i+ d). In other
words, Fk has to be one of the Lyndon runs among Fj , . . ., Fi−1 and the extended domain
of Fk cannot extend (to the right) beyond the extended domain of Fi.

I Lemma 20. Consider a tandem domain dome+1(Fk), dome(Fk+1) such that dome+1(Fk)
and dome(Fk+1) are subdomains of domd(Fi). Then, the substring associated with the tandem
domain dome+1(Fk), dome(Fk+1) does not overlap the substring associated with domd(Fi).

Proof. First, observe that in order for a tandem domain consisting of two subdomains to
exist, domd(Fi) has to be non-empty. Thus, let domd(Fi) = Fj · · ·Fi−1 for some j < i. This
implies (Lemma 4) that the substring associated with domd(Fi) is a prefix of Fj .

Assume first that dome+1(Fk) = Fj′ · · ·Fk−1, j < j′ ≤ k. The substring associated with
the tandem domain is a substring of extdome+1(Fk) thus it trivially does not overlap Fj .

Assume then that dome+1(Fk) = Fj · · ·Fk−1. If k+ 1 < i then by Lemma 4, Fi · · ·Fi+d−1
is a prefix of Fk+1. By Definition 10 the leftmost occurrence of Fk · · ·Fk+e in s can be
written as Fk+1 · · ·Fk+exFk+1 · · ·Fk+e. Thus clearly the leftmost occurrence of Fi · · ·Fi+d−1
(associated with domk(Fi)) occurs in a prefix Fk+1 not overlapped by xFk+1 · · ·Fk+e (which
is a substring associated with the tandem domain).

The remaining case is when k + 1 = i. Then by Definition 19 we must have e = d and
again the claim holds easily from Definition 10. J

For any domain domd(Fi) = Fj · · ·Fi−1, j < i we define the set of canonical subdomains
as follows. Consider the following procedure. Initialize the set of canonical subdomains to
contain domd(Fi). Then initialize δ = d and start scanning the Lyndon runs Fj , . . ., Fi−1
right-to-left. When scanning Ft we check if domδ+1(Ft) = Fj · · ·Ft−1.

If yes, we include domδ+1(Ft) into the set, increment δ and continue scanning from Ft−1.
Otherwise, i.e., if domδ+1(Ft) = Fj′ · · ·Ft−1 for some j′ > j, we include the domain
domδ+1(Ft) into the set. Then we set δ = 0 and continue scanning from Fj′−1. All
domains that were included into the set of canonical subdomains in this case are called
loose subdomains.

See Fig. 3 for an example. The above procedure simply greedily constructs groups of
domains, and whenever the candidate for the next domain in the current group does not
have a domain that starts with Fj , we terminate the current group, add the loose subdomain
into the set and continue building groups starting with the next Lyndon run outside the
(just included) loose subdomain.

Note that the current group can be terminated when containing just one domain, so
it is not a group in this case. Hence we call the resulting sequences of non-loose domains
clusters, i.e., a cluster is either a single domain, or a p-group, p ≥ 2. Note also that during
the construction we may encounter more than one loose subdomain in a row, so clusters and
loose subdomains do not necessarily alternate, but no two clusters occur consecutively.

Finally, observe that the sequence of clusters and loose subdomains always ends with a
cluster (possibly of size one) containing domd′(Fj) for some d′ (d′ = 3 for the example in
Fig. 3), since domd′(Fj) = ε for all d′.

3.5 Proof of the Main Theorem
We are now ready to prove the key Lemma of the proof. Recall that the size of domd(Fi) =
Fj · · ·Fi−1, j ≤ i is defined as i− j.

J. Kärkkäinen, D. Kempa, Y. Nakashima, S. J. Puglisi, and A.M. Shur 45:9

3
2

1

2 3

2

1

5

4

3

2

1

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16
extdom2(F6) extdom3(F9) extdom5(F12)

Figure 3 An example showing the set of canonical subdomains of dom2(F15). Using notation
from Lemma 21, the set has p = 4 clusters of size (left-to-right): `1 = 3, `2 = 1, `3 = 2, `4 = 3, and
t = 3 loose subdomains: dom2(F6) = F4F5, dom3(F9) = F8, dom5(F12) = ε of size k1 = 2, k2 = 1,
k3 = 0. Note how the extended domains of loose subdomains do not overlap each other. Furthermore,
note that extdom2(F15) = F1 · · ·F16 can be factorized as F1 · · ·F`1 concatenated with the extended
domains. By Corollary 17 and Lemmas 18 and 20, F1 · · ·F`1 contains 1 +

∑p

h=1(`h − 1) = 6 LZ
phrase boundaries, while the extended domains extdom2(F6), extdom3(F9), extdom5(F12) contain∑t

h=1(dkh/2e+ 1) = 5 LZ phrase boundaries by Lemma 21.

