
January 2, 2017 Journal of Experimental & Theoretical Artificial Intelligence article

To appear in the Journal of Experimental & Theoretical Artificial Intelligence
Vol. 00, No. 00, Month 20XX, 1–34

RESEARCH ARTICLE

Summarization of Weighted Networks

Fang Zhoua, Qiang Qub and Hannu Toivonenc⇤

a Center for Data Analytics and Biomedical Informatics, Temple University, USA.
bDepartment of Computer Science, Innopolis University, Russia.

c Department of Computer Science and HIIT, University of Helsinki, Finland.

(Received 00 Month 20XX; final version received 00 Month 20XX)

Networks often contain implicit structure. We introduce novel problems and methods that

look for structure in networks, by grouping nodes into supernodes and edges to superedges,

and then make this structure visible to the user in a smaller generalized network. This task

of finding generalizations of nodes and edges is formulated as ‘network summarization’. We

propose models and algorithms for networks that have weights on edges, on nodes, or on both,

and study three new variants of the network summarization problem. In edge-based weighted

network summarization, the summarized network should preserve edge weights as well as

possible. A wider class of settings is considered in path-based weighted network summarization,

where the resulting summarized network should preserve longer-range connectivities between

nodes. Node-based weighted network summarization in turn allows weights also on nodes and

summarization aims to preserve more information related to high weight nodes. We study

theoretical properties of these problems and show them to be NP-hard. We propose a range of

heuristic generalization algorithms with di↵erent trade-o↵s between complexity and quality

of the result. Comprehensive experiments on real data show that weighted networks can be

summarized e�ciently with relatively little error.

Keywords: Weighted Networks, Network Mining, Generalization, Network Summarization.

1. Introduction

Networks are widely used to model various types of interactions or relationships between
entities in a myriad of applications, such as social interactions between persons (e.g.
Kimura, Saito, Nakano, and Motoda (2010)), hyperlinks between web pages (Lin, Yu,
Han, and Liu (2010)), or interactions between proteins (e.g. Mamitsuka (2012)). In many
of them, relationships have weights that are central to any use or analysis of networks:
how frequently do two persons communicate, how much does web tra�c flow from one
page to another, or how strongly does one protein regulate the other one? In addition,
each node in a graph or network is typically associated with additional information, such
as profiles and tweets of people in social networks (e.g. Gonalves, Perra, and Vespignani
(2011)), publications of authors in authorship networks (e.g. Viana, Amancio, and Costa
(2013)), functions of a protein in biological networks (e.g. Ota, Gonja, Koike, and Fukuchi
(2016)), etc. These may reflect the importances of di↵erent nodes: how much does a
popular twitter user influence others’ opinions, how often are the works of an author
cited, or how important is a protein for the organism?
In this paper, we propose novel models and methods for mining such weighted net-

⇤Corresponding author. Email: hannu.toivonen@cs.helsinki.fi

January 2, 2017 Journal of Experimental & Theoretical Artificial Intelligence article

works (or graphs). The essential knowledge discovery task is to automatically discover
generalizations of nodes and edges into supernodes and superedges, respectively, so that
the network can be represented using a relatively small number of supernodes and su-
peredges instead of the original components, with little loss of information. The problem
was originally introduced only for unweighted networks (Navlakha, Rastogi, and Shri-
vastava (2008); Tian, Hankins, and Patel (2008)). Here we propose models and methods
for weighted networks.
As a small example, consider the co-authorship network in Figure 1(a). It contains an

excerpt from the DBLP Computer Science Bibliography1, a subgraph containing Jiawei
Han and Philip S. Yu and a dozen related authors. Nodes in this graph represent authors
and edges represent co-authorships. Edges are weighted by the number of co-authored
articles.
A summary of this network highlights some of the inherent structure or roles in the

original network (Figure 1(b)). For instance, Ke Wang and Jianyong Wang have identical
sets of co-authors (in this excerpt from DBLP) and have been generalized into a single
supernode together. (This group of nodes would not be found by traditional network
clustering methods, since the two nodes are not directly connected.) Daxin Jiang and
Aidong Zhang have been generalized into one supernode, too, but additionally the self-
edge of their supernode indicates that they have also authored papers together.
Generalizations that could not be obtained by unweighted summarization algorithms

(Navlakha et al. (2008); Tian et al. (2008)) can be observed among the six authors that
only connect to Jiawei Han and Philip S. Yu. Instead of being all grouped together
as structurally equivalent nodes, there are three groups that have di↵erent edge weight
profiles in Figure 1(b). Charu C. Aggarwal is a group by himself, strongly connected
with Philip S. Yu. A second group includes Jiong Yang, Wei Fan, and Xifeng Yan, who
are roughly equally strongly connected to both Jiawei Han and Philip S. Yu. The third
group, Hong Cheng and Xiaoxin Yin, are more strongly connected to Jiawei Han. Such
groups are not found with methods for unweighted networks.
Next, assume that the nodes in Figure 1(a) are weighted by the impact of the published

work of scientists, such as their citation counts2. In contrast to Figure 1(b), a di↵erent
result could be obtained, in which mostly high-weighted nodes and edges are maintained.
Such a result is shown in Figure 1(c). The most striking di↵erence is that the nodes of
Daxin Jiang and Aidong Zhang (with node weights 521 and 880, respectively, not shown
in the figure), are not present in the summarized network. Instead, more information is
maintained about the heavier nodes by making Xifeng Yan an individual group, allowing
more accurate edge weights not only for him but also for Jiong Yang and Wei Fan, all
in relations to Jiawei Han and Philip S. Yu, the two heaviest nodes in the network. In
this version the edge between Jiawei Han and Charu C. Aggarwal is also missing, even
though both are heavy nodes; the weight of the missing edge is relatively low, however.
In this paper, the task of finding generalizations of nodes and edges is formulated as

three novel variants of the summarization problem. In what we define as the edge-based
weighted network summarization problem, the goal is to preserve the weights on individual
edges as much as possible. However, for many applications on weighted networks it
is important to preserve relationships between faraway nodes, too, not just individual
edge weights. Motivated by this, we then introduce the path-based weighted network
summarization problem where the goal is to produce a generalized network that maintains
connectivities across the network. In this setting, the quality of the best path between

1http://dblp.uni-trier.de/
2http://dl.acm.org

2

January 2, 2017 Journal of Experimental & Theoretical Artificial Intelligence article

(a) A neighborhood network of Jiawei Han in the DBLP bibliography.

(b) Generalized co-authorship structure found by edge-based summarization.

Jiong Yang, Wei Fan
(2614), (1037)

Jiawei Han
(15269)

Philip S. Yu
(9935)

Jian Pei
(5467)

Xifeng Yan
(1838)

Charu C. Aggarwal
(3352)

Ke Wang, Jianyong Wang
(2062), (1690)

Haixun Wang
(1747)

36

43

10

23

69

47

21

15

11

15

11

12

45

Hong Cheng, Xiaoxin Yin
(767), (304)

20

8

(c) Generalized co-authorship structure found by node-based summarization.

Figure 1. (a) A neighborhood network of Jiawei Han in the DBLP bibliography. (b, c) Generalized co-authorship

structure found by summarizing the network.

3

January 2, 2017 Journal of Experimental & Theoretical Artificial Intelligence article

any two nodes in the summarized network should be similar to the one in the original
network, but the path does not have to be the same. Furthermore, nodes have varying
weights or importances in many applications. Motivated by this, we also present the
node-based weighted network summarization problem where we preferably preserve more
information related to nodes with high weights.
The main contributions of the paper are the following: (1) The edge-based, the path-

based, and the node-based weighted network summarization problems are introduced.
(2) We analyze the problems and prove their computational hardness. For e�cient compu-
tation, bounds for the distances between networks are derived. (3) Several algorithms for
the weighted network summarization problems are presented, with di↵erent time/quality
trade-o↵s. (4) Extensive experimental results on real weighted networks show that gener-
alization of nodes and edges can summarize weighted networks e↵ectively and e�ciently.
We also find that summarization can have surprisingly little e↵ect on further network
operations such as clustering even though some information is lost in the summary.
A preliminary report of parts of this study was published as a conference paper (Toivo-

nen, Zhou, Hartikainen, and Hinkka (2011)). The current paper significantly extends the
work and results in all of the points above.
Road-map. The rest of this paper is organized as follows. The weighted network

summarization problems are formulated in Section 2. The bounds for network distance
are derived in Section 3, and summarization operations that utilize these bounds are
presented in Section 4. The proposed algorithms for the weighted network summarization
are described in Section 5, and are experimentally evaluated in Section 6. Related work
is reviewed in Section 7. Section 8 contains our concluding remarks.

2. Problem Statement

The aim of weighted network summarization is to discover hidden structure in a given
network and use it to generalize nodes and edges so as to summarize a given weighted
network into a smaller one with little loss of information. Three variants of this problem
are defined. We start by defining concepts and notations common to the three variants,
and then formalize the problems. This is followed by a subsection on computational
complexity analysis. Since the problem is conceptually related to clustering of nodes,
and since our approach to solving it is similar to hierarchical agglomerative clustering,
we will draw parallels between these problems throughout the text.

2.1. Preliminaries for Weighted Network Summarization

Definition 2.1: A weighted network is a tuple G = (V,E,w, I), where V is a set of
vertices (nodes), E ⇢ V ⇥ V is a set of edges, w : E ! R+ assigns a non-negative
weight to each edge e 2 E, and I : V ! R+ assigns a non-negative importance to each
node v 2 V . We use notation G = (V,E,w) if all nodes have equal importances, and
G = (V,E) if all edge weights are also equal. For further notational convenience, we
define w(u, v) = 0 if (u, v) 62 E.

In this paper, edges are assumed undirected, and in the sequel we use notations such
as {u, v} 2 V ⇥ V in the obvious way. The definitions and algorithms can, however, be
easily adapted for the directed setting.
The following definition of a summarized network largely follows the definition of net-

work summarization for the unweighted case (Navlakha et al. (2008)).

4

January 2, 2017 Journal of Experimental & Theoretical Artificial Intelligence article

Daxin Jiang, Aidong Zhang

Jian Pei

15

12

Jian Pei

Daxin Jiang Aidong Zhang

restore 15 15

12

Figure 2. An example of restoring a part of a summarized network.

Definition 2.2: A weighted network S = (V 0, E0, w0) is a summarized representation of
G = (V,E,w) or its weighted summarized network if V 0 = {v01, . . . , v0n}, v0

i

⇢ V , and for
all i 6= j, v0

i

\ v0
j

= ;. I.e., V 0 is a partition of the full original set V of nodes or of its
subset. The nodes v0 2 V 0 are called supernodes. The edges e0 2 E0 between supernodes
v0
i

and v0
j

are called superedges.

While Definition 2.2 essentially talks just about clustering of nodes into supernodes
v01, . . . , v

0
n

, Definition 2.3 specifies the role of edges in summarized networks.

Definition 2.3: Given a weighted summarized network S = (V 0, E0, w0) as above, the
restored network res(S) of S is a weighted network res(S) = (V 00, E00, w00) such that V 00 =S

v

02V 0 v0, E00 =
S

{u0
,v

0}2E0 u0 ⇥ v0, and w00({u, v}) = w0(u0, v0) s.t. u 2 u0 and v 2 v0.

In a summarized network, a supernode v0 represents the subset v0 ⇢ V of vertices in
the original network, and all these nodes are present in the restored network again. For
instance, in Figure 2, extracted from the summarized network of Figure 1(b), Daxin Jiang
and Aidong Zhang become individual nodes again in the restored network. A superedge,
in turn, represents the set of all possible edges between all pairs of the respective nodes.
In the restored network of Figure 2, Daxin Jiang and Aidong Zhang are both connected
to Jian Pei since their supernode was connected to him. Further on, Daxin Jiang and
Aidong Zhang are mutually connected with an edge since the supernode has a self-edge.
The weight of a restored edge equals the weight of the corresponding superedge. The
edges connecting Daxin Jiang and Aidong Zhang to Jian Pei both have weight 15 like
the superedge did.
The restored network of Figure 2 is not identical to the corresponding original network

fragment in Figure 1(a). Because the edges connecting Jian Pei to Daxin Jiang and
Aidong Zhang were generalized into one superedge, and their weights also were general-
ized into a single value, 15, while the original weights were 11 and 18.
The actual summarization problem will be to find a good summarization (clusterings

of nodes and edges), in the sense that it is small (i.e., the number of clusters is small)
and that its restoration does not deviate much from the original network.
Summarization and restoration may actually cause four types of errors (Figure 3). (1)

Edge weights may change. (2) New edges may be introduced. (3) Edges may be removed,
and (4) nodes may be removed. This highlights again the complexity of this problem
over more traditional node clustering. Both superfluous and missing edges are usually
introduced by the generalization of nodes to supernodes. When a set of nodes with
similar but not identical sets of neighbors are generalized into a single supernode, the
generalization also assigns them an identical set of neighbors. For some nodes, this may
add neighbors (that are typical for other nodes in the supernode) or remove neighbors
(that are atypical for other nodes in the supernode). In a similar way, when generalization
of nodes leads to generalization of edges, edge weights are also generalized to a single
value.

