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As a way of introduction: about the task and machine learning. 

Eye-tracking is quickly becoming an established technique for investigating cognitive processes 

involved in the learning of mathematics and other subjects (Lai, et al., 2013). Unfortunately, the 

analysis of eye-tracking data is difficult and laborious, often involving frame by frame analysis 

(Garcia Moreno-Esteva, Hannula & Toivanen, 2016). We partially overcome this difficulty here, 

with the use of machine learning and other mathematical techniques. Using a desktop eye 

tracking system, children completed a mathematics problem that incorporated a bar graph. The 

optical tracks and the accuracy of the response are analyzed in order to understand how a child 

“reads a graph”.  We are trying to gather from our data and its analysis, a story of what happens 

when several children are confronted with such a task.  What do they look at?  Do the gaze 

patterns influence the success or accuracy when responding to the task? With this information we 

may be able to more reliably infer the cognitive processes completed by children.  

The problem-solving task. 

In Brisbane, Australia, a group of 113 children (mean age 8.67 years), all in the second half of 

year 3 in school, completed the graph problem solving task. As part of a larger project, children 

completed a series of eye tracking tasks (reading, mathematics) in a quiet room near their 

classroom. The mathematics tasks included odd-even judgement, magnitude comparison, and 

problem solving tasks: interpreting a bar graph and navigating a coordinate grid. The focus of 

this presentation is the graph problem solving task. This task was designed based on the Grade 3 

Australian Curriculum Mathematics where Grade 3 children are expected to be interpreting and 

comparing data displays (ACARA, 2016). A similar graph interpretation task features in a Grade 

3 Australian standardized achievement test. The children were shown the following: a) a bar-
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chart, where the height of each bar indicated a the number of hours worked by Sarah during a 

given week; b) a labeled coordinate system, where the x-axis had the week number labels, and 

the y-axis had numbers corresponding to hours; c) a sentence indicating Sarah’s hourly wage; d) 

another sentence indicating the task to completed related to Sarah’s wages in Week 3. Curcio 

(2010) describes a sequential framework for children's data comprehension, this framework 

includes; understanding, interpretation and prediction with data. The current graph task required 

each child to understand and interpret: reading the question and basic details of the graph 

(understanding), and then reading between the different elements of information (interpretation) 

in order to complete the computation and arrive at the correct solution for Sarah’s Week 3 

earnings. A Tobii eye-tracker operating at 300 Hz recorded the locus of focus of their eyes 

throughout the activity - including the initial understanding, and steps involved in interpretation.  

The threshold for fixations was set at 100 ms (Tobii Technology, 2014). It was hoped that the 

eye tracking information (fixations and saccades) might shed light on the different cognitive 

steps involved in the task. Initial qualitative evaluations of the eye movements demonstrated 

children who did not progress past the first understanding stage, as they did not identify the 

question being asked or relevant information on the graph. Other children were able to 

understand the task and progressed to specific interpretation of relevant information - with a 

variety of behaviors demonstrated. For example, some children had high numbers of fixations 

and saccades around relevant areas, whereas others had fewer and longer fixations on relevant 

areas. These initial qualitative observations were systematically investigated using machine 

learning techniques. 

The data included 113 optical tracks (for purposes of the forthcoming discussion, the inputs), and 

113 answers (the outputs), considered as correct (1) or incorrect (0). The optical tracks consisted 

of sequence of pairs, each pair included the duration of a fixation in milliseconds (ms), and the 

location of the fixation.  The optical track information can be visualized as a video (or a static 

picture) in which the fixations appear as a sequence or red dots that have a size proportional to 

the duration of the fixation, and which are connected by lines to neighboring fixations.   

After inspecting the optical track videos, it was evident that it would be difficult to disentangle 

patterns of visual processing that might reveal cognitive processing of different children. It was 

decided that further mathematical/computational analysis of the data might provide further 

insight.  Since the nature of the input data is sequential, classifying the optical tracks and test 

results (inputs and outputs) with a Markov model based machine learning technique was selected 

as an appropriate analytic method. 

A word about machine learning techniques. 