I Lemma 21. Let domd(Fi) be a domain of size k ≥ 0. Then extdomd(Fi) contains at least
dk/2e+ 1 different LZ phrase boundaries.

Proof. Let domd(Fi) = Fj · · ·Fi−1, j ≤ i and k = i− j. The proof is by induction on k. For
k = 0, extdomd(Fi) is the substring of s associated with domd(Fi) (see Definition 7) and
thus by Lemma 8, extdomd(Fi) contains at least one LZ phrase boundary.

Let k > 0 and assume now that the claim holds for all smaller k. Consider the set Ci,d
of canonical subdomains of domd(Fi). If Ci,d contains no loose subdomain, it consists of a
single cluster which is a (k + 1)-group. By Corollary 17, the substring associated with this
group contains k phrase boundaries; by Lemma 20, one more boundary is provided by the
domain domd(Fi) itself. We have 1 + k ≥ 1 + dk/2e, which concludes the proof of this case.

For the rest of the proof assume that Ci,d contains t ≥ 1 loose subdomains, denoted, left
to right, by domd1(Fi1), . . . ,domdt

(Fit). Note that dt > d. Let kh be the size of domdh
(Fih),

h = 1, . . . , t. Further, let ` ≥ 1 be the size of the leftmost cluster (the one that contains some
domain of Fj). By the construction of the canonical set we have

extdomd(Fi) = Fj · · ·Fj+`−1extdomd1(Fi1)extdomd2(Fi2) · · · extdomdt(Fit). (1)

Both clusters and loose subdomains contribute some number of LZ phrase boundaries into
their total. The boundaries contributed by clusters are all different by Lemma 18; let S be
their number. These boundaries are also different from the boundary inside the substring
associated with domd(Fi) by Lemma 20. Furthermore, it is easy to see from the proof of
Lemma 20 that all these phrase boundaries are located inside Fj · · ·Fj+`−1. The number of
phrase boundaries inside the extended domains of loose subdomains can be estimated by
the inductive assumption (by Eq. 1, these external domains do not overlap each other or

STACS 2017

45:10 On the Size of Lempel-Ziv and Lyndon Factorizations

Fj · · ·Fj+`−1). So we obtain that extdomd(Fi) contains at least

1 +
t∑

h=1

(⌈
kh
2

⌉
+ 1
)

+ S (2)

different LZ phrase boundaries. Let us evaluate
∑t
h=1 kh. By the construction, a loose

dh-subdomain is followed by exactly dh Lyndon runs which are outside loose subdomains;
then another loose subdomain follows (cf. Fig. 3). The only exception is the rightmost loose
subdomain, which is followed by dt − d Lyndon runs outside loose subdomains (note that we
only count Lyndon runs inside domd(Fi)). Then

t∑
h=1

kh = k − `−
t∑

h=1
dh + d. (3)

Next we evaluate S. By Corollary 17, a cluster of size r contributes r − 1 phrase boundaries.
Then the leftmost (resp., rightmost) cluster contributes `− 1 (resp., dt − d− 1) boundaries.
Each of the remaining clusters is preceded by a loose dh-subdomain, where dh > 1, and
contributes dh − 2 boundaries. Using Knuth’s notation [predicate] for the numerical value (0
or 1) of the predicate in brackets, we can write

S = `− 1 +
t∑

h=1
dh − t− d−

t−1∑
h=1

[dh > 1]. (4)

Finally, we estimate the number in Eq. 2 using Eq. 3 and Eq. 4:

1+
t∑

h=1

(⌈
kh
2

⌉
+ 1
)

+S ≥ 1+t+
k − `−

∑t
h=1 dh + d

2 +`−1+
t∑

h=1
dh−t−d−

t−1∑
h=1

[dh > 1]

= k

2 + `

2 +
t∑

h=1

dh
2 −

d

2 −
t−1∑
h=1

[dh > 1] = `+ dt − d
2 + k

2 +
t−1∑
h=1

(
dh
2 − [dh > 1]

)
≥ 1+ k

2 .

The obtained lower bound for an integer can be rounded up to 1 + dk/2e, as required. J

Using the above Lemma we can finally prove the main Theorem.

Proof of Theorem 1. Partition the string s into extended domains as follows: take the
string s′ such that s = s′ · extdom1(Fm) and partition s′ recursively to get

s = extdom1(Fi1) · · · extdom1(Fit), where it = m.

