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Abstract 

This paper provides an approach for modelling joint impact of two main nutrients in crop production 

for situations where there are available separate datasets for nitrogen and phosphorus fertiliser field 

experiments. Developing yield response models for Finnish spring barley crops (Hordeum vulgare 

L.) for clay and coarse soils and applying the models for dynamic economic analysis demonstrate the 

modelling approach. Model selection is based on iterative elimination from a wide diversity of 

plausible model formulations. Nonlinear weighted least squares method was utilised in estimation of 

the yield response models and dynamic programming was utilised in economic analysis. Our results 

suggest that fertiliser recommendations can be insufficient if soil phosphorus dynamics are ignored. 

Further, the optimal fertilisation rates for nitrogen and phosphorus, as well as the economic alternative 

costs of agri-environmental programmes depend on the soil texture of production area. Therefore, the 

efficiency of such programmes could be improved by targeting different fertilisation limits for 

different soil textures. In addition, uncertainty analysis revealed that the parameter uncertainty had a 

greater effect on the model output than the structural uncertainty. Further, the interaction of nitrogen 

and phosphorus fertilisers appeared to be a factor of relatively minor importance. The modelling 

approach and the model structure can be extended to other geographical areas, given that adequate 

datasets are available. 

Keywords: [phosphorus fertilisation; nitrogen fertilisation; plant-available soil phosphorus; yield response model; 

model selection; dynamic optimisation]2 

1 Introduction 

The motivation for more efficient use of nutrient inputs in agriculture has never been greater than it 

is at present (Roberts, 2008). This motivation originates from the need to meet increasing global food 

demand under finite primary fertiliser sources (Gilbert, 2009), finite arable land, expected increase in 

energy cost (Snyder, 2006), and growing public concerns related to the environmental effects of 

agriculture (Reetz, 2016). In addition, climate change is expected to affect these issues in multiple 

                                                           
1 Corresponding author: matti.sihvonen@helsinki.fi. Tel.:+358 45 6343815. Huhmarekuja 4 A 14, 00790 Helsinki 
2 Abbreviations: [STP: Soil test phosphorus, AIC: Akaike’s information criteria, DSA: deterministic sensitivity analysis, FAEP: Finnish agri-

environmental programme] 
 

mailto:matti.sihvonen@helsinki.fi


uncertain, complex, and possibly controversial ways (e.g., Kang et al., 2009; Gornall et al., 2010; 

Popp et al., 2017).  

Mineral phosphorus (P) and nitrogen (N) inputs are critical both for the profitability of 

crop cultivation and its externalities. N and P losses from agricultural soils to water and air are a cost 

for the farmer and may deteriorate the quality of surface water and groundwater as well as cause 

greenhouse gas emissions. In aquatic ecosystems, over-enrichment of N and P may increase toxic 

algal blooms and oxygen depletion, and alter the structure and functioning of aquatic food webs and 

biodiversity (including stocks of species important to commercial fisheries and shellfish industries) 

(e.g., Sharpley et al., 1994; Alley et al., 2009). One of the fundamental causes of the N and P losses 

from an agricultural production area is an inefficient fertilisation utilisation. 

Bio-economic models can be utilised as tools to study economically and 

environmentally sound fertiliser inputs in crop production. Empirical models have been developed to 

capture the yield response to N fertilisation in multiple studies (e.g., Bock and Sikora, 1990; Cerrato 

and Blackmere, 1990; Valkama et al., 2013). Analogously, yield response to P fertilisation have been 

studied by e.g. Judel et al. (1985), Saarela et al. (1995), Valkama et al. (2011). In addition, there have 

been reports focusing on yield response to plant-available soil phosphorus (e.g., Yajragupta et al., 

1963; Analogide and Rendig, 1972; Dodd and Mallarino, 2005). Nevertheless, in these studies, the 

joint response to all of these inputs was not examined. Both nutrients (N and P) have been applied 

simultaneously as inputs in stochastic production frontiers (see e.g., Bäckman and Lansik, 2005), 

which are commonly used to examine the nutrient productivity and efficiency differences between 

different agro-economic conditions (Aigner et al., 1977; Meeusen and van den Broeck, 1977). The 

joint impact of N and P inputs on crop yield is also explicitly considered in dynamic crop growth 

simulation models, such as DAISY (Hansen et al., 1990), HYPE (Eckersten et al., 1994), APSIM 

(Keating et al., 2003) and EPIC (Strauss et al., 2012; van der Velde et al., 2014). Although these 

models give a rich and detailed description of the processes that drive the yield response, they are not 

directly suited to dynamic economic optimisation or stochastic analysis due to large number of state 

variables.   

 To the best of our knowledge there appears to be no yield response models directly 

applicable for the analysis of optimal fertilisation decisions, which would capture the joint impacts 

and dynamic feedbacks of several main nutrients. The obvious reason for this is the need for 

extensive, long-term datasets from field experiments to capture the weather-induced variation in the 

impacts of N and P inputs and soil qualities on crop growth (Bolland et al., 2003). Such field 

experiments are expensive to conduct (Xiaofei et al., 2016). Yield response modelling is also a data-

intensive process because data are needed for both building and validating the model (Sargent, 2011). 



In addition, for practical applications, data is needed also for model calibration (Rötter et al., 2012). 

In Finland, there is a long tradition of N and P fertiliser field experiments, motivated by the 

challenging agro-climatic production conditions resulting from a Nordic location and natural scarcity 

of P in the soil (Saarela et al., 1995, 2004; Valkama et al., 2009, 2011, 2013; Salo et al., 2013). As a 

result of these experiments, extensive sets of empirical data have been accumulated over five decades 

for the main cereals and different soil textures. 

In this study, datasets for spring barley and two soil texture groups, clays soils and 

coarse-textured mineral soils, were combined and utilised in order to develop a yield response models 

to both P and N inputs applied simultaneously. In addition to N and P, the plant-available soil test 

phosphorus (STP) and initial productivity of the soil (the yield without added N fertilisation) were 

included in the model as independent variables, since these factors govern the yield responses to P 

and N fertilisation, respectively (Valkama et al., 2011, 2013). The inclusion of STP enables the 

examination of dynamic aspects of optimal agricultural practises, when the model is coupled with a 

compatible transition model describing the soil P dynamics. Our objective was to develop system 

models that can be directly applied in dynamic bio-economic analysis and to assess the economic and 

environmental consequences of mineral fertilisation in crop cultivation. In particular, we were 

interested in: (1) the dynamic interactions of the yield responses and the soil nutrient transition and 

their impact on economic outcomes, (2) examining the diversity of the functional forms that can be 

fit to the empirical fertilisation experiment data, (3) the related model structural and parametric 

uncertainty, (4) the robustness of the predictive and optimisation results for various candidate models, 

(5) to assess the economic optimums and their comparison to current national fertilisation 

recommendations and (6) to evaluate the generalisability of the models.  

2 Materials and methods 

2.1. Structure of the modelling process 

We applied an iterative elimination approach for the modelling process. We began by confining the 

essential dynamic feedbacks of the agricultural system under examination. Second, we gathered the 

datasets for the estimation process. Third, we estimated and ranked the yield response models. Fourth, 

we combined the individual model elements to integrated models and evaluated their performance 

first via simulations and second via validating the models with additional datasets gathered for the 

study. Fifth, we coupled the yield response models with the transition models and applied the system 

models for dynamic economic optimisation; the robustness of the results was evaluated and the results 

were compared to the maximum permissible N and P rates denoted by the Finnish agri-environmental 

programme (FAEP). Last, we evaluated the effects of structural and parametric uncertainty on 



economic optimums via uncertainty and sensitivity analysis. The iterative elimination modelling 

process is shown in Figure 1.  

 

Fig. 1. Schematic diagram of the iterative elimination modelling process carried out within the study. AIC stand for 

Akaike’s information criteria, DSA stands for deterministic sensitivity analysis and FAEP stands for Finnish agri-

environmental programme  

2.2. System dynamics  

The optimisation problem of simultaneous N and P fertilisation is essentially a dynamic problem.  

This results from the fact that most of the P contained in crops originates from the P accumulated in 

soil as a plant available soil P reserves (Hooda et al., 2001; Sharpley, 1986; McLaughlin et al., 1988) 

It is a general observation that the crop yield is greater the higher is the STP class of the soil (see e.g., 

Analogides and Rendig, 1972; Barrow, 1980; Dodd and Mallarino, 2005). In addition, Iho and 

Laukkanen (2009) showed that the optimal annual P fertilisation rate changes in time response to 

changes in STP and it has been shown in multiple studies that the P fertilisation increases the yield 



on soil with low STP but on soil with high STP levels the crop response to applied P is not expected 

(see e.g., Engelstad and Terman, 1980; Saarela et al., 1995; Mallarino and Prater, 2007; Valkama et 

al., 2011).  

We assumed that the P fertilisation has a direct effect on an annual yield as well as an 

indirect positive effect on STP due to the accumulation of P into the soil and an indirect negative 

effect on STP through the crop-uptake (the proportion of P that is removed from soil in yield). In 

contrast, N is assumed to have an indirect effect on STP through the crop-uptake. In addition, we 

assumed that whereas the P response is negatively associated with the current STP level of the soil, 

the N response is not associated with the STP. The phenomenon is illustrated with a simple stock and 

flow model represented in Figure 2, where STP is the accumulating stock (the state variable) and 

fertiliser inputs (the control variables) represent system inflows while the crop output represent the 

system outflow. 

 
Fig. 2, Stock and flow model of the dynamic agricultural system (based on Figure presented in Hardaker et al., 2015, 

p.206). In the system each stage is characterised by a STP-level, which develops according to a transition function 𝜗. The 

inflows consist of annual P and N inputs while the output consist of annual returns 𝑅𝑡, which are a function of profits 

from annual yield and input costs. 

Fertilisation decisions will be made over T stages. The stages represent different time 

periods, years, in the planning horizon of the problem. Each stage is characterised by a current STP 

level (STP is the state of the stage). The current stage STP and the input inflows (N and P fertilisation) 

and the output outflows (barley yield) determine the level of STP which is transferred to the next 

stage via the transition function, which is defined with the following difference equation: 𝑆𝑇𝑃𝑡+1 =

𝜗(𝑆𝑃𝑇𝑡, 𝑃𝑡, 𝑦(𝑆𝑇𝑃𝑡, 𝑃𝑡, 𝑁𝑡)), where 𝜗 is a transition function. In addition to the current STP level, 

each stage is characterised by a current crop yield, which is a function of the current STP level and 

the fertilisation decisions. Consequently, each stage produces a stage return, which is a function of 

the current crop yield, the decision variables and the prices: 𝑅𝑡 = 𝑟𝑡(𝑦(𝑆𝑇𝑃𝑡, 𝑃𝑡, 𝑁𝑡), 𝑃𝑡 , 𝑁𝑡, 𝒑) where 

𝑟𝑡 is a stage return function (which is defined below in a section 2.7.) and 𝒑 is a price vector.  

Hence, the dynamic system model is a combination of two models: a yield response 

model and a state model, i.e. the transition function (Wallach et al., 2006). When economic 
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components are added to the yield response model, the coupled system of models can be utilised in 

dynamic economic optimisation, where P and N fertilisation acts as control variables and STP acts as 

a state variable. The applied models are specified in following sections. 

2.3. Specification of the yield response model 

The yield response model consists of three multiplicative elements: the first element defines the P-

control yield (kg ha-1) (denoted by 𝑌𝑃0) as a function of STP (mg l-1). The P-control yield is the yield 

without added P fertiliser, but fertilised with NK; the second element defines the yield response (%) 

to P fertiliser as a scaling factor (denoted by 𝜔𝑃) that scales the first element up depending on the 

applied P rate (kg P ha-1) and the STP level; the third element defines the yield response (%) to N 

fertiliser (kg N ha-1) as a scaling factor (denoted by 𝜔𝑁) that scales the previous elements up or down 

depending on whether the applied N rate is lower or higher than the average N rate in P-experiments. 

The element is decreasing function of N-control yield (kg ha-1), i.e. the yield without added N, but 

fertilized with PK (denoted by 𝑌𝑁0), because Valkama et al. (2013) noticed a significant negative 

association between the yield response to N fertiliser and N-control yield. The following nonlinear 

regression model gives the complete specification of the model on the relationship between the yield 

and the predictors: 

𝑌𝑖 = 𝑌𝑃0(𝜃1,𝑗, 𝑆𝑇𝑃𝑖)𝜔𝑃(𝜃2,𝑗, 𝑃𝑖, 𝑆𝑇𝑃𝑖)𝜔𝑁(𝜃3,𝑗, 𝑁𝑖, 𝑌𝑁0,𝑖) + 휀𝑖, (1) 

where 𝑌𝑖 is the observed yield in an experiment 𝑖 with 𝑖 = 1, … , 𝑘, and 𝜃𝑙,𝑗 indicates the parameter 

with the subscript 𝑙 ∈ [1,3] denoting a model element, and subscript 𝑗 denoting a parameter number 

and 휀𝑖 indicates model residual error.  

Eq.1 is assumed to be finite, nonnegative, real valued, and single valued for all possible 

combinations of inputs (A1), everywhere continuous, strictly increasing, strictly quasiconcave and 

everywhere twice continuously differentiable (A2), and subject to the ‘law of diminishing marginal 

productivity’ (A3). It was further assumed that the first model element in [1] is a concave function of 

STP (A4), the second model element in [1] is a concave function of P and decreasing function of STP 

(A5), the third model elements is concave function of N and a decreasing function of N-control yield 

(A6), the yield and the response to any variable must converge to maximum plateau with zero 

marginal product as input utilisation increases (A7), and the model residual errors are independently 

and identically distributed according to a normal distribution with a zero mean and constant variance 

(A8). This assumption implies further that we assumed the yields to be normally distributed also, 

although the normality of the yield distribution is not accepted unanimously (e.g. Just and Weninger, 

1999). 



The assumption (A5) is motivated by the fact that a plant takes all the P from soil 

solution where it is in a plant available form. When P fertiliser is added to the soil, it also moves into 

the soil solution where plant uses it to grow (Busman et al., 2002). As the growth follows the von 

Liebig’s law of the minimum, more there is P in the soil solution, i.e. higher is the STP, less limiting 

factor P is and less growth can be expected to be gained from applying additional amount of P 

fertiliser. 

The assumption (A6) is hypothesised to be reflecting the effect of N soil stock; if the 

yield without added N is high, there might be a sufficient amount of plant-available N in the soil. 

According to the law of the minimum, the increase in yield for N fertilisation is the less the more 

there is plant-available N in the soil. In practical applications, i.e. in predictive simulations and 

economic optimisation, 𝑌𝑁0 was treated as a parameter rather than as a variable, because we did not 

have a transition function for describing the N dynamics in the soil. We hypothesised that the N-

control yield must be lower than the P-control because in general N has stronger effect on yields than 

P or STP (e.g., Carlgren and Mattson, 2001; Salo et al., 2013). Therefore it was fixed to a level of 2/3 

of the P-control yield. 

The assumption (A7) is based on general agronomic principle stating that the yield 

cannot grow boundlessly because there are fixed biological or agronomic (or both) limitations for the 

crop growth (see e.g., Niklas, 2006). This assumption is particularly important for the first model 

element in [1], because the model element determines the yield as a function of STP, which is state 

variable in dynamic optimisation. However, in the case of N fertilisation we consider two kinds of 

cases: (1) the yield converges a maximum level with a diminishing rate and (2) the yield reaches its 

maximum at a certain N level after which it starts to decline. The latter case is based on the fact that 

various crops show a negative response to N at high levels (Jensen and Schjoerring, 2011). Such a 

phenomenon is not observed relating to P fertilisation or STP levels (Saarela et al., 1995).  