5

January 2, 2017 Journal of Experimental & Theoretical Artificial Intelligence article

U

V

A

B

C

1

1 1

0.01

0.5

(a) Original graph

A

B

U

V

1

1

0.25

(b) Summarized graph

U

V

A

B

1

1 1 0.25

(c) Restored graph

0.25

Figure 3. Illustration of four types of summarization errors: (1) The edge weight on {U,B} changes from 0.5 to

0.25. (2) {V,B} is a new edge in the summarized network. (3) Edge {V,C} does not exist in the summarized
network. (4) Node C does not exist in the summarized network.

The goal of summarization thus is to produce a small but accurate representation of
the original network. We will formally address what is ‘small’ in the next subsection, and
di↵erent ways of addressing what is ‘accurate’ in Subsections 2.3–2.5.

2.2. Compression Ratio

The compression ratio, denoted by cr, measures how small the summarized network is
in comparison to the original network. Two variants of the compression ratio are used,
each scaled to match the maximum summarization possible in di↵erent settings so that
the ratio theoretically ranges from one (no space saved) towards zero (all potentially
removable information removed).
In the edge-based and path-based variants (to be presented in Sections 2.3 and 2.4),

all node identities but not all edge identities are preserved. Therefore the compression
ratio is measured as the relative number of edges in the summary:

cr1(S) =
|E0|
|E| . (1)

In the node-based variant (to be described in Section 2.5) nodes are additionally allowed
to be removed in the summarization process. An appropriate measure of compression
ratio is then based on the cardinalities of both nodes and edges:

cr2(S) =
|V 0|+ |E0|
|V |+ |E| . (2)

In contrast to conventional clustering, we thus measure the size of the result primarily
by the number of superedges, and only in the node-based case also by the number of
supernodes (node clusters).

2.3. Edge-based Weighted Network Summarization

While a compression ratio such as cr1 provides a measurement of the size of the sum-
mary, it does not tell us how much information is lost in the summarization. The loss
is measured by (conceptually) restoring the summarized network and then calculating
the dissimilarity between the original and the restored network. In clustering terminol-
ogy, this dissimilarity will constitute the objective function for clustering. For any pair

6

January 2, 2017 Journal of Experimental & Theoretical Artificial Intelligence article

of nodes u and v, the dissimilarity between the original network and the corresponding
restored network where u and v have been merged, can be thought of as the distance
between u and v.
The goal of edge-based weighted network summarization is to generalize a network into

a smaller one while maintaining the original structure, including edge weights, as well as
possible. Since nodes are here assumed to have equal weights and equal importance, all
nodes are required to be preserved in the restored network. Therefore, only the di↵erences
in the existence of edges and in their weights are calculated. The measure of dissimilarity
between the original and the restored networks with identical node sets is presented
below.

Definition 2.4: The edge-based distance between the original network G = (V,E,w)
and the restored network res(S) = (V 00, E00, w00), with an identical set of nodes V = V 00,
is

dist
e

(G, res(S)) =
s X

{u,v}2V⇥V

(w({u, v})� w00({u, v}))2. (3)

Recall that by definition a non-existent edge has weight 0, i.e., w({u, v}) = 0 if edge
(u, v) does not exist in the network, so the distance function dist

e

is defined for any set
of nodes.
The distance measure has an interpretation as the Euclidean distance between G and

res(S) in a space where each pair of nodes {u, v} 2 V ⇥ V has its own dimension.
The distance can be seen as the cost of summarization, whereas the compression ratio,
calculated by cr1(S), represents the savings. Since there is no unique way to balance
these conflicting goals, the following form of the problem is considered.

Definition 2.5: Given a weighted network G and a compression ratio cr (0 < cr < 1),
the edge-based weighted network summarization problem is to produce a summarized
representation S of G with cr1(S) cr such that dist

e

(G, res(S)) is minimized.

2.4. Path-based Weighted Network Summarization

For many applications, general connectivities between nodes are more important than
individual edge weights. For example, in a social network setting, influence spreads be-
yond immediate neighbors; or in a biological network, regulatory functions of proteins
can have long-ranging e↵ects. The path-based weighted network summarization approach
is also motived as a pre-processing step for computationally complex network analysis
algorithms that rely more on strengths of connections than individual edge weights. The
model is based on measuring the shortest path (or, in more general terms, the best paths)
between all pairs of nodes. The summarization then aims to preserve the qualities of best
paths, while not necessarily preserving the exact paths.
The definition of how good a path is and which one is the best depends on the kind of

network and its application. For the sake of generality, our formulation is parameterized
by a path quality function q. Without loss of generality, we assume that the value of the
path quality function is positive, and that a larger value of q indicates better quality. For
practical reasons, we also parameterize the generalized definition by a maximum path
length �.

Definition 2.6: The path-based distance between G and res(S) with an identical node

7

January 2, 2017 Journal of Experimental & Theoretical Artificial Intelligence article

set V , with respect to a maximum path length � and a path quality function q, is

dist
�

(G, res(S)) =
s X

{u,v}2V⇥V

(Q
�

(u, v;G)�Q
�

(u, v; res(S)))2, (4)

where Q
�

(u, v;G) represents the quality of the best path of length at most � between u
and v, i.e., Q

�

(u, v;G) = max
P2P q(P), where P is the set of all paths between u and v

in G, of length at most �. If there are no such paths then Q
�

(u, v;G) = 0.

Definition 2.7: Given a weighted network G and a compression ratio cr (0 < cr < 1),
the path-based weighted network summarization problem is to produce a summarized
representation S of G with cr1(S) cr such that dist

�

(G, res(S)) is minimized.

Obviously, the edge-based weighted network summarization problem defined earlier in
Section 2.3 is a special case of the path-based weighted network summarization problem
with � = 1 and q({e}) = w(e). In this paper, only the two extreme cases are considered:
� = 1 and � =1.

2.5. Node-based Weighted Network Summarization

In many applications, networks have weights on nodes to distinguish their importances.
For example, the weight of a node can be the number of publications of an author in
coauthorship networks (e.g. Alonso, Cabrerizo, Herrera-Viedma, and Herrera (2009); Zhu
et al. (2011)), or the textual relevance of an online document to a query in web networks
(e.g. Haveliwala, Kamvar, Kamvar, and Jeh (2003); Salton, Wong, and Yang (1975)). In
this work we assume that the weight of a node is positive, I : V ! R+.
The proposed model takes both node and edge weights into account. In contrast to

the problems mentioned above, the model will delete some nodes, especially those with
low weights. The goal is to maintain the most information related to nodes and edges
with high weights. The respective measure of dissimilarity between the original and the
restored networks is given next.

Definition 2.8: Given the original network G = (V,E,w, I) and the restored network
res(S) = (V 00, E00, w00, I) where V 00 ✓ V , the node-based distance between G and res(S)
(with respect to I) is

dist
n

(G, res(S)) =
s X

{u,v}2V⇥V

I(u)I(v)(w(u, v)� w00(u, v))2. (5)

Note that the node weight function I is shared between G and res(S) since, in our
model, node importances do not change in the summarization process. Again, for any
node u or v not in V 00, we define w00(u, v) = 0.
In Definition 2.8, the dissimilarity between two networks is measured by computing

the change of edge weights weighted by their node weights. There is no separate cost
for missing nodes, they are simply penalized by the corresponding missing edges. Since
some node identities may be missing, the compression ratio cr2 (Equation 2) is applied
to measure the savings. The problem is formalized in Definition 2.9.

Definition 2.9: Given a weighted network G = (V,E,w, I) and a compression ratio

8

January 2, 2017 Journal of Experimental & Theoretical Artificial Intelligence article

cr (0 < cr < 1), the node-based weighted network summarization problem is to produce
a summarized representation S of G with cr2(S) cr such that dist

n

(G, res(S)) is
minimized.

The edge-based weighted network summarization problem (Section 2.3) is a special
case of node-based weighted network summarization problem with I(u) = 1 for all nodes
in the network; additionally, in the edge-based version we require that all nodes are
preserved.

2.6. Problem Complexity

The weighted network summarization problem can be shown to be NP-hard, by a reduc-
tion from the max-cut problem. Formally, we present it as Theorem 2.10. The proof can
be found in Appendix A.

Theorem 2.10: The edge-based weighted network summarization problem, the path-
based weighted network summarization problem, and the node-based weighted network
summarization problem are NP-hard.

Recent studies show that partitioning nodes to minimize costs is a special version of
the Set Partitioning Problem (SPP) as a Cartesian product of two complete combination
sets of nodes or edges of a given network (Lamarche-Perrin, Demazeau, and Vincent
(2014)). The problem is thus NP-complete due to the hardness of SPP in the general
case (Chakravarty, Orlin, and Rothblum (1982)). It is worth mentioning that information-
theoretic measures, which are often non-monotonic, are used as cost objectives in the
study of Lamarche-Perrin et al. (2014) to deduce a set of exponential solutions. The
network summarization problem of this paper employs three distance-based measures
designed to reveal implicit generalization structures.

3. Bounds of Distances between Networks

The weighted network summarization problems are defined through the network distance
functions of Equations 3–5. Unfortunately, they can be complicated to compute, and the
complexity is amplified for iterative algorithms such as hierarchical agglomerative clus-
tering, where the distance function has to be recomputed several times. In this section,
bounds for distances between networks are derived, which allow more e�cient algorithms
for all instances of the summarization problem. The bounds derived here will then be
used by the merge operations introduced in the next section to reduce the complexity of
distance calculations.
In all three variants of the problem, the network distances are defined as a function

over all pairs of nodes for the sake of consistency. Obviously, in the edge-based and node-
based variants (Equations 3 and 5), only the changes related to the union of the edges
in the original and the restored networks need to be computed. In contrast, in the path-
based variant, changes of connectivities between all pairs of nodes need to be checked
(especially if maximum path length � =1). Therefore, it will be more time consuming
to calculate the distances in the path-based variant.
A summarized network can be obtained, in a manner similar to hierarchical agglomer-

ative clustering, by executing a series of merge operations (to be described in Section 4)
resulting in a sequence G = S0, S1, . . . , Sn

= S of increasingly summarized networks.
The distance functions dist(·) defined above are metrics and satisfy the triangle inequal-

9

January 2, 2017 Journal of Experimental & Theoretical Artificial Intelligence article

ity (recall the interpretation as Euclidean distance), so the exact distance dist(G, res(S))
between the original and the summarized networks is upper bounded by the sum over dis-
tances between increasingly summarized networks, denoted by dist(res(S

j�1), res(Sj

)).
That is,

dist(G, res(S))
P

n

i=1 dist(res(Si�1), res(Si

)). (6)

This observation applies to all three variants of the problem, and it is tight in the sense
that actual cases exist where the distance meets the bound.
For the edge-based and the node-based variants, dist(res(S

i�1), res(Si

)) is relatively
easy to compute since the summarization operations only have local e↵ects. However, for
the path-based variant, computing dist(res(S

i�1), res(Si

)) is expensive since summarizing
a part of the network may have a global e↵ect, that is, summarization can change the
connectivities between arbitrary pairs of nodes. To simplify computation in the path-
based variant, we use the following upper bound. Let S

i

be the result of merging nodes u
and v in network S

i�1. As a result of the merger, new superedges are produced as mergers
of previous edges. Let dmax(u, v;Si�1) denote the maximum di↵erence of weights between
any two edges merged together. The following bound now holds for many natural path
quality functions q:

dist(res(S
i�1), res(Si

))
p
n
e

· dmax(u, v;Si�1), (7)

where n
e

= |V |(|V | � 1)/2 is the number of unordered node pairs (cf. the sum over all
node pairs in Equation 4; more details can be found elsewhere (Toivonen et al. (2011))).

