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Abstract—This paper presents a modified bee colony optimiza-
tion (BCO) by pattern reduction to reduce the computation time,
called BCOPR. Although BCO was robustness optimization, but
likes the other algorithm for solving optimization problem, BCO
has many reduncation computations on its convergence process,
as a consequence, it will more computation time. Two operators
are developed to BCOPR in this paper. The first one BCOPRI, is
used to cut down the computation time by avoiding performing
the same process on the preferred edge. On the second operator,
BCOPR2, a bee is possible to duplicate the best previous-iteration
tour if her first stage tour is the same with part of the best
previous-iteration tour. In addition, likes BCO original, BCOPR
is also use local search to enhance the quality solution. To
evaluate the performance of the proposed algorithm, BCOPR
uses some various benchmarks of TSP. Our experimental results
show BCOPR reduce computation time as well as achieve good
solution.

Keywords-Bee colony optimization, Pattern Reduction, Travel-
ling Salesman Problem, Computation Time

I. INTRODUCTION

Since a few decades until now, research of travelling sales-
man problem (TSP) is still interesting for researches. It can
be seen that many methods are still developed to solve that
problem. Some methods might be new, modified, or embedded
with the other methods. The aim of TSP is to find the shortest
path of a sales who visits every city exactly once and fi-
nally return to start one. In single-solution-based metaheuristic
algorithms, there are such as simulated annealing [1], tabu
search [2][3][4]. In swarm or population intelligence, there
are genetic algorithm [5], ant colony optimization [6][7][8],
particle swarm optimization [9][10], bee colony optimization
[12][13](14][15][16].

Now days, two research groups are inspired by the behavior
of bee, and use bee colony optimization (BCO) for their
proposed methods. One BCO was introduced by Lucic and
Teodrovic [12][13][14], the other one was introduced by Wong
et al. [15][16]. Though they have the different algorithm to
describe BCO, but both of their algorithms were naturally
inspired by the intelligent foraging behavior of honey bees.
This paper follows the first BCO model which is introduced
by Lucic and Teodrovic. Swarm behavior bee also encourages
generate the other algorithm such as bee system, artificial bee
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colony (ABC), marriage in honey bee optimization (MBO),
etc. Besides solving TSP, swarm bee also uses to solve vehicle
routing problem [17], numerical optimization [ 18], data mining
[19], job shop scheduling [20], clustering [21], and so forth.

According to our observation, there are some redundant
computation on BCO before converging the result. BCOPR
offers an algorithm to cut the redundant computation time in
order to get efficient bee colony optimization. In BCO, each
bee moves from one node (nectar) to other nodes with a certain
probability, The probability for a bee to move from one node
i to another node j, is affected by number of bees that visited
the edge. The higher number bee visits one edge, the higher
probability for a bee to choose that edge. So, it is possible
one edge to be a preferred edge, because in most iterations,
the edge always be visited. However, a bee still considers the
other edges by determine all possibility. In fact, at last, the
preferred edge is highly probably chosen.
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Fig. 1. (a) The path constructed by bee Bl, (b) The path constructed by
bee B2, (¢) The path that constructed by bee B1 and B2, and (d) Edge €23 is
indicated as preferred edge.

As illustrated on Fig.l (a) and Fig.l1 (b), bee Bl and B2

travel on nodes 1-2-3-4-5 , 2-3-5-1-4 respectively. It shows
on Fig.l (c) that edge 23 is travelled both of bee. For edge
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€23 is travelled more than the other, edge €23 is indicated as
preferred edge that might be part of solution. Nevertheless,
in next step, if one bee is on position node 2, a bee has to
repeat to compute the probability of all nodes. Though at last,
it can be predicted that a bee chooses node 3. So, it will be
efficient if an edge, indicated as a preferred edge, is chosen
automatically without computing the other probability edge.
On Fig.1 (d), when a bee on position node 2, she is expected
to move automatically to node 3, because edge ¢23 is indicated
as preferred edge than the others (€21, e24, and e25).

