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Abstract In one of our earlier studies we noticed how straightforward cleaning

of our medical data set impaired its classification results considerably with some

machine learning methods, but not all of them, unexpectedly and against intui-

tion compared to the original situation without any data cleaning. After a more

precise exploration of the data, we found that the reason was the complicated

variable distribution of the data although there were only two classes in it. In

addition to a straightforward data cleaning method, we used an efficient way

called neighbourhood cleaning that solved the problem and improved our clas-

sification accuracies 5–10%, at their best, up to 95% of all test cases. This shows

how important it is first very carefully to study distributions of data sets to be

classified and use different cleaning techniques in order to obtain best classifica-

tion results.
ª 2014 King Saud University. Production and hosting by Elsevier B.V. All rights

reserved.
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1. Introduction

In our earlier research we developed a signal analysis method for nystagmic eye
movements investigated in otoneurological tests (Juhola et al., 2009, 2011). For
the automatic analysis of such signals poor or invalid nystagmic eye movements
should correctly be separated from valid nystagmic eye movements, because valid
eye movements can only be used for the data analysis needed for the diagnostics of
otoneurological patients. Typically, invalid nystagmic eye movements are cor-
rupted by noise or artefacts. Thus, we have also studied the classification of nys-
tagmic eye movement candidates into invalid and valid, hereafter called the
rejected and accepted, on the basis of machine learning methods (Juhola et al.,
2013). We then observed how their complicated distribution made the classifica-
tion task difficult and attempted to reduce the greater subset (class) of the rejected
eye movement candidates in a learning set, which was performed by cleaning away
a part from them. Surprisingly, a simple cleaning process impaired classification
results of some of the machine learning methods applied. We realized that the rea-
son for such a seemingly conflicting situation originated from the complicated var-
iable distribution of the data (Juhola et al., 2013).

In order to define which distribution of two classes is seen as simple or compli-
cated we refer to Fig. 1. A simple distribution is where the centre (computed as
means for all variables) of each class is located inside its own area including most
elements of that class. This is described in Fig. 1(a). A complicated distribution is
depicted in Fig. 1(b), where the centre of one class is outside its own area. Such
complicatedness could be defined in various ways, but it is essential that we cannot
then base data cleaning on distances from the class centres.

Nystagmus is formed from repeated, reflexive eye movements occurring as
to-and-for beats that can be measured in the horizontal, vertical and torsional
directions with two eye movement video cameras, one for each eye. A hypothetic
nystagmic eye movement beat is seen in Fig. 2 and an actual signal of several
nystagmic beats in Fig. 3. A nystagmic beat includes the slow phase immediately
followed by the fast phase in order to return the eye in the opposite direction.
Nystagmic beats are repetitive and their configurations vary even in the course
of short measurement times. A healthy subject performs nystagmic eye move-
ments, for example, when he or she is sitting in a moving train and looks at chang-
ing (relatively close) views through a window. This is called optokinetic nystagmus
because of the stimulation. Caloric nystagmus is induced by injecting a small
quantity of cool or warm (37 ± 7 �C) air or water into the ear canal of a subject.
In regard to some otoneurological disorders or diseases, head shaking or head
movement can provoke nystagmus and even spontaneous nystagmus may appear
in vestibular patients. Congenital nystagmus also exists (Hertle and Dell’Osso,
1999). The slow phase features (variables) of nystagmus are important for the
diagnostics of vestibular neuritis, positional vertigo, vestibular schwannoma and
Menière’s disease. The fast phase features of nystagmus are important for
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Fig. 1 Let us assume that there are two hypothetical classes A and B in a variable space. Elements of the

majority class A close to B and possibly from their overlapping area would be useful to be cleaned out. (a) A

simple distribution in which the majority class A (more elements) and minority class B partially overlap and in

which element x from A is closer to the centre of B (square) than to the centre (circle) of its own class A. Thus, x

can clearly be cleaned on the basis of the distance criterion. (b) A complicated distribution in which x from A is

closer to its own centre than to that of B. Further, the centre of A is outside its actual area. Element x cannot be

cleaned on the basis of the distance criterion.
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investigations of the central origin, i.e., the brain. Our current data included mea-
surements from 107 patients mainly with spontaneous nystagmus. Here the slow
phase variables were medically essential.