4. Merge Operations and Optimal Superedge Weights

In this section, merge operations are introduced to generalize a network in a manner
similar to agglomerative clustering. A merge operation groups a pair of (super)nodes
into a new supernode, and links the new supernode with the neighbors of the merged
nodes, and then assigns weights to the new superedges. Thereby it possibly generalizes
the weights of the corresponding original edges between the new generalized supernode
and the neighbors of the merged nodes. To minimize the distance caused by merge
operations, methods for the calculation of optimal edge weights in a merge operation are
discussed.
Two kinds of merge operations are presented, node-pair merge and node-pair merge

with deletion. Both operations may introduce new edges (whenever the two nodes merged
to the supernode do not have equal sets of neighbors). However, the second operation has
the additional possibility of removing edges and nodes. The qualities of merge operations
are assessed di↵erently, as will be explained below.

4.1. Node-Pair Merge

This type of operation is applied in the edge-based and the path-based network sum-
marization problems. The reason is that by Definitions 2.5 and 2.7, the two problem
variants preserve all the node identities in the summarized networks.

10

January 2, 2017 Journal of Experimental & Theoretical Artificial Intelligence article

4.1.1. Edge-Based Summarization

Assume (super)nodes u0 and v0 are being merged, and let {x01, . . . , x0
k

} be the union of
their neighbors. (We use notation u0 and v0 for nodes here to remind the reader that they
are in general supernodes, not nodes of the original network.) Let u0 and v0 in network
S
i�1 be generalized into supernode z0 in the resulting network S

i

. The weight of the
(super)edge between u0 and each neighbor x0

j

is changed from w0
i�1(u

0, x0
j

) to w0
i

(z0, x0
j

).
Similar changes also happen to other (super)edges between u0 and v0 and their neighbors,
but not to other edges. Therefore, the dissimilarity between sequential networks S

i�1 and
S
i

results from these changes alone.
Remember, however, that a single superedge represents all the edges between the cor-

responding original nodes. Thus, the distance between S
i�1 and S

i

is obtained as follows:

dist
e

(res(S
i�1), res(Si

)) =
✓

kX

j=1

{|u0||x0
j

|(w0
i�1(u

0, x0
j

)� w0
i

(z0, x
j

))2
| {z }

first term

+ |v0||x0
j

|(w0
i�1(v

0, x0
j

)� w0
i

(z0, x0
j

))2
| {z }

second term

}
◆1/2

.
(8)

The first term in (8) denotes the change related to the |u0| · |x0
j

| edges represented by
(super)edge {u0, x0

j

}, and the second term denotes the change related to the |v0|·|x0
j

| edges
represented by superedge {v0, x0

j

}. Equation 8 can be used within Equation 6 to compute
an upper bound for the distance between the original and a summarized network.
We now move on to see how to assign edge weights optimally. In the edge-based net-

work summarization setting the weight of the new superedge is independent of other
new superedge weights. In order to minimize dist

e

(res(S
i�1), res(Si

)) of Equation 8, the
optimal superedge weight of {z0, x0

j

} is then obtained simply as the mean weight of the
original edges between u0, v0 and x0

j

, that is,

w0
i

(z0, x0
j

) =
|u0|w0

i�1(u
0, x0

j

) + |v0|w0
i�1(v

0, x0
j

)

|u0|+ |v0| . (9)

Obviously, according to Equation 9, w0
i

(z0, x0
j

) is always positive, as edge weights are
non-negative. When edge weights are optimized this way, supernode z0 has links with
all neighbors of u0 and v0. All original edges are preserved in the summarized network
and some new ones are potentially added by the generalization. The pseudocode of the
node-pair merge is described in Appendix B.

4.1.2. Path-Based Summarization

The node-pair merge operation used in the path-based variant is much more complicated,
because the e↵ect of a single merge operation is in general not local anymore: edge weights
contribute to best paths and therefore distances up to � hops away.
This yields two consequences. (1) Optimal assignment of weights might in general

require adjusting also other weights than the ones of the new superedges, e.g., to com-
pensate an increase in edge weight in a superedge by decrease of some other weights
elsewhere on the network. This would be computationally a hard problem. To avoid the
expensive computation, the node-pair merge operation outlined above (and detailed in
Appendix B) is used as an e�cient, approximate solution in the path-based variant,
where we only set the weights of the new superedges. The exploration of better solutions

11

January 2, 2017 Journal of Experimental & Theoretical Artificial Intelligence article

is left for future work. (2) Computing the e↵ect of a merge operation on the network
distance in general requires computation of all-pairs best paths (of length up to �), even
if only the superedge weight is adjusted. The bounds of Equations 6 and 7 are used as
e�cient approximations between the summarized and the original networks.

4.2. Node-pair Merge with Deletion

The second merge operation, where both nodes and edges are possibly removed during
the merge operation, is applied in the node-based variant. Compared with the operation
discussed in the previous section, there are two major di↵erences. The first is that the
operation may remove nodes and edges, therefore, its e↵ect could not be assessed by
plain network dissimilarity. Instead, a new evaluation criterion, standard normalized
error (‘error over size reduction’), is used, which calculates the exact distance between
the original and current summarized network and divides it by the total saved space.
The second is that instead of computing the distance to the previous state, the distance
to the original network is calculated.
The standard normalized error thus is

ne
std

=
dist

n

(G, res(S
i

))

sr
, (10)

where sr denotes the total amount of space saved by generalizing G to S
i

.
The total saved space sr can be computed as follows. Assume that (super)nodes u0

and v0 of network S
i�1 are generalized into supernode z0 in the resulting network S

i

.
Let |nei

Si�1
[u0]| be the number of neighbors of u0 in S

i�1, including u0 itself if a self-
edge exists on u0. Hence |nei

Si
[z0]| = |nei

Si�1
[u0] [nei

Si�1
[v0]|. Merging u0 and v0 into

z0, the number of nodes is reduced by 1, and the number of edges is reduced by the
number of shared neighbors, which is |nei

Si�1
[u0]|+ |nei

Si�1
[v0]|� |nei

Si
[z0]|. The amount

of space saved by one merge when generalizing S
i�1 to S

i

, denoted by sr
i

, is sr
i

=
1+|nei

Si�1
[u0]|+|nei

Si�1
[v0]|�|nei

Si
[z0]|. The total amount of space saved by generalizing

G to S
i

(through S1, S2, . . . , Si�1) is sr =
P

i

m=1 srm.
We next discuss the essential part, deleting superedges and supernodes, in merging

u0 and v0, to minimize the standard normalized error. Clearly, the network dissimilarity
is minimized when no new superedge is removed. However, it is not equivalent to the
standard normalized error being minimized. The standard normalized error could be
minimized by saving more space with a little extra network dissimilarity, that is, through
dropping new superedges and possibly also nodes.
In our model, nodes are removed as a result of getting isolated, i.e., a node with no edges

is considered deleted. Assume that superedge {x0
j

, z0} is removed, and let �sr((u0, v0), x0
j

)
represent the resulting savings in space. By default, �sr((u0, v0), x0

j

) = 1, corresponding
to the single deleted edge. If removing {z0, x0

j

} makes x0
j

isolated, then x0
j

will be re-
moved and �sr((u0, v0), x0

j

) = 2. If x0
j

has a self-edge, then it will be removed too and
�sr((u0, v0), x0

j

) = 3. The total saved space then is sr +�sr((u0, v0), x0
j

).
The distance dist

n

(G, res(S
i

)) between the current state S
i

and the original network G
can be calculated incrementally and e�ciently from dist

n

(G, res(S
i�1)) since the changes

are local to the merged nodes. Recall that dist
n

(G, res(S
i

)) is computed as a squareroot
of a sum of squares. Let d

n

(u0, v0) denote the change to this sum, due to merging nodes
u0 and v0 in S

i�1. Then dist
n

(G, res(S
i

)) = (dist
n

(G, res(S
i�1))2 + d

n

(u0, v0))1/2. Note
that d

n

(u0, v0) can be negative in some cases, as the new merger can actually shorten
the distance to the original network. Additionally, in case a superedge {x0

j

, z0} is re-

12

January 2, 2017 Journal of Experimental & Theoretical Artificial Intelligence article

moved, the resulting change to the sum of squares must be added; we denote this dif-
ference by �d

n

((u0, v0), x0
j

). The updated network distance then is (dist
n

(G, res(S
i

))2 +

�d
n

((u0, v0), x0
j

))1/2.
The standard normalized error of merging u0, v0 in S

i�1 with deletion then is

ne
std�del

=

q
dist

n

(G, res(S
i

))2 +�d
n

((u0, v0), x0
j

)

sr +�sr((u0, v0), x0
j

)
.

If ne
std�del

 ne
std

, then removing superedge {x0
j

, z0} results in a smaller standard
normalized error and superedge {x0

j

, z0} can be deleted. The merge operation only termi-
nates when no edge (or node) can be removed to obtain a smaller standard normalized
error.
Finally, an approximately optimal new superedge weight is the weighted mean of the

weights in S
i�1, similarly to Equation 9,

w
i

(z0, x0
j

) =
I(u0)w

i�1(u0, x0
j

) + I(v0)w
i�1(v0, x0

j

)

I(u0) + I(v0) , (11)

where the weight I(u0) is the sum of importances of nodes inside u0, that is, I(u0) =P
a2T (u0) I(a). Note that wi

(z0, x0
j

) is always positive in Equation 11, so z0 connects with

all neighbors of u0 and v0.
The merge operation with deletion, using standard normalized error as criterion, is

given in Algorithm 1. It takes a network and two nodes as input, and returns a network
where the given nodes are merged into one. The new superedge weights are set according
to Equation 11 (line 7). In order to obtain the optimal standard normalized error, it
first calculates the extra error �d

n

((u0, v0), x0
j

) for each new superedge (line 9). Then,
the algorithm iteratively tries to remove superedges to improve the standard normalized
error (lines 13-22).

5. Algorithms

A series of algorithms are next proposed for the weighted network summarization prob-
lem. All of the proposed algorithms work in a greedy fashion, similar to hierarchical
agglomerative clustering, generalizing two (super)nodes and their edges at a time un-
til the specified compression ratio is achieved. We start with the most computationally
complex algorithm, brute-force method, and progress to faster methods.

Brute-force algorithm. The brute-force method iteratively evaluates the e↵ects of all
possible pairwise merges and performs the best merge, and then repeats this until the
requested compression ratio is achieved. This is the most direct counterpart to hierar-
chical agglomerative clustering. It su↵ers, however, from the need to evaluate the e↵ects
of merges in each iteration.
The brute-force and other proposed methods can be improved by the 2-hop optimiza-

tion. Instead of considering arbitrary pairs of nodes, the 2-hop optimized version only
considers u0 and v0 for a potential merger if they are exactly two hops from each other.
Since 2-hop neighbors have a shared neighbor that can be linked to the merged super-
node with a single superedge, some space can be saved. The time saved by the 2-hop
optimization is significant: for the brute-force method, for instance, only approximately

13

January 2, 2017 Journal of Experimental & Theoretical Artificial Intelligence article

Algorithm 1 mergeDel(u0, v0, S
i�1)

Input: Nodes u0 and v0, and S
i�1 = (V

i�1, Ei�1, wi�1)
Output: S

i

= (V
i

, E
i

, w
i

) obtained by merging u0 and v0 in S
i�1 and possibly removing

nodes and edges.
1: V

i

 V
i�1; Ei

 E
i�1; wi

 w
i�1;

2: z0 {u0, v0};
3: V

i

 V
i

\ {u0, v0} [{z0};
{/* replace old edges by new superedges */}

4: for x0
j

2 V
i�1 such that {u0, x0

j

} or {v0, x0
j

} 2 E
i�1 do

5: E
i

 E
i

\ {{u0, x0
j

}, {v0, x0
j

}} [{{z0, x0
j

}};
6: w

i

(u0, x0
j

) = 0;w
i

(v0, x0
j

) = 0;

7: w
i

(z0, x0
j

) =
I(u0)wi�1(u0

,x

0
j)+I(v0)wi�1(v0

,x

0
j)

I(u0)+I(v0) ;
8: end for

{/* calculate the extra network dissimilarity from removing each new superedge */}
9: for x0

j

2 V
i

such that {z0, x0
j

} 2 E
i

do

10: calculate �d
n

((u0, v0), x0
j

);
11: end for

{/* Iteratively remove superedges {z0, x0
j

} */}
12: repeat

13: compute ne
std�del

=
p

distn(G,res(Si))2+�dn((u0
,v

0),x0
j)

sr+�sr((u0
,v

0),x0
j)

for each new superedge {z0, x0
j

};
14: let {z0, x0} be the superedge that produces the smallest normalized error ne

std�del

;
15: if ne

std�del

 ne
std

then
16: E

i

 E
i

\ {z0, x0};
17: w

i

(z0, x0) = 0;
18: if x0 is isolated then
19: V

i

 V
i

\ {x0};
20: E

i

 E
i

\ {x0, x0};
21: end if
22: update dist

n

(G, res(S
i

)), sr and ne
std

;
23: end if
24: until no further removal can reduce the normalized error;
25: return S

i

= (V
i

, E
i

, w
i

)

O(|V |d2) feasible node pairs need to be considered with the optimization, where d is the
maximum node degree, instead of the O(|V |2) pairs in the unoptimized algorithm.
In the edge-based variant, the time complexity of the brute-force method is then

O(d3|V |2). In the path-based variant, the time complexity is O(d2|V |2|E| log |V |). The
time complexity for the node-based variant is O(d3|V |3). More detailed complexity anal-
yses of the algorithms can be found in Appendix C.