2.4. Specification of the transition model  

We obtained the explicit form of the transition function from Uusitalo et al. (2016): 

∆𝑆𝑇𝑃𝑡 = 𝛿1 + 𝛿2𝑃𝑏𝑎𝑙,𝑡 + 𝛿3𝑃𝑏𝑎𝑙,𝑡𝑆𝑇𝑃𝑡 − 𝛿4𝑆𝑇𝑃𝑡,  (2) 

where ∆𝑆𝑇𝑃𝑡 = 𝑆𝑇𝑃𝑡+1 − 𝑆𝑇𝑃𝑡 and 𝛿𝑞 with 𝑞 ∈ [1,4] are parameters. The specification was applied 

because Uusitalo et al. (2016) estimated different functions for different soil textures. Since the 

functions of Uusitalo et al. (2016) have P-balance as one of the model arguments, we utilised a 

function from Iho and Laukkanen (2012) for the P-balance description: 

𝑃𝑏𝑎𝑙,𝑡 = 𝑃𝑡 − (𝛽1 log(𝑆𝑇𝑃𝑡) + 𝛽2)𝑌𝑡,   (3) 



where 𝛽1 and 𝛽2 are parameters and the term 𝛽1 log(𝑆𝑇𝑃𝑡) + 𝛽2 determines the 

phosphorus concentration of the crop yield (Iho and Laukkanen, 2012). Thus, the annual P-balance 

is a difference between annual P input and P that is removed via the crop-uptake. When we combine 

these functions, i.e. insert a function [3] into [2], we get the following specification for the transition 

model: 

∆𝑆𝑇𝑃𝑡 = 𝛿1 + 𝛿2(𝑃𝑡 − (𝛽1 log(𝑆𝑇𝑃𝑡) + 𝛽2)𝑌𝑡) + 𝛿3(𝑃𝑡 − (𝛽1 log(𝑆𝑇𝑃𝑡) +

𝛽2)𝑌𝑡)𝑆𝑇𝑃𝑡 − 𝛿4𝑆𝑇𝑃𝑡    (4) 

The properties of the transition function are examined further in Appendix 5. When the models [1] 

and [4] were combined we got the dynamic agricultural system model described in Figure 2. 

However, before the system model could be utilised in numerical applications, the explicit forms for 

the yield response models were to be estimated from the empirical data. 

2.5. Fertiliser field experiment data 

In order to estimate the yield response models to be utilised in the dynamic system model, six separate 

datasets were applied: one for each model element in [1] for both soil textures. The applied datasets 

consisted of the results of the Finnish fertiliser field experiments of cereals, which were analysed via 

a meta-analysis method. Valkama et al. (2011, 2013) provide detailed description of these datasets. 

To model the combined impacts of N and P fertilisation on crop yield, we standardised the data in 

such a way that the observations obtained from the two distinct sets of empirical experiments with 

different control yields were comparable (see Appendix 2). In addition, for the estimation of the first 

model element in [1], following Myyrä et al. (2007), we utilised the data that was provided in the 

report by Saarela et al. (1995) because there was limited information regarding the relationship 

between STP level and P-control yield in the dataset obtained from Valkama et al. (2011). The 

descriptive statistics of the applied datasets are provided in Tables 1-3 in the Appendix 1. 

We also gathered historical field experiment data for evaluating the prediction 

capability and generalisability of the estimated models. The pooled (mixture of cross-sectional and 

time series) datasets consisted of unpublished reports of compound NPK fertiliser field experiments 

conducted at MTT (Agrifood Research Finland) and its research stations. The datasets consisted of 

28 short- and long-term (mostly short-term) experiments conducted in Finland between 1964 and 

1988 at 10 sites on clay and coarse soils. Most of the experiments were conducted on clay soils. It 

must be emphasized that it was particularly important to validate the model with datasets consisting 

of NPK field experiment data. By applying such data for validation we could evaluate how the model, 

consisting of separate elements estimated for P, N and STP response, predicted a situation where all 

of these variables were changing simultaneously. Therefore, the goodness-of-fit to the validation 

dataset could be considered as more crucial evaluation of the model performance than the goodness-



of-fit to the initial datasets. The descriptive statistics of the gathered validation datasets are provided 

in Table 4 in the Appendix 1. 

All the applied datasets are provided in the Supplementary material. 

2.6. Estimation, ranking and evaluation of the models  

We utilised weighted nonlinear least squares method for estimating the models. We weighted the 

observations with the duration of the respective experiment, since the reported yields were averaged 

over the experiment. Therefore, longer experiments produced more reliable results, since these were 

less affected by random variation (Esala and Larpes, 1984). Since there are typically multiple models 

that can be fitted successfully into dataset (Cerrato and Blackmere, 1990), we examined several 

functional forms (presented in the article by Griffin et al. (1987)). As a result of this process we 

obtained the set of candidate models. The selected functional forms were altered or combined (or 

both) in various ways. We choose three to five models for each model element in [1] and both soil 

textures for further examination out of the numerous iteratively obtained alternatives.  

We ranked the estimated models via the modified second order variant of Akaike’s 

(1973) information criteria (denoted by AIC𝑐), which is bias-corrected for small samples. In addition, 

the relative likelihoods were utilised to determine how much better the best model is compared to 

other models. We determined the structural uncertainty to be considerable in the case where the 

relative likelihood for a best model was < 1.5. We also utilised traditional frequentist statistical 

goodness-of-fit analysis because AIC is unable to indicate how well the models fit the dataset used 

for estimation (Burnham and Anderson, 2002). It must be noted that to measure the model predictive 

accuracy, we utilised Pearson’s product-moment correlation coefficient (r) and the adjusted squared 

correlation coefficient (𝑟𝑎𝑑𝑗
2 ), although the utilisation of 𝑟2 as a measure of predictive accuracy for 

nonlinear models is often criticised since it cannot be interpreted in the same way as in the case of 

linear models (e.g., Spiess and Neumeyer, 2010). We provided these measures as an approximation 

of the predictive accuracy, since the measures are frequently utilised, which enables the 

communication of the model performance (Bennett et al., 2013).  

2.7. Dynamic economic optimisation problem 

We utilised dynamic programming method for determining the optimal fertilisation decisions over 

the planning horizon. The annual profit was defined with the following typical stage return function 

𝑟𝑡 = 𝑝𝑦𝑦(𝑆𝑇𝑃𝑡, 𝑃𝑡 , 𝑁𝑡) − 𝑝𝑃𝑃𝑡 − 𝑝𝑁𝑁𝑡 where 𝑦 is the estimated yield response function and 𝑝𝑦, 𝑝𝑃 

and 𝑝𝑁 are the exogenous prices for the crop yield, P and N fertilisers, respectively. Returns from 

each stage must be discounted in order to obtain their present value. We defined the discount factor 

as follows: 𝛽 =
1

1+𝜌
, where 𝜌 is a discount rate. The objective was to maximise the net present value 



of the discounted sum of the annual returns over the planning horizon. We considered that the 

planning horizon consisted of two phases: the production period and the post-production period. The 

final stage of the production period produces the scrap value (or bequest value) that was assumed to 

generate profits infinitely: 𝑆𝑇 = ∑ 𝛽𝑇+𝑡∞
𝑡=0 𝑟𝑇+𝑡 (e.g., Sydsaeter, 2005; Ikefuji et al., 2010). However, 

the value of the 𝑆𝑇 obviously needs to be approximated for practical reasons. We utilised the 

following approximation for the sum of the discounted annual values of the scrap value function: 

𝑆𝑇 = 𝛽𝑇 ∑ 𝛽𝑡∞
𝑡=0 𝜋𝑇+𝑡 ≈ 𝛽𝑇 𝜋𝑇

𝜌
, which originates from the continuous discounting over infinite 

horizon since ∫ 𝑒−𝜌(𝑇+𝑡)𝜋𝑇𝑑𝑡
∞

𝑡=0
= 𝑒−𝜌𝑇 𝜋𝑇

𝜌
. We formalised the optimisation problem as a recursive 

finite horizon dynamic programming problem, which we solved numerically by iterating the 

Bellman’s equation (Bellman, 1957): 

𝐽(𝑆𝑇𝑃𝑡) = 𝑚𝑎𝑥
𝑃𝑡,𝑁𝑡

∑ 𝛽𝑡𝑇−1
𝑡=1 𝑟𝑡 + 𝑆𝑇   

𝑠. 𝑡. 𝑆𝑇𝑃𝑡+1 ≤ 𝜗(𝑆𝑇𝑃𝑡, 𝑃𝑡 , 𝑦(𝑆𝑇𝑃𝑡, 𝑃𝑡 , 𝑁𝑡)), 𝑆𝑇𝑃1 given, 𝑃𝑡, 𝑁𝑡 , 𝑆𝑃𝑇𝑡 ≥ 0, (5) 

where 𝐽(𝑆𝑇𝑃𝑡) is called a value function, which determines the present value of net returns from 

carry-over 𝑆𝑇𝑃𝑡 obtained following the optimal control trajectory {𝑃𝑡
∗, 𝑁𝑡

∗}𝑡
𝑇−1. The value function 

does not depend on the control variables because when decision maker is behaving optimally, the 

control variables are a function of the state variable (Wälde, 2011).  

2.8. Uncertainty and sensitivity analysis 

Lastly, we applied principles of multimodel inference (Burnham and Anderson, 2002) in order to 

evaluate the effect of model structural uncertainty on economic optimisation analysis and to examine 

the robustness of the comparable models. Such a model inter-comparison is often suggested in 

previous literature (Hildreth, 1955; Griffin et al., 1987; Cerrato and Blackmer, 1990; Asseng et al., 

2013). In addition, the parameter uncertainty was represented via deterministic sensitivity analysis 

(DSA), in which parameter values were varied manually to their 95% confidence bounds, in order to 

test the sensitivity of the optimisation results for all the parameters (Briggs et al., 2012). Nevertheless, 

since we were also interested in the distribution of realised output values when the input values were 

at their optimal levels, a Monte Carlo analysis was carried in addition to DSA analysis. To carry out 

a Monte Carlo analysis, we assumed that the probability distribution of all the model parameters 

followed a normal distribution. In addition to uncertainty analysis, we carried out a sensitivity 

analysis in order to determine how sensitive the optimisation results were with respect to economic 

parameters, the initial STP level and the N-control yields, since those parameters were clearly subject 

to uncertainty.  



3 Results 

3.1. Estimated yield response models  

The estimated model candidates for each model element in [1] are presented in Appendix 3. The best 

models for the first model element in [1] were power/Spillman and power/square root-plus-plateau 

models for coarse and clay soils, respectively. The best model for the second model element in [1] 

was square root/quadratic and square root/logistic for coarse and clay soils, respectively. In the case 

of coarse soils, the best model for the third model element in [1] was logarithm/quadratic. For clay 

soils the best model for the third model element in [1] was square root/quadratic (see Appendix 3). 

Table 1 shows that all the estimated model parameters were significant at 5% level. The least 

significant parameters were the two parameters in the third model element for clay soils as well as 

one parameter in the second model element for coarse soils.  

Table 1 
Estimated parameters and their summary statistics for the best models for the respective models elements in [1]  

Model (model element), Soil 

texture 

Parameter Estimate SD t -value P (>|𝑡|) 

Power/Spillman (1), Coarse 

soils 

     

 𝜃1,1 3883 360 10.79 5.05e-10 

 𝜃1,2 0.80 0.050 15.87 3.63e-13 

Square root/Quadratic (2), 

Coarse soils 

     

 𝜃2,1 0.0427 0.0064 6.71 5.98e-9 

 𝜃2,2 0.0106 0.0044 2.42 0.0184 

Logarithm/Quadratic (3), Coarse 

soils 

     

 𝜃3,1 0.649 0.047 13.81 < 2e-16 

 𝜃3,2 0.02402 0.0026 9.28 3.35e-13 

 𝜃3,3 3.653e-08 4.750e-09 7.69 1.66e-10 

Power/square root/Plateau (1), 

Clay soils 

     

 𝜃1,1 3233 251.7 12.81 7.97e-10 

 𝜃1,2 0.5903 0.03576 16.51 1.80e-11 

Square root/Logistic (2), Clay 

soils 

     

 𝜃2,1 0.0375 0.00758 4.943 1.5e-05 

 𝜃2,2 0.0999 0.03663 2.727 0.0095 

 𝜃2,3 0.0759 0.02093 3.629 0.0008 

Square root/Quadratic (3), Clay 

soils 

     

 𝜃3,1 0.197 3.657e-02 5.399 5.68e-06 

 𝜃3,2 -0.005299 2.229e-03 -2.377 0.0234 

 𝜃3,3 9.322e-08 4.273e-08 2.182 0.0364 

 

The predictive accuracy and efficiency was best for the third model element in [1] for 

coarse soils, whereas for clay soils the most accurate and efficient model element was the second 

model element (Table 2). In contrast, the statistics measuring the accuracy of model prediction clearly 



indicated worst fit for the first model element for both soil textures. The fit was particularly poor for 

the clay soils; the correlation for the model predictions and the observations was non-significant at 

5% level, although the correlation between the STP and the P-control yield was significant in the 

initial dataset (p-value=0.040). The most biased model was clearly the first model element for coarse 

soils (Table 2). In the case of clay soils models, the most biased model element was the third model 

element. For both soil textures, the high bias was related to the relatively high variation within the 

respective datasets: for coarse soils the CV (SD/average) for the STP response dataset was 37% and 

for clay soils the CV for the N response dataset was 19.7% (see Appendix 1). The second model 

element for both soil textures was the least biased model elements, reflecting the relatively minor 

variance within the respective datasets; the CV for coarse soils was 10.8% and for clay soils it was 

5.8% (see Appendix 1).  

Table 2 

The best models for the respective models elements in [1] and the associated goodness-of-fit statistics* 

 

* r is Pearson’s product-moment correlation coefficient measuring the correlation between the observations and the 

model predictions, r2 is a squared correlation coefficient, radj
2  is a adjusted coefficient of determination, IA is a index of 

agreement, RMSE is root mean squared error, MB is a mean bias and MAE is a mean absolute error. The p-value refers 

to a correlation test. The statistics as a percentage of the observed mean values are found in brackets 

 

3.2. Predictive yield surfaces of the integrated models and the interactions with the transition 

model 

After the best models for the sub-model components were determined, we were in a position to 

present the integrated models where individual model elements were multiplied with each other. For 

coarse soils the explicit form of the integrated model is presented in Eq.6.  

 �̅�𝑐𝑜𝑎𝑟𝑠𝑒 = 𝜃1,1𝑆𝑇𝑃
1

𝜃1,1(1 − 𝜃1,2
𝑆𝑇𝑃) (

𝜃2,1√𝑃

1+𝜃2,2𝑆𝑇𝑃2
+ 1)

𝜃3,1+𝜃3,2(𝑙𝑜𝑔(𝑁+1))2

1+𝜃3,2𝑌𝑁0
2 , (6) 

where the first subscript of the parameter denotes the model element and the second subscript denotes 

the parameter number. For clay soils the explicit form of the integrated model is presented in Eq.7. 