Since the 1970s, dozens of different nystagmus detection algorithms have been
presented (Abel et al., 2008; Augustyniak, 1996; Hertle and Dell’Osso, 1999;
Hosokawa et al., 2004; Juhola, 1988; Tominaga and Tanaka, 2010; Wall and
Black, 1982). Most of them have been on the basis of applying digital filters,
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Fig. 3 Here a three-dimensional nystagmic eye movement signal is depicted as three one-dimensional

component signals so that their features can be visualized and understood. The component signals are horizontal

(blue), vertical (green) and torsional (red). The signal is 10 s long sampled at 50 Hz. Segments (1)-(5) were deemed

due to be rejected nystagmic beats because of signal corruption. Segment (1) was corrupted both in the horizontal

and torsional components. Segments from (2) to (5) were dropouts of video camera images in the torsional

component, in other words, the camera system had momentarily failed to identify the eye in its successive images.

Peaks with lower amplitudes than 1� were seen noise or unevenness being neither valid nor invalid nystagmic

beats.
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thresholding, other signal analysis and tuning parameters. Nevertheless, it is not
only to detect nystagmic beat candidates, but the separation of acceptable beats
from those corrupted or noisy is a necessary stage in processing before computing
nystagmus variable values from all accepted beats. Typically, this stage has been
grounded on conventional signal analysis methods and separately on every single
nystagmic eye movement. However, this is difficult, because poor nystagmic beats
may vary remarkably between patients and also depend on measurement devices.

Recently, we developed an approach based on machine learning and collected a
data set of nystagmic eye movement beats, both accepted and rejected, in order to
form a training set for machine learning and classification of nystagmus signals
(Juhola et al., 2013). To our knowledge, no such attempt has previously been
made for nystagmus data. Nonetheless, the classification task was difficult because
the data distribution appeared to be of a rare form in which the two classes of the
data were very close to each other or partially overlapped so that accepted nystag-
mic beats were, in a way, surrounded by those rejected beat candidates (Juhola
et al., 2013). This resulted in an extraordinary outcome that our then straightfor-
ward data cleaning technique impaired the classification results computed with
some machine learning methods. In the present study we applied a more efficient
method (Laurikkala, 2001) to overcome this problem.

In the present description we do not express in detail how nystagmic beat can-
didates were detected and how they were determined to be acceptable, because all
these are preprocessing phases for the study to be described and because they are
presented precisely in our earlier articles (Juhola et al., 2009, 2011, 2013).

2. The data set

Our data set included 19 variables that were computed for nystagmic beat candi-
dates in order to advance their identification into accepted and rejected beats. Not
all of these variables are medically useful, i.e., it is probable that otoneurological
disorders do not affect all of them. In our previous research we, however, observed
that all 19 variables are useful for the present classification task (Juhola et al.,
2013). The variables are given in Table 1. See also Fig. 2 for symbols. The variable
distributions are given in detail in (Juhola et al., 2013).

The data set included one signal from each of 107 patients suffering chiefly from
acute, unilateral, peripheral loss of vestibular function, in other words, vestibular
neuritis or having had a surgery for acoustic neuroma. Nystagmus of a patient sit-
ting in a chair in the darkened room was measured with two small eye movement
video cameras that detected eye movements with an image processing system.
Each signal was 30 s long and included 20–80 acceptable nystagmic beats.

Every signal was analysed with a nystagmus detection algorithm (Juhola et al.,
2011) and nystagmic beat candidates were, at the same time, separated either into
accepted or rejected beats according to our algorithm (Juhola et al., 2013). Inde-
pendent of this automatic separation, an expert manually explored all nystagmic



Table 1 Variables of the nystagmus data set defined with symbols associated with Fig. 2. In the variable

names, sp and fp are slow and fast phases of nystagmus, a denotes amplitude, d duration, v mean velocity, c

correlation, mv maximum velocity, q quality signal of the torsional component, and subscripts h, v and t

indicate horizontal, vertical and torsional component signals.

