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Background: There is increasing interest in the use of administrative data (incor-
porating comorbidity index) and stroke severity score to predict ischemic stroke
mortality. The aim of this study was to determine the optimal timing for the col-
lection of stroke severity data and the minimum clinical dataset to be included
in models of stroke mortality. To address these issues, we chose the Virtual In-
ternational Stroke Trials Archive (VISTA), which contains National Institutes of
Health Stroke Scale (NIHSS) on admission and at 24 hours, as well as outcome
at 90 days. Methods: VISTA was searched for patients who had baseline and 24-
hour NIHSS. Improvement in regression models was performed by the net
reclassification improvement (NRI) method. Results: The clinical data among 5206
patients were mean age, 69 ± 13; comorbidity index, 3.3 ± .9; median NIHSS at base-
line, 12 (interquartile range [IQR] 8-17); NIHSS at 24 hours, 9 (IQR 8-15); and death
at 90 days in 15%. The baseline model consists of age, gender, and comorbidity
index. Adding the baseline NIHSS to model 1 improved the NRI by 0.671 (95%
confidence interval [CI] 0.595-0.747) [or 67.1% correct reclassification between model
1 and model 2]. Adding the 24 hour NIHSS term to model 1 (model 3) im-
proved the NRI by 0.929 (95% CI 0.857-1.000) for model 3 versus model 1. Adding
the variable thrombolysis to model 3 (model 4) improve NRI by 0.1 (95% CI 0.023-
0.178) [model 4 versus model 3]. Conclusion: The optimal model for the prediction
of mortality was achieved by adding the 24-hour NIHSS and thrombolysis to the
baseline model. Key Words: Ischemic stroke—mortality—Charlson Comorbidity
Index—prognosis.
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Introduction

Headlines about hospital performances sometimes dom-
inate the front page of newspapers, with particular attention
around the issue of hospital mortality. Globally, admin-
istrators and hospital organizations are justifiably concerned
and are looking at different approaches to measure hos-
pital performance in the hope that better measurement
would reflect improvement in care. Mortality is often the
preferred outcome because of the ease of measurement
of this metric. Due to concerns with the use of raw mor-
tality data, the concept of standardized mortality ratio
has been used.1 The standardized mortality ratio is the
observed mortality divided by the expected mortality cal-
culated from data on comorbidity.1,2 This approach is
attractive because it uses routinely collected informa-
tion available in hospital administrative data.

Investigators from Get With the Guidelines-Stroke in
North America3 have shown that stroke severity mea-
sured using the National Institutes of Health Stroke Scale
(NIHSS) is a predictor of mortality from stroke in addi-
tion to comorbidity index. In that study, the timing of
the stroke severity collection was not specified other than
that it was based on the first recorded NIHSS score, judged
to be “as close to the admission as possible.”3 In the
absence of a strict definition of the time for NIHSS mea-
surement in this paper, this could either be from 1 hour
to several days later. It is unknown whether the timing
of measurement of stroke severity, or indeed other clin-
ical variables, influences the accuracy of prediction of
mortality. Further, it is also not known if other clinical
data (such as the use of recombinant tissue plasmino-
gen activator [rTPA]) would be useful in this regard. The
collection of such data is logistically difficult in real-
world clinical practice outside of randomized trials. To
address these issues, we chose the Virtual International
Stroke Trials Archive (VISTA) dataset, which contains data
on NIHSS score on admission and at 24 hours, as well
as outcome at 90 days.4

The aim of the present study was to determine the
optimal timing for collection of stroke severity data and
the minimum clinical dataset to be included in models
of mortality. Such analyses are important in setting the
boundary for the collection of the minimum dataset.

Methods

The VISTA archive contains data from completed ran-
domized clinical trials and registry of stroke patients
(http://www.vista.gla.ac.uk/).4,5 The VISTA archive con-
tains 8 subcommittees: Acute, Prevention, Rehabilitation,
Intracerebral Hemorrhage, Imaging, Plus, Endovascular,
and Cognition. Registry data and observational studies
are held in VISTA–Plus. The data from the current study
are from VISTA–Acute, which contains data from com-
pleted randomized clinical trials. The data are released

in a deidentified manner so that the trials and treat-
ment allocations are not known. This approach was used
to facilitate “novel exploratory analysis of data” via access
to a large volume of high-quality clinical trial data.5 It
was hoped that such pooling of data can be used to plan
for future clinical trials. For the present study, we first
submitted a proposal to the VISTA steering committee,
which took appropriate steps to ensure that the project
was not a duplication of existing or previously pub-
lished VISTA projects.6,7