The proprietary algorithm (Mathematica’s Classify function) was used to do the machine 

learning analyses, using a Markov model method (Wolfram Language and System 

Documentation Center, 2016).  In this analysis you select a subset of the sample (input – optical 

track - and output – result - data) to analyze (classify) with the machine learning algorithm. From 

that analysis a classifier is then used on all the inputs (optical tracks) to predict the outputs (0 or 



1, incorrect or correct).  The predicted outputs from the classifier are then compared to the real 

outputs, and the percentage of correctly classified outputs can be calculated (some examples are 

provided in subsequent sections).   

Our research question. 

Our research question is simply, what can we learn or infer about cognitive processes related to 

the graph interpretation task described with mathematical/computational/machine learning based 

analysis techniques of the eye-tracking data, and maybe, could these techniques be of further 

help in analyzing the data pertaining to other well defined mathematics problem solving tasks? 

Our techniques are general, in that they can easily be applied to other eye-tracking data 

consisting of a sequence of fixations given by the coordinates and the durations of the fixations 

as inputs, and a set of two or even more categories as outputs.  We hope to make the programs 

available to other researchers wanting to undertake this kind of analyses at a later stage or our 

research. 

The analyses and corresponding results. 

In this section we will describe three kinds of analysis for which we obtained encouraging 

results.  Other possible analyses will be discussed in a later section pertaining to directions of 

future work. 

We partitioned the visual stimulus (the graph on the screen; Figure 1) into areas of interest 

(AOIs), where the most critical areas of interest are labeled as A1 (wage information), A2 (week 

number), A3 (week 3 bar), and A4 (number region containing the number of hours 

corresponding to week 3), and other areas of interest which are less critical, or irrelevant, are 

labeled with letters B and C and a number, respectively.  In addition, we labelled the whitespace 

around the critical areas as ZZ.   

 

Figure 1: partition of the task sheet into areas of interest (AOI’s). 

As a result, data items look like the following: 



{{227, A1}, {563, B2}, {267, C2},  … , {287, C2}, {517, A1}, {1443, A3}} -> 1, 

Figure 2: a typical data item with pairs of elements corresponding to durations in milliseconds 

(numbers) and AOI’s (letter and number juxtaposed) of the fixations, and the result after an arrow. 

In the example above, the first fixation occurred on area of interest A1 and lasted 227 ms, the 

second one on AOI B2, with a duration of 563 ms, and so on.  At the end the arrow with a 1 after 

it indicates that the child solved the problem correctly. 

Finding a small and highly representative subset of data (developing a training set). 

In order to find small and highly representative sets of data items corresponding to correctly and 

incorrectly solved instances of the task, we tried to find the smallest subsets of data items 

(henceforth called training sets) on which we could generate classifiers that predicted outcomes 

with a high degree of accuracy.  After a building classifiers based on randomly selected subsets 

of data items, we could generate a classifier that correctly predicted up to 75% of the test results, 

and this was using only four data items in the training set (3.5% of the sample). It would have 

been impossible to test all sets of four data items out of 113 (there are 6,438,740 such 

combinations) so we made a number of classifying testing runs for randomly selected subsets of 

size 4, and chose some of those sets which yielded classifiers with a high prediction rating.  We 

then inspected the videos of some of these sets and tried to observe what might have been 

visually outstanding in these.  Our prediction rate is marginally better than human experts can do 

after training on very large data sets. In the world of machine learning, a rating of 75% with a 

training set of size 3.5% is an extremely good result in what is called supervised learning (since 

the training set we found is so small, this is called semi-supervised learning (for machine 

learning principles, consult Hastie, Tibshirani & Friedman, 2009).   

From this inspection, we detected parameters to investigate further with machine learning and 

other techniques, including sequencing, duration and number of fixations and other more 

elaborate metrics. 

Analysis type 1: the order of fixations in the sequence – does it matter or not? 