Thresholded algorithm. The next algorithm is a more practical alternative, a thresh-
olded method (Algorithm 2). It iterates over all pairs of nodes and executes a merge
operation once the e↵ect of merging (u0, v0) is below the current threshold, that is,
ASSESS(u0, v0;S) T . The threshold value T is increased iteratively in a heuristic
manner until no merge can be done with the current threshold.
Di↵erent schemes for setting the threshold would give di↵erent results and time com-

plexity. The heuristic we have used has K = 20 exponentially growing steps. The aim is
to produce relatively high-quality results faster than the brute-force method. Increasing

14

January 2, 2017 Journal of Experimental & Theoretical Artificial Intelligence article

Algorithm 2 Thresholded Algorithm
Input: Network G, compression ratio cr, and problem parameters.
Output: Summarization S
1: while CR(S) > cr do
2: for all pairs {u0, v0} 2 V 0 ⇥ V 0 do
3: if ASSESS(u0, v0;S) T and CR(S) > cr then
4: S MERGE(u0, v0, S);
5: end if
6: end for
7: if CR(S) cr then
8: return S;
9: end if

10: update T ;
11: end while

the threshold in larger steps would give a faster method, but eventually it will equal
random summarization (cf. Random algorithm below).
In the worst case, the thresholded algorithm reduces to the brute-force greedy method.

The time complexity of the thresholded algorithm for the edge-based variant is O(d3|V |2).
The time complexity for the path-based variant is O(d2|V |2|E| log |V |). In the node-based
variant, the time complexity is O(d3|V |3). These are theoretical upper bounds for highly
improbable worst cases, and in practice the algorithms are faster.

Semi-greedy algorithm. This method is half random, half greedy. In each iteration,
it first picks a node v0 at random, and then chooses node u0 so that the merger of u0

and v0 is optimal with respect to network dissmilarity caused by the merger. With 2-
hop optimization, this algorithm is a generalized version of the algorithm proposed by
Navlakha et al. (2008).
The resulting complexity in the edge-based variant is then O(d3|V |). In the path-based

weighted variant, the total time complexity is O(d2|V ||E| log |V |). The time complexity
for the node-based weighted variant is O(d3|V |2).
Random algorithm. This random method simply merges pairs of nodes randomly
without any aim to produce a good summarization. (The random method provides a
baseline for the quality of other methods that make informed decisions about mergers.)
For the randomized methods, a straight-forward implementation of 2-hop optimization

by random walk has a nice property. Assume that one node (u0) has been chosen. Then
a random pair (u0, v0) is found by taking two consecutive random hops starting from the
first node u0. A 2-hop neighbor v0 that has more shared neighbors with u0 is more likely
to get picked, since there are several 2-hop paths from u0 to v0. Such pairs, with more
shared neighbors, lead to better summarization. A uniform selection among all 2-hop
neighbors does not have this property.
The total complexity of the random method is O(d|V |) in the edge-based variant,

O(|V ||E| log |V |) in the path-based variant, and O(d|V |2) in the node-based variant.
A conclusion from the complexity analysis is that the methods possess a wide range

of time complexities. The fastest non-random methods (semi-greedy) have complexities
starting fromO(d3|V |), i.e., linear in the number of nodes but cubic in the degree of nodes.
The more accurate methods (the thresholded algorithm) have complexities starting from
O(d3|V |2), i.e., quadratic in the number of nodes and cubic in the degree of nodes.
Given the NP-hardness of the problem (Theorem 2.10), it is no surprise that methods

15

January 2, 2017 Journal of Experimental & Theoretical Artificial Intelligence article

Table 1. Experimental datasets.

|V | |E|

30 medium networks 1,000 — 1,220 2,411 — 3,802

5 biological networks 1,000 — 5,000 2,295 — 16,538

5 large biological networks

10,001 12,195
50,000 103,422
103,741 232,994
179,180 323,039
215,412 406,895

4 Erdös-Rényi random networks 10,000

40,064
199,500
1,000,448
4,996,173

trying to solve it even heuristically are also computationally complex. We do not consider
parallelized versions of the methods in this paper, but the experiments in the next section
show that already the serial algorithms perform well on networks with tens and hundreds
of thousands of edges.

6. Experiments

In this section we describe and discuss experimental results using the proposed algorithms
on real databases. With these experiments we aim to address the following questions.
(1) How well can nodes and edges be generalized: what is the trade-o↵ between the
amount of space saved and the distance to the original network? (2) How do the di↵erent
algorithms fare in this task: how good are the results they produce? (3) What are the
running times of the algorithms? (4) How do node weights a↵ect the summarization?
(5) How good are the merge operations? Furthermore, we present examples to show how
weighted network summarization can also be applied in other graph-mining tasks and
applications, e.g. graph clustering.

6.1. Experimental Setup

Test networks were extracted from the biological Biomine database (Eronen and Toivonen
(2012)). Edges correspond to known or predicted relations between entities. Edge weights
are in the range [0, 1], viewed in Biomine as the probability that the edges exist. The
natural path quality function then is the probability that the whole path exists, i.e.,
the product of weights of the edges in the path. Nodes in the Biomine database do
not have weights. Node weights were assigned randomly and uniformly distributed in
(0,1]. A set of 4 Erdös-Rényi random networks was used to test the performance of the
algorithms in networks of varying density. These datasets are a pathological case for
network summarization since they only have random structure. Datasets used in the
experiments are summarized in Table 1.

6.2. Summarization of Weighted Networks in the Three Variants of the

Problem

We start by looking at how well the test networks can be summarized. Figures 4(a)–4(c)
show the distance between the summarized and original networks as a function of the

16

January 2, 2017 Journal of Experimental & Theoretical Artificial Intelligence article

0.2 0.4 0.6 0.8

0
.0

0
0
.0

1
0
.0

2
0
.0

3
0
.0

4
0
.0

5

Compression ratio

d
is

t
/
p
a
ir
 o

f
n
o
d
e
s

(R
M

S
E

)

0.1 0.3 0.5 0.7 0.9

Random
Semi−greedy
Semi−greedy−hop2
Thresholded
Thresholded−hop2

(a) Edge-based

0
.0

0
0
.0

5
0
.1

0
0
.1

5
0
.2

0

Compression ratio

d
is

t
/
p
a
ir
 o

f
n
o
d
e
s

(R
M

S
E

)

0.1 0.3 0.5 0.7 0.9

Random
Semi−greedy
Semi−greedy−hop2
Thresholded
Thresholded−hop2

(b) Path-based

0
.0

0
0

0
.0

1
0

0
.0

2
0

Compression ratio

d
is

t
/
p
a
ir
 o

f
n
o
d
e
s

(R
M

S
E

)

0.1 0.3 0.5 0.7 0.9

Semi−greedy−hop2
Thresholded−hop2
Brute−force−hop2

(c) Node-based

Figure 4. Distance between the summarized and the original network as a function of compression ratio. A smaller

compression ratio indicates a higher reduction in network size.

compression ratio; for now it su�ces to look at the lowest curves in each figure. For better
interpretability in the experimental results, we represent the distance as the root mean
squared error (RMSE) over all pairs of nodes, obtained directly from the distance as
dist(G, res(S))/

p
|V

G

| · (|V
G

|� 1)/2. This is the y-axis in the figures. The experiments
were performed on the 30 medium networks.
The findings show that our methods can produce small but accurate summaries. Sum-

marizing a network to half of its original size can be achieved with average errors of 0.03
(in the edge-based variant), 0.06 (in the path-based variant), and 0.006 (in the node-
based variant) per node pair. These results indicate that these weighted networks can be
summarized to a small fraction of their original size with little error. More importantly,
this implies that the summarization methods have been able to discover structure in the
original networks.

6.3. E↵ectiveness of Algorithms

Next we compare the di↵erent algorithms in terms of their e↵ectiveness (accuracy). The
brute-force method clearly produces the best results (Figure 4(c)) (but is very slow as
we will see shortly). The thresholded method produces the second best results, especially
for larger compression ratios. The results are as good as with the brute-force method for
compression ratios 0.7-0.9 but the gap grows a bit for smaller compression ratios. The
semi-greedy algorithm, in turn, is not as good with the larger compression ratios but the
performance is similar to the thresholded method when the compression ratio is small.
The random pairwise summarization algorithm performs consistently the worst, with a
clear margin to the other methods (Figures 4(a)-4(b)). Apparently, a few early bad merge
operations raise the distance even for big compression ratios. A final observation from
Figure 4(a) is that 2-hop optimization produces similar or sometimes even better results
than without it.
We next evaluate the e↵ect of network density using four Erdös-Rényi random networks

in the edge-based variant. The networks are summarized to half of their original size.
The result (Figure 5(a)) shows an apparent correlation between the average error and
network density. The reason is that the number of edges increases and thereby the total
volume of distances increases. A normalization of the distance by the total volume of
edge weights (Figure 5(b)) shows that relative distances actually become smaller with
denser networks. The reason is again the larger search space that denser networks have.

17

January 2, 2017 Journal of Experimental & Theoretical Artificial Intelligence article

Number of Edges

d
is

t
/
p
a
ir
 o

f
n
o
d
e
s

(R
M

S
E

)

0
.0

0
0
.0

6
0
.1

2

40,064 4,999,155

Semi−greedy−hop2

(a) Edge-based

Number of Edges

d
is

t
/
to

ta
l e

d
g
e
 w

e
ig

h
ts

0
.0

0
0

0
.0

0
4

0
.0

0
8

40,064 4,999,155

Semi−greedy−hop2

(b) Edge-based

Figure 5. (a) Dissimilarity (per pair of nodes) for the edge-based variant on networks of varying density. (b)
Dissimilarity (per total edge weight) for the edge-based variant on networks of varying density. The compression

ratio is 0.5. The number of nodes in all networks are 10,000.

Compression ratio

S
e
co

n
d
s

0
.1

1
1
0

5
0

0.1 0.3 0.5 0.7 0.9

Thresholded
Thresholded−hop2
Semi−greedy
Semi−greedy−hop2
Random

(a) Edge-based

Compression ratio

S
e
co

n
d
s

1
1
0

1
0
0

5
0
0

0.1 0.3 0.5 0.7 0.9

Thresholded
Semi−greedy
Thresholded−hop2
Semi−greedy−hop2
Random

(b) Path-based

Compression ratio

S
e
co

n
d
s

0
.1

1
1
0

1
0
0

1
0
0
0

0.1 0.3 0.5 0.7 0.9

Brute−force−hop2
Thresholded−hop2
Semi−greedy−hop2

(c) Node-based

Figure 6. Running times of weighted network summarization algorithms (on logarithmic scales) as a function of
compression ratio.