Variables Explanation Definition

spah, spav, spat Amplitudes of slow phase |x(f) � x(s)|

fpah, fpav, fpat Amplitudes of fast phase |x(e) � x(f)|

spdh Duration of slow phase (f � s)/fr, fr sampling frequency

fpdh Duration of fast phase (e � f)/fr, fr sampling frequency

spvh, spvv, spvt Mean velocities of slow phase Slope according to linear regression from samples {x(s),

x(s+ 1), . . ., x(f)}

fpvh, fpvv, fpvt Mean velocity of fast phase Slope according to linear regression from samples {x(f),

x(f + 1), . . ., x(e)}

spch, spcv, spct Correlations of slow phase Correlation coefficient between samples {x(s), x(s+ 1),

. . ., x(f)} and {y(s), y(s + 1), . . ., y(f)}
fpmvh Maximum velocity of horizontal

fast phase

Slopes z(i) according to linear regression from samples

{x(i � 2), x(f � 1), x(i), x(i + 1), x(i+ 2)}, i = f + 2, . . .,

e � 2, and then by taking max
i2ffþ2; ...; e�2g

fzðiÞg

qt Mean of torsional signal quality

values

Mean of quality values during slow phase of interval [s, f]
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beat candidates, signal by signal, accepting or rejecting nystagmic beats based on
visual screening. The purpose of applying both manual and automatic ways was to
compare their results and also to use both of them jointly to see whether classifi-
cation results could further be improved this way.

3. Data cleaning procedures

3.1. Straightforward cleaning procedure

In our original cleaning procedure (Juhola et al., 2013) we assumed that there
would be two classes in the data having their class centres in different areas. This
assumption was reasonable in the sense that the poor nystagmic beat candidates
were marked to be rejected (manually or automatically) typically since some of
their variable values were above some upper bounds. For instance, segments
(2)–(5) in Fig. 3 would create too high torsional mean velocities for slow or fast
phases of nystagmus because of the very steep spikes in the torsional signal. Clean-
ing was made first by computing the class centres and second by deleting those re-
jected nystagmic beats that were the closest to the class centre of the opposite class
until the class size of the rejected nystagmic beat candidates became as small as the
opposite class.

A more precise data analysis showed, however, that the class distribution was
complicated so that no two clearly separate class centres appeared. The distribu-
tions computed with principal component analysis are given after the automatic
rejection and acceptance of nystagmic beat candidates in Fig. 4(a) and similarly
in Fig. 4(b) after first reducing the larger class of the rejected candidates according
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Fig. 4 (a) Before neighbourhood cleaning and (b) after this. The two first (most important) principal

components were used to show the distributions of the accepted and rejected nystagmic beats after the automatic

selection to the accepted and rejected beats. To make the scatter plots clear, one tenth of all beats only were drawn

since their occurrences overlap considerably, particularly in the ‘‘left corner’’ of either distribution. The two first

principal components accounted for 80% of variance in (a) before cleaning and 87% in (b) after cleaning.
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to the cleaning procedure called neighbourhood cleaning (Laurikkala, 2001) de-
scribed below. Fig. 4(a) shows how heavily the distributions of two classes were
overlapping and that how cleaning given in Fig. 4(b) alleviated this difficulty.

After the manual selection of nystagmic beat candidates there were 2171 ac-
cepted and 3818 rejected beats. After the automatic selection these numbers were
2517 and 3472, and after using the both ways jointly 1645 and 4344, respectively.
Thus, after cleaning, i.e., reducing the larger class of the rejected beats, the num-
bers were 2171, 2517 and 1645 for each of the classes in these three situations.
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3.2. Neighbourhood cleaning procedure

The above straightforward cleaning procedure even impaired the classification
accuracies from 80–90% (without cleaning) down to half for nearest neighbour
searching, naı̈ve Bayes rule and logistic discriminant analysis (Juhola et al.,
2013), whereas linear and quadratic discriminant analysis and support vector
machines with the linear and quadratic kernels obtained minor improvements.
For the sake of these unexpected negative effects we abandoned the preceding
cleaning procedure in the present study and used another, more sophisticated
method (Laurikkala, 2001) that was based on nearest neighbour searching to
determine which rejected beat candidates were the best to drop out from that
larger class in order to balance the class sizes and, most of all, to use cleaning
in order to improve classification.