�̅�𝑐𝑙𝑎𝑦 = 𝜃1(𝑆𝑇𝑃𝜃2 + 1)(1 + √𝑆𝑇𝑃)
−1

(
𝜃2,1√𝑃+𝜃2,2

1+𝑒𝜃2,3𝑆𝑇𝑃 + 𝜔𝑃,𝑚𝑖𝑛)
𝜃3,1√𝑁+𝜃3,2

𝜃3,3𝑌𝑁0
2+1

. when 𝑆𝑇𝑃 < 𝑆𝑇𝑃∗ 

Soil Texture Model (model element) 𝑟 

 

P (>|𝑡|) 𝑟2 𝑟𝑎𝑑𝑗
2  

 

IA RMSE MB MAE 

Coarse Power/Spillman (1) 0.61 

 

0.0021 0.37 0.34 

 

0.69 941 (29%) 90 (2.8%) 789 (24.5%) 

Coarse Square root/quadratic (2) 0.79 

 

6.056e-15 0.62 0.61 

 

0.86 0.073 (6.7%) -0.011 (1.1%) 0.053 (4.9%) 

Coarse Logarithm/quadratic (3) 0.87 
 

< 2.2e-16 0.76 0.75 
 

0.92 0.078 (9.0%) -0.007 (0.8%) 0.071 (8.2%) 

Clay Power/square root-plus-plateau (1) 0.42 

 

0.0838 0.18 0.12 

 

0.55 646 (17%) -30.4 (0.8%) 474 (13%) 

Clay Square root/logistic (2) 0.75 

 

1.4e-08 0.56 0.55 

 

0.85 0.041 (3.9%) 0.0024 (0.2%) 0.032 (3%) 

Clay Square root/quadratic (3) 0.68 
 

4.251e-06 0.47 0.45 
 

0.80 0.157 (17%) -0.040 (4%) 0.130 (14%) 



 �̅�𝑐𝑙𝑎𝑦 = 𝑚𝑎𝑥�̅�𝑃0 (
𝜃2,1√𝑃+𝜃2,2

1+𝑒𝜃2,3𝑆𝑇𝑃 + 𝜔𝑃,𝑚𝑖𝑛)
𝜃3,1√𝑁+𝜃3,2

𝜃3,3𝑌𝑁0
2+1

, when 𝑆𝑇𝑃 ≥ 𝑆𝑇𝑃∗ (7) 

We examined the predictive performance of the models graphically and analytically. 

The most critical aspect of the integrated models was the interaction of the first and second model 

element because the first is an increasing function and a second is a decreasing function of STP; since 

the derivative of the integrated model with respect to STP is the following: 
𝜕�̅�

𝜕𝑆𝑇𝑃
=

(
𝜕𝑦𝑃0

𝜕𝑆𝑇𝑃
𝜔𝑃 + 𝑦𝑃0

𝜕𝜔𝑃

𝜕𝑆𝑇𝑃
) 𝜔𝑁 and 

𝜕𝑦𝑃0

𝜕𝑆𝑇𝑃
> 0 while 

𝜕𝜔𝑃

𝜕𝑆𝑇𝑃
< 0, we have a following condition: 

𝜕�̅�

𝜕𝑆𝑇𝑃
> 0 if 

𝜕𝑦𝑃0

𝜕𝑆𝑇𝑃
𝜔𝑃 > 𝑦𝑃0

𝜕𝜔𝑃

𝜕𝑆𝑇𝑃
 and 

𝜕�̅�

𝜕𝑆𝑇𝑃
< 0 if 

𝜕𝑦𝑃0

𝜕𝑆𝑇𝑃
𝜔𝑃 < 𝑦𝑃0

𝜕𝜔𝑃

𝜕𝑆𝑇𝑃
. This implies that while the yield without 

added P (i.e. P control yield) must be higher for high STP levels compared to low STP levels, there 

can be conditions under which the P fertilisation raises the yield higher for low STP levels than what 

is the maximum yield for higher STP levels. The yield increasing effect of P fertilisation vanishes for 

higher STP levels and the yield converges the maximum plateau from above. The Figure 3 illustrates 

that this phenomenon takes place for coarse soils. The Figure 3 also illustrates the effect of N 

fertilisation; since N fertilisation is not a function of STP and there is no interaction between N and 

P fertilisation in this model formulation, the N fertilisation raises the yield curve but it does not affect 

the shape of the curve. In the case of clay soils the yield is a monotonic function of STP on a whole 

domain of possible STP levels for all P rates because the P response is low (even for low STP levels) 

compared to that observed on coarse soils (see Appendix 2, Fig.1c, d). 

 

Fig. 3. The yield as a function of STP for various P and N rates. The P rates are 5, 10, 20, 30, 40, 50 and 60 kg/ha. 

Figure 4 represent the simulated yield N-P-surfaces for various STP levels (level curve version of the 

Figure 3 is represent in Appendix 6 (Isoquants)). For rather poor STP class soils the coarse soils 

model gave lower yield surfaces than the clay soils model, which resulted from the applied functional 



forms for the first model element in [1], as the P-control yield was higher for lower STP levels in the 

case of clay soils (see Appendix 3, Fig. 1a, b). The relative effect of P was more crucial for coarse 

soils compared to that for clay soils, whereas the relative effect of N was more crucial for clay soils 

compared to that for coarse soils (Fig. 4). From Figure 4 one may also notice the absence of the 

interaction effects of the N and P fertilisers. These effects could not be captured, since the effects of 

the fertilisers were estimated from the separate datasets of field experiments where interactions were 

omitted. Nevertheless, when the models are coupled with the transition functions, the interactions 

enter the models, since both fertilisers affect the development of the STP through the crop-uptake in 

the following way: the crop-uptake is higher for higher N rates, STP is lower for higher crop-uptake, 

and P response is higher for lower STP. Within this modelling framework, however, the P does not 

affect the N response since the N response is not a function of STP. The analytical properties of the 

models specified in [6] and [7] are examined further in Appendix 6. 

 

 



 
Fig. 4. Simulated yield N-P-surfaces for both soil textures for various STP levels (STP level rather poor is 3 mg l-1 

for clay and 5 mg l-1 for coarse soils, STP level fair is 6 mg l-1 for clay and 10 mg l-1 for coarse soils, STP level 

satisfactory is 11.5 mg l-1 for clay and 17.5 mg l-1 for coarse soils and STP level good is 20 mg l-1 for clay and 28.5 

mg l-1 for coarse soils) 

 

3.3. Model validation results 

We evaluated the integrated models by comparing the simulated predictions to observations obtained 

from the NPK fertilisation field experiments, where both N and P were given simultaneously in 

different dozes on soil characterised by various STP levels. In this comparison, observed N and P 

rates as well as the STP levels were applied as input vectors for the models. For both models the 

distribution of the model error residuals was not significantly different from a normal distribution: p-

value=0.1129 for coarse soils and p-value=0.371 for clay soils (Shapiro-Wilk normality test). In 

addition, the prediction accuracy was high, particularly in the case of coarse soils (Table 3). The 

model efficiency was equal and high for both models. Among the statistics measuring model biasness, 

RMSE and MAE indicated lower bias for coarse soils model, whereas the MB was lower for clay 

soils model (Table 3).  

Table 3 
Validation statistics for the best models* 

Model Soil texture r 

 

P (>|𝑡|) 𝑟2 𝑟𝑎𝑑𝑗
2  IA RMSE MAE MB 

Power/Spillman –square root-square root Coarse 0.79 1.201e-08 0.63 0.63 0.85 537 (15 %) 458 (12 %) 263 (7.2 %) 

Power/square root-plus-plateau -square root/logistic-

square root/quadratic 
Clay 0.74 

 

2.969e-13 
0.55 0.55 0.85 888 (27 %) 666 (20 %) 140 (4.3 %) 

*The p-value refers to a correlation test. In brackets are the statistics as a percentage of the observed mean values 

The bias of the residuals in the case of coarse soils model appears in Figure 6, as most 

of the observations were higher than the predictions, particularly those with numbers 20-34 (Fig. 6b). 

These high observations came from one experiment, where the annual yields were high most likely 



due to favourable agri-environmental conditions. These observations influenced the model 

performance since the validation dataset for coarse soils had fewer observations (n=35) than the 

dataset for clay soils (n=68), as was mentioned above (see section 2.5 and Table 4 in Appendix 1). 

Nevertheless, the model appeared to predict the observations patterns relatively accurately (Fig. 6b) 

and the residuals were not significantly different from a normal distribution (Fig. 6c), as was also 

suggested by the Shapiro-Wilk normality test. 

 

Fig. 6. Graphical model validation results for best coarse soils model: (a) plots how the observations are scattered 

around the 1:1 line, (b) plots how the model predictions produce the observation patterns, (c) plots the normality of the 

residuals and (d) plots the standardised residuals against the model predictions.  

The accuracy of model prediction and the distribution of the residuals between 

observations and predictions for the clay soils model are illustrated in Figure 7. The model poorly 

predicted the highest and lowest yield values (Fig. 7b), since the model operated with the expected 

average yields, the extreme values were omitted by the definition and the variation within the 

validation dataset regarding clay soils was relatively high compared to that observed within the coarse 

soils (e.g., for yields the CV-ratio was 32% for clay soils whereas the CV ratio was 21.4% for coarse 

soils). Figure 5c shows a normal probability plot and verifies the result obtained via the Shapiro-Wilk 

normality test. It should be noticed, that there was a cluster of observations that were underestimated 

by the model with a systematic error, which was the primary reason for bias within the predictions 

(Fig. 7a, d). These observations consisted of control yields as well as other yields associated with low 

input rates.   



 
Fig. 7. Graphical model validation results for best clay soils model.  

3.4. Results of economic optimisation, the structural uncertainty analysis and the DSA 

Finally, when the economic factors were added to the system of the yield response models and the 

transition models, we were in a position to perform the bio-economic analysis. We represent the 

results of the dynamic economic optimisation, the structural uncertainty analysis and the DSA in the 

same section because the results were obtained simultaneously. The results form the Monte Carlo 

analysis and the sensitivity analysis are provided in the Appendix 7 and 8, respectively.  

The optimal paths for each variable generated by the set of candidate models as well as 

the 95% confidence intervals for the best models are illustrated in Figure 8 for both soil textures. The 

optimal paths converged to the steady state within the time horizon in all the cases suggesting that 

the models were suitable for dynamic economic optimisation. The optimal N rate was 45% higher for 

clay soil than for coarse soils. Instead, the optimal P rate was 182% higher for coarse soils than for 

clay soils. As a direct consequence, the optimal STP level was 161% higher for coarse soils than for 

clay soils. The optimal steady state STP class for both soil textures was fair (range of the class is 7-

13 mg l-1 for coarse soils and 4-8 mg l-1 for clay soils (Ylivainio et al., 2014)). The high P rate for 

coarse soils in the beginning of the planning horizon stemmed from the fact that the initial STP level 

was further away from the steady state level in the case of coarse soils compared to that in the case 

of clay soils. The optimal annual yield was almost the same for both soil textures; the yield was 2.1% 

higher for clay soils than for coarse soils, whereas the optimal yield given by the best model was 

2.4% higher for coarse soils than for clay soils (Fig. 8d, h).   

The parameter uncertainty had a greater effect on economic optimums than the 

structural uncertainty for both soil textures (Fig. 8). In addition, the parameter uncertainty had a 



greater effect on optimums for clay soils than for coarse soils (Fig. 8). For coarse soils, most of the 

parameter uncertainty resulted from the first model element, which was the most biased model among 

the coarse soils models, whereas for clay soils most of the parameter uncertainty stemmed from the 

third model element, which was the most biased model among the clay soils models (see section 3.1, 

Table 1). The structural uncertainty also had a greater effect on optimums in the case of clay soils 

compared to coarse soils, which is particularly observable from the CV-ratios presented in Table 4. 

In the case of the clay soils models, the structural uncertainty originated from the choice of the third 

model element; when the applied functional form was power/quadratic instead of square 

root/quadratic, the economic optimums were higher, particularly optimal N rates (Fig. 8e). The choice 

of first and second model elements had only a minor effect on economic optimums. For coarse soils 

the structural uncertainty also stemmed from the choice of a third model element. Whether the applied 

functional forms would have been square root/quadratic or power/quadratic instead of 

logarithm/quadratic, the optimal N-rates would have been higher and P rates and STP levels lower 

(Fig. 8a-c). For optimal P rates and STP levels, the effect of structural uncertainty was greater than 

the effect of parameter uncertainty (Fig. 8b, c). Instead, the structural uncertainty had only a minor 

effect on optimal yields relative to the effect of the parameter uncertainty (Fig. 8d).  

 



 
Fig. 8. Optimal N and P fertilisation paths, STP development paths and annual yields given by nine models on coarse 

soils (a-d) and eight models on clay soils (e-h). 95% confidence bounds are shown for the best model when all the 

model parameters are changed (red dashed lines), the model parameters of the first model element are changed (blue 

dashed lines) and the model parameters of the third model element are changed (green dashed lines). The solid line is 

the best model and the other models are presented as dotted lines. The fixed parameters are 𝜌 =discount rate (3.5%), N 

price=N fertilisation price (0.91 €/kg), P price=P fertilisation price (1.99 €/kg), Y price=price for spring barley yield 

(0.12 €/kg) and STP1=the initial STP-level of the soil (7.5 mg/l for coarse soils and 4.5 mg/l for clay soils models). 

Note that the y-axis does not begin from 0 in any of the figures (except in Fig.6f). 

 

We also compared the obtained optimisation results to the maximum permissible N and 

P rates denoted by the Finnish agri-environmental programme, FAEP (Ministry of Agriculture and 

Forestry, 2014). The comparison showed that the obtained optimal N rates were on average (between 

the soil textures, 115.4 kg N ha-1) 15.4% higher than maximum permissible N rates denoted by FAEP, 

whereas the optimal N rates were approximately 32% higher for clay soils and about 9% lower for 

coarse soils (Table 4). Compared to the maximum permissible P rates, the obtained economically 

optimal P rates for corresponding optimal STP levels were 44% higher for coarse soils but were 49% 

lower for clay soils. On average (between soil textures) the optimal P rates were 2.8% lower the 

maximum permissible P rates denoted by FAEP. 

Table 4 
The comparison of the optimums and the maximum permissible fertiliser rates denoted by FAEP* 

Variable Best model Average SD CV 
 

FAEP 

Coarse soils, power/Spillman- 

square root/quadratic –logarithm/quadratic: 

 

N rate (kg N ha-1) 90.8 (77.7, 104.6)  93.3 6.37 6.8 % 

 

100 

P rate kg P ha-1) 23.1 (22.0, 24.3)  22.5 1.08 4.8 % 
 

16 

STP (mg P l-1)/class 
 

10.7 (10.5,11.0)  10.5 0.42 4.0 % 

 

 
Fair 

Yield (kg ha-1) 3780 (3290, 4280)  3780 50.1 1.3 % 

 

4000 



Clay soils, Power/square root-plus-plateau - 

square root/logistic-square root/quadratic: 

 

N rate (kg N ha-1) 132 (87.2, 211) 146 13.8 9.5 % 
 

100 

P rate (kg P ha-1) 8.2 (2.1, 25.4) 10.1 1.04 10 % 

 

16 

STP (mg P l-1)/class 4.1 (3.5, 7.4) 4.5 0.22 4.9 % 

 

Fair 

Yield (kg ha-1) 3690 (2420, 6020) 3860 137 3.5 % 
 

4000 
*The average steady states for the set of examined models and the associated standard deviations as well as the 

SD/average ratios are summary statistics of the structural uncertainty 

The range within the brackets represents the 95% CI when the parameter uncertainty regarding all the model parameters 

is considered 

 

4 Discussion 

This paper provides an approach for modelling simultaneous yield response to P and N inputs as well 

as to plant-available soil test P in crop production. The modelling approach was demonstrated by 

developing yield response models primarily for the purpose of dynamic economic analysis, including 

both nutrients as decision variables and STP as a state variable. This study therefore contributes to 

the rich body of literature regarding separate yield responses to main nutrients. Prior to applying the 

empirical data to the model estimation, several assumptions had to be made given the separate 

datasets and the specific objectives of the model. These assumptions led to the applied multiplicative 

structure of the yield response model (illustrated in [1]), which resembles the Mitschelich-Baule 

response function presented by Frank et al. (1990). In addition, the applied iterative approach to 

model building process is often suggested (e.g., Refsgaard et al. 2007; Bennett et al., 2013). The 

structure of the model and the modelling process can be generally applied for any region, given that 

the required datasets are available.  