6.4. E�ciency of Algorithms

6.4.1. E�ciency as a Function of Compression Ratio

We now compare the e�ciency of algorithms in each of the three variants of the problem.
The mean running times of weighted network summarization algorithms as a function of
compression ratio, over the 30 medium networks, are shown in Figures 6(a)–6(c).
In the edge-based variant (Figure 6(a)), the thresholded algorithm takes less than 50

seconds to summarize the network, the semi-greedy algorithm takes around 1 second,
whereas the random algorithm takes 0.1 seconds. The di↵erences are big between the
methods, more than two orders of magnitude between the extremes. Running time com-
parisons of the methods show similar patterns in the other problem variants, even if the
scales are di↵erent.
The 2-hop-optimized versions are an order of magnitude faster than the unoptimized

versions while the results are equally good. 2-hop optimization thus very clearly pays o↵.
In the path-based variant, the relative impact of the 2-hop optimization is even larger.
The brute-force method is 1 to 3 orders of magnitude slower than other methods

(Figure 6(c)). This implies that the brute-force algorithm in practice only works for
small networks.

18

January 2, 2017 Journal of Experimental & Theoretical Artificial Intelligence article

Number of edges

d
is

t
/

p
a

ir
 o

f
n

o
d

e
s

(R
M

S
E

)

0
.0

0
0

.0
1

0
.0

2
0

.0
3

0
.0

4
0

.0
5

2295 5515 8455 13481 16538

Random
Semi−greedy−hop2
Thresholded−hop2

(a) Edge-based (b) Path-based

Number of edges

d
is

t
/

p
a

ir
 o

f
n

o
d

e
s

(R
M

S
E

)

0
.0

0
0

0
.0

0
2

0
.0

0
4

0
.0

0
6

0
.0

0
8

2295 5515 8455 13481 16538

Semi−greedy−hop2
Thresholded−hop2

(c) Node-based

Number of edges

S
e

co
n

d
s

0
1

2

2295 5515 8455 13481 16538

Random
Semi−greedy−hop2
Thresholded−hop2

Quadratic approximation
Linear approximation

(d) Edge-based

Number of edges

S
e

co
n

d
s

0
1

0
0

3
0

0
5

0
0

2295 5515 8455 13481 16538

Random
Semi−greedy−hop2
Thresholded−hop2

Quadratic approximation
Linear approximation

(e) Path-based

Number of edges

S
e

co
n

d
s

2295 5515 8455 13481 16538

0
1
0

2
0

3
0

Semi−greedy−hop2
Thresholded−hop2

Linear approximation
Quadratic approximation

(f) Node-based

Figure 7. Network dissimilarities and running times of weighted network summarization algorithms on 5 biological

networks, as a function of the network size. The compression ratio is 0.8.

Next, the running times for di↵erent network summarization problem variants are
compared. The running times of the path-based variants (Figure 6(b)) are larger than
those of the edge-based variants (Figure 6(a)) by an order of magnitude; and for the
semi-greedy versions, the di↵erence is two orders of magnitude. This is not surprising
given the higher complexity of the path-based version.
The running times of the node-based variants (Figure 6(c)) are a bit longer than those

of the edge-based variants (Figure 6(a)). The reason is that the node-based methods have
a larger search space as they also consider the options of deleting edges and nodes in
addition to just merging nodes. Furthermore, the node-based method computes the exact
distance between the original and current summarized networks when using standard
normalized error as criterion, whereas in the edge-based variant, the distance between
the previous and current summarized networks is computed instead.

6.4.2. Scalability with respect to Network Size

Figures 7(a)–7(f) show how the algorithms behave as a function of the network size, at
a fixed compression ratio of 0.8, using a series of 5 biological networks. The distance
between the original and summarized networks are shown in Figures 7(a)–7(c). The
relative performances of the algorithms change only little. The thresholded algorithm
consistently produces very good summarized networks, while the semi-greedy method
improves its relative performance a bit for larger networks.
The respective running times are given in Figures 7(d)–7(f). The edge-based and path-

based variants exhibit similar behavior. The random method is close to linear (and

19

January 2, 2017 Journal of Experimental & Theoretical Artificial Intelligence article

Number of edges

S
e

co
n

d
s

12195 103422 232994 323039 406895

0
1
0
0

2
0
0

3
0
0

4
0
0

Semi−greedy−hop2

(a) Edge-based

Number of edges

S
e

co
n

d
s

12195 103422 232994 323039 406895

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

Thresholded−hop2

(b) Node-based

Figure 8. Running times of weighted network summarization algorithms on 5 large biological networks, as a
function of the network size. The compression ratio is 0.8.

deviations are likely due to random e↵ects). The thresholded method is slightly super-
quadratic; when the compression ratio is big and the threshold T is small, the thresholded
method will iterate over almost all pairs of nodes. The semi-greedy algorithm has a much
more graceful behavior, even if slightly super-linear. However, in the node-based variant
(Figure 7(f)), the thresholded method is faster than the semi-greedy method. The reason
is that the semi-greedy method chooses one node pair from d2 node pairs (d is average
node degree), and it considers node and edge deletion for each node pair candidate. In
contrast, in the thresholded method, two nodes are randomly selected and they can be
directly merged if the distance is within the threshold, so the node and edge deletion is
just considered for one node pair.
Figures 7(a), 7(b), 7(d) and 7(e) together show that when the network size is large, the

semi-greedy algorithm becomes relatively attractive in the edge-based and path-based
settings: while the thresholded method remains clearly more accurate, the semi-greedy
method scales better to large networks. On the other hand, Figures 7(c) and 7(f) together
imply that the thresholded algorithm remains a good choice in the node-based variant
also when the network is large, having both a better accuracy and better scalability than
the semi-greedy algorithm.
We next consider scalability experiments with 5 larger biological networks, with 10,000

to 200,000 nodes and 12,000 to 400,000 edges. Based on the above results, we use the
semi-greedy algorithm in the edge-based variant and the thresholded algorithm in the
node-based variant, both with 2-hop optimization. Using a constant compression ratio
cr = 0.8, the summarization times for up to 400,000 edges are less than 7 minutes (in the
edge-based variant, Figure 8(a)) or half an hour (in the node-based variant, Figure 8(b);
with some fluctuation caused by di↵erent properties of the graphs).

6.5. Node-Based Summarization

6.5.1. E↵ect of Node Weights on Summarization Results

We now carry out experiments specific to the node-based summarization problem, and
start by assessing whether taking node weights into account during the generalization can
maintain more information related to high-weighted nodes. For this purpose, the node-
pair merge with deletion operation is applied on the 30 medium networks. Summarization
is performed in two alternative ways: (1) with node weights, and (2) without node weights.

20

January 2, 2017 Journal of Experimental & Theoretical Artificial Intelligence article

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

Compression ratio

d
is

t
/
p
a
ir
 o

f
n
o
d
e
s

(R
M

S
E

)

0.1 0.3 0.5 0.7 0.9

without−importance
with−importance

(a)

0
.0

0
0

0
.0

1
0

0
.0

2
0

Compression ratio

d
is

t
/
p
a
ir
 o

f
n
o
d
e
s

(R
M

S
E

)

0.1 0.3 0.5 0.7 0.9

Edge deletion

Node−pair merge

Node−pair merge with
 deletion

Combination

Standard normalized error

(b)

Figure 9. (a) Assessment of the e↵ect of node weights on the quality of the summarization. (b) E↵ectiveness of

operations.

The distance between the original and the resulting summarized networks is computed
using the node weights.
A comparison of the results (Figure 9(a)) to each other, and across the whole range of

summarization ratios tested, shows that results are clearly better when node weights are
considered during summarization. This indicates that taking node weights into account
can guide the process to a better summarization.

6.5.2. Comparison of Merge Operations

We next compare the two merge operations of the node-based variant, node-pair merge
and node-pair merge with deletion. In addition, two other operations serve as reference
points. The first reference operation is plain edge deletion. While it does not generalize
the network, it helps to make it simpler. Our aim here is to see how much generalization
helps over simple edge deletion. The second reference operation, called ‘combination’, is
actually a hybrid: in each iteration, this combination operation can either perform the
standard node-pair merge with deletion, or it can just delete a single edge (if there are
no useful merges).
The experiments are performed on the 30 medium networks by applying the brute-force

algorithm with the standard normalized error. The reference operation ‘combination’
performs best (Figure 9(b)), which is natural since it has the largest space of possible
operations at its disposal. However, the node-pair merge with deletion is virtually equally
good. They both perform better than the node-pair merge operation, especially when the
compression ratio is small. The results show that deleting some weak nodes and edges
in the merge actually produces a smaller error. Edge deletion alone performs relatively
poorly, as can be expected.

6.6. Case studies

We next describe three di↵erent case studies of weighted network summarization: sum-
marization as pre-processing for node clustering, automated morpheme discovery as a
summarization task, and summarization as a tool to analyze evolution of prokaryotic
species.

21

January 2, 2017 Journal of Experimental & Theoretical Artificial Intelligence article

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

Compression ratio

E
rr

o
r

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7 Thresholded−hop2

Semi−greedy−hop2
Random

(a) Edge-based

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

Compression ratio

E
rr

o
r

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7 Thresholded−hop2

Semi−greedy−hop2
Random

(b) Path-based

Figure 10. E↵ect of summarization on node clustering. Y -axis is the fraction of node pairs clustered inconsistently
in the original and the summarized network.

6.6.1. Case Study I: A Pre-processing Step for Clustering

This section shows an application of weighted network summarization as a pre-processing
step to reduce the network size for other computationally complex tasks on large net-
works. In the experiment, a node clustering algorithm is applied to both the original and
the summarized networks and we then compare the resulting clusterings. (To be exact,
in this experiment a clustering algorithm is run on the restored versions of the summa-
rized networks. Algorithms operating directly on the summarized networks are outside
the scope of this paper.) The focus of this test is on the practical e↵ect of summarization
on the results of the subsequent clustering phase.
The experimental data is the 30 medium networks, as each of them potentially contains

some cluster-like structure arising from the connections between three sets of genes. Since
the number of clusters in each network is already known, k-medoids clustering algorithm
with k = 3 is applied. The proximity between two nodes was computed as the product of
weights (probabilities) of edges on the best path between them. The di↵erence between
clusterings is measured by the fraction of node pairs that are clustered inconsistently in
the clusterings, i.e., assigned to the same cluster in one network and to di↵erent clusters
in the other network.
According to the results, the thresholded and semi-greedy summarization methods

can generalize a weighted network with little e↵ect on node clustering (Figures 10(a)
and 10(b)). The e↵ect is small especially in the path-based variant (Figure 10(b)), where
the inconsistency (or error) is less than 0.3 (the thresholded method) or 0.2 (the semi-
greedy method) for a wide range of compression ratios. The e↵ects of the thresholded and
semi-greedy versions are larger for the edge-based variant (Figure 10(a)), especially when
the compression ratio cr becomes smaller. This indicates that the path-based variant has
clear value over the plain edge-based one and motivates the additional complexity of
path-based summarization.
Surprisingly, the semi-greedy method performs best in this comparison with compres-

sion ratio cr 0.2. In the path-based variant even an aggressive summarization using the
semi-greedy method introduced relatively little changes to node clustering. In the other
extreme, clusters found in randomly summarized networks are quite di↵erent from the
clusters found in the original network: close to 50% of pairs are clustered inconsistently,
whereas a random clustering would have about 66% inconsistency.

22

January 2, 2017 Journal of Experimental & Theoretical Artificial Intelligence article

-s0.9

0.9

0.6

0.6

0.8

1

form-

contain-

exist-

help-

...

valu-

practic-

warehous-

provid-

...

nam-

defin-

attribut-

relat-

...

0.4
0.2

-ing

-ed

-e
-es

per-
-sons 1

0.6

0.6

-ive
-ual
-ions
-ion

-er

-ers

act-
predict-
interact-
...

mak-
chang-
min-
...

are-
-a 1

with-
-in 1

data-
-base 1

0.2

0.7

0.5

0.2

0.5

0.2

1

Figure 11. Partial generalization hierarchy of morphemes discovered in the the Wikipedia page for Data Mining.
Edges with weight 0.1 are not shown.