By Lemma 21, each extended domain extdom1(Fih) contains at least dkh/2e + 1 phrase
boundaries, where kh is the size of the domain dom1(Fih). Clearly,

∑t
h=1 kh = m− t; hence

the total number z of the boundaries satisfies

z ≥
t∑

h=1

(⌈
kh
2

⌉
+ 1
)
≥
⌈
m− t

2

⌉
+ t =

⌈
m+ t

2

⌉
>
m

2 ,

as required. J

J. Kärkkäinen, D. Kempa, Y. Nakashima, S. J. Puglisi, and A.M. Shur 45:11

4 Lower Bound

The upper bound on the number of factors in the Lyndon factorization of a string, given in
of Theorem 1, is supported by the following lower bound. Consider a string sk = B0 · · ·Bka,
k ≥ 0, where:

B0 = b,

B1 = ab,

B2 = a2baba2b,

· · ·
Bk = (akba1b) · · · (akbak−1b)akb.

For example, s3 = (b)(ab)(a2baba2b)(a3baba3ba2ba3b)(a).

I Theorem 22. Let f1 · · · fmk
and p1 · · · pzk

be the Lyndon factorization and the non-
overlapping LZ factorization of the string sk, k ≥ 2. Then mk = k2/2 + k/2 + 2, zk =
k2/2− k/2 + 4, and thus mk = zk + Θ(√zk).

Proof. First we count Lyndon factors. All factors will be different, so their number coincides
with the number of Lyndon runs. By the definition of Lyndon factorization, the block Bi
(0 < i ≤ k) is factorized into i Lyndon factors:

Bi = aiba1b · aiba2b · · · aibai−1b · aib. (5)

For any suffix u of B0 · · ·Bi−1 and any prefix v of Bi, u � v holds since ai is a prefix of
Bi and this is the leftmost occurrence of ai. Thus there is no Lyndon word that begins in
B0 · · ·Bi−1 and ends in Bi. This implies that the factorization of sk is the concatenation of
the first b, then k factorizations Eq. 5, and the final a, k2/2 + k/2 + 2 factors in total.

Let LZ (sk) denote the LZ factorization of sk. The size of LZ (s2) = b · a · ba · aba · baaba
is 5. For k ≥ 3, we prove by induction that

LZ (sk) = LZ (sk−1) · ak−1babak−1 · aba2bak−1 · · · abak−2bak−1 · abak−1bakba. (6)

For k = 3 we have LZ(s3) = LZ(s2) · aababaa · abaabaaaba and thus the claim holds. If
k > 3, by the inductive hypothesis the last phrase in LZ(sk−1) is p = abak−2bak−1ba. The
factor p has only one previous occurrence: it occurs at the boundary between Bk−2 and
Bk−1, followed by b. So, p remains a phrase in LZ (sk). Each of subsequent k − 2 phrases of
Eq. 6 also has a single previous occurrence (inside Bk−1), and this occurrence is followed by b
because Bk−1 has no factor ak. Thus, Eq. 6 correctly represents LZ (sk). Direct computation
now gives zk = k2/2− k/2 + 4. J

References
1 Golnaz Badkobeh, Hideo Bannai, Keisuke Goto, Tomohiro I, Costas S. Iliopoulos, Shunsuke

Inenaga, Simon J. Puglisi, and Shiho Sugimoto. Closed factorization. Discrete Appl. Math.,
212:23–29, 2016.

2 Hideo Bannai, Travis Gagie, Shunsuke Inenaga, Juha Kärkkäinen, Dominik Kempa, Marcin
Pia̧tkowski, Simon J. Puglisi, and Shiho Sugimoto. Diverse palindromic factorization is
NP-complete. In Proceedings of the 19th International Conference on Developments in
Language Theory (DLT), pages 85–96. Springer, 2015.

3 Hideo Bannai, Tomohiro I, Shunsuke Inenaga, Yuto Nakashima, Masayuki Takeda, and
Kazuya Tsuruta. The runs theorem. arXiv, abs/1406.0263, 2014.

STACS 2017

45:12 On the Size of Lempel-Ziv and Lyndon Factorizations

4 Hideo Bannai, Tomohiro I, Shunsuke Inenaga, Yuto Nakashima, Masayuki Takeda, and
Kazuya Tsuruta. A new characterization of maximal repetitions by Lyndon trees. In
Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 562–571. SIAM, 2015.

5 Djamal Belazzougui, Travis Gagie, Pawel Gawrychowski, Juha Kärkkäinen, Alberto Or-
dóñez Pereira, Simon J. Puglisi, and Yasuo Tabei. Queries on LZ-bounded encodings. In
Proceedings of the 2015 Data Compression Conference (DCC), pages 83–92. IEEE, 2015.