The approach, in which separate datasets are applied for estimation, is a convenient way 

to avoid the problem of multicollinearity, which is known to be a prominent problem when attempting 

to estimate the effect of a certain nutrient from a compound fertiliser experiment data (e.g. Sheahan 

et al., 2013). The disadvantage of exploitation of separate datasets, however, is that the possible 

interaction effect of N and P fertilisers cannot be captured from the datasets regarding field 

experimentation where only one nutrient has been varied at a time (Sumner and Farina, 1986). In 

some cases fertilisation with P is shown to increase N uptake by plants (e.g., Black and Wight, 1979; 

Graciano et al., 2006). Nevertheless, since the models performed relatively well within the NPK-

fertiliser field experiment datasets utilised in validation, the validation results suggest that the 

interaction of N and P fertilisers might be a less important factor than the individual effects of N, P 

and STP. 



The validation results also suggested that the integrated models for both soil textures 

could predict the observation patterns successfully and without considerable bias. Thus, the applied 

model structure and the underlying assumptions appeared to be appropriate, although the fitted 

multiple functional forms predicted the observations of the initial dataset with varying degrees of 

success. The datasets for the first model element in [1] were clearly the scarcest and of worse quality 

compared to the other datasets. As a result, we could not fit a model that would have explained the 

data variation regarding clay soils. Thus, our results suggest that other factors might be more 

important than STP in determining the level of P-control yield, particularly for clay soils. 

Nevertheless, since the correlation between STP and P-control yield was significant in the initial 

dataset, we could conclude that the dataset did not support the function form satisfying the initial 

assumptions, particularly the concavity of the yield response curve. The concave function form, 

however, was essential for the successful model performance in the dynamic economic optimisation, 

which was the primary application for what the models were build for.  

Our findings suggest that there was no considerable uncertainty regarding the parameter 

estimates. However, as was noted by Wallach et al. (2006, p.222), when the model elements are 

multiplied with each other in complex system models, even small uncertainties related to model 

parameters may have a notable effect on model output when the parameters get mixed together and 

various interactions take place. The multiplication of uncertainties may be considered a disadvantage 

of the applied multiplicative model structure. The results of the DSA and the Monte Carlo analysis 

showed that the parameter uncertainty greatly affected the economic optimums in the case of clay 

soils, whereas the effect was relatively minor for coarse soils. This was expected because there was 

more uncertainty related to the datasets for clay soils and the effect of parameter uncertainty on 

economic optimums clearly stemmed mostly from model elements, which were estimated from the 

uncertain datasets. Also Briggs et al. (2012) noticed a positive association between uncertain datasets 

and the parametric uncertainty. In addition, for both soil textures the parameter uncertainty had a 

greater effect on the optimal model output than the structural uncertainty. Nevertheless, the structural 

uncertainty did have a greater effect on economic optimums for clay soils than for coarse soils.  

Several previous studies have also indicated, similarly to our findings, the effect of a 

functional form choice on optimal fertiliser rates (e.g., Abraham and Rao, 1965; Anderson and 

Nelson, 1971; Cerrato and Blackmer, 1990). The uncertainty among the optimums clearly originated 

primarily from the choice of the third model element determining the N response, because the 

absolute amount of applied N fertiliser was greater than P fertiliser (particularly for clay soils). 

Similarly, Tumusiime et al. (2011) noted that the model-based optimal N rates are sensitive to 



structural misspecification of the yield response function. In addition, the structure of the first and 

second model elements was more restricted by the assumptions. Thus, there was less freedom in 

choosing the functional form for the first and second model element compared to the third model 

element.  

The obtained optimal P fertilisation rates were higher for coarse soils, resulting from 

their higher observed P response, compared to that for clay soils. The optimal P rates were noticeably 

high for coarse soils, considering that the optimal STP level was fair and there was not much P 

response on soils characterised by such STP levels. However, for coarse soils, the yield reached its 

maximum at higher STP levels than for clay soils (Appendix 3, Fig. 1a, b). Therefore, for coarse soils, 

with the given price ratio and discount rate (see Fig. 8), it was optimal to maintain fair STP class 

throughout the planning horizon. Because of the annual crop-uptake, this requires relatively high 

annual P doze (>20 kg ha-1). Such optimum is in contradiction to previous results stating that for 

increasing STP levels yield increases from annual P application become negligible and no more 

economic profit is obtainable (e.g., Cox, 1992; Valkama et al., 2011). In practise, such behaviour is 

observed; there are farmers who prefer high P rates on fair (or even better) soils in order to secure 

sufficient P availability for crops (Reijneveld and Oenema, 2012; Dodd and Mallarino, 2005). In 

addition, it has been shown that maintaining fair or satisfactory STP levels requires surplus P 

fertilisation (e.g., Cox et al., 1981; Cope, 1981; Cox, 1992; Saarela et al. 2004; Dodd and Mallarino, 

2005). Our results illustrate these empirical findings.  

For the clay soils, on the other hand, the obtained economic optimum was consistent 

with suggestions by Cox (1992) and Valkama et al. (2011). The obtained optimal N rates were 

considerably higher for clay soils than for coarse soils. This results from the estimated response 

models and the respective datasets, since the observed N response was clearly higher for clay soils 

than for coarse soils. Thus, based on our findings, the optimal fertilisation rates for N and P depend 

on the soil texture. Consequently, the economic alternative costs of the maximum permissible N and 

P rates denoted by the agri-environmental programmes, such as the FAEP, may also depend on the 

soil texture of a production area. Our results suggest that the FAEP would not limit N fertilisation on 

coarse soils and P fertilisation on clay soils, whereas the limiting effect is notable for P fertilisation 

on coarse soils and for N fertilisation on clay soils.  

The sensitivity analysis showed that the increase in price for N and P fertilisers 

decreased the optimal amount of every variable of the model whereas the increase price of barley 

yield increased the optimal amount of every variable. There were, however, differences in the 

sensitivity of the optimums for changes in these parameters across the soil textures. This originated 



from the different shapes of the yield response curves and surfaces for P, N and STP, which in turn 

affected the output and input demand elasticity of the production for clay and coarse soils (see 

Appendix 5). The discount rate also had a (relatively minor) decreasing effect on all the model 

variables. Instead, the N control yield had a considerable effect on optimal fertilisation rates, 

particularly on optimal N fertilisation rate, and the optimal annual yield. The effect of N control yield 

was greater for clay soils compared to that for coarse soils, which resulted from the fact that for clay 

soils the N was relatively more important factor than for coarse soils.  

We identified four suggestions for further study: (1) in order to explicitly examine the 

relationship between STP and crop yield, more long-term data are needed, which was also suggested 

by Dodd et al. (2012). (2) To improve the developed models, dynamics of soil N and SOM should be 

taken into account because it is well known that the N status in the soil is quite dynamic (e.g., 

Karlsson, 2012; Baoqing et al., 2014; Wild et al., 2015). Instead, we included the N-control yield as 

a parameter which, however, does not directly reflect the N or SOM stocks of the soil. We utilised 

such strategy because there are no transition functions for N and SOM (comparable to those regarding 

P), which could be coupled with the estimated yield response functions to enable the proper inclusion 

of the soil’s N and SOM dynamics into the system model. (3) Introducing weather-related variables 

would reduce the model output uncertainty since the seasonal variability could be taken into account. 

According to previous studies, the annual weather-related variation in production conditions often 

has a stronger effect on annual yields than the fertilisation application rates (e.g., Nemeth, 2006; 

Valkama et al., 2011; Salo et al., 2013). We attempted to eliminate this effect by applying weighted 

estimation methods. Introducing weather-related variables would result in a stochastic model rather 

than deterministic, which would be more realistic since agriculture is strongly influenced by seasonal 

weather- and climate-related uncertainty (e.g., Tumusiime et al. 2011; Boyer et al., 2013; Ray et al., 

2015). (4) The explicit examination of the leaching potential remains as a subject of further studies, 

since this would require that the system models were coupled with appropriate leaching functions for 

N and P. 

5 Conclusions 

We discovered that the evaluation of a model performance in multiple steps is a valid strategy in 

recognising the best models and in evaluating the amount of parameter and structural uncertainty, as 

well as the effect of uncertainty on economic optimums. Our findings showed that when dynamic 

aspects are taken into account in economic optimisation, there might be conditions under which it is 

reasonable to maintain fair soil P levels by high annual P rates, although the relative annual response 

to P fertilisation is low on such soils. Consequently, it might be insufficient to base conclusions 



regarding profitable fertiliser application on a short-term analysis, as is the case when dynamic 

feedbacks relating to soil phosphorus are ignored. Further, based on our results, the optimal 

fertilisation rates for N and P, as well as the economic alternative costs of the maximum permissible 

N and P rates denoted by the agri-environmental programmes, appear to be soil texture-depended. 

Therefore, the efficiency of such programmes could be improved by targeting different fertilisation 

limits for different soil textures. The developed yield response models can also be coupled with 

leaching functions and extended for economic analysis under changing environmental conditions. In 

addition, although the estimated model structures and parameters represent Finnish soil quality and 

production conditions, the applied modelling approach as well as the multiplicative model structure 

can be generalised to any other region, given that adequate sets of empirical data are available. 
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8 Appendix 

Structure of the Appendix section is the following: 

 

Appendix 1: Description of the database 

Appendix 2: Standardisation of the separate data sets 

Appendix 3: Results of the model estimation and the model selection  

Appendix 4: Model evaluation 

 4.1. Clay soils models 

 4.2. Coarse soils models 

Appendix 5: Analytical properties of the system models 

5.1. Analytical properties of the transition models 

Appendix 6: Analytical properties of the estimated yield response models 

6.1. Marginal productivity of the P and N fertilisers and the STP 

6.2. Isoquants 

6.3. Elasticity of the yield with respect to the P and N fertilisers  

Appendix 7: Results of the Monte Carlo analysis 

Appendix 8: Results of the sensitivity analysis 

Appendix 9: References for appendix 

 

Appendix 1: Description of the database  

Table 1 
Descriptive statistics of the dataset consisting of P fertilisation experiments for coarse and clay soils.  

Soil texture Variable min max mean std CV  

Coarse 
P fertilisation 
(kg ha-1) 

0 72 25.27 20.41 
152 % 

Coarse STP (mg P l-1)* 3.7 49.8 14.72 13.44 91 % 

Coarse 
Yield response 
(ratio) 

0.93 1.4 1.084 0.1175 
10.8 % 

n=66, Source: Valkama et al. 2011    
 

Soil texture Variable min max mean std CV  

Clay 
P fertilisation 
(kg ha-1) 0 100 23.24 21.74 

 
94 % 

Clay STP (mg P l-1)* 0.8 40 11.15 12.08 108 % 

Clay 
Yield response 
(ratio) 

0.96 1.19 1.046 0.0609 
5.8 % 

n=42, Source: Valkama et al. 2011. 
* STP was measured at the beginning of 
experiments from the control (without 
added P)    

 

 

Table 2 

Descriptive statistics of the dataset consisting of P fertilisation experiment results without added P 

Soil texture Variable min max mean std CV  

Coarse STP (mg P l-1)* 3 49.8 12.83 12.45 97 % 

Coarse 
P-Control yield 
(kg ha-1) 

1730 6000 3222 1200 
37 % 

n=21, Source: Valkama et al. 2011 and Saarela et al. 
1995   

 

Soil texture Variable min max mean std CV  

Clay STP (mg P l-1)* 0.8 50.5 12.93 15.37 119 % 

Clay 
P-Control yield 
(kg ha-1) 

2000 4749 3700 730 
19.7 % 



n=18, Source: Valkama et al. 2011 and Saarela et al. 
1995 
* STP was measured at the beginning of experiments 
from the control (without added P)   

 

 

Table 3 

Descriptive statistics of the dataset consisting of N fertilisation experiments on coarse and clay soils.  

Soil texture Variable min max mean std CV  

Coarse 
N fertilisation 
(kg ha-1) 

16 216 77.73 39.72 
51 % 

Coarse 
N-control yield 
kg ha-1) 

1000 4500 2496 869.4 
35 % 

Coarse 
Yield response 
(ratio) 

1.04 2.15 1.533 0.2802 
18 % 

n=63, Source: Valkama et al. 2013    
 

Soil texture Variable min max mean std CV  

Clay 
N fertilisation 
(kg ha-1) 

16 180 97.94 38.36 
39 % 

Clay 
N-control yield 
(kg ha-1) 

1700 3900 2279 359.6 
16 % 

Clay 
Yield response 
(ratio) 

1.14 2.7 0.957 0.223 
23 % 

n=36, Source: Valkama et al. 2013    
 

 

Table 4 

Descriptive statistics of the validation dataset consisting of NPK fertilisation experiment results 

Soil texture Variable min max mean std CV  

Coarse STP (mg P l-1) 3.9 21.6 14.63 6.818 46.6 % 

Coarse 
P fertilisation 
(kg/ha) 

0 73.03 16.91 13.71 
81 % 

 

Coarse 
N fertilisation 
(kg ha-1) 

0 160 81.04 42.5 
52 % 

Coarse Yield (kg ha-1) 1223 4850 3664 782.6 21.4 % 

 n=35  

Soil texture Variable min max mean std CV  

Clay STP (mg P l-1) 3.2 31.2 11.54 6.346 55 % 

Clay 
P fertilisation 
(kg/ha) 

0 109 27.98 26.5 
95 % 

 

Clay 
N fertilisation 
(kg ha-1) 

0 200 91.62 51.9 
57 % 

Clay Yield (kg ha-1) 894 5194 3307 1053 32 % 

 n=68  

 

Appendix 2: Standardisation of the separate data sets 

In P fertiliser experiments, there was a certain amount of N fertilisation applied in addition to P 

fertilisation. This N rate, which was most likely considered to be sufficient for P being the limiting 

factor, was treated as a reference N rate to which the N data were scaled: when the applied N rate was 

equal to the reference N rate, the yield response in the scaled dataset remained the same as the one 

observed. Instead, when the applied N rate was lower than the reference N rate, the yield response in 

the scaled dataset was higher than the observed one. The standardisation of the separate data sets 

proceeded according to following steps: (1) We defined the weighted average N fertilisation rate 



applied in P fertilisation experiments as a reference N rate (kg ha-1) and denoted it by: 𝑁𝑟𝑒𝑓 =
∑ 𝑛𝑖𝑁𝑖

𝑘
𝑖=1

∑ 𝑛𝑖
𝑘
𝑖=1

, 

where 𝑛𝑖  with 𝑖 ∈ {1, . . , 𝑘} is a number of experiment years in a given experiment 𝑖 and 𝑁𝑖 is an 

associated N fertilisation rate. This rate was approximately 70 and 95 kg ha-1 for coarse and clay soils, 

respectively (it must be noted that these rates are rather low, particularly for coarse soils). (2) We 

determined the yield response corresponding to the reference N rate with the following relationship: 

𝑁𝑟𝑒𝑓

𝑁𝑖
=

∆𝑦(𝑁𝑟𝑒𝑓,𝑖)

∆𝑦(𝑁𝑖)
=> ∆𝑦(𝑁𝑟𝑒𝑓,𝑖) =

𝑁𝑟𝑒𝑓

𝑁𝑖
∆𝑦(𝑁𝑖), where, ∆𝑦(𝑁𝑖) is the yield response observed in N-

experiment 𝑖 corresponding to 𝑁𝑖 and ∆𝑦(𝑁𝑟𝑒𝑓,𝑖) is the yield response that would be obtained by 

applying the reference amount of N fertilisation in this given experiment. (3) We took the average of 

the calculated yield responses corresponding to a reference N fertilisation rate, ∆�̅�(𝑁𝑟𝑒𝑓), and we 

divided every yield response observed in the N experiment data by it: 𝜑𝑁,𝑖 = ∆𝑦(𝑁𝑖) (∆�̅�(𝑁𝑟𝑒𝑓))
−1

, 

where 𝜑𝑁,𝑖 implies the scaling factor for yield response for N fertilisation in experiment 𝑖. Thus, the 

observed yield responses in the N experiments were scaled in such a way that the yield response 

corresponding to the yield response gained by applying the reference N fertilisation rate was one. In 

other words, the N dataset were mean-scaled with the hypothetical average N response corresponding 

the average N rate applied in P experiments. This scaled data were utilised for the estimation of the 

third model element. 