One question we had was whether the order of fixations in the sequence matters, or whether 

there is something else at work.  Some literature in psychology indicates that the order of 

fixations affects certain cognitive function such as memory (e.g. Bochynska, & Laeng, 2015; 

Rinaldi, Brugger, Bockisch, Bertolini, Girelli, 2015).  First, we tested overall order, building a 

classifier using the entire sample data.  Its predictive rate is over 99% (using this technique we 

get only one mismatch between predicted and real outputs, due to a faulty item which we were 

able to locate through the application of the classifier itself). We then permuted the order of the 

fixation duration and AOI pairs at random in the optical tracks, and passed the permuted input 

data through the classifier we obtained using the entire sample.  Even with the permuted data, we 

obtain a classification rate which is over 97%.  From this we cautiously concluded that the order 

of the fixations in the sequence has little impact on whether the child responds to the question 



accurately.   

As an additional check, we investigated whether the order of fixations within critical AOIs 

mattered.  If this were occurring, it might distinguish understanding and interpretation of the 

graphical information (Curcio, 2010).  In order to study this, we extracted just the pairs of 

elements corresponding to critical elements, and eliminated the rest of the data elements.  With 

these modified data items, we built a classifier, using training sets of size 13 (approximately 11% 

of the sample size), and passed the rest of the modified data items through the classifier. This 

resulted in a prediction rate of up to 66%, which is good but not nearly as good as we had hoped.  

This indicates that the order in which students inspect critical areas might be of some 

importance, and it deserves further study. This also led us to a different form of analysis (type 3), 

even though much more needs to be done than we did here. 

Analysis type 2: number of fixations and duration of engagement on task. 

The number of fixations and their duration (see figure 3) for the subjects is extremely revealing 

even though the analysis is less complex.  These fixation duration profiles could be interpreted 

like a simple fingerprint of student engagement and ability.  Our analysis of the number of 

fixations and their duration gives a clear indication that optical tracks can be quite revealing 

about what the students can or actually do. To state the results briefly, children who respond 

correctly take a short amount of time (under 30 000 ms) to provide and answer and have a 

smaller number of fixations (mean of 69) than children who respond incorrectly.  Most of the 

children who respond incorrectly take at least 35 000 ms to respond or have more than 69 

fixations.  The statistically significant duration averages for children who respond correctly and 

those who do not are 30 000 ms and 35 000 ms respectively, and 69 fixations vs 77 fixations 

respectively.  Interestingly, a few children (34 out of 113) who take a short amount of time and 

have a small number of fixations, typical of children with a correct response, provided an 

incorrect response.  In most of these cases children had gathered the correct information from the 

graph but had made a calculation error.  There are 17 children for which we have not yet 

determined an adequate explanation of their performance.  Had those children read the graph 

incorrectly?  Had they understood the task? When interpreting the graph and performing the 

computation, did concepts become confused?  We found that these 17 children completed the 

task very quickly relative to the other participants, with a mean response time of approximately 

25 000 ms. This information leads us to speculate that these children may not have been fully 

engaged in the task or in some respect confused or wandering. In summary, we can pick out, in 

each case, the children according to their response from a quantitative analysis by looking just at 

the duration of their engagement and the number of fixations during their involvement in the 

task.  In the future, we plan to do an Artificial Intelligence based cluster analysis of the number 

and duration of fixation profiles only, hoping that they will separate out into four categories: 

those of children who respond correctly, those of children who do not read the graph correctly, 

those of children who read the graph correctly but miscalculate, and those of children who “do 

something else”.  There is interest and possibly a growing body of work around this topic, 



whether it is possible to classify gaze patterns according to the state of mind of the participant 

subject. It is definitively one of our goals in this and future research (e.g., Horrey, Lesch, 

Garabet, Simmons, Maikkala, 2017). 

 

Figure 3: number of fixations and duration profiles of successful child (blue) and unsuccessful child 

(orange) – the x-axis is the number of fixations, the y-axis is time, the duration of fixations, in ms 

Analysis type 3: duration ratios and frequency ratios. 