6.6.2. Case Study II: Linguistic Analysis Using Network Summarization

We now look at an application of network summarization in discovery and generalization
of morphological structures. The goal is to use network summarization to discover dif-
ferent types of morphemes in an English document. We illustrate this application with a
simple example, focusing only on word-starting segments (linguistically typically stems
or roots) and word-final segments (typically su�xes). For simplicity, in this example we
call them collectively stems and su�xes, respectively.
In our example, the Wikipedia page for Data Mining3 is used as the source document.

A set of potential stems and su�xes is obtained heuristically by splitting white-space
separated words of the document into a possible stem and su�x. Each stem and each
su�x is then considered a node. A stem and a su�x are connected with an undirected
edge if their concatenation is a word in the document. A single word may be represented
by several alternative splits into a stem and a su�x.
Now, the edge-based network summarization finds generalizations of stems and su�xes

(Figure 11). With compression ratio cr = 0.1 (clusters with solid lines), supernodes
correspond in particular to three di↵erent types of verb/noun stems. (1) One supernode
consists of stems such as practic-, valu-, warehous-, provid-, includ-, chang-, mak- (and 16
others), all strongly connected with inflectional endings -ing, -ed, -es, -e. Not only does
summarization find a natural generalization, the generalization also helps one predict
that practicing, valued, included, marketed etc. are possible words even though they do
not occur in the document. (Errors are made only with market- and four other stems that
cannot be paired with -es, -e). (2) Another supernode contains those verb/noun stems
that are not used as present participles or gerunds, i.e., they do not occur with -ing
in the document, but are strongly connected with inflectional endings -ed, -e, -es. This
supernode consists of stems defin-, nam-, attribut-, rul-, relat-, generat-, bas-, automat-.
(3) The third supernode contains stems of verbs/nouns that are typically used just with
the inflectional ending -s and that are dictionary forms of the word: form-, contain-,
exist-, help-, part-, decision-, require-, integrate-, mine-, use-. The supernode also has

3
http://en.wikipedia.org/wiki/Data mining

23

January 2, 2017 Journal of Experimental & Theoretical Artificial Intelligence article

weak edges with -ed, -ing.
In addition, there are separate supernodes for four words that the preprocessing step

split to parts: data-, -base; with-, -in; per-, -sons; and are-, -a; each with a very strong
self-edge and no links elsewhere. There is also one larger supernode consisting of less
representative stems and su�xes (see below).
At this level of generalization, su�xes -ed and -ing are not grouped together even

though that would seem linguistically appropriate. The reason is that some stems do
not occur with -ing in the document, as was described above, so keeping -ed, -ing sepa-
rate helps identify di↵erent groups of verbs/nouns based on their usage patterns. When
summarizing the network more, for example cr = 0.06 (clusters with dashed lines), the
verb/noun inflectional endings -ed, -ing, -e, -es are all grouped into one supernode, re-
flecting their similar linguistic roles. This generalization suggests that defin-, nam-, etc.
could occur with -ing even though they never did in the document, and this obviously is
a correct prediction.
A more fine-grained analysis is obtained, in turn, by using a higher compression ratio.

At cr = 0.2, the larger and somewhat mixed supernode mentioned above is split to
linguistically motivated supernodes. In particular, there are two groups of derivative
endings: -ers, -er and -ive, -ual, -ions, -ion, and the supernodes of verb/noun stems have
been refined accordingly to match their use with these endings. Stems chang-, mak-, min-,
market-, driv- are used to derive actors with -ers, -er (including a number of novel, valid
generalizations), and predict-, interact-, act-, collect-, associat-, mill- to derive adjectives
and nouns with endings -ive, -ual, -ions, -ion. Here, mill-ion is an obvious mistake, and
some of the combinations with -ual are not good, but otherwise there are again many
valid, novel generalizations.
These observations illustrate how network summarization can discover natural gen-

eralizations of morphemes based on their linguistic roles and usage patterns, and that
these generalizations help predict several unseen words. Summarizing morpheme struc-
tures is just one example of many potential applications involving text. A large number
of methods exist for producing graphs from text corpora and using them for various
natural language processing tasks (Nastase, Mihalcea, and Radev (2015)). A particu-
larly interesting task for network summarization is extractive document summarization,
more specifically, graph-based summarization (e.g.,Amancio, Nunes, Oliveira, and Costa
(2012); Baralis, Cagliero, Mahoto, and Fiori (2013); Gross, Doucet, and Toivonen (2014)),
where a summary of the graphical representation of a document potentially could be used
to extract a useful textual summary of the document.

6.6.3. Case Study III: A Tool for Understanding the Contingency of Evolution of
Prokaryotic Species

We next describe an already published biological application of node-based weighted
network summarization (Zhou, Toivonen, and King (2014)). The goal is to compare
thousands of inferred metabolisms in Archaea and Eubacteria to gain understanding of
how di↵erent pathways have evolved since their divergence.
To simplify computation, the metabolisms of each domain are integrated into one

weighted network, weighing nodes by their importance in the metabolic networks of that
domain. The weighted metabolic networks are analyzed using the node-based network
summarization technique, and our hypothesis is that comparing summarizations across
and between the two biological domains may help us understand the biodiversity and
evolution of prokaryote metabolisms. We calculated the average weight of the nodes
remaining in the summarized network and investigated the similarity of those summarized

24

January 2, 2017 Journal of Experimental & Theoretical Artificial Intelligence article

pathways. All these results provide evidence for the conservation of evolution. A brief
overview of the application is in Appendix D.

7. Related Work

Network summarization: Network summarization as presented in this paper is based
on merging nodes that have similar relationships to other entities, i.e., that are struc-
turally most equivalent — a classic concept in social network analysis (Lorrain and
White (1971)). There are other alternative definitions for structural similarity of nodes
(e.g. Jeh and Widom (2002); Leicht, Holme, and Newman (2006)). Each one makes their
own assumptions and works best when those assumptions hold in data. For instance,
the structural similarity measure of Leicht et al. (2006) is based on the assumption that
similar nodes tend to be linked. We specifically avoid that assumption since we are in-
terested in structural similarities also in cases where similar nodes are not linked. The
case study in morphology is a good example of this: inflectional endings -ing, -ed, -es, -e
are grouped together even though they are never linked to each other.
Structural equivalence and many other types of relations between (super)nodes have

been considered in social networks under block modeling (see, e.g., Borgatti and Everett
(1992)), where the goal is both to identify supernodes and to choose among the di↵er-
ent possible types of connections between them. Our approach (as well as the ones by
Navlakha et al. (2008) and Tian et al. (2008), see below) uses only two types of block
model relations: ‘null’ (no edges) and ‘complete’ (all pairs are connected), since they
are the only types that are directly represented by the existence or non-existence of a
superedge, without any other additional information.
Due to the increasing interest on network data, many algorithms have been proposed for

network summarization problems, including MDL-based algorithms (LeFevre and Terzi
(2010); Navlakha et al. (2008)), OLAP methods (Chen, Yan, Zhu, Han, and Yu (2008)),
SNAP (Tian et al. (2008)), and SCMiner (Feng, He, Konte, Böhm, and Plant (2012)) for
bipartite networks. All these methods aim to produce a highly compact representation
that is useful for data mining tasks, such as reducing the number of embeddings when
searching frequent subgraphs in a large graph (e.g. Chen et al. (2009); Zhu, Zhang, and
Qu (2013)), revealing biological modules (e.g. Navlakha, Schatz, and Kingsford (2009)),
identifying magnet communities (e.g. G. Wang, Zhao, Shi, and Yu (2012)), facilitating
queries (e.g. Fan, Li, Wang, and Wu (2012)), protecting privacy (e.g. Hay, Miklau, Jensen,
Towsley, and Weis (2008); Skarkala et al. (2012)), analyzing node roles in social networks
(e.g. Kate and Ravindran (2009)), understanding the structure of large networks (e.g.
Koutra, Kang, Vreeken, and Faloutsos (2014)), and online network analysis (e.g. Qu et
al. (2011)). However, none of the above works considers summarizing weighted networks.
Many of the algorithmic ideas we use are similar to those of Navlakha et al. (2008) and

LeFevre and Terzi (2010). Theirs and our methods are conceptually based on hierarchical,
agglomerative clustering and di↵erent techniques to implement it e�ciently. However,
we generalize all these approaches in three important and related directions: to weighted
networks, to long-range, indirect (weighted) connections between nodes, and to take node
weights into account.
Other related work includes compression of Web networks (e.g. Adler and Mitzen-

macher (2001); Apostolico and Drovandi (2009); Boldi and Vigna (2004); Randall, Stata,
Wiener, and Wickremesinghe (2002)): the goal is to produce as compact a representation
of a network as possible, in whatever format and usually not as a network, and use the
bit/edge rate as evaluation criterion. These studies focus on minimizing the cost per link

25

January 2, 2017 Journal of Experimental & Theoretical Artificial Intelligence article

in any representation rather than discovering generalizations of nodes and edges and
constructing a summarized network. We produce a representation that is a network, too,
and that lends itself e.g. to graphical visualization of the generalized structure of the
network.
In preliminary work on this topic (Toivonen et al. (2011)), the weighted network sum-

marization problem and its edge-based and path-based variants were introduced, and
some initial solutions were proposed. In the current paper, we introduce the node-based
network summarization variant, a novel problem motivated by real-world applications
(e.g. Zhou et al. (2014)), and integrate the three problem variants into one self-contained
paper. We additionally give the computational hardness of the problem, elaborate on the
problem definitions and derivations of bounds, propose a larger range of merge opera-
tions, perform more extensive experiments, present more applications, and discuss the
related research to a greater extent.

Node clustering/graph partitioning Closely related to our work but conceptually
subtly di↵erent are problems associated with node clustering and graph partitioning
(e.g. Elsner (1997); Fjällström (1998)). The goal is to find groups of nodes that are
more strongly connected to each other than to nodes in other groups. Graph partitioning
techniques can be used to summarize graphs, too, but in a limited way: clusters of
highly interlinked nodes can be treated as supernodes, connected by superedges (e.g.
Mueller, Haegler, Shao, Plant, and Böhm (2011)). In our terminology, such operations
specifically look for supernodes with strong self-edges (since nodes within clusters are
relatively strongly connected) and weak superedges between supernodes (since clusters
are relatively weakly connected). In contrast, we group together nodes that have similar
relations to other nodes, regardless of how nodes grouped together connect mutually to
each other.

Co-clustering: There is a host of work on bi-clustering or co-clustering (e.g. Dhillon,
Mallela, and Modha (2003); Shan and Banerjee (2008); X. Wang, Tang, Gao, and Liu
(2010)), which is a problem of simultaneously clustering rows (e.g., objects) and columns
(e.g., attributes) of a data matrix. Unlike traditional clustering algorithms that focus on
clustering one dimension of the matrix (the objects), co-clustering seeks blocks of rows
and columns that are inter-related, and the output is a set of row clusters and a set
of column clusters. On an abstract level, such simultaneous generalization of rows and
columns bears similarities to simultaneous generalization of nodes and edges in a network.
However, viewing the data matrix as a network, co-clustering methods essentially work
on bipartite networks where the nodes are divided into rows and columns. Our methods
work on networks in general, not only on bipartite networks. For more related work on
this topic, we refer to reviews of biclustering algorithms (Madeira and Oliveira (2004);
Tanay, Sharan, and Shamir (2005)).

Subgraph extraction and graph reduction: The goal of subgraph extraction is to
extract a subnetwork, of some limited size, that maximally connects given nodes. Usually,
a subgraph is extracted for nodes specified by users (e.g. Gilbert and Levchenko (2004);
Hintsanen and Toivonen (2008)), or it can be done for all pairs of nodes (e.g., Hauguel,
Zhai, and Han (2009); Toivonen, Mahler, and Zhou (2010)) by discarding edges (and
nodes). Subgraph extraction does not generalize nodes or edges, it only picks out a
subset of them. This is in contrast with the present paper where the goal is to discover
generalizations of nodes and edges.