Appendix 3: Results of the model estimation and the model selection  

In Table 5, the estimated models are ranked from best to worst with the best model represented in 

bold print. Most of the models required some modification of the basic functional forms, combination 

of various functions or both. The applied basic functional forms were square root, Spillman, exponent, 

quadratic, power, logarithm, logistic and polynomial. It must be noted that we had to relax the 

assumption of twice-continuously differentiability (A2) for first model element in [1] for clay soils, 

because the dataset did not support converging functional form. Thus, we fitted a piecewise function 

consisting of a concave part and a plateau part (the plateau level was set to a maximum observed level 

(𝑌𝑚𝑎𝑥 = 4749 kg ha−1) for the yield and the respective STP level (𝑆𝑇𝑃∗ = 103 mg l−1) was solved 

from the model equation). However, since the 𝑆𝑇𝑃∗ is such high, the piecewise function is twice-

continuously differentiability within the range of observed STP levels. 

Table 5  
The estimated models and the summary of the model ranking results for each model element in [1] for both soil 

textures* 

Soil texture Model (model element) Model structure 𝑹𝑺𝑺 𝑨𝑰𝑪𝒄 𝛥 𝑤 𝑤1/𝑤𝑗 

Coarse Power/Spillman  (1) �̅�𝑃0 = 𝜃1𝑆𝑇𝑃
1

𝜃1(1 − 𝜃2
𝑆𝑇𝑃) 

20.39 x106 319.587 0 0.303 

 

1.00 



Coarse Mitscherlich (1) �̅�𝑃0 = 𝜃1(1 − exp(−𝜃2𝑆𝑇𝑃)) 20.39 x106 319.590 0.002 0.303 1.00 

Coarse Quadratic (1) �̅�𝑃0 = 𝜃1𝑆𝑇𝑃2(1 + 𝜃2𝑆𝑇𝑃2)−1 21.00 x106 320.264 0.676 0.216 1.40 

Coarse Logistic (1) �̅�𝑃0 = 𝜃1 (1 + exp(𝜃2𝑆𝑇𝑃𝜃3))
−1

 19.93 x106 321.723 2.136 0.104 
2.91 

Coarse Power/Power (1) 
�̅�𝑃0 = 𝜃1𝑆𝑇𝑃

1
𝜃1(1 + 𝜃2𝑆𝑇𝑃𝜃3)

−1
 20.52 x106 322.392 2.804 0.075 

4.06 

Clay 
Power/Square root-

plus-plateau (1) 

�̅�𝑃0 = 𝜃1(𝑆𝑇𝑃𝜃2 + 1)(1 + √𝑆𝑇𝑃)
−1

, when 𝑆𝑇𝑃 < 𝑆𝑇𝑃∗ 

�̅�𝑃0 = 𝑚𝑎𝑥�̅�𝑃0, when 𝑆𝑇𝑃 ≥ 𝑆𝑇𝑃∗ 

7.52 x106 237.774 0 0.652 

 

 

1.00 

Clay Exponent/Power (1) 
�̅�𝑃0 = 𝑒𝑥𝑝(𝜃1𝑆𝑇𝑃𝜃2) 

7.83 x106 238.455 0.681 0.464 

 

1.40 

Clay Logarithm (1) �̅�𝑃0 = 𝜃1ln (𝜃2𝑆𝑇𝑃 + 1) 7.99 x106 238.860 1.086 0.379 1.70 

Clay 
Square root/Square root 

(1) 

�̅�𝑃0 = 𝜃1√𝑃 (1 + 𝜃2√𝑆𝑇𝑃)
−1

 

8.81 x106 240.618 2.844 0.157 

 

4.10 

Coarse 
Square root/Quadratic 

(2) 

�̅�𝑃 = 𝜃1√𝑃(1 + 𝜃2𝑆𝑇𝑃2)−1 + 1 

0.276 -357.301 0 0.305 

 

1.00 

Coarse Spillman/Quadratic (2) 
�̅�𝑃 = 𝜃1(1 − 𝜃2

𝑃)(1 + 𝜃3𝑆𝑇𝑃2)−1 + 1 

0.269 -356.780 0521 0.235 

 

1.30 

Coarse Square root/Logistic (2) 
�̅�𝑃 = 𝜃1√𝑃(1 + 𝑒𝑥𝑝(𝜃2𝑆𝑇𝑃))

−1
+ 1 

0.279 -356.592 0.709 0.214 

 

1.43 

Coarse Power/Quadratic (2) �̅�𝑃 = 𝜃1𝑆𝑇𝑃
1

𝜃1(1 + 𝜃2𝑆𝑇𝑃2)−1 + 1 
0.279 -356.592 0.709 0.214 

 

1.43 

Coarse Logarithm/Logistic (2) 
�̅�𝑃 = 𝜃1(ln (𝑃 + 1))(1 + 𝑒𝑥𝑝(𝜃2𝑆𝑇𝑃))

−1
+ 1 

0.30 -352.742 4.559 0.031 

 

9.77 

Clay** Square root/Logistic (2)  
�̅�𝑃 = (𝜃1√𝑃 + 𝜃2)(1 + 𝑒𝑥𝑝(𝜃3𝑆𝑇𝑃))

−1
+ 𝜔𝑃,𝑚𝑖𝑛 

0.069 -262.613 0 0.434 

 

1.00 

Clay Logarithm/Logistic (2) 
�̅�𝑃 = (𝜃1(ln (𝑃 + 𝜃2)))(1 + 𝑒𝑥𝑝(𝜃3𝑆𝑇𝑃))

−1
+ 𝜔𝑃,𝑚𝑖𝑛 

0.070 -261.938 0.675 0.310 

 

1.40 

Clay Mitscherlich/Logistic (2) 

�̅�𝑃 = (𝜃1(1 − 𝑒𝑥𝑝(−𝜃2𝑃)) + 𝜃3)(1 + 𝑒𝑥𝑝(𝜃4𝑆𝑇𝑃))
−1

+ 𝜔𝑃,𝑚𝑖𝑛 

    0.069 -260.166 2.447 0.128 

 

 

3.40 

Clay Power/Logistic (2) 
�̅�𝑃 = (𝜃1𝑃𝜃2 + 𝜃3)(1 + 𝑒𝑥𝑝(𝜃4𝑆𝑇𝑃))

−1
+ 𝜔𝑃,𝑚𝑖𝑛 

0.069 -260.164 2.449 0.128 

 

3.40 

Coarse Logarithm/Quadratic 

(3) 

�̅�𝑁 = (𝜃1 + 𝜃2(𝑙𝑜𝑔(𝑁 + 1))2)(1 + 𝜃3𝑌𝑁0
2)

−1
 

0.385 -314.770 0 0.320 

 

1.00 

Coarse Power/Quadratic (3) 
�̅�𝑁 = (𝜃1𝑁

1
𝜃1 + 1) (𝜃2𝑌𝑁0

2 + 𝜃3)
−1

 
0.385 -314.666 0.104 0.303 

 

1.05 

Coarse Square root/Quadratic 

(3) 

�̅�𝑁 = (𝜃1√𝑁 + 1)(𝜃2𝑌𝑁0
2 + 𝜃3)

−1
 

0.389 -314.067 0.704 0.225 

 

1.42 

Coarse Polynomial (3) �̅�𝑁 = 𝜃1 + 𝜃2𝑁 + 𝜃3𝑌𝑁0 + 𝜃4𝑁2 + 𝜃5𝑁𝑌𝑁0+𝜃6𝑌𝑁0
2 

0.352 -313.292 1.479 0.153 

 

2.09 

Clay Square root/Quadratic 

(3)  

�̅�𝑁 = (𝜃1√𝑁 + 𝜃2𝑁)(𝜃3𝑌𝑁0
2 + 1)

−1
 

0.887 -126.587 0 0.436 

 

1.00 

Clay Power/Quadratic (3) 
�̅�𝑁 = (𝜃1𝑁

1
𝜃1 + 1) (𝜃2𝑌𝑁0

2 + 𝜃3√𝑁)
−1

 
0.926 -126.107 0.479 0.343 

 

1.27 

Clay Logarithm/Quadratic (3) �̅�𝑁 = (𝜃1 log(𝑁 + 1) + 1)(𝜃2𝑌𝑁0
2 + 𝜃3)

−1
 

0.940 -125.224 1.363 0.221 

 

1.98 

*RSS means sum of squared residuals, AICc means second order variant of Akaike’s information criteria, 𝛥 means AIC 

difference, w means Akaike’s weight and 𝑤1/𝑤𝑗  means evidence ratio between the best model (1) and another model j.  
**The parameter 𝜔𝑃,𝑚𝑖𝑛 denotes the minimum observation for yield response (0.96). 

 



The representative yield response curves and the observed data points as well as the 

95% confidence bounds for the best models are illustrated in Figures 1a and 1b. From these figures 

we may notice that the estimated models gave almost identical predictive yield response curves. In 

the case of coarse soils models, only logistic and power/power models converged outside the 

confidence bounds of the best model. All the curves were within the range of the confidence bounds 

of the best model in the case of clay soils. In addition, the models for coarse soils converged to plateau 

giving the maximum yield for lower STP levels than in the case of clay soils models. In addition, the 

P-control yield was higher for lower STP levels in the case of clay soils; the yield curves increased 

steeply for low STP levels and then began to converge slowly towards the maximum plateau, which 

was reached at high STP levels. The high variation of the observations for both soil textures is also 

observable from Figures 1a and 1b.   

 



 

 

Fig. 1. The yield curves and surfaces given by the estimated models for each model element in [1] and the associated 

data points  

Figures 1c and 1d illustrate the associated predictive response surfaces for estimated 

best P response-models as well as the observed data points. The yield response to P fertilisation was 

observed only at low STP, while it vanished for higher STP classes. The surface converged faster to 

its maximum plateau on clay soils, when the P rate was increased. The maximum response was also 

lower on clay soils. We also discovered that all the estimated models gave almost identical predictive 

surfaces. Figures 1e and 1f illustrate the observed data points and the response surfaces for estimated 

models predicting the lower yield responses to N fertilisation for higher N-control yields. The 

response to N fertilisation was higher for the clay soils (Fig. 1e, 1f). In addition, the coarse soils 



models settled for the maximum plateau for lower N rates. We also observed that the fitted forms for 

the N response models gave slightly different predictive surfaces, particularly in the case of clay soils. 

The illustrated models were the best models. 

Appendix 4: Model evaluation  

In this section the predictive accuracy of the estimated best models and the respected dispersion of 

the model residual errors is examined. The normality of the model error residuals was also examined 

by applying the Shapiro-Wilk normality test (Shapiro and Wilk, 1965). In addition, we did the paired 

t-test with null hypothesis, H0: true difference between the means of predictions and observation is 

equal to 0. 

4.1. Clay soils models 

1. Model element (Power/square root/Plateau) 

 

Fig. 2. Goodness-of-fit illustration of the first model element for clay soils 

Shapiro-Wilk normality test: W = 0.95911, p-value = 0.5846 

Paired t-test: t = 0.19381, df = 14, p-value = 0.8486 

Figure 2a shows that there is no systematic bias among the model predictions. Figure 2b shows that 

model predicts the observations with reasonable accuracy with the exception of 1 low and 1 high 

observation. Figure 2c shows that these extreme observations distort the normality of the residuals. 

Figure 2d shows that there is no notable heteroscedasticity among the residuals.   



2. Model element (Square Root/Logistic) 

 

Fig. 3. Goodness of fit illustration of the second model element for clay soils 

Shapiro-Wilk normality test: W = 0.97164, p-value = 0.3743 

Paire t-test: t = -0.37285, df = 41, p-value = 0.7112 

Figure 3a shows that the model predicts the observations without a systematic bias. Figure 3b 

shows that the observation patterns are predicted without a systematic bias. In addition, the 

residuals are normally distributed (Fig.3c) and there is no heteroscedasticity among the residuals 

(Fig.3d). 



3. Model element (Square Root/Quadratic) 

 

Fig. 4. Goodness of fit illustration of the third model element for clay soils 

Shapiro-Wilk normality test: W = 0.9702, p-value = 0.4311 

Paired t-test: t = 1.5367, df = 35, p-value = 0.1334 

Figures 4a and 4d show that the variance of the predictions and the residuals increases slightly for 

higher predictions. Despite of this, the model predicts the observation patterns relatively accurately 

(Fig.4b) and the residuals are normally distributed (Fig.4c).  



4.2. Coarse soils models 

1. Model element (Power/Spillman) 

 

Fig. 5. Goodness-of-fit illustration of the first model element for coarse soils 

Shapiro-Wilk normality test: W = 0.95798, p-value = 0.4238 

Paired t-test: t = t = -0.44954, df = 22, p-value = 0.6574 

Figure 5a shows that there are observations that the model overestimates and the variance of the 

observations increases slightly for higher observations (Fig.5a, b and d). Thus, there is some 

heteroskedasticity present. Figure 5c shows, however, that the distribution of the residuals is not 

significantly different from a normal distribution. We hypothesise that the primary reason for the 

heteroscedasticity is the cap within the data set; there is notably more data points for low STP levels 

than for high STP levels. This generates heteroscedasticity because the variance is considerable (for 

low STP values and most likely for high STP levels also). 



2. Model element (Square Root/Quadratic) 

 

Fig. 6. Goodness-of-fit illustration of the second model element for coarse soils 

Shapiro-Wilk normality test: W = 0.97025, p-value = 0.1135 

Paired t-test: t = 1.0543, df = 65, p-value = 0.2957 

Figure 6c indicates that the residuals are not significantly different from the normal distribution, but 

Figures 6b, 6c and 6d show that the model almost systematically overestimates some of the 

observations. In addition, variation of the residuals as well as the residuals appears to increase for 

higher predictions. We may notice that the model does not explain well the variation within the 

observations 40-60. However, there is no reason to exclude these observations from the sample. 