According to (Laurikkala, 2001) the class of the rejected nystagmic beats was
reduced by leaving out such rejected beat candidates that were found on the basis
of two consecutively executed rules.

3.2.1. Neighbourhood cleaning procedure

(1) Iterate every nystagmic eye movement candidate c one by one as follows.
(2) Compute k = 3 nearest neighbours of c along with the Euclidean distance

throughout n beats of the whole data set.
(3) If candidate c was from the class of the rejected beats, rule (3.1.) is tested.

Otherwise, it was from the class of the accepted nystagmic beats and then rule
(3.2.) is tested.

(3.1.) If majority, in this case either 2 or 3 nearest neighbours were from the
opposite class, accepted beats, the current candidate c is marked to be
removed from the data set.
(3.2.) Correspondingly, if the majority of k nearest neighbours were from the
opposite class, rejected beats, these 2 or 3 rejected beats are marked to be
removed from the data set.

(4) All those selected to be removed are left out from the data set.

The cleaning procedure acts locally, not globally as the previous that was con-
structed on the basis of the class centres. Thus, the neighbourhood cleaning meth-
od of (Laurikkala, 2001) is not hampered by a complicated distribution of more or
less overlapping, mixing classes or one class surrounding the other. Since the
cleaning procedure processes data cases on the basis of their nearest neighbour-
hood approach, it functions locally, independent of the ‘‘global’’ properties of
data. It also cleans not only according to the majority class of the rejected beats,
but also by means of the minority class. Nevertheless, in our nystagmus data
cleaning is only directed to the majority class. This is very natural particularly
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for the current data set, because the majority class represents rejected nystagmic
eye movement beats and the aim was also to enhance dissimilarity between the
classes of the accepted and rejected beats in order to improve classification results.

Note that the present cleaning procedure when directed to the majority class
does not necessarily balance much the class sizes, but the number of removed
items depends on the data. On the other hand, since small k = 3 was used, the
two cleaning rules of the method explore tiny areas from the distribution space
at a time and may, therefore, mark relatively many items to be removed, because
the majority condition may be frequently satisfied.

3.3. Artificial extension of training data

Not pure cleaning is the only useful data refinement technique. Sometimes the use
of artificial extension of data cases may also be useful, especially for balancing a
class distribution (Swingler, 1996; Autio et al., 2007). In our data, class balancing
was not necessary, because there were only two classes with frequent nystagmic
beat candidates. Nevertheless, we experimented with the artificial extension by
extending the same number of artificial nystagmic beats in the class of the rejected
as was cleaned out. Such artificial cases should naturally resemble very much those
of the same class. A simple way is just to copy existing cases. However, this is not
perhaps fully suitable for all classification methods that may take advantage of the
property that all cases are more or less different, i.e., multiple cases do not bring
new information for training a model. Therefore, we created artificial rejected nys-
tagmic beat candidates by calculating means of pairs of two successive rejected
beats in the data set. (After cleaning, more nystagmic beat candidates still remained
than were discarded from the class of the rejected beats.) We may assume that since
two successive rejected beats are temporarily quite close to each other in a time-
dependent signal, their nystagmus variable values may resemble each other. Con-
sequently, computing the means of all their variable value pairs we may assume that
such an average, artificial case would also be in the class of the rejected beats if it
were real. Of course, several, more complicated, but perhaps more productive
extension ways could be designed. We used this simple way because we assumed
whatsoever that artificial extension could not improve results essentially since clas-
sification results obtained after neighbourhood cleaning were already very high.

It is important to know that the artificial cases were only used to extend training
sets. It would not be sensible to include them in test sets.

4. Results

4.1. Classification procedure

As mentioned, the data set was computed according to three selections (Juhola
et al., 2013): manual selection to accepted or rejected nystagmic beats, automatic
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selection to the preceding two classes and both selections jointly. In addition, the
neighbourhood cleaning procedure was run after each of the three selections.

In Fig. 5, there is a diagram how classifications were performed. To clarify the
following descriptions of tests made, there is a round-up for the classification runs
in Fig. 6.