We searched the VISTA archive for the following:
imaging data NIHSS score on admission and at 24 hours;
physiological variables (systolic blood pressure and blood
glucose level); demographic data (age, gender); stroke risk
factors and comorbidity (including but not limited to hy-
pertension, diabetes, atrial fibrillation, degree of liver
impairment, and degree of renal impairment); throm-
bolysis treatment with rTPA—Alberta Stroke Program Early
CT Score (ASPECTS) score on CT scan; clinical data; and
outcome of death within 90 days of stroke.

Charlson Comorbidity Coding in VISTA

The Charlson Comorbidity Index is derived from ad-
ministrative coding of hospital data.8 It can be conceived
as a weighted index of comorbidity conditions. For
example, stroke is assigned a weighting of 1, but hemiple-
gia is assigned a weighting of 2. In the present study,
the variable diabetes was given a comorbidity coding of
2 because stroke represents “diabetes with end organ
damage.” To code motor deficit for the Charlson
Comorbidity Index, we used an NIHSS score equal to
or greater than 6 (the minimum NIHSS score in these
trials was 6). Weighting of complex illness may vary; for
example, severe liver disease is assigned a weighting of
3, whereas acquired immune deficiency syndrome and
metastatic cancer have a weighting of 6. Patients with
these conditions are generally not included in clinical trials
of stroke and are under-represented in VISTA. In this anal-
ysis, the comorbid conditions were summed together.

Statistical Analysis

We performed logistic regression analyses in several
stages to derive the optimal model that requires the
minimum number of inputs.

Model 1 = age + male gender + Charlson Comorbidity
Index

Model 2 = model 1 variables + admission NIHSS score
Model 3 = model 2 variables + 24-hour NIHSS score
Model 4 = model 3 variables + rTPA
Model 5 = age + 24-hour NIHSS score
Model 6 = model 4 + other physiological variables, risk

factors, and imaging data, including systolic blood pres-
sure, serum glucose level, hypertension, atrial fibrillation,
and ASPECTS score.
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Assessing Model Discrimination

The areas under the receiver operating characteristic
curve were used to assess how well the models discrim-
inate between those who died and those who survived
(at days 7, 30, and 90).

Model Calibration

We performed this by using the Hosmer–Lemeshow
goodness-of-fit test,9 and the Nagelkerke generalized R2.10

A model is well calibrated when the Hosmer–Lemeshow
goodness-of-fit test shows no difference between ob-
served and expected outcome or P value approaching 1.
A high generalized R2 value suggests a well-calibrated
regression model.

Measuring Improvement in Regression Models

Due to the low sensitivity of areas under the curve
(AUCs) for detecting differences in discrimination between
models, the net reclassification improvement (NRI) and
integrated discrimination improvement (IDI) have been
proposed as more sensitive metrics of improvement in
model discrimination.11 The NRI can be considered as a
percentage reclassification for the risk categories and the
IDI is the mean difference in predicted probabilities
between 2 models (constructed from cases with disease
and without disease). The NRI and IDI scores are ex-
pressed here as fractions and can be converted to
percentage by multiplying 100. The continuous NRI and
IDI were performed using PredictABEL (R Statistical Foun-
dation, https://www.r-project.org/).12

Results

The demographic data (Table 1) among 5206 patients
were as follows: mean age 68.8 ± 12.5 with 55% males,
54.5% ever-smokers, 73.6% with hypertension, 23% with
diabetes. The comorbidity score (based on a baseline NIHSS
score ≥6) was 4.2 ± .84. The proportion of subjects re-
ceiving rTPA was 41.0%. The mean NIHSS score was
12.9 ± 5.3 at baseline and 10.5 ± 7.2 at 24 hours (the pro-
portion of patients with an NIHSS score of 20 or greater
was 16.1%). Death within 7 days occurred in 4.6% of sub-
jects and increased to 10.6% at 30 days and 15.1% at 90
days. In this analysis, only 1807 of the 5206 subjects had
an ASPECTS score recorded with a mean ASPECTS score
of 9.8 ± .8 (among these patients with ASPECTS score avail-
able, the onset to treatment time was 3.5 ± .8 hours).