Further, the overall fit and the normality of the residuals got worse if the constant is changed from 1 

to minimum response. Thus, the model element is the best fit to sample although there is clearly some 

amount of heteroscedasticity within the model error residuals. This is supported also by the pared t-

test since we do not reject the H0 of difference between predicted and observed means being zero. 

The observations 40-60 were related to the experiments where there was high STP level and as a 

result there was a high variation within the P response. This finding is in agreement with results by 

Griffith (1992), according to which there are many factors that may affect the response to P 

fertilisation on soils with high STP levels. 

In general, heteroscedasticity within the model error residuals might be a natural 

phenomenon; since for small fertiliser amounts applied the yield is likely to be small in any case, 

whereas for larger fertiliser amounts applied, the seasonal variability has a greater effect on annual 

yields. Also Upadhyay et al. (2006) noted that yield data for fertiliser is often heteroscedastic with 



higher yield variability associated with higher fertiliser rates. The heteroscedasticity remained, 

although the short-term experiments were less weighted in estimation. We hypothesise, that to reduce 

the amount of heteroscedasticity, we could introduce weather-related variables to the model in order 

to take into account the relationship between seasonal variability and increasing fertilisation rates. In 

addition, longer time-series for field observations might eliminate the heteroscedasticity, since the 

averaged observations are the less affected by the annual weather related variation the longer the 

experiments are. 

3. Model element (Logarithm/Quadratic) 

 

Fig. 7. Goodness-of-fit illustration of the third model element for coarse soils 

Shapiro-Wilk normality test: W = 0.97673, p-value = 0.2768 

Paired t-test: t = 0.685, df = 62, p-value = 0.4959 

Figure 7 shows that the residuals are normally distributed and there is no heteroscedasticity present. 

In addition, model clearly predicts the observation patterns accurately. 

Appendix 5: Analytical properties of the system models 

5.1. Analytical properties of the transition models 

The partial derivative of the transition function with respect to P fertilisation is the following: 

𝜕∆𝑆𝑇𝑃𝑡

𝜕𝑃𝑡
= (𝛿2 + 𝛿3𝑆𝑇𝑃𝑡) (1 −

𝛽1

𝑆𝑇𝑃𝑡

𝜕𝑆𝑇𝑃𝑡

𝜕𝑃𝑡
𝑌𝑡 − (𝛽1 log(𝑆𝑇𝑃𝑡) + 𝛽2)

𝜕𝑌𝑡

𝜕𝑃𝑡
) (1) 

Since 
𝜕𝑌𝑡

𝜕𝑃𝑡
> 0, 

𝜕∆𝑆𝑇𝑃𝑡

𝜕𝑃𝑡
> 0 only if 1 >

𝛽1

𝑆𝑇𝑃𝑡

𝜕𝑆𝑇𝑃𝑡

𝜕𝑃𝑡
𝑌𝑡 + (𝛽1 log(𝑆𝑇𝑃𝑡) + 𝛽2)

𝜕𝑌𝑡

𝜕𝑃𝑡
, which implies that P 

fertilisation has a positive effect on change in STP only if the direct marginal effect of P exceeds the 



indirect effect via crop-uptake, i.e. if the P balance is positive. The partial derivative of the transition 

function with respect to the STP is the following:  

𝜕∆𝑆𝑇𝑃𝑡

𝜕𝑆𝑇𝑃𝑡
= −(𝛿2 + 𝛿3𝑆𝑇𝑃𝑡) (

𝛽1

𝑆𝑇𝑃𝑡
𝑌𝑡 + (𝛽1 log(𝑆𝑇𝑃𝑡) + 𝛽2) [(

𝜕𝑦𝑃0,𝑡

𝜕𝑆𝑇𝑃𝑡
𝜔𝑃,𝑡 + 𝑦𝑃0,𝑡

𝜕𝜔𝑃,𝑡

𝜕𝑆𝑇𝑃𝑡
) 𝜔𝑁,𝑡]) +

𝛿3(𝑃𝑡 − (𝛽1 log(𝑆𝑇𝑃𝑡) + 𝛽2)𝑌𝑡) − 𝛿4.   (2) 

Since 
𝜕𝑦𝑃0,𝑡

𝜕𝑆𝑇𝑃𝑡
> 0 and

𝜕𝜔𝑃,𝑡

𝜕𝑆𝑇𝑃𝑡
< 0 we have following conditions: 

(i) when 
𝜕𝑦𝑃0,𝑡

𝜕𝑆𝑇𝑃𝑡
𝜔𝑃,𝑡 > 𝑦𝑃0,𝑡

𝜕𝜔𝑃,𝑡

𝜕𝑆𝑇𝑃𝑡
, then 

𝜕∆𝑆𝑇𝑃𝑡

𝜕𝑆𝑇𝑃𝑡
> 0 only if 𝛿3𝑃𝑡 > (𝛿2 +

𝛿3𝑆𝑇𝑃𝑡) (
𝛽1

𝑆𝑇𝑃𝑡
𝑌𝑡 + (𝛽1 log(𝑆𝑇𝑃𝑡) + 𝛽2) [(

𝜕𝑦𝑃0,𝑡

𝜕𝑆𝑇𝑃𝑡
𝜔𝑃,𝑡 + 𝑦𝑃0,𝑡

𝜕𝜔𝑃,𝑡

𝜕𝑆𝑇𝑃𝑡
) 𝜔𝑁,𝑡]) +

𝛿3(𝛽1 log(𝑆𝑇𝑃𝑡) + 𝛽2)𝑌𝑡 + 𝛿4  

(ii) when 
𝜕𝑦𝑃0,𝑡

𝜕𝑆𝑇𝑃𝑡
𝜔𝑃,𝑡 < 𝑦𝑃0,𝑡

𝜕𝜔𝑃,𝑡

𝜕𝑆𝑇𝑃𝑡
, then 

𝜕∆𝑆𝑇𝑃𝑡

𝜕𝑆𝑇𝑃𝑡
> 0 only if 𝛿3𝑃𝑡 − (𝛿2 +

𝛿3𝑆𝑇𝑃𝑡) (
𝛽1

𝑆𝑇𝑃𝑡
𝑌𝑡 + (𝛽1 log(𝑆𝑇𝑃𝑡) + 𝛽2) [(

𝜕𝑦𝑃0,𝑡

𝜕𝑆𝑇𝑃𝑡
𝜔𝑃,𝑡 + 𝑦𝑃0,𝑡

𝜕𝜔𝑃,𝑡

𝜕𝑆𝑇𝑃𝑡
) 𝜔𝑁,𝑡]) >

𝛿3(𝛽1 log(𝑆𝑇𝑃𝑡) + 𝛽2)𝑌𝑡 + 𝛿4 

Condition (i) implies that if the positive marginal effect of STP dominates the negative marginal 

effect on yield (
𝜕𝑦𝑃0,𝑡

𝜕𝑆𝑇𝑃𝑡
𝜔𝑃,𝑡 > 𝑦𝑃0,𝑡

𝜕𝜔𝑃,𝑡

𝜕𝑆𝑇𝑃𝑡
), the annual STP will accumulate the STP stock if annual 

effect of P fertilisation exceeds the marginal effect of STP on crop-uptake, i.e. if the annual P-balance 

is positive. Condition (ii) implies that if the negative marginal effect of STP dominates the positive 

marginal effect on yield (
𝜕𝑦𝑃0,𝑡

𝜕𝑆𝑇𝑃𝑡
𝜔𝑃,𝑡 < 𝑦𝑃0,𝑡

𝜕𝜔𝑃,𝑡

𝜕𝑆𝑇𝑃𝑡
), the STP will accumulate the STP stock if annual 

effect of P fertilisation and the marginal effect of STP on crop-uptake exceed the absolute amount of 

P that is removed with the yield. 

The partial derivate of the transition function with respect to N fertilisation is the following: 

𝜕∆𝑆𝑇𝑃𝑡

𝜕𝑁𝑡
= (𝛿2 + 𝛿3𝑆𝑇𝑃𝑡) (−

𝛽1

𝑆𝑇𝑃𝑡

𝜕𝑆𝑇𝑃𝑡

𝜕𝑁𝑡
𝑌𝑡 − (𝛽1 log(𝑆𝑇𝑃𝑡) + 𝛽2)

𝜕𝑌𝑡

𝜕𝑁𝑡
) (3) 

Since 
𝜕𝑌𝑡

𝜕𝑁𝑡
> 0 and 

𝜕𝑆𝑇𝑃𝑡

𝜕𝑁𝑡
< 0 we have a following condition:  

(i) if 
𝑌𝑡

𝑆𝑇𝑃𝑡
> (log(𝑆𝑇𝑃𝑡) +

𝛽2

𝛽1
)

𝜕𝑌𝑡

𝜕𝑁𝑡
(

𝜕𝑆𝑇𝑃𝑡

𝜕𝑁𝑡
)

−1

, then 
𝜕𝑆𝑇𝑃∆𝑡

𝜕𝑁𝑡
> 0 

(ii) if 
𝑌𝑡

𝑆𝑇𝑃𝑡
< (log(𝑆𝑇𝑃𝑡) +

𝛽2

𝛽1
)

𝜕𝑌𝑡

𝜕𝑁𝑡
(

𝜕𝑆𝑇𝑃𝑡

𝜕𝑁𝑡
)

−1

, then 
𝜕𝑆𝑇𝑃∆𝑡

𝜕𝑁𝑡
< 0 

Since the phenomenon is complicated, we examined the effects of the STP, P and N fertilisation and 

P balance on transition function numerically. Figure 8 illustrates the relationships between the 

transition function and its arguments. Figure 8 shows that STP transition was an increasing function 

of P fertilisation, STP and P-balance whereas the transition function was a decreasing function of N 

fertilisation. The STP transition appeared to be a convex function of P fertilisation and P-balance. 



The relationship between STP and STP transition was almost linear. Figure 8 also shows that the 

relationships differed for different soil textures, although these differences most likely originated 

from the differences in yield responses. The interaction of N, P and STP, as well as the dynamic 

behaviour of the system described in this research originated from these properties. 

 

 

Fig. 8. The effect of P fertilisation, STP, P-balance and N fertilisation on STP transition function on coarse and clay 

soils 

Appendix 6: Analytical properties of the estimated yield response models 

6.1. Marginal productivity of the P and N fertilisers and the STP 

The marginal products of the inputs are described with the following partial derivatives (where 𝜃𝑙,𝑗 

indicates the parameter with the subscript 𝑙 ∈ [1,3] denoting a model element, and subscript 

𝑗 denoting a parameter number):  

(𝑀𝑃)𝑁,𝑐𝑜𝑎𝑟𝑠𝑒 =
𝜕�̅�𝑐𝑜𝑎𝑟𝑠𝑒

𝜕𝑁
= 𝑌𝑃0(𝜃1,𝑗, 𝑆𝑇𝑃)𝜔𝑃(𝜃2,𝑗 , 𝑃, 𝑆𝑇𝑃)

2𝜃3,2𝑙𝑜𝑔(𝑁+1)

(𝑁+1)

(1+𝜃3,2𝑌𝑁0
2)

> 0 (4) 

𝜕2�̅�𝑐𝑜𝑎𝑟𝑠𝑒

𝜕𝑁2 = −𝑌𝑃0(𝜃1,𝑗, 𝑆𝑇𝑃)𝜔𝑃(𝜃2,𝑗, 𝑃, 𝑆𝑇𝑃)

2𝜃3,2𝑙𝑜𝑔(𝑁+1)

(𝑁+1)2

(1+𝜃3,2𝑌𝑁0
2)

< 0  (5)  



(𝑀𝑃)𝑃,𝑐𝑜𝑎𝑟𝑠𝑒 =
𝜕�̅�𝑐𝑜𝑎𝑟𝑠𝑒

𝜕𝑃
= 𝑌𝑃0(𝜃1,𝑗 , 𝑆𝑇𝑃) (

1

2
𝜃2,1𝑃

−
1
2

1+𝜃2,2𝑆𝑇𝑃2
) 𝜔𝑁(𝜃3,𝑗, 𝑁, 𝑌𝑁0) > 0 (6)  

𝜕2�̅�𝑐𝑜𝑎𝑟𝑠𝑒

𝜕𝑃2 = −
1

4
𝑌𝑃0(𝜃1,𝑗, 𝑆𝑇𝑃) (

𝜃2,1𝑃
−

3
2

1+𝜃2,2𝑆𝑇𝑃2) 𝜔𝑁(𝜃3,𝑗, 𝑁, 𝑌𝑁0) < 0  (7) 

The equations 4 and 6 show that the marginal products of both inputs are positive. The equations 5 

and 7 show that both inputs exhibit diminishing marginal products.  

The partial derivative with respect to STP is more complex: 

(𝑀𝑃)𝑆𝑇𝑃,𝑐𝑜𝑎𝑟𝑠𝑒 =
𝜕�̅�𝑐𝑜𝑎𝑟𝑠𝑒

𝜕𝑆𝑇𝑃
= {

𝑆𝑇𝑃

1
𝜃1,1

−1
+𝜃1,2𝑆𝑇𝑃

𝜃1,3+
1

𝜃1,1
−1

𝛾

(1+𝜃1,2𝑆𝑇𝑃𝜃1,3)
2 (

𝜃2,1√𝑃

1+𝜃2,2𝑆𝑇𝑃2 + 1) −

2𝜃2,2𝜃2,1√𝑃

(1+𝜃2,2𝑆𝑇𝑃2)
2

𝜃1,1𝑆𝑇𝑃
1

𝜃1
+1

(1+𝜃1,2𝑆𝑇𝑃𝜃1,3)
} 𝜔𝑁(𝜃3,𝑗, 𝑁𝑖 , 𝑌𝑁0), 

where 𝛾 = 1 − 𝜃1,1𝜃1,2𝜃1,3 > 0     (8)  

In this case we have the following condition: 

𝑆𝑇𝑃

1
𝜃1,1

−1
+𝜃1,2𝑆𝑇𝑃

𝜃1,3+
1

𝜃1,1
−1

𝛾

(1+𝜃1,2𝑆𝑇𝑃𝜃1,3)
2 (

𝜃2,1√𝑃

1+𝜃2,2𝑆𝑇𝑃2 + 1)
>

<

2𝜃2,2𝜃2,1√𝑃

(1+𝜃2,2𝑆𝑇𝑃2)
2

𝜃1,1𝑆𝑇𝑃
1

𝜃1
+1

(1+𝜃1,2𝑆𝑇𝑃𝜃1,3)
→

𝜕�̅�𝑐𝑜𝑎𝑟𝑠𝑒

𝜕𝑆𝑇𝑃

>

<
0  

The realised parameter values and the point in STP/P-space determine which case holds.  