We tested with nearest neighbour searching, Naı̈ve Bayes rule, and linear, qua-
dratic and logistic discriminant analysis, and support vector machines with differ-
ent kernel functions. Results are presented in percents as classification accuracies,
i.e., ratios of true positive added with true negative rates to the number of all test
cases. Since the leave-one-out method was applied to tests, the number of tested
cases was equal to all nystagmic beat candidates, 5989, or less when the data were
cleaned.

Nearest neighbour searching and logistic discriminant analysis gave better clas-
sification results when the data were first standardized by subtracting the mean of
each variable and then by dividing with its standard deviation. For those other
classification methods, standardization (being not useful) was not used. Without
standardization, the cleaning procedure removed 1313, 1680 and 1364 nystagmic
beat candidates from the class of the rejected, respectively, after the three selec-
tions. With standardization, these were only 998, 717 and 732. Consequently,
the class of the rejected beats remained as the majority class for all other situations
than that without standardization for the automatic selection.
Data of n nystagmic beats with 
two classes: the accepted and 
rejected beats (the latter as the 
majority class)

Build a model with a selected 
algorithm according to leave-
one-out: use n-1 beats for 
training and 1 beat for a 
classification test 

Store the result of a single test 

Compute classification accuracy

repeat
n
times

Clean the data of the rejected on 
the basis of neighbourhood 
cleaning or other method

Fig. 5 The diagram of the classification procedure.
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neighbourhood cleaning procedure with different k values (results in Table 5) 
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Fig. 6 The round-up of all classification alternatives accomplished.
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4.2. Classification with nearest neighbour searching

In Table 2, the results produced with k nearest neighbour searching are shown.
The nearest neighbour number of k equal to 15 was used here since earlier it gave
us at least 1% better results than odd values of less than 10 or greater than 20
(Juhola et al., 2013). To experimentally study the influence of the neighbourhood
cleaning procedure (Laurikkala, 2001) described above, we also ran cleaning by



Table 2 Accuracy results of k= 15 nearest neighbour searching after data standardization and different

cleaning procedures when the sizes of the classes of the accepted nystagmic beats were 2171, 2517 and 1645 for

the three methods of the nystagmic beat selection. The accuracies of the best alternatives were marked in bold.

Cleaning procedure Selection method of acceptance or rejection

Manual Automatic Manual and automatic

No cleaning Class size of the rejected 3818 3472 4344

Accuracy% 84.2 89.3 88.4

Random cleaning (quarter) Class size of the rejected 2864 2604 3258

Accuracy% 84.0 89.1 87.9

Random cleaning (half) Class size of the rejected 1909 1736 2172

Accuracy% 80.0 89.6 86.6

Neighbourhood cleaning Class size of the rejected 2820 2755 3612

Accuracy% 91.7 94.9 94.4

Neighbourhood cleaning and extension Class size of the rejected 2820 2755 3612

Accuracy% 91.9 95.2 94.7
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leaving out a half or quarter from the class of the rejected beats as systematically
dropping out every two or four beat candidates from those of the rejected. Let us
call these ‘random cleaning’ because no assessment criterion for cleaning was em-
ployed. The last row in Table 2 includes the results when, after neighbourhood
cleaning, artificial beats as many as cleaned beats from the rejected were inserted
into the class of the rejected.

According to Table 2, we see that it is quite useless to run random cleaning, at
least for this complicated data distribution, since the results were not better than
those original of the uppermost row. (Random cleaning was made only to show
that more efficient cleaning is necessary.) When strong cleaning that left the half
out of the rejected was run, we even obtained partially poorer results. Of course,
we also have to notice the different class sizes here that affect a priori probabilities
in classification. Doubtless did neighbourhood cleaning affect positively by
increasing classification accuracies by 5–6% for all three selection ways of nystag-
mic beat candidates. Instead, the extension of artificial, rejected beats after neigh-
bourhood cleaning had only a minor effect, less than 0.5%. In principle, it might
sometimes even impair results because there is no guarantee that such extension
would always ‘‘improve the quality of data’’. Therefore, it is not reasonable to ap-
ply for tests of the subsequent tables.

4.3. Classification with discriminant analysis and Naı̈ve Bayes rule

In Table 3 there are results of linear, quadratic and logistic discriminant analysis
and Naı̈ve Bayes rule. The different sizes of the classes of the rejected beats for the
different classification methods came from whether the data standardization was
used or was not used. Again neighbourhood cleaning was effective improving
accuracies by 4–10% compared to the results of not cleaned situations.