Univariable analyses showed statistically significant re-
lationships between mortality and NIHSS score at baseline
and at 24 hours, age, systolic blood pressure, atrial fi-
brillation, and the use of rTPA. The multivariable models
for mortality and their associated AUC, Hosmer–
Lemeshow goodness-of-fit, and generalized R2 are displayed
in Table 2. The baseline model (model 1) incorporating
age and comorbidity index had an AUC of .695 (95% con-

fidence interval [CI] .674-.716). There is improvement in
the AUC with successive change to the model (see Table 2).
The optimal model at 90 day was model 4 (age, male
gender, comorbidity index, NIHSS score at 24 hours and
rTPA). The AUC for this model was .830 (95% CI .814-.846).

Adding baseline NIHSS score to model 1 improved the
NRI score to .671 (95% CI .595-747) (or 67.1% correct re-
classification as 1 move from model 1 to model 2). Adding
the 24-hour NIHSS term to model 1 (model 3) im-
proved the NRI score to .929 (95% CI .857-1.000) (or 92.9%
correct reclassification as 1 move from model 1 to model
3). The measurement of improvement between models
3 and 4 was statistically different: the NRI score was .100
(95% CI .023-.178) and the IDI score was .003 (95% CI
.00008-.005) (Table 2). In terms of calibration, there was
a similar improvement in the Hosmer–Lemeshow
goodness-of-fit test and generalized R2 values (see Table 2).
The plots of these receiver operating characteristic curves
are displayed in Figure 1.

Mortality Time Points

The statistically significant covariates for models 1-6
were similar for day 30 and day 90, the exception being
that the covariate rTPA was not statistically significant
for mortality at day 30 (Table 3). The AUC for model 1
was .684 (95% CI .66-.709). The optimal model at day 30
was model 3 (age, male gender, comorbidity index, and
NIHSS score at 24 hours). The AUC was .847 (95% CI
.830-.864). The measurement of improvement between
models 2 and 3 was statistically different: the NRI score
was .802 (95% CI .718-.887) and the IDI score was .095
(95% CI .079-.110) (Table 3).

The covariates for early mortality at day 7 were dif-
ferent from those above (Table 4). The AUC for model 1
was .620 (95% CI .581-.659). The optimal model at day 7

Table 1. Patient demographics

N Mean

Age 5206 68.8 ± 12.5
Gender 5206 .55 ± .5
rTPA 5206 .41 ± .49
AF 5206 .26 ± .04
ASPECTS 1807 9.8 ± .8
Baseline NIHSS score 5206 12 (IQR 8-17)
NIHSS score, 24 h 5206 9 (IQR 5-15)
mRS score (>2) 5206 .45 ± .49
Comorbidity 5206 4.20 ± .84
Mortality, day 7 5206 .05 ± .21
Mortality, day 30 5206 .11 ± .31
Mortality, day 90 5206 .15 ± .36

Abbreviations: AF, atrial fibrillation; ASPECTS, Alberta Stroke
Program Early CT Score; IQR, interquartile range; mRS, modified
Rankin Scale; NIHSS, National Institutes of Health Stroke Scale;
rTPA, tissue plasminogen activator.
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Table 2. Models of mortality at 90 days

Predictors OR (95% CI) P value

Discrimination

HL
(P value)

Comparison of models

AUC (95% CI)
Generalized

R2

Comparison of
models

Continuous NRI
(95% CI) IDI (95% CI)

Model 1 Comorbidity 1.357 (1.243-1.481) <.001 .695 (.674-.716) .09 .106
Age 1.047 (1.038-1.057) <.001
Gender 1.236 (1.044-1.463) .01

Model 2 Comorbidity 1.341 (1.223-1.471) <.001 .772 (.754-.791) .5 .213 Model 2–Model 1 .671 (.595-.747) .079 (.069-.089)
Age 1.040 (1.031-1.050) <.001
Male Gender 1.370 (1.148-1.636) <.001
Baseline NIHSS score 1.151 (1.132-1.1690 <.001

Model 3 Comorbidity 1.328 (1.204-1.465) .01 .828 (.812-.844) .8 .316 Model 3–Model 1 .929 (.8573-1.000) .167 (.152-.183)
Age 1.040 (1.029-1.051) <.001 Model 3–Model 2 .767 (.694-.839) .088 (.076-.100)
Male gender 1.359 (1.128-1.639) <.001
NIHSS score, 24 h 1.161 (1.146-1.176) <.001