26

January 2, 2017 Journal of Experimental & Theoretical Artificial Intelligence article

8. Conclusion

We have studied the knowledge discovery task of finding generalizations of nodes and
edges in weighted networks, formalized as weighted network summarization. Three vari-
ants of the problem are studied: one is edge-oriented, aiming to preserve edge weights;
another one is path-oriented, trying to preserve strengths of connections of up to � hops;
and the last one is node-oriented, with the goal of preserving more information related
to high-weight nodes. The problems were shown to be NP-hard. We derived bounds that
are useful in heuristic solutions, proposed such algorithms to solve the problem, and
gave experimental results. The use of weighted network summarization as a knowledge
discovery method was illustrated with three di↵erent case studies.
The following findings are concluded from the experimental studies. (1) Good general-

izations of nodes and edges can be found in a data-oriented manner, in the sense that they
can be used to summarize weighted networks quite a lot with little loss of information.
(2) Node weights can guide the summarization process to better preserve information re-
lated to nodes with high weights. (3) Weighted networks can be summarized e�ciently.
(4) The path-based weighted network summarization approach is promising as a pre-
processing step for computationally complex network analysis algorithms that rely more
on strengths of connections.
A useful property of the proposed methods, built into the problem definition, is that

the results are networks themselves. This gives two benefits. First, representing networks
as networks is user-friendly. Users can easily tune the abstraction level by adjusting the
compression ratio. This could also be done interactively to support visual inspection of
a network. Second, some graph algorithms can be applied directly on the summarized
network with reduced running time.
Network summarization is based on structural properties of the network; it follows that

networks of di↵erent topologies behave di↵erently when summarized. It is an interesting
question then to what extent di↵erent network types and models (Newman (2010)) could
be recognized and analyzed based on their summaries, compression ratios, number of
self-edges or supernode size distribution. For instance, dense communities tend to be
summarized into supernodes with strong self-edges. Erdös-Rényi random graphs tend to
be summarized poorly due to their lack of non-random structure. Investigation into the
applicability of network summarization to this kind of network analysis is a promising
topic for future work.
Several obvious avenues exist for future work. More e�cient algorithms deserve further

research, as the computational complexities of the algorithms are polynomial in |V |,
which limits their use for very large and dense networks. An interesting question regarding
the path-based variant is how to better optimize superedge weights for maximum path
lengths � larger than one. Another one is the e↵ect of � on results and running time;
we only considered values 1 and 1. Finally, it would be interesting to study the use of
network summarization as a preprocessing step for graph mining algorithms, extending
the work from our Case Study I in Section 6. It appears that algorithms working directly
on summarized representations could potentially be very e�cient.

Acknowledgements

The authors would like to thank the anonymous referees for several constructive com-
ments on the manuscript. The authors also thank Aleksi Hartikainen for his contributions
to the code.

27

January 2, 2017 Journal of Experimental & Theoretical Artificial Intelligence article

Disclosure statement

The authors have no conflict of interest to declare.

Funding

This work has been supported by the Academy of Finland (grants 118653, Algodan
Centre of Excellence, and 276897, CLiC), by the European Commission (FET grant
611733, ConCreTe), and by the Russian Science Foundation (grant No. 15-11-10032).

References

Adler, M., & Mitzenmacher, M. (2001). Towards Compressing Web Graphs. In Data Compression
Conference (pp. 203–212).

Alonso, S., Cabrerizo, F., Herrera-Viedma, E., & Herrera, F. (2009). h-Index: A Review Focused
in its Variants, Computation and Standardization for Di↵erent Scientific Fields. Journal
of Informetrics, 3 (4), 273–289.

Amancio, D. R., Nunes, M. G., Oliveira, O. N., & Costa, L. d. F. (2012). Extractive summarization
using complex networks and syntactic dependency. Physica A: Statistical Mechanics and
its Applications, 391 (4), 1855–1864.

Apostolico, A., & Drovandi, G. (2009). Graph compression by BFS. Algorithms , 2 (3), 1031–1044.
Baralis, E., Cagliero, L., Mahoto, N., & Fiori, A. (2013). GRAPHSUM: Discovering correlations

among multiple terms for graph-based summarization. Information Sciences, 249 , 96–109.
Boldi, P., & Vigna, S. (2004). The Webgraph Framework I: Compression Techniques. In Pro-

ceedings of the 13th International Conference on World Wide Web (pp. 595–602). ACM.
Borgatti, S. P., & Everett, M. G. (1992). Regular blockmodels of multiway, multimode matrices.

Social Networks, 14 , 91–120.
Chakravarty, A. K., Orlin, J. B., & Rothblum, U. G. (1982). A partitioning problem with addi-

tive objective with an application to optimal inventory groupings for joint replenishment.
Operations Research, 30 (5), 1018–1022.

Chen, C., Lin, C. X., Fredrikson, M., Christodorescu, M., Yan, X., & Han, J. (2009). Mining
Graph Patterns E�ciently via Randomized Summaries. Proceedings of the VLDB Endow-
ment , 2 (1), 742–753.

Chen, C., Yan, X., Zhu, F., Han, J., & Yu, P. (2008). Graph OLAP: Towards Online Analytical
Processing on Graphs. In Proceedings of the 8th IEEE International Conference on Data
Mining (pp. 103–112).

Dhillon, I. S., Mallela, S., & Modha, D. S. (2003). Information-Theoretic Co-clustering. In
Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (pp. 89–98).

Elsner, U. (1997). Graph Partitioning A survey (Technical Report SFB393/97-27). Technische
Universität Chemnitz.

Eronen, L., & Toivonen, H. (2012). Biomine: predicting links between biological entities using
network models of heterogeneous databases. BMC Bioinformatics, 13 , 119.

Fan, W., Li, J., Wang, X., &Wu, Y. (2012). Query Preserving Graph Compression. In Proceedings
of the 2012 ACM SIGMOD International Conference on Management of Data (pp. 157–
168).

Feng, J., He, X., Konte, B., Böhm, C., & Plant, C. (2012). Summarization-based Mining Bipartite
Graphs. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (pp. 1249–1257).

Fjällström, P.-O. (1998). Algorithms for graph partitioning: A survey. Linköping Electronic
Articles in Computer and Information Science, 3 (10).

28

January 2, 2017 Journal of Experimental & Theoretical Artificial Intelligence article

Gilbert, A., & Levchenko, K. (2004). Compressing Network Graphs. In Proceedings of the
LinkKDD workshop at the 10th ACM Conference on SIGKDD.

Gonalves, B., Perra, N., & Vespignani, A. (2011, 08). Modeling Users’ Activity on Twitter
Networks: Validation of Dunbar’s Number. PLoS ONE , 6 (8), 1-5.

Gross, O., Doucet, A., & Toivonen, H. (2014). Document summarization based on word asso-
ciations. In Proceedings of the 37th International ACM SIGIR Conference on Research &
Development in Information Retrieval (pp. 1023–1026).

Hauguel, S., Zhai, C., & Han, J. (2009). Parallel PathFinder Algorithms for Mining Structures
from Graphs. In Proceedings of the 9th IEEE International Conference on Data Mining
(pp. 812–817).

Haveliwala, T., Kamvar, S., Kamvar, A., & Jeh, G. (2003). An Analytical Comparison of Ap-
proaches to Personalizing PageRank (Technical Report No. 2003-35). Stanford InfoLab.

Hay, M., Miklau, G., Jensen, D., Towsley, D., & Weis, P. (2008). Resisting Structural Re-
identification in Anonymized Social Networks. Proceedings of the VLDB Endowment , 1 (1),
102–114.

Hintsanen, P., & Toivonen, H. (2008). Finding reliable subgraphs from large probabilistic graphs.
Data Mining and Knowledge Discovery , 17 (1), 3–23.

Jeh, G., & Widom, J. (2002). SimRank: A Measure of Structural-context Similarity. In Pro-
ceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (pp. 538–543). ACM.

Karp, R. M. (1972). Reducibility Among Combinatorial Problems. In Complexity of computer
computations (pp. 85–103).

Kate, K., & Ravindran, B. (2009). Epsilon Equitable Partition: A positional analysis method for
large social networks. In Proceedings of the 15th International Conference on Management
of Data.

Kimura, M., Saito, K., Nakano, R., & Motoda, H. (2010). Extracting influential nodes on a social
network for information di↵usion. Data Mining and Knowledge Discovery , 20 (1), 70–97.

Koutra, D., Kang, U., Vreeken, J., & Faloutsos, C. (2014). VoG: Summarizing and Understanding
Large Graphs. In Proceedings of the 2014 SIAM International Conference on Data Mining
(pp. 91–99).

Lamarche-Perrin, R., Demazeau, Y., & Vincent, J.-M. (2014). A Generic Algorithmic Framework
to Solve Special Versions of the Set Partitioning Problem. In IEEE 26th International
Conference on Tools with Artificial Intelligence, ICTAI 2014 (pp. 891–897).

LeFevre, K., & Terzi, E. (2010). GraSS: Graph Structure Summarization. In Proceedings of the
2010 SIAM International Conference on Data Mining (pp. 454–465).

Leicht, E. A., Holme, P., & Newman, M. E. (2006). Vertex similarity in networks. Physical
Review E , 73 (2), 026120.

Lin, C. X., Yu, Y., Han, J., & Liu, B. (2010). Hierarchical Web-Page Clustering via In-Page
and Cross-Page Link Structures. In Proceedings of the 14th Pacific-Asia Conference on
Advances in Knowledge Discovery and Data Mining (pp. 222–229).

Lorrain, F., & White, H. C. (1971). Structural equivalence of individuals in social networks.
Journal of Mathematical Sociology , 1 (1), 49–80.

Madeira, S. C., & Oliveira, A. L. (2004). Biclustering Algorithms for Biological Data Analysis:
A Survey. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 1 (1),
24–45.

Mamitsuka, H. (2012). Mining from protein–protein interactions. Wiley Interdisciplinary Re-
views: Data Mining and Knowledge Discovery , 2 (5), 400–410.

Mueller, N., Haegler, K., Shao, J., Plant, C., & Böhm, C. (2011). Weighted Graph Compression
for Parameter-free Clustering With PaCCo. In Proceedings of the 2011 SIAM International
Conference on Data Mining (pp. 932–943).

Nastase, V., Mihalcea, R., & Radev, D. R. (2015). A survey of graphs in natural language
processing. Natural Language Engineering , 21 (05), 665–698.

Navlakha, S., Rastogi, R., & Shrivastava, N. (2008). Graph Summarization with Bounded Error.
In Proceedings of the 2008 ACM SIGMOD International Conference on Management of

29

January 2, 2017 Journal of Experimental & Theoretical Artificial Intelligence article

Data (pp. 419–432).
Navlakha, S., Schatz, M., & Kingsford, C. (2009). Revealing Biological Modules via Graph

Summarization. Journal of Computational Biology , 16 (2), 253–264.
Newman, M. (2010). Networks: An introduction. Oxford university press.
Ota, M., Gonja, H., Koike, R., & Fukuchi, S. (2016, 06). Multiple-Localization and Hub Proteins.

PLoS ONE , 11 (6), 1-18.
Qu, Q., Zhu, F., Yan, X., Han, J., Yu, P. S., & Li, H. (2011). E�cient Topological OLAP on

Information Networks. In Proceedings of the 16th International Conference on Database
Systems for Advanced Applications (pp. 389–403).

Randall, K. H., Stata, R., Wiener, J. L., & Wickremesinghe, R. G. (2002). The Link Database:
Fast Access to Graphs of the Web. In Data Compression Conference (pp. 122–131).

Salton, G., Wong, A., & Yang, C. S. (1975). A Vector Space Model for Automatic Indexing.
Communications of the ACM , 18 (11), 613–620.

Shan, H., & Banerjee, A. (2008). Bayesian Co-clustering. In Proceedings of the 8th IEEE
International Conference on Data Mining (pp. 530–539).

Skarkala, M. E., Maragoudakis, M., Gritzalis, S., Mitrou, L., Toivonen, H., & Moen, P. (2012).
Privacy Preservation by k-Anonymization of Weighted Social Networks. In Proceedings of
the 2012 International Conference on Advances in Social Networks Analysis and Mining
(pp. 423–428).

Tanay, A., Sharan, R., & Shamir, R. (2005). Biclustering Algorithms: A Survey. Handbook of
Computational Molecular Biology , 9 , 1–20.

Tian, Y., Hankins, R. A., & Patel, J. M. (2008). E�cient Aggregation for Graph Summarization.
In Proceedings of the 2008 ACM SIGMOD International Conference on Management of
Data (pp. 567–580).