The redundant process also occurs on performing stage-
tour. In each iterations, the best of bee’s tour will be kept.
In our investigation, in many times, if the bee performs one
stage sequence (sub-tour) is same with part sequence of the
best previous-iteration tour, bee tends to follow the retain of
the best previous-iteration tour. In other words, the bee copies
the sequence of the best previous-iteration tour. However, the
bee has to travel and also takes the process. It can be indicated
as a redundant process that also takes computation time.

The remainder of the paper is organized as follow. The
Related work is described on section II. Section III provides
a detailed description of the proposed algorithm. Experiment
results is presented in Section IV. Conclusion is given in
Section V.

II. RELATED WORKS

Bee colony optimization (BCO) [12][13][14][15][16] is
designed to create the multi agent system (colony of artificial
bees) to solve the combinatorial optimization problems. Appli-
cation of BCO for TSP aims to iteratively find the shortest tour.
On BCO method, a bee starts as an unemployed forager that
has no knowledge about the food (nectar). Bees start explore
from one nectar to the others nectars, visit one stage, before
back to their hive. This step is called forward pass (FP). One
tour consists number of stages which is a collection of a certain
number of nectars. On TSP model, a nectar can be represented
as a city, while stage is a part of complete tour or sub-solution.
In [13] Teodrovic described, probability of bees chosen city j
from i to be visited by the k-th bee during stage u+/ and
iteration z defined Eq.1 as follow :

(:_m‘ui E:r i A
S eam
ZIF.-\';‘U-.-:]“ ! i)
i=gy.(u, 2), 7 € Ni(u, ), Yk, u, 2

—ady

k(. ) —
Pi(u+1,2) =

0 Otherwise,

where :

h=max(z-b,1),

i,j = node indexes (i,j=1,2,..,|N|),

d;; = length of link (i),

k = bee index (k = 1,2,..., B),

B = the total number of bees in the hive,
z = iteration index (z = 1, 2,..., M),

M = maximum number of iteration,

5 = number of nodes visited by every artificial bee during one
stage,

u = stage index (u=1.2,...[ [(N-1)| /s ]).

n;(h) = total number of bees that visited link (i,1) in h-th
iteration,

b = memory length,

gi(u,z) = last node that bee k visits at the end of stage u in
iteration z,

Ni(uz) = set of unvisited nodes for bee k at stage u in
iteration z (in one stage bee will visits s nodes; we have
[N&(u, 2)| = |N| - us),

a = input parameter given by analyst.

From Eq.l, the greater distance between city i and j leads
to the lower probability to move from city i to j. In other hand,
the greater number of iterations z is, the higher the influence
of distance. It explains the addition of iteration makes a bee
has less freedom in the exploration solution. As a notion, not
all bees start foraging in the first stage. Some of them start on
the second stage, third stage, etc. Once a bee is on, she will be
active until the end of iteration. During the tour, bees choose
each cities is based on probability.

After performing one stage, the bees return to the hive
in order to unload the nectar and store it then. It is called
backward pass (BP). On BP, the bees are divided into 3 types

Scout : retain the previous stage and continue next stage
without interacting the others.

Follower : abandon the food source (previous stage) and will
follow the others by see the recruiter’s waggle dance.
Recruiter : retain her previous stage and will recruit the
follower bee to her way.

To categorize these three of type bees, BCO uses Eq.2 that
determines the probability that the bee k in next stage (u+1/)
use the same partial tour in stage u in iteration z as described
below :

Lyt —min e iy oy (Lelus))

P.lu+l,z)=e" us . (2)

where L. (u, z) is the length of partial route that is discovered
by bee k in stage u in iteration z.

Eq.2 shows that the greater probability is, the more likely
for a bee to be a recruiter. Since the probability of best path
bee will be 1 (P, = 1), she will be a absolutely recruiter.
During a stage, if a bee fails to be a recruiter, she will be a
follower. Clearly, by using Eq.2, the shorter tour drives to be a
recruiter bee. Follower bee will change her previous tour and
follow the recruiter bee’s tour. A recruiter bee whose tour is
shorter, tends to be followed by one follower bee.

To illustrate the concept of BCO more clearly, Fig.2, Fig.3,
and Table I, show a sample sequence step in one iteration. For
instance, number of bee B=6, number of city N=10, number
of stage s=3 with first stage, second stage, third stage whose
number cities 4, 4, 3 respectively. Fig.2, Fig.3 show only three
bee performance until FP2 on second stage, while Table 1




presents all of bee performance as well as the completed tour.