Model 4 Comorbidity 1.3178 (1.194-1.454) <.001 .830 (.814-.846) .9 .319 Model 4–Model 1 .919 (.8477-.991) .170 (.154-.186)
Age 1.040 (1.029-1.051) <.001 Model 4–Model 2 .716 (.643-.789) .091 (.079-.103)
Male gender 1.367 (1.134-1.649) <.001 Model 4–Model 3 .100 (.023-.178) .003 (.0008-.005)
NIHSS score, 24 h 1.163 (1.148-1.178) <.001
rTPA .72 (.596-.874) <.001

Model 5 NIHSS score, 24 h 1.161 (1.146-1.176) <.001 .824 (.808-.840) .9 .306 Model 5–Model 2 .572 (.496-.648) .079 (.067-.092)
Age 1.054 (1.044-1.063) <.001 Model 5–Model 3 −.132 (−.268-.004) −.004* (−.007-.00002)
Male gender 1.319 (1.095-1.588) .004 Model 5–Model 4 −.193 (−.329-−.057) −.005 (−.009-−.0007)

Model 6 Comorbidity 1.279 (1.155-1.416) <.001 .831 (.814-.847) .8 .321 Model 6–Model 1 .919 (.848-.991) .172 (.156-.188)
Age 1.042 (1.032-1.053) <.001 Model 6–Model 2 .709 (.635-.782) .093 (.080-.105)
Male gender 1.367 (1.133-1.649) .001 Model 6–Model 3 .134 (.056-.211) .004 (.002-.007)
NIHSS score, 24 h 1.161 (1.146-1.176) <.001 Model 6–Model 4 .136 (.059-.214) .002* (−.0001-.003)
rTPA .729 (.602-.883) <.001 Model 6–Model 5 .326 (.247-.405) .013 (.008-.018)
BSL 1.035 (1.005-1.065) .02

Abbreviations: AUC, area under the curve; BSL, blood sugar level; CI, confidence interval; HL, Hosmer–Lemeshow goodness-of-fit test; IDI, integrated discrimination improvement; NIHSS,
National Institutes of Health Stroke Scale; NRI, net reclassification improvement; OR, odds ratio.

*Not significant.
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was model 3 (age, male gender, comorbidity index, and
NIHSS score at 24 hours). The AUC was .863 (95% CI
.841-.885). The measurement of improvement between
models 2 and 3 was statistically different: the NRI score
was .874 (95% CI .749-.999) and the IDI score was .093
(95% CI .069-.116) (Table 4).

Discussion

In the present study, we demonstrate that the use of
a stroke severity score measured at 24 hours (rather than
at admission) vastly improves the prediction of isch-
emic stroke mortality at 90 days over and above the
predictive ability of age, gender, and comorbidity index.
By examining the contribution of other clinical vari-
ables, our study supports the concept of a limit on the
minimum set of clinical variables that need to be col-
lected for valid prediction of stroke mortality.

The findings on the importance of a stroke severity score
such as NIHSS score in the prediction of mortality are
consistent with those observed by North American
investigators.3,13,14 The novel finding from our study is
that 24-hour stroke severity is superior to admission se-
verity in prediction and may be the best time point for
obtaining the NIHSS score for accurately predicting mor-
tality. In clinical practice, this time point corresponds to
patients who may often be suspected to have a mild stroke
on admission declaring their true clinical outcome at 24-
48 hours. This result resonates with the dynamic concept
of the ischemic penumbra after stroke and, in some cases,
the fate of the ischemic penumbra may only be final-
ized at 24-48 hours.15,16

Related to the above issues is the effect of timing for
measuring mortality on covariates such as stroke sever-
ity and comorbidity index. The American Heart
Association/American Stroke Association had proposed
the use of 30-day mortality as the optimal time point for
measuring mortality, which coincided with the time point
proposed by the Centers for Medicare & Medicaid
Services.17 This shorter time point compared to clinical
trial is practical and based on the desire to avoid loss
to follow-up.17 Our findings (Table 3) suggest that the set
of predictors used for mortality at day 90 is also valid
for day 30.