Table 4 Accuracy results of support vector machines without and with neighbourhood cleaning when the

sizes of the classes of the accepted nystagmic beats were 2171, 2517 and 1645 for the three selection methods.

Three kernel functions were used. The accuracies of the best alternatives were marked in bold.

Kernel, no cleaning or with it Class size or accuracy Selection method of acceptance or rejection

Manual Automatic Manual and automatic

Linear kernel, no cleaning Rejected 3818 3472 4344

Accuracy% 75.6 83.8 79.3

Linear kernel with cleaning Rejected 2505 1792 2980

Accuracy% 83.7 89.7 84.0

Quadratic kernel, no cleaning Rejected 3818 3472 4344

Accuracy% 81.9 88.4 85.5

Quadratic kernel with cleaning Rejected 2505 1792 2980

Accuracy% 88.0 92.6 89.6

RBF kernel, no cleaning Rejected 3818 3472 4344

Accuracy% 63.8 57.9 72.5

RBF kernel with cleaning Rejected 2505 1792 2980

Accuracy% 88.7 88.2 88.0

Table 3 Accuracy results of discriminant analysis (with data standardization for the logistic one) and Naı̈ve

Bayes rule when the sizes of the classes of the accepted nystagmic beats were 2171, 2517 and 1645 for the three

selection methods. The accuracies of the best alternative were marked in bold.

Classification method Class size or accuracy Selection method of acceptance or rejection

Manual Automatic Manual and automatic

Linear discr. anal., no cleaning Rejected 3818 3472 4344

Accuracy% 75.9 83.7 79.2

Linear discr. anal. with cleaning Rejected 2505 1792 2980

Accuracy% 83.7 89.6 83.9

Quadratic discr. anal., no cleaning Rejected 3818 3472 4344

Accuracy% 63.4 75.9 72.4

Quadratic discr. anal. with cleaning Rejected 2505 1792 2980

Accuracy% 80.3 86.0 79.8

Logistic discr. anal., no cleaning Rejected 3818 3472 4344

Accuracy% 80.5 87.2 86.9

Logistic discr. anal. with cleaning Rejected 2820 2755 3612

Accuracy% 85.4 92.7 91.3

Naı̈ve Bayes rule, no cleaning Rejected 3818 3472 4344

Accuracy% 63.3 76.8 74.3

Naı̈ve Bayes rule with cleaning Rejected 2505 1792 2980

Accuracy% 70.4 86.1 80.2
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4.4. Classification with support vector machines

We also experimented with support vector machines the results of which are given
in Table 4. Suitable parameter values were extensively studied as in (Juhola et al.,
2013) and those giving the best average accuracy results were chosen for the three
selection methods of nystagmic beat candidates (three rightmost columns in Table
4): (1) box constraint 8.9 for linear kernel and 0.1 for quadratic kernel, and box
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constraint 1.2 and sigma 9.9 for radial basis function (RBF) kernel; (2) box con-
straint 1.2 for linear kernel and 1.0 for quadratic kernel, and box constraint 8.0
and sigma 10.0 for RBF kernel; (3) box constraint 0.2 for linear kernel and 0.1
quadratic kernel, and box constraint 0.7 and sigma 10.0 for RBF kernel; Of the
three kernels, the quadratic kernel yielded 0–5% better accuracies than the other
two. For RBF kernel, cleaning was essential, because without cleaning it lost all
test cases stemming from the class of the accepted nystagmic beats and was even
25% worse than with cleaning. With cleaning it was 4–5% worse than the other
two kernels.

4.5. Classification with nearest neighbour searching after neighbourhood cleaning
with different k values

Ultimately, we still studied the use of greater k values than 3 for the neighbour-
hood cleaning procedure. Results obtained are given in Table 5. These are only
shown for the classification set-up where nearest neighbour searching was applied
to classification since similar phenomena were also expected for the other classifi-
cation methods. Increasing the number up to 11 or 13 of the nearest neighbours
searched for in the cleaning procedure improved classification accuracies slightly,
by 1–2%. This came from the stronger cleaning, in other words, with greater k val-
ues more elements were left out from the class of the rejected beats. Therefore, the
more intensive data cleaning may be a reasonable approach if there are abundant
elements in the majority class as were here.