The marginal products for clay soils are the following partial derivatives: 

(𝑀𝑃)𝑁,𝑐𝑙𝑎𝑦 =
𝜕�̅�𝑐𝑙𝑎𝑦

𝜕𝑁
= 𝑌𝑃0(𝜃1,𝑗 , 𝑆𝑇𝑃)𝜔𝑃(𝜃2,𝑗, 𝑃, 𝑆𝑇𝑃)

1

2√𝑁
𝜃3,1

𝜃3,3𝑌𝑁0
2+1

> 0 (9)   

𝜕2�̅�𝑐𝑙𝑎𝑦

𝜕𝑁2 = −
1

4
𝑌𝑃0(𝜃1,𝑗, 𝑆𝑇𝑃)𝜔𝑃(𝜃2,𝑗, 𝑃, 𝑆𝑇𝑃)

𝑁
−

3
2𝜃3,1

𝜃3,3𝑌𝑁0
2+1

< 0  (10)   

(𝑀𝑃)𝑃,𝑐𝑙𝑎𝑦 =
𝜕�̅�𝑐𝑙𝑎𝑦

𝜕𝑃
= 𝑌𝑃0(𝜃1,𝑗, 𝑆𝑇𝑃) (

1

2
𝜃2,1𝑃

−
1
2

1+𝑒𝜃2,3𝑆𝑇𝑃) 𝜔𝑁(𝜃3,𝑗, 𝑁, 𝑌𝑁0) > 0 (11)  

𝜕2�̅�𝑐𝑙𝑎𝑦

𝜕𝑃2 = −
1

4
𝑌𝑃0(𝜃1,𝑗, 𝑆𝑇𝑃) (

𝜃2,1𝑃
−

3
2

1+𝑒𝜃2,3𝑆𝑇𝑃) 𝜔𝑁(𝜃3,𝑗, 𝑁, 𝑌𝑁0) < 0  (12) 

Since the second derivatives are negative, it is clear that the assumption of diminishing marginal 

productivity (the concavity of the yield response function with respect to the inputs) holds. 

In the case of clay soils the partial derivative with respect to STP is the following: 



(𝑀𝑃)𝑆𝑇𝑃,𝑐𝑙𝑎𝑦 =
𝜕�̅�𝑐𝑙𝑎𝑦

𝜕𝑆𝑇𝑃
= {

𝜃1𝜃2𝑆𝑇𝑃𝜃2−1(1+√𝑆𝑇𝑃)−𝜃1(𝑆𝑇𝑃𝜃2+1)
1

2√𝑆𝑇𝑃

(1+√𝑆𝑇𝑃)
2 (

𝜃2,1√𝑃+𝜃2,2

1+𝑒𝜃2,3𝑆𝑇𝑃 + 𝜔𝑃,𝑚𝑖𝑛) −

𝜃1(𝑆𝑇𝑃𝜃2+1)

(1+√𝑆𝑇𝑃)
(

(𝜃2,1√𝑃+𝜃2,2)𝜃2,3𝑒𝜃2,3𝑆𝑇𝑃

(1+𝑒𝜃2,3𝑆𝑇𝑃)
2 )} 𝜔𝑁(𝜃3,𝑗, 𝑁, 𝑌𝑁0)  (13)  

In this case we have the following condition: 

𝜃1𝜃2𝑆𝑇𝑃𝜃2−1(1+√𝑆𝑇𝑃)−𝜃1(𝑆𝑇𝑃𝜃2+1)
1

2√𝑆𝑇𝑃

(1+√𝑆𝑇𝑃)
2 (

𝜃2,1√𝑃+𝜃2,2

1+𝑒𝜃2,3𝑆𝑇𝑃 +

𝜔𝑃,𝑚𝑖𝑛)
>

<

𝜃1(𝑆𝑇𝑃𝜃2+1)

(1+√𝑆𝑇𝑃)
(

(𝜃2,1√𝑃+𝜃2,2)𝜃2,3𝑒𝜃2,3𝑆𝑇𝑃

(1+𝑒𝜃2,3𝑆𝑇𝑃)
2 ) →

𝜕�̅�𝑐𝑜𝑎𝑟𝑠𝑒

𝜕𝑆𝑇𝑃

>

<
0  

Again the realised parameter values determine which case holds.  

6.2. Isoquants 

We may examine the quasiconcavity of the models with Figure 9, which represents the isoquants 

(input vectors producing the same level of output: 𝑄(𝑦) = {𝒙 ∈ 𝑅𝑛: 𝑦 = 𝑓(𝒙)} or simply the level 

curves of the underlying production function) of the models for various fixed STP levels.  

 



 

Fig. 9. Isoquants for both soil textures for various STP levels (STP level rather poor is 3 mg l-1 for clay and 5 mg l-1 

for coarse soils, STP level fair is 6 mg l-1 for clay and 10 mg l-1 for coarse soils, STP level satisfactory is 11.5 mg l-1 

for clay and 17.5 mg l-1 for coarse soils and STP level good is 20 mg l-1 for clay and 28.5 mg l-1 for coarse soils) 
 

The isoquants for both soil textures are clearly convex. Therefore the models are quasiconcave with 

respect to N and P. Thus the following inequality holds: 𝑦(𝜃𝑁 + (1 − 𝜃)𝑃) ≥ 𝑚𝑖𝑛(𝑦(𝑁), 𝑦(𝑃))for 

any combination of N and P and 𝜃 ∈ [0,1]. The quasiconcavity of the models with respect to N and 

P inputs implies that the inputs are complements to each other to some degree; both inputs are 

important for production. It becomes apparent from the Figure 9, however, that the relative 

importance of the P fertilisation becomes lower for higher STP level. From Figure 9 it becomes 

apparent that it is required more P fertilisation to compensate the decrease in N fertilisation in the 

case of clay soils than in the case of coarse soils in order to produce the same amount of yield, i.e. to 

stay on the same isoquant. Thus, the N is relatively more important factor of production for clay soils.   

6.3. Elasticity of the yield with respect to the P and N fertilisers (partial output elasticity) 

The elasticity of the yield with respected to N and P for coarse soils may be described with the 

following equations: 

𝜖𝑁,𝑐𝑜𝑎𝑟𝑠𝑒 =
𝜕�̅�𝑐𝑜𝑎𝑟𝑠𝑒

𝜕𝑁

𝑁

�̅�𝑐𝑜𝑎𝑟𝑠𝑒
=

2𝜃3,2𝑙𝑜𝑔(𝑁+1)

𝜃3,1+𝜃3,2(𝑙𝑜𝑔(𝑁+1))2

𝑁

(𝑁+1)
   (14) 

𝜖𝑃,𝑐𝑜𝑎𝑟𝑠𝑒 =
𝜕�̅�𝑐𝑜𝑎𝑟𝑠𝑒

𝜕𝑃

𝑃

�̅�𝑐𝑜𝑎𝑟𝑠𝑒
=

1

2
𝜃2,1√𝑃

𝜃2,1√𝑃+1+𝜃2,2𝑆𝑇𝑃2   (15) 



𝜖𝑁,𝑐𝑙𝑎𝑦 =
𝜕�̅�𝑐𝑙𝑎𝑦

𝜕𝑁

𝑁

�̅�𝑐𝑙𝑎𝑦
=

1

2
𝜃3,1√𝑁

𝜃3,1√𝑁+𝜃3,2
    (16)  

𝜖𝑃,𝑐𝑙𝑎𝑦 =
𝜕�̅�𝑐𝑙𝑎𝑦

𝜕𝑃

𝑃

�̅�𝑐𝑙𝑎𝑦
=

1

2
𝜃2,1√𝑃

𝜃2,1√𝑃+𝜃2,2+𝜔𝑃,𝑚𝑖𝑛(1+𝑒𝜃2,3𝑆𝑇𝑃)
   (17) 

It must be noted that for neither soil texture does the output elasticity with respect to N depend on 

the N control yield. Instead, the output elasticity with respect to P depends on the STP level. This 

results from the fact that there is a constant part in a second model element. Because of the constant 

part the effect of the STP does not cancel out. 

Figure 10 illustrates these elasticity measures. From Figure 10 it becomes apparent that 𝜖𝑁,𝑐𝑜𝑎𝑟𝑠𝑒 <

𝜖𝑁,𝑐𝑙𝑎𝑦 and 𝜖𝑃,𝑐𝑜𝑎𝑟𝑠𝑒 > 𝜖𝑃,𝑐𝑙𝑎𝑦. This would suggest that the output for clay soils is more influenced 

by the fluctuations in N input applications while the output for coarse soils is more influenced by 

the fluctuations in P input applications.  

 



 

 

Fig. 10. Elasticity of the yield with respect to the P and N fertilisers measured at different points 

Appendix 7: Results of the Monte Carlo analysis 

We obtained the yield distributions for the optimal input rates and STP levels via the Monte Carlo 

analysis. The mean of the yield distribution was different from the yield obtained within the 

optimisation, although the input vector was the same: for coarse soils the mean of the distribution 

was 1.7% lower than the yield obtained in optimisation, whereas for clay soils the mean of the 

distribution was 3% higher than the yield obtained in optimisation (Table 2). Thus, the difference was 

not notable, and it stemmed from the fact that the yield distribution was not perfectly symmetric (Fig. 

11). For the coarse soils, the mean was 0.27% lower than the median, which indicated that the 

distribution was left-skewed (skewness=-0.233), although the distribution was fairly symmetrical, 

which was verified by Shapiro-Wilk normality test (p-value=7.069e-13). In contrast, for the clay soils, 

the mean was 4% higher than the median, which indicated that the distribution was moderately right-



skewed (skewness=0.624), although the Shapiro-Wilk normality test indicated that there was no 

strong evidence against the normality of the distribution (p-value=2.2e-16).   

  

Fig. 11. The distributions for optimal yields for coarse (a) and clay (b) soils when parametric uncertainty relates to all 

the model parameters 

 

Table 2 verifies the results obtained by comparing the structural uncertainty and the 

parametric uncertainty by DSA, according to which the parameter uncertainty was greater for clay 

soils models, since the CV was 164% higher for clay soils than for coarse soils when all the model 

parameters were considered. In addition, most of the parameter uncertainty was related to the first 

model element in the case of coarse soils models, whereas most of the parameter uncertainty was 

related to third model element in the case of clay soils, as was noticed above. Particularly in the case 

of clay soils, the parametric uncertainty was related almost entirely to the third model element. By 

comparing the means and medians of the optimal yields, it is also observable that the most uncertain 

model elements were also primary causes for the skewness of the distributions (Table 2).  

Table 2 

Summary statistics of the yield distributions 

Soil texture 
Parameters 

considered 
Min. 1st Qu. Median Mean 3rd Qu. Max. SD CV 

Coarse 1.model element 210 3410 3720 3698 4018 5403 473 12.8% 

Coarse 2.model element 3577 3731 3781 3797 3843 5272 99 2.6% 

Coarse 3.model element 2918 3605 3771 3774 3938 4692 244 6.5% 

Coarse  
All the 

parameters 
85.34 3367 3727 3717 4081 6081 552 14.8% 

Clay 1.model element 2604 3475 3690 3693 3903 4956 319 8.6% 

(a) Coarse soils
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(b) Clay soils
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Clay 2.model element 3412 3649 3693 3694 3738 3945 66 1.8% 

Clay 3.model element 0 2833 3721 3821 4685 11770 1439 38% 

Clay  
All the 

parameters 
0 2806 3655 3800 4663 14450 1483 39% 

 

Appendix 8: Results of the sensitivity analysis 

Since in the obtained optimums the economic parameters as well as the N-control yields and the initial 

STP levels were fixed to certain values, it was of the interest to examine the effect of these parameters 

on the economic optimums. Therefore, we applied partial sensitivity analysis in order to examine the 

effect of these parameters on economic optimums one parameter at the time while holding all the 

other parameters fixed.  

Figure 12 shows that the P price had a considerable effect on optimal P fertilisation and 

as a result a moderate effect on STP level. Instead, the P price had relatively minor effect on optimal 

N fertilisation. Since the N fertilisation was more important factor in determining the annual yield 

than the P fertilisation, the effect of the P price on optimal annual yields was relatively minor. 

Nevertheless, for every variable, the higher the P price, lower was the absolute amount of the variable, 

which would suggest that P and N are not easily substituted by each other; both inputs are important 

factors of production. The P price had a greater effect on P fertilisation and STP level for clay soils 

compared to coarse soils (Fig. 12b, c, f and g). Instead, the effect on N fertilisation and annual yield 

was greater for coarse soils (Fig. 12a, d, e and h). This would suggest that the demand for P 

fertilisation was more elastic for clay soils, whereas the output elasticity of P was higher for coarse 

soils. 

 



 
Fig. 12. The sensitivity of the optimisation results with respect to the P prices 

Figure 13 shows that the N price had a great effect on optimal N fertilisation rate for both soil 

textures. As a result, the effect of N price was great also on the annual yields (because the N was 

important factor of production). Instead, the effect of N price was relatively minor on optimal STP 

level (Fig. 13c and g). This reflected the fact that the N fertilisation affected the STP only indirectly 

through crop-uptake. The effect of N price was similar for all the variables: the higher the N price, 

the lower was the optimal level of the variable. Since the demand for P was more elastic for clay 

soils, adjusting the P fertilisation in the case of clay soils could compensate the effects of price 

fluctuations in N fertilisation on N demand to some degree, although the N was relatively more 

important factor for clay soils and the output elasticity of N is higher for clay soils. In addition, the 

demand for N was more elastic for coarse soils. 



 



 
Fig. 13. The sensitivity of the optimisation results with respect to the N prices  

Figure 14 illustrates the effect of barley yield price on economic optimums: the higher was the 

yield price, the higher was the optimal fertilisation rate, STP and the annual yield. It became also 

apparent that the effect of the barley yield price on yield was greater for coarse soils compared to 

clay soils indicating greater elasticity for yield price for coarse soils.   

 



 
Fig. 14. The sensitivity of the optimisation results with respect to the Y prices  

 

Figure 15 illustrates the effect of the discount rate on economic optimums. Figure 15 shows that the 

higher was the discount rate, the lower were the optimal fertilisation rates and as a result the optimal 

STP levels and the optimal annual yields. Nevertheless, the effect of a discount rate was relatively 

minor compared to the other examined parameters. The discount rate affects particularly the most 

dynamic elements of the system model, i.e. the STP and P fertilisation. Figure 15 shows that the effect 

of the discount rate on P rate and STP is greater for clay soils, which again reflects the higher elasticity 

for P demand for clay soils. As a result, the effect of discount rate on annual yields is also greater for 

clay soils. 

 



 
Fig. 15. The sensitivity of the optimisation results with respect to the discount rate. 

Figure 16 illustrates the effect of the initial STP level. Figure 16 shows that despite the initial STP 

level, the steady state optimum was always the same when all the other parameters remained 

unchanged; the initial STP level had no effect on the steady state optimum. However, the initial 

STP level affected the optimal path of the variable: when initial STP was considerably low, it was 

optimal to apply considerably high P rate and low N rate in the beginning of the planning horizon. 

As a result, the N and P fertilisation rates, STP level and annual yield settled fast to their optimal 

steady state paths. The explanation of such behaviour is that since 
𝜕𝑆𝑇𝑃𝑡+1

𝜕𝑁𝑡
=

𝜕𝜗

𝜕𝑦𝑡
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𝜕𝑃𝑡
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𝜕𝑦𝑡
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𝜕𝑃𝑡
>

𝜕𝜗

𝜕𝑦𝑡

𝜕𝑦𝑡

𝜕𝑃𝑡
, it is optimal to maintain low crop-uptake in the 

beginning of the planning horizon by applying a low dose of N fertiliser as well as to apply a high 

dose of P fertiliser in order to get the STP to its optimal steady state path fast. Once the STP is at 

its optimal level it is also optimal to settle the N and P rates to their optimal levels. Instead, when 

the initial STP level is considerably high, there is no need for P fertilisation for a long time and as 

a result the optimal P fertilisation rate rises steadily to its optimal steady state level (Fig.16.b, f). 