A strength of our study was the use of a variety of
complimentary metrics of discrimination and calibra-
tion techniques to evaluate the impact of adding new
variables to the regression models. The effect of this can
be seen in the comparison between models 3 and 6, where
the AUC appeared similar but the NRI and IDI scores
were different. This strategy was premised by the low
sensitivity of AUC and the high sensitivity of NRI and
IDI for detecting changes between models.18 This strat-
egy showed that the use of rTPA is not discarded from
the model if the choice is based on continuous NRI and
IDI. The addition of serum glucose level in model 6 re-
sulted in higher NRI score compared to model 4 but not
for the IDI score. We can propose that the minimum dataset
would include comorbidity, age, male gender, stroke se-
verity at 24 hours, and rTPA.

There are limitations to our approach. The sample we
used was obtained from clinical trials and does not fully
reflect the breadth of patients usually seen in hospitals.
Those excluded from clinical trials may have milder or
more severe strokes. The estimation of the comorbidity
index in this analysis is also not exactly the same as that
derived from usual hospital administrative datasets. Pa-
tients in stroke clinical trials do not have significant
complex comorbidity such as severe liver failure, termi-
nal malignancy dementia, or human immunodeficiency
virus.8 Further, patients involved in acute stroke trials are
more likely to come from tertiary hospitals rather than
smaller community hospitals. The VISTA archive con-
tains data on patients included in randomized clinical trials
but not characteristics (such as NIHSS score) of patients
excluded from these trials.5 These limitations are likely
to underestimate the true impact of stroke severity and
other comorbidities on the prediction of mortality. Despite
these limitations, the VISTA dataset has the advantage
of having a carefully phenotyped comorbidity and other
clinical variables (NIHSS score on admission and at 24
hours), whereas hospital administrative datasets may be
plagued by inaccuracy in coding of comorbidity and lack
other clinical variables that were available for this anal-
ysis. The NIHSS score used here was collected prospectively
as part of randomized clinical trials. The data are reli-
able as the vast majority of users of the NIHSS are certified
from a single certification window.19 The video-based

Figure 1. The different regression models and their associated ROC curves
are on display. Abbreviations: BSL, blood sugar level; NIHSS, National
Institutes of Health Stroke Scale; ROC, receiver operating characteristic;
rTPA, recombinant tissue plasminogen activator.
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Table 3. Models of mortality at day 30

Predictors OR (95% CI) P value

Discrimination

HL
(P value)

Comparison of models

AUC (95% CI)
Generalized

R2

Comparison of
models

Continuous NRI
(95% CI) IDI (95% CI)

Model 1 Comorbidity 1.320 (1.194-1.460) <.001 .684 (.66-.709) .0284 .081
Age 1.0446 (1.034-1.056) <.001
Gender 1.207 (.995-1.464)* .06

Model 2 Comorbidity 1.292 (1.163-1.436) <.001 .783 (.763-.803) .368 .199 Model 2–Model 1 .728 (.642-.815) .077 (.0661-.088)
Age 1.036 (1.025-1.047) <.001
Male gender 1.349 (1.101-1.654) .04
Baseline NIHSS score 1.166 (1.144-1.188) <.001

Model 3 Comorbidity 1.265 (1.131-1.416) <.001 .847 (.83-.864) .216 .313 Model 3–Model 1 1.020 (.940-1.010) .171 (.153-.190)
Age 1.036 (1.024-1.048) <.001 Model 3–Model 2 .802 (.718-.887) .095 (.079-.110)
Male gender 1.298 (1.047-1.610) .02
NIHSS score, 24 h 1.174 (1.157-1.191) <.001

Model 4 Comorbidity 1.260 (1.125-1.410) <.001 .848 (.831-.864) .154 .314 Model 4–Model 1 1.022 (.942-1.101) .172 (.154-.191)
Age 1.036 (1.024-1.048) <.001 Model 4–Model 2 .755 (.670-.840) .095 (.080-.111)
Male gender 1.30131.04921.6140 .02 Model 4–Model 3 .041 (−.05-.132) .0008 (−.0007-.002)
NIHSS score, 24 h 1.175 (1.158-1.193) <.001
rTPA .824 (.663-1.024) <.001

Model 5 NIHSS score, 24 h 1.175 (1.158-1.192) <.001 .843 (.826-.861) .292 .307 Model 5–Model 1 .957 (.8749-1.039) .166 (.147-.185)
Age 1.047 (1.036-1.058) <.001 Model 5–Model 2 .629 (.540-.718) .089 (.073-.105)
Male gender 1.266 (1.022-1.568) .03 Model 5–Model 3 −.146 (−.239-−.054) −.005 (−.009-−.002)

Model 5–Model 4 −.244 (−.336-−.151) −.006 (−.010-−.002)

Abbreviations: AUC, area under the curve; CI, confidence interval; HL, Hosmer–Lemeshow goodness-of-fit test; IDI, integrated discrimination improvement; NIHSS, National Institutes of Health
Scale; NRI, net reclassification improvement; rTPA, recombinant tissue plasminogen activator.