Toivonen, H., Mahler, S., & Zhou, F. (2010). A Framework for Path-Oriented Network Simplifi-
cation. In International Symposium on Intelligent Data Analysis (pp. 220–231).

Toivonen, H., Zhou, F., Hartikainen, A., & Hinkka, A. (2011). Compression of Weighted Graphs.
In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining (pp. 965–973).

Viana, M. P., Amancio, D. R., & Costa, L. d. F. (2013). On time-varying collaboration networks.
Journal of Informetrics , 7 (2), 371–378.

Wang, G., Zhao, Y., Shi, X., & Yu, P. S. (2012). Magnet Community Identification on Social Net-
works. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (pp. 588–596).

Wang, X., Tang, L., Gao, H., & Liu, H. (2010). Discovering Overlapping Groups in Social Media.
In Proceedings of the 2010 IEEE International Conference on Data Mining (pp. 569–578).

Zhou, F., Toivonen, H., & King, D. R. (2014). The Use of Weighted Graphs for Large-Scale
Genome Analysis. PLoS ONE , 9(3), e89618.

Zhu, F., Qu, Q., Lo, D., Yan, X., Han, J., & Yu, P. S. (2011). Mining Top-K Large Structural
Patterns in a Massive Network. Proceedings of the VLDB Endowment , 4 (11), 807-818.

Zhu, F., Zhang, Z., & Qu, Q. (2013). A Direct Mining Approach to E�cient Constrained Graph
Pattern Discovery. In Proceedings of the 2013 ACM SIGMOD International Conference
on Management of Data (pp. 821–832).

9. Appendices

Appendix A. Proof of the problem complexity.

We show the weighted network summarization problem to be NP-hard by a reduction
from the max-cut problem.

Theorem A.1: The edge-based weighted network summarization problem, the path-based

30

January 2, 2017 Journal of Experimental & Theoretical Artificial Intelligence article

v1

v2

v3

v4

v5

cut

1 1

1

1
1

1

(a) The original network G

and its max-cut

v1

v2

v3

v4

v5

supernode v01

supernode v02

superedge

(b) A summarized network
S that corresponds to the

max cut

(c) The restored network
res(S)

Figure A1. The correspondence between a cut and a summarization to two supernodes.

weighted network summarization problem, and the node-based weighted network summa-
rization problem are NP-hard.

Proof. In general, a problem is NP-hard if a special case of the problem is NP-hard.
Because the edge-based summarization problem is a special case of both the path-based
problem (when maximum path length � = 1) and the node-based problem (when I(u) =
1 for all nodes u 2 V and no nodes are deleted), by proving the NP-hardness of the edge-
based problem we also prove the two other problem variants. We prove the complexity
by reducing the max-cut problem, a well-known NP-complete problem (Karp (1972)), to
the edge-based weighted network summarization problem.
A cut partitions the nodes of a given network into two disjoint sets. All edges that

connect the two parts are cut, and the number of such edges is called the size of the
cut. A max-cut is a cut whose size is at least the size of any other cut. Given a network
G = (V,E), the max-cut problem is to find a max-cut of the network.
The reduction to the network summarization problem consist of two steps. (1) Es-

tablishing an identity between a cut and a summarized network that consists of two
supernodes. (2) Setting edge weights so that the distance between such a summarized
network and the original one corresponds to the size of the cut. Under the conditions to
be specified below, finding an optimal summarization solves the NP-complete max-cut
problem.

(1) A summarized network consisting of exactly two supernodes directly identifies a cut
into the two supernodes. For instance, the summarization in Figure A1(b) implies
the cut shown in Figure A1(a).
The size of the cut is determined by the number of edges between the two super-

nodes in the original network. Therefore, we require that a superedge exists between
the supernodes in the summarized network and will use it to compute the cut size
in the next step. Edges within supernodes are not relevant for the cut size, so we
do not allow self-edges in the summarized network.
In short, the summarized network we are looking for consists of two supernodes

and a superedge between them. The compression ratio of the network is then 1/|E|
(cf. Equation 1), so the same value can also be used as the maximum compression
parameter cr: finding a summarized network with compression ratio at most cr =
1/|E| and with no self-edges corresponds to finding a cut.

(2) Given such a summarized network, the size of the corresponding cut equals the
number of original edges between the two supernodes. We obtain the cut size as
the distance between the summarized and the original network as follows.
(a) We assign all edge weights in the original network to one, i.e., w(u, v) = 1 for

31

January 2, 2017 Journal of Experimental & Theoretical Artificial Intelligence article

all {u, v} 2 E (cf. Figure A1(a)).
(b) We assign an edge weight in the restored network to one if the edge is in the

cut (it is an original edge represented by the superedge), and to zero otherwise:
w0({u0, v0}) = 1 if and only if both {u0, v0} 2 E and {u0, v0} 2 E00 hold, otherwise
w0({u0, v0}) = 0 (cf. Figure A1(c)).
As a result, bigger cuts result in distances closer to zero while smaller cuts give

distances closer to
p

|E| (cf. Equation 3). Since the distance is monotone increasing
in the size of the cut, a summarization with the smallest distance corresponds to
the largest cut size.

As a summary, the max-cut problem can be reduced to the edge-based weighted net-
work summarization problem by setting cr = 1/|E|, disallowing self-edges in the summa-
rized network, and by setting the weights in the restored network as defined above. This
way of setting the weights is not identical to the operations we proposed in the paper,
but this choice has no impact on the hardness of the problem.
The reduction is in polynomial time, which implies that if we had a polynomial time

algorithm for the edge-based weighted network summarization problem, then we would
have a polynomial time algorithm for the max-cut problem and P=NP. We therefore
have that the edge-based summarization problem is NP-hard. As stated in the beginning
of the proof, this implies that the path-based network summarization problem and the
node-based network summarization problem also are NP-hard.

Appendix B. The algorithm of the node-pair merge operation.

The node-pair merge operation is specified in Algorithm 3. It takes a network and its
two nodes as parameters, and it returns a network where the given nodes are generalized
into one and the edge weights of the new supernode are set according to Equation 9.
Line 9 of the merge operation sets the weight of the self-edge for the supernode. In edge-
based network summarization, � = 1, and function W (x, y) returns the sum of weights
of all original edges between x and y (as presented in the summarized network) using
their mean weight Q1({x, y};Si�1). The weight of the self-edge is then zero and the edge
non-existent if neither u nor v has a self-edge and if there is no edge between u and v. In
the path-based variant, � =1, and function W (x, y) returns the connectivities between
x and y using Q1({x, y};S

i�1).

Appendix C. Complexity analysis of the algorithms.

We analyze the time complexity of the proposed algorithms, considering 2-hop optimiza-
tion. Let d be the maximum node degree in the original network.

Brute-force algorithm. The method considers O(d2|V |) node pairs in each of O(|V |)
iterations. Thus there are O(d2|V |2) merge operations and distance evaluations that
have to be done.
In the edge-based variant, the merge operation has complexity O(d) and distance re-

evaluation can be done in O(d) time. The total time complexity is then O(d3|V |2).
In the path-based variant, the complexity of the merge operation is also O(d). Com-

puting the single-source best paths takes O(|E| log |V |) if we use Dijkstra’s algorithm.
Thus, the total time complexity O(d2|V |2|E| log |V |).

32

January 2, 2017 Journal of Experimental & Theoretical Artificial Intelligence article

Algorithm 3 merge(u0, v0, S
i�1)

Input: Two nodes u0 and v0, a (summarized) network S
i�1 = (V

i�1, Ei�1, wi�1), and a
path quality function Q

�

(·).
Output: A summarized network S

i

= (V
i

, E
i

, w
i

) obtained by merging u0 and v0 in S
i�1.

1: V
i

 V
i�1; Ei

 E
i�1; wi

 w
i�1;

2: z0 {u0 [v0};
3: V

i

 V
i

\ {u0, v0} [{z0};
4: for all x0 2 V

i

s.t. u0 6= x0 6= v0, and {u0, x0} 2 E
i�1 or {v0, x0} 2 E

i�1 do

5: w
i

(z0, x0) = |u0|Q�({u0
,x

0};Si�1)+|v0|Q�({v0
,x

0};Si�1)
|u0|+|v0| ;

6: w
i

(u0, x0) = 0;w
i

(v0, x0) = 0;
7: E

i

 E
i

\ {{u0, x0}, {v0, x0}} [{{z0, x0}};
8: end for
9: w

i

({z0, z0}) = W (u0
,u

0)+W (v0
,v

0)+W (u0
,v

0)
|z0|(|z0|�1)/2

10: return S
i

= (V
i

, E
i

, w
i

)

function W (x, y):
11: if x 6= y then
12: return Q

�

({x, y};S
i�1)|x||y|;

13: else
14: return Q

�

({x, x};S
i�1)|x|(|x|� 1)/2;

15: end if

In the node-based variant, the merge operation has complexity O(d), distance re-
evaluation in the worst case can be done in O(|V |) time, and the time complexity of edge
deletion is O(d|V |). The total time complexity thus is O(d3|V |3).
Thresholded algorithm. In the worst case, the thresholded algorithm reduces to the brute-
force greedy method. To find a pair with ASSESS-value below the threshold, the al-
gorithm may consider at most O(d2|V |) pairs. For every pair considered the algorithm
computes ASSESS. Since we make less than |V | merges, we compute ASSESS at most
O(d2|V |2) times.
The time complexity of the thresholded algorithm for the edge-based variant is

O(d3|V |2). The time complexity for the path-based variant is O(d2|V |2|E| log |V |). In
the node-based variant, the time complexity is O(d3|V |3).
Semi-greedy algorithm. This semi-greedy algorithm is O(|V |) times faster than the brute-
force greedy method, since the optimization is performed in each iteration over a set of
nodes, not over all pairs of nodes. The resulting worst-case complexity in the edge-based
variant is then O(d3|V |). In the path-based weighted variant, the total time complex-
ity is O(d2|V ||E| log |V |). In the node-based weighted variant, the time complexity is
O(d3|V |2).
Random algorithm. The random algorithm only performs O(|V |) merge operations, so
time is spent on that instead of dmax(·)-value computations. The total complexity is
O(d|V |) in the edge-based variant, and is O(|V ||E| log |V |) in the path-based variant.
The time complexity for the node-based variant is O(d|V |2).

33

January 2, 2017 Journal of Experimental & Theoretical Artificial Intelligence article

Appendix D. A Tool for Understanding the Contingency of Evolution of
Prokaryotic Species.

We here describe an already published biological application of node-based weighted
network summarization (Zhou et al. (2014)). The goal of this work was to compare the
large-scale metabolisms in Archaea and Eubacteria, the two most fundamental branches
(domains) of life, to gain understanding of how di↵erent pathways have evolved since
their divergence.
Thousands of complete genomes have been sequenced. The aim was to use their inferred

metabolic networks to better understand evolution, by comparing the networks across the
two domains. In order to simplify the comparison of metabolisms of thousands of species,
we proposed to integrate the metabolisms of each domain into one weighted network,
weighing nodes by their importance in the metabolic networks of that domain. Three
proposed node weights are: taxonomic weights, summarizing the phylogenetic importance
of enzymes; isoenzymatic weights, summarizing the enzymatic variety of metabolism; and
sequence similarity weights, summarizing the sequence conservation of metabolism.
The weighted metabolic networks were analyzed by using the node-based network

summarization technique. Our hypothesis is that comparing summarizatios across and
between the two biological domains may help us understand the biodiversity and evolu-
tion of prokaryote metabolisms.
The average taxonomic weight of the nodes remaining in the summarized network were

calculated, over di↵erent compression ratios, in both domains. As expected, the average
enzyme weight increases with more summarization, which implies that the enzymes left in
the summarized network are more important to the domain. Then, the average taxonomic
weight in the summarized part shared by both domains was computed. The results show
that the average weight is higher than the average weight in the whole summarized
network, which implies that the shared enzymes are more common in both domains. We
finally investigated the similarity of those summarized pathways that are sub-parts of the
metabolism to the original ones. The results show that there are highly significant and
positive correlations of summarization results of pathways between domains in all three
types of weights. This means that the pathways that are important in one domain are also
important in the other domain. All these results provide evidence for the conservation
of evolution.

34