6 Srecko Brlek, Jacques-Olivier Lachaud, Xavier Provençal, and Christophe Reutenauer. Lyn-
don + Christoffel = digitally convex. Pattern Recogn., 42(10):2239–2246, 2009.

7 Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach,
Michael Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: A
distributed storage system for structured data. ACM Trans. Comput. Syst., 26(2), 2008.

8 Moses Charikar, Eric Lehman, Ding Liu, Rina Panigrahy, Manoj Prabhakaran, Amit Sa-
hai, and Abhi Shelat. The smallest grammar problem. IEEE Trans. Information Theory,
51(7):2554–2576, 2005.

9 Marc Chemillier. Periodic musical sequences and Lyndon words. Soft Comput., 8(9):611–
616, 2004.

10 Kuo-Tsai Chen, Ralph H. Fox, and Roger C. Lyndon. Free differential calculus, IV. The
quotient groups of the lower central series. Ann. Math., 68:81–95, 1958.

11 Yoann Dieudonné and Franck Petit. Circle formation of weak robots and Lyndon words.
Inf. Process. Lett., 101(4):156–162, 2007.

12 Gabriele Fici, Travis Gagie, Juha Kärkkäinen, and Dominik Kempa. A subquadratic algo-
rithm for minimum palindromic factorization. J. Discrete Algorithms, 28:41–48, 2014.

13 Travis Gagie, Pawel Gawrychowski, Juha Kärkkäinen, Yakov Nekrich, and Simon J. Puglisi.
LZ77-based self-indexing with faster pattern matching. In Proceedings of the 11th Latin
American Theoretical Informatics Symposium (LATIN), pages 731–742. Springer, 2014.

14 Joseph Yossi Gil and David Allen Scott. A bijective string sorting transform. arXiv,
abs/1201.3077, 2012.

15 David Hill, George Melvin, and Damien Mondragon. Representations of quiver Hecke
algebras via Lyndon bases. J. Pure Appl. Algebr., 216:1052–1079, 2012.

16 Christopher Hoobin, Simon J. Puglisi, and Justin Zobel. Relative Lempel-Ziv factorization
for efficient storage and retrieval of web collections. PVLDB, 5(3):265–273, 2011.

17 Roman M. Kolpakov and Gregory Kucherov. Finding maximal repetitions in a word in
linear time. In Proceedings of the 40th Annual Symposium on Foundations of Computer
Science (FOCS), pages 596–604. IEEE, 1999.

18 Manfred Kufleitner. On bijective variants of the Burrows-Wheeler transform. In Proceedings
of the 2009 Prague Stringology Conference (PSC), pages 65–79. Czech Technical University
in Prague, 2009.

19 Pierre Lalonde and Arun Ram. Standard Lyndon bases of Lie algebras and enveloping
algebras. Transactions of the American Mathematical Society, 347:1821–1830, 1995.

20 M. Lothaire. Combinatorics on Words. Cambridge University Press, 1997.
21 Sabrina Mantaci, Antonio Restivo, Giovanna Rosone, and Marinella Sciortino. Suffix array

and Lyndon factorization of a text. J. Discrete Algorithms, 28:2–8, 2014.
22 Yoshiaki Matsuoka, Shunsuke Inenaga, Hideo Bannai, Masayuki Takeda, and Florin Manea.

Factorizing a string into squares in linear time. In Proceedings of the 27th Annual Sym-
posium on Combinatorial Pattern Matching (CPM), pages 27:1–27:12. Schloss Dagstuhl –
Leibniz-Zentrum fuer Informatik, 2016.

23 Marcin Mucha. Lyndon words and short superstrings. In Proceedings of the 24th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 958–972. SIAM, 2013.

J. Kärkkäinen, D. Kempa, Y. Nakashima, S. J. Puglisi, and A.M. Shur 45:13

24 Wojciech Rytter. Application of Lempel-Ziv factorization to the approximation of grammar-
based compression. Theor. Comput. Sci., 302(1-3):211–222, 2003.

25 I Tomohiro, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.
Faster Lyndon factorization algorithms for SLP and LZ78 compressed text. Theor. Comput.
Sci., 656:215–224, 2016.

26 Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data compression.
IEEE Trans. Inf. Theory, 23(3):337–343, 1977.

STACS 2017

	Introduction
	Basic Notions
	Upper Bound
	Domains
	Tandem Domains
	Groups
	Subdomains
	Proof of the Main Theorem

	Lower Bound