Correspondingly the optimal N level is high at the beginning of the planning horizon and it lowers 

to its steady state level steadily (Fig.16.a, e).  



 

Fig. 16. The sensitivity of the optimisation results with respect to the initial STP level. 
 

 

Last we examined the effect of the N control yield-parameter on economic optimums. Figure 17 

shows that the N control yield had a considerable effect on optimal fertilisation rates, particularly on 

optimal N fertilisation rate, and the optimal annual yield. The effect of N control yield was greater 

for clay soils compared to that for coarse soils. This again resulted from the fact that for clay soils the 

N was relatively more important factor than for coarse soils. The N control yield decreased the yield 

increasing effect of the N fertilisation. For clay soil this effect was more crucial than for coarse soils 

because the output elasticity of N was higher for clay soils.  



 

 
Fig. 17. The sensitivity of the optimisation results with respect to the N control yield 
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Supplementary Material: Analytical data 

The data utilised for estimation of the response models is presented in Tables 1-8.  

Table 1. Dataset for first model element for clay soils 

STP P-control Yield weight 

0.8 3970 3 

4.0 3300 6 

5.0 2000 3 

2.7 3500 4 

5.9 3800 5 

6.4 4700 5 

40.0 4200 5 

20.5 4300 5 

10.0 3200 6 

2.8 3304 18 

5.3 3068 12 

11.3 2905 12 

43.7 4571 15 

50.5 4565 15 

7.2 3777 18 

3.5 3391 12 

8.5 3333 11 

4.6 4749 15 

 

Table 2. Dataset for second model element for clay soils 

P-fertilisation STP Yield response weight 

0 0.8 1.000 3 

6 0.8 1.070 3 

25 0.8 1.060 3 

50 0.8 1.140 3 

100 0.8 1.160 3 

0 4.0 1.000 6 

15 4.0 1.100 6 

30 4.0 1.060 6 

45 4.0 1.170 6 

60 4.0 1.190 6 

http://www.nine-esf.org/sites/nine-esf.org/files/ena_doc/ENA_pdfs/ENA_c3.pdf


0 5.0 1.000 3 

18 5.0 1.050 3 

0 2.7 1.000 4 

18 2.7 1.080 4 

36 2.7 1.130 4 

0 5.9 1.000 5 

8 5.9 1.010 5 

13 5.9 1.060 5 

15 5.9 1.070 5 

25 5.9 1.030 5 

35 5.9 1.020 5 

0 6.4 1.000 5 

8 6.4 1.010 5 

13 6.4 1.010 5 

15 6.4 1.170 5 

25 6.40 1.040 5 

35 6.4 1.170 5 

0 40.0 1.000 5 

15 40.0 1.000 5 

30 40.0 1.020 5 

45 40.0 1.020 5 

60 40.0 0.990 5 

0 20.5 1.000 5 

8 20.5 1.010 5 

13 20.5 0.970 5 

25 20.5 0.960 5 

35 20.5 1.080 5 

0 10.0 1.000 6 

15 10.0 1.010 6 

30 10.0 1.030 6 

45 10.0 0.994 6 

60 10.0 1.047 6 

 

Table 3. Dataset for third model element for clay soils. Notice that the yield response is scaled  N response 

utilised in estimation. 

N fertilisation N-control yield Yield response weight 

50 1800 0.8058424 2 

75 1800 0.9649578 2 

100 1800 1.0573474 2 

125 1800 1.0624801 2 

150 1800 1.0676129 2 

54 1700 0.7339839 2 

108 1700 0.8161079 2 

54 1900 0.7442494 2 

50 2800 0.6261960 3 

75 2800 0.6518598 3 



100 2800 0.6210633 3 

125 2800 0.6723908 3 

150 2800 0.6313288 3 

50 2450 0.8161079 6 

75 2450 0.9495596 6 

100 2450 1.0419491 6 

125 2450 1.0368164 6 

150 2450 1.0573474 6 

30 2200 0.7853114 4 

60 2200 0.9957543 4 

90 2200 1.1292060 4 

120 2200 1.2472593 4 

150 2200 1.3345161 4 

180 2200 1.3858437 4 

90 2800 0.8263734 3 

90 3000 0.8161079 3 

50 2100 0.7545149 3 

75 2100 0.9598251 3 

100 2100 1.0522146 3 

125 2100 1.1086749 3 

150 2100 1.1446042 3 

50 2400 0.5851340 2 

75 2400 0.6621253 2 

100 2400 0.7237184 2 

125 2400 0.8109752 2 

150 2400 0.8058424 2 

 

 

Table 4. Dataset for first model element for coarse soils 

STP P-control Yield weight 

7.0 2100 10 

8.0 3800 6 

4.801 1850 4 

8.501 2600 4 

3.701 3300 4 

4.0 2400 4 

5.0 2600 7 

5.501 1800 3 

15.0 3700 16 

12.101 5000 6 

30.0 2600 8 

21.901 4900 5 

49.8 6000 3 

9.6 4189 16 

3.0 1893 15 



23.5 2507 12 

4.7 1730 16 

6.9 1853 12 

8.6 4401 9 

41.1 4209 12 

10.2 3645 18 

3.9 3070 12 

8.4 3951 9 

 

Table 5. Dataset for second model element for coarse soils 

P fertilisation STP Yield response weight 

0 7.0 1.000 10 

15 7.0 1.160 10 

30 7.0 1.250 10 

45 7.0 1.270 10 

60 7.0 1.310 10 

0 8.0 1.000 6 

15 8.0 1.050 6 

30 8.0 1.060 6 

45 8.0 1.140 6 

60 8.0 1.110 6 

0 4.8 1.000 4 

36 4.8 1.210 4 

0 8.5 1.000 4 

15 8.5 1.180 4 

30 8.5 1.280 4 

45 8.5 1.310 5 

60 8.5 1.300 5 

0 3.7 1.000 4 

15 3.7 1.080 4 

30 3.7 1.080 4 

45 3.7 1.060 4 

60 3.7 1.090 4 

0 4.0 1.000 4 

15 4.0 1.160 4 

30 4.0 1.200 4 

45 4.0 1.220 4 

60 4.0 1.140 4 

0 5.0 1.000 7 

15 5.0 1.210 7 

30 5.0 1.270 7 

45 5.0 1.290 7 

60 5.0 1.310 7 

0 5.5 1.000 3 

36 5.5 1.210 3 

72 5.5 1.400 3 



0 15.0 1.000 16 

15 15.0 1.050 16 

30 15.0 1.060 16 

45 15.0 1.080 16 

60 15.0 1.060 16 

0 12.1 1.000 6 

6 12.1 0.940 6 

8 12.1 0.990 6 

10 12.1 0.970 6 

13 12.1 0.940 6 

15 12.1 0.980 6 

20 12.1 0.930 6 

25 12.1 1.005 6 

35 12.1 1.110 6 

0 30.0 1.000 8 

15 30.0 1.040 8 

30 30.0 1.060 8 

45 30.0 1.060 8 

60 30.0 1.070 8 

0 21.9 1.000 5 

8 21.9 0.990 5 

13 21.9 1.025 5 

15 21.9 1.060 5 

25 21.9 0.990 5 

35 21.9 1.030 5 

0 49.8 1.000 3 

8 49.8 0.950 3 

13 49.8 0.960 3 

15 49.8 0.950 3 

25 49.8 0.930 3 

35 49.8 0.990 3 

 

Table 6. Dataset for third model element for coarse soils. Notice that the yield response is scaled N response 

utilised in estimation. 

N fertilisation N control yield Yield response weight 

54 1300 1.0759752 2 

108 1300 1.2239929 2 

54 1500 0.9962733 2 

108 1500 1.1727560 2 

26 1000 0.7742467 3 

52 1000 0.9108785 3 

27 1000 0.6831588 2 

54 1000 0.8425626 2 

54 1610 0.9735013 2 

108 1610 1.0532032 2 

54 1400 1.0475102 3 



108 1400 1.1215191 3 

40 1680 1.0190453 4 

54 1700 0.9165714 2 

108 1700 1.0759752 2 

54 1900 0.8767205 2 

108 1900 0.9791943 2 

54 2800 0.6945448 2 

54 2000 0.8254836 3 

108 2000 0.9336504 3 

54 2080 0.8596415 3 

108 2080 0.9336504 3 

54 2700 0.8425626 5 

108 2700 1.0304313 5 

162 2700 1.0588962 5 

216 2700 1.0247383 5 

50 2800 0.8140976 3 

75 2800 0.8994925 3 

100 2800 0.9336504 3 

125 2800 1.0076593 3 

150 2800 0.9791943 3 

80 2400 0.8596415 3 

50 2500 0.9621154 2 

50 2400 0.7742467 2 

108 2400 0.7799397 2 

50 2900 0.8368696 3 

75 2900 0.9450364 3 

100 2900 1.0247383 3 

125 2900 1.0247383 3 

150 2900 1.0019663 3 

16 2400 0.7173168 6 

32 2400 0.8027116 6 

64 2400 0.9051855 6 

128 2400 0.8937995 6 

54 4000 0.6433079 2 

108 4000 0.6319219 2 

54 4500 0.5977640 2 

108 4500 0.5920710 2 

16 3200 0.6490009 3 

32 3200 0.7059308 3 

64 3200 0.6945448 3 

26 3100 0.6376149 2 

52 3100 0.7116238 2 

103 3100 0.7742467 2 

50 3500 0.6262289 2 

100 3500 0.7742467 2 

54 2100 0.8824135 5 



108 2100 1.0418172 5 

54 2120 0.9165714 5 

108 2120 1.0588962 5 

27 3940 0.6262289 4 

54 3940 0.6433079 4 

108 3940 0.6603869 4 

 

Table 7. Validation dataset for coarse soils 

N fertilisation P fertilisation STP Yield weight 

0.00 0.0000 12.500000 1223.333 3 

50.00 13.0000 12.500000 2986.667 3 

100.00 26.0000 12.500000 3810.000 3 

0.00 0.0000 21.600000 1978.333 5 

50.00 9.4000001 21.600000 3162.000 5 

100.00 18.0000 21.600000 4237.500 5 

80.00 17.0000 18.700000 3508.750 2 

160.00 34.0000 18.700000 3558.750 2 

0.00 0.0000 20.500000 2892.500 4 

60.00 13.1000 20.500000 4140.000 4 

80.00 17.4000 20.500000 4350.000 4 

100.00 21.8000 20.500000 4387.500 4 

120.00 26.2000 20.500000 4570.000 4 

140.00 30.5000 20.500000 4627.500 4 

160.00 34.9000 20.500000 4567.500 4 

0.00 0.0000 20.692857 2396.000 5 

48.00 9.20000001 20.692857 3338.000 5 

64.00 12.20000001 20.692857 3452.000 5 

80.00 15.3000 20.692857 3618.000 5 

96.00 18.3000 20.692857 4195.000 5 

65.00 14.2000 20.692857 4070.000 5 

78.00 17.0000 20.692857 4117.500 5 

79.90 12.29520001 6.592593 3605.000 1 

80.00 6.9760001 6.592593 3630.000 1 

80.50 10.68200001 6.592593 3465.000 1 

80.00 5.58080001 6.592593 3720.000 1 

80.00 6.97600001 6.592593 3675.000 1 

130.05 20.0124 6.592593 4065.000 1 

130.00 11.336000001 6.592593 3945.000 1 

129.95 17.2438 6.592593 3885.000 1 

130.00 9.0688 6.592593 3905.000 1 

45.00 11.80000001 8.400000 4350.000 1 

90.00 23.5000 8.400000 4850.000 1 

49.50 35.9700 3.900000 2300.000 1 

100.50 73.0300 3.900000 3670.000 1 



 

Table 8. Validation dataset for clay soils 

N fertilisation P fertilisation STP Yield weight 

0.00 0.0000 4.400000 940.000 3 

100.00 13.3000 4.400000 3106.667 3 

100.00 8.700000001 4.400000 3200.000 3 

100.00 19.0000 4.400000 3083.333 3 

99.00 19.2000 4.400000 3330.000 3 

171.90 0.0000 4.400000 2783.333 3 

0.00 0.0000 9.400000 1410.000 1 

100.00 13.3000 9.400000 4170.000 1 

100.00 8.70 9.400000 4560.000 1 

100.00 19.0000 9.400000 4420.000 1 

99.00 19.2000 9.400000 4420.000 1 

171.90 0.0000 9.400000 4470.000 1 

0.00 0.0000 9.800000 1015.000 3 

100.00 13.3000 9.800000 3165.000 3 

100.00 8.70 9.800000 3340.000 3 

100.00 19.0000 9.800000 3430.000 3 

99.00 19.2000 9.800000 3315.000 3 

171.90 0.0000 9.800000 3035.000 3 

0.00 0.0000 18.200000 894.000 10 

50.00 11.0000 18.200000 2970.000 10 

100.00 22.0000 18.200000 4159.200 10 

150.00 33.0000 18.200000 4892.000 10 

200.00 44.0000 18.200000 5194.000 10 

0.00 0.0000 12.400000 1231.000 10 

50.00 11.0000 12.400000 2927.000 10 

100.00 22.0000 12.400000 3693.000 10 

150.00 33.0000 12.400000 4182.000 10 

200.00 44.0000 12.400000 4316.000 10 

52.80 10.1000 7.738889 2380.000 6 

88.00 16.8000 7.738889 3146.667 6 

158.40 30.2000 7.738889 3435.000 6 

48.00 9.1560 11.900000 2695.000 6 

72.00 13.7000 11.900000 3426.667 6 

96.00 18.3000 11.900000 3410.000 6 

0.00 0.0000 8.400000 1713.000 2 

104.00 24.0000 8.400000 3595.000 2 

104.00 23.0000 8.400000 3825.000 2 

105.00 46.0000 8.400000 3800.000 2 

105.00 76.0000 8.400000 3785.000 2 

60.00 13.0800 31.200000 4907.500 1 

120.00 26.1600 31.200000 4842.500 1 

52.50 22.9000 20.000000 3740.000 1 

105.00 45.8000 20.000000 4030.000 1 



150.00 65.4000 20.000000 3680.000 1 

60.00 11.445 16.643750 1884.286 7 

120.00 22.8900 16.643750 2000.000 7 

50.25 13.1454 24.300000 3957.500 2 

100.50 26.2908 24.300000 4347.500 2 

150.00 39.2400 24.300000 4256.250 2 

80.00 17.4400 16.900000 4158.000 2 

160.00 34.8800 16.900000 4203.000 2 

0.00 0.0000 4.600000 1709.000 3 

50.25 36.5150 4.600000 2773.667 3 

100.50 73.0300 4.600000 3429.000 3 

150.00 109.0000 4.600000 3706.833 3 

0.00 0.0000 3.200000 2811.667 3 

90.00 52.3200 3.200000 4508.333 3 

180.00 104.6400 3.200000 4575.000 3 

60.00 43.6000 10.766667 4007.111 3 

120.00 87.2000 10.766667 4421.389 3 

60.00 43.6000 10.600000 2220.000 1 

120.00 87.2000 10.600000 2600.000 1 

40.05 23.2824 11.200000 2100.000 1 

80.10 46.5648 11.200000 3376.667 1 

0.00 0.0000 8.350000 1833.333 3 

100.00 58.1624 8.350000 3504.444 3 

75.00 43.6000 8.600000 1845.667 10 

150.00 87.2000 8.600000 2591.000 10 

 

 