Model 6 is the same as model 4 and is not shown.
*Not significant.
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Table 4. Models of mortality at day 7

Predictors OR (95% CI) P value

Discrimination

HL
(P value)

Comparison of models

AUC (95% CI)
Generalized

R2

Comparison of
models

Continuous NRI
(95% CI) IDI (95% CI)

Model 1 Comorbidity 1.333 (1.156-1.537) <.001 .620 (.581-.659) .388 .0276
Age 1.017 (1.003-1.031) <.001
Gender 1.012 (.767-1.334)* .9

Model 2 Comorbidity 1.287 (1.110-1.492) <.001 .78 (.753-.807) .171 .1374 Model 2–Model 1 .774 (.649-.898) .044 (.035-.053)
Age 1.007 (.993-1.021)* .4
Male gender 1.118 (.841-1.487)* .4
Baseline NIHSS score 1.176 (1.146-1.207) <.001

Model 3 Comorbidity 1.234 (1.055-1.442) <.001 .863 (.841-.885) .119 .2678 Model 3–Model 1 1.118 (1.007-1.228) .136 (.112-.161)
Age 1.004 (.989-1.018)* .6 Model 3–Model 2 .874 (.749-.999) .093 (.069-.116)
Male gender .987 (.730-1.334)* .9
NIHSS score, 24 h 1.185 (1.162-1.207) <.001

Model 4 Comorbidity 1.228 (1.051-1.435) <.001 .863 (.841-.885) .188 .269 Model 4–Model 1 1.111 (1.000-1.222) .138 (.113-.163)
Age 1.003 (.989-1.019)* .7 Model 4–Model 2 .812 (.684-.939) .093 (.071-.118)
Male gender .989 (.732-1.336)* .9 Model 4–Model 3 .027 (−.106-.160) .001 (.0005-.003)
NIHSS score, 24 h 1.186 (1.164-1.209) <.001
rTPA .805 (.593-1.093)* .2

Model 5 NIHSS score, 24 h 1.186 (1.164-1.209) <.001 .860 (.838-.882) .067 .2635 Model 5–Model 1 1.110 (.999-1.220) .133 (.108-.158)
Age 1.014 (1.001-1.027) .04 Model 5–Model 2 .705 (.575-.835) .089 (.065-.113)
Male gender .963* (.713-1.299) .8 Model 5–Model 3 −.132 (−.2868-.004)* 0-.004* (−.0074-.0004)

Model 5–Model 4 −.193 (−.329-−.057) −.005 (−.009-.00007)

Abbreviations: AUC, area under the curve; CI, confidence interval; HL, Hosmer–Lemeshow goodness-of-fit test; IDI, integrated discrimination improvement; NIHSS, National Institutes of Health
Scale; NRI, net reclassification improvement; rTPA, recombinant tissue plasminogen activator.

Model 6 is the same as model 4 and is not shown.
*Not significant.
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training through this window has been shown to be re-
liable across multiple venues.20 In the present study, rTPA
is a predictor of mortality at 90 days but not at 7 or 30
days. We have not drawn a strong conclusion on rTPA
having an effect on mortality from this finding as the
current study was not a randomized control trial. We are
reassured that investigators similarly described a recent
meta-analysis of thrombolytic trial reduction in mortal-
ity at 90 days.21 In that meta-analysis, death within 7 days
was higher in the rTPA arm and was attributed to
hemorrhage.21

Conclusion

We have determined the optimal time for measuring
NIHSS stroke severity and the minimum clinical dataset
for reliably predicting stroke mortality. Further, these pre-
dictors change depending on the time point for measuring
mortality. Using stroke severity in addition to time-
appropriate covariates such as age, gender, and comorbidity
will enable more valid comparisons of hospital
performance.
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