From viewing the videos it appeared that children who get the problem right seem to spend a 

substantial amount of time looking at critical data, and seem to look at such data more 

frequently.  These parameters were assessed quantitatively, making a distinction between the 

importance of the area of interest (e.g. A, B, C), and not between the areas themselves (e.g. A1, 

A2, A3 etc.).  Thus, we measured the total amount of time a subject spent looking at critical 

AOI’s (with labels Ax), and non critical areas (Bx, Cx, and ZZ), and also measured the 

frequency with which a subject inspected an AOI labeled with A, B, C, or ZZ.  The total duration 

of fixations on areas A, B, C, ZZ became DA, DB, DC, and DZZ, and the we considered the 

ratio DA/(DB+DC+DZZ).  We then computed the means of this ratio for the students who 

successfully solved the problem and for those who did not. The means were used to compute a 

threshold value and make predictions as to who would successfully solve the problem or not.  

The same approach was used for frequencies (call the total frequency on A-critical areas FA, FB 

for B-critical areas, FC for C-critical areas, and FZZ).  We computed an analogous ratio where 

the quantities FA, FB, FC and FZZ were weighted by coefficients 1, .5, .25, and 0, respectively.  

The rationale for using weights in the case of frequencies is to account for the fact that looking at 

less critical AOI’s, for example, whitespace (ZZ), can easily occur as a result of distraction while 

inspecting the graph or while moving from a fixation in an important area to another one, and 

therefore, they are overrepresented and should carry a smaller weight in the frequency count.  

We acknowledge there are alternative approaches that could be used. 

With the two thresholds used in combination one can predict the results with an accuracy of 

77%.  The thresholds were combined in such a way that if a child spent both, enough time on 

critical areas, and looked at them frequently enough, the result would be success, and otherwise, 

it would result in an incorrect response.  So it seems that both these parameters are indicative of 



a child’s ability to successfully solve the graph interpretation task.  A post-hoc statistical analysis 

was done on the means obtained for the duration ratio and the frequency ratio to show that they 

differ in a statistically significant way.  Assuming a normal distribution of the duration ratios, the 

means of children who were successful and unsuccessful were 1.13 and .76, with a standard 

deviation of .43 and .42 respectively.  These means are statistically significantly different with a 

p value of 3.32×10
−36

.  Similarly, having tested for the normal distribution of frequency ratios the 

means are 1.81 and 1.33, with standard deviations of .53 and .54, and a p value of 1.79×10
−26,

, 

showing again a very significant difference. 

A note about validity and reliability. 

The results discussed here would need to be validated with further experimentation.  For 

example, do the results hold if the experiments are repeated with systematic variations, changing 

the height of the bars, the number of the week, and the salary for Sarah?  Similarly, do the results 

remain invariant cross-culturally?  We have thought of replicating the experiments, with children 

of the same age and/or background knowledge, in different English speaking countries and in 

different cultures with different languages.  This work remains to be done.  The reliability of 

these results is given in as much as the calculations are straightforward and easy to check, and 

the data is clean data as provided by a commercially tested device.  It is hoped that in the future, 

a functional version of the paper can be republished in a way that the reader can verify the 

programs and use the programs with his/her own data. 

Conclusions and direction of future work. 

In this report we have discussed the kind of visual processes that might be at work when a child 

is solving a graph interpretation task, a discussion derived from a machine learning analysis of 

eye-tracking data collected during the problem solving sessions.  It would seem that there is 

strong evidence to support the claim that the order of the fixations during the problem solving 

session plays almost no role in the child’s ability to succeed in the problem solving task.  It 

would also seem that the amount of time and the number of times spent looking at areas where 

there is information which is critical for the solution of the problem relative to the amount of 

time and frequency of glances at other areas is definitively an important indicator of a child’s 

ability to successfully complete the task.   

As to how these results would affect teaching practices, one could conclude that it is important 

that the teacher directs the student attention to what the critical information might be, where it 

might be located, and how to use it when teaching how to interpret graphs of this sort.  

There are many other measures that can be studied (or have been studied, but are not reported 

here).  We mention just a few, without further explanation: string edit analysis, lag analysis, 

cluster analysis.  The limit in how to analyze gaze tracking data is our imagination, in so far as 

how much information one can glean with computational and mathematical means out of the 

data in hope of finding useful information. 
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