It was obvious that increasing k in neighbourhood cleaning did not much im-
prove the results obtained compared to those of k equal to 3, because the latter were
already high, over 90%, although more and more elements of the majority class
were left out. Note two lowest rows in Table 5. According to them, it seemed in
the present data that increasing k over 11 did not improve classification accuracies.
Table 5 Classification accuracy results of k= 15 nearest neighbour searching after the neighbourhood

cleaning procedure when the sizes of the classes of the accepted nystagmic beats were 2171, 2517 and 1645 for

the three methods of the nystagmic beat selection and when in cleaning 5, 7, 9, 11 or 13 nearest neighbours

were utilized to determine elements to be cleaned. The accuracies of the best alternatives were marked in bold.

Neighbours in cleaning Selection method of acceptance or rejection

Manual Automatic Manual and automatic

5 Class size of the rejected 2607 2633 3469

Accuracy% 92.4 95.8 95.0

7 Class size of the rejected 2455 2536 3365

Accuracy% 92.8 96.3 95.3

9 Class size of the rejected 2325 2467 3288

Accuracy% 93.1 96.4 95.6

11 Class size of the rejected 2184 2407 3196

Accuracy% 94.1 97.0 96.0

13 Class size of the rejected 2086 2362 3113

Accuracy% 94.2 96.9 96.0
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5. Discussion and conclusions

In all of our results, neighbourhood cleaning was an efficient way to refine data
and reduced the size of the majority class, rejected nystagmic beats. Simpler clean-
ing ways could hardly function as effectively, at least neither that was used earlier
(Juhola et al., 2013) nor in Table 2.

Logistic discriminant analysis after cleaning was 2–12% better than the others
in Table 3 and 2–6% worse than the accuracies of the nearest neighbour searching
after neighbourhood cleaning as in Table 2. However, the best support vector ma-
chines (with the quadratic kernels) were 2–5% poorer than the nearest neighbour
accuracies after neighbourhood cleaning as in Table 2. This is a slightly surprising
conclusion since our experience among some other data sets has been the opposite,
frequently support vector machines have been subtly better than others. We as-
sume that the possible reason was now that neighbourhood cleaning favoured
the nearest neighbour searching classification. Since the nearest neighbour search-
ing was applied in both, cleaning could ‘‘favour’’ its ‘‘relative classification meth-
od’’ more than the others.

The automatic selection was better in some cases than the manual and auto-
matic ones together. Apparently, this stemmed from the fact that manual selection
criteria may vary a little from time to time. Instead, the automatic selection always
functions stably.

The use of greater nearest neighbour numbers (5, 7, 9 or 11) than 3 originally
used improved the classification results slightly further since more elements were
cleaned out from the majority class compared to the situation of 3 nearest neigh-
bours. However, no such conclusion could be drawn that this phenomenon would
typically be present. After all, the properties of data and their distribution are
essential.

A future research detail in using the neighbourhood cleaning method could be
to attempt to also clean the minority class. In general this is not perhaps sensible,
but for such data sets as ours here where both classes were fairly large, it might be
useful since the classes were ‘‘mutually overlapping’’, some rejected nystagmic
beats among the accepted and vice versa, as seen in Fig. 4. On the other hand,
cleaning accepted beats should be made very carefully and ‘‘conservatively’’, not
to deteriorate the validity of the data set as a training set for nystagmus analysis
viz., the accepted nystagmic beats represent physiologically plausible and possible
nystagmus variable values, whereas the rejected beats are more or less values out-
side physiologically possible boundaries. However, these boundaries are not exact,
because they may vary between subjects.

We can conclude that neighbourhood cleaning refined data efficiently and im-
proved accuracies throughout the tests accomplished. Its character is rather local
than global and it can purify noise-like occurrences from data. It had also good
influence on the current data set with the complicated distribution. To clean data
sets with unknown distributions, it is best to first explore their data distributions
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– as this is useful in general – before cleaning data and to choose a cleaning proce-
dure carefully.
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