Backward Pass 1

Forward Pass 1

(@) ib)

Fig. 2. (a) Forward Pass(FP1),(b) Backward Pass (BP1) on first stage (stagel).

TABLE 1
SAMPLE PROCESS BCO oN TSP

Bee | Fw Pass Be Fw Pass Be Fw Pass

(FP1) Pass (FP2) Pass (FP3)

stagel BP1 stage? BP2 slaged
Bl 1,234 S 1.2,3.4-5.6,7.8 B 2.8.7.106,5,3.9-4,1,2
B2 9.6,7.4 F 5. -7.9.6.4 5 5.3.2.1.7.9,6,4-10.8,5
B3 5,3,2,1 R 5.3.2,1-8.104.7 R 5.3.2.1.8104,7-945
B4 2.8.7.10 R 2.8.7,10-1,39.5 F 53,.2,1,8,7,6,10-9,4,5
B5 §.1,3,7 F 5,3,2,1-8,7,6,10 R 5.3.2.1.8,7,6,10-4,9.5
B6 0,0,0.0 F 28.7.10-6.539 R 28.7.106,539-4,12

Bold means the best tour of all bees i cach slage.

At first on first stage (stagel) as shown on Fig.2 (a), each
bees explores 4 cities (stagel) in Forward Pass (FP1). Bee
Bl travels 1-2-3-4, B2 travels 9-6-7-4, B3 travels 5-3-2-1.
A bee chooses one node to other nodes by using Eq.1. The
exploration other bees can be seen completely on Table 1.

In each backward pass, bees divide into 2 main types
scout and the others (recruiter and follower). For instance,
probability to be a scout is 10 %. On backward pass 1 (BP1),
B1 is chosen as a scout bee (S). Using Eq.2, since B3 gets the
best on first stage tour, she will be a absolutely recruiter (R).
Using also Eq.2, suppose B4 also chosen as a recruiter (R).
B2, B3, are categorized as follower bees (F). B6 is not active
on first stage, and start be active on second stage as a follower
(F).

On BP1 process, as recruiter bees, B3, B4 perform waggle
dance to give information about their tour. The length of
waggle dance is determined by the quality of food source.
Longer dance means better food source. On TSP problem,
quality of food source represents length of tour which the
shorter tour is better. The shorter tour has a great probability
to choose by the follower bee on the next stage.

In that sample on second stage (stage2), Forward Pass
(FP2) can be shown on Fig.3.

Bl : as a scout, she continues her previous stage without
considering her friends tour. B1 continues on second stage
from node 4 and moves to node 5-6-7-8 in a row by using

Eql.

Fig. 3. Forward Pass (FP2) on second stage (stage2)

B2 : as a follower, she changes her previous stage tour and
continues by follow the B3’s previous stage-tour. Therefore,
she continues on second stage from node 1 and moves to
nodes 7-9-6-4 in a row by using Eql.

B3 : as a recruiter, she retains her previous stage and
continues on second stage from node 1 and moves to nodes
8-10-4-7 in a row by using Eql.

B4 : as a recruiter, she retains her previous stage and
continues on second stage from node 10 and moves to nodes
1-3-9-5 in a row by using Eql.

B5 : as a follower, she changes her previous stage tour and
continues by follow the B3’s previous stage-tour. Therefore,
she continues on second stage from node 1 and moves to
nodes 8-7-6-10 in a row by using Eql.

B6 : starts to be active and follower, she follows B4's
previous stage-tour and starts on second stage from node 10
and moves to nodes 6-5-3-9 in a row by using Eql.

After travelling 4 nodes on second stage (totally 8 nodes
from first stage), all bees return back to hive to interact each
other. Processing of BP1 that has been mentioned above are
repeated on BP2 and continue performing FP3 on third stage
(or until finish the tour). At last in this sample the best tour is
found on bee B4.

III. PROPOSED ALGORITHM
A. The Concept

There are two things that the possibility of having redundant
process BCO.
First, solution is built on the path preferred by bee. The edge
that is often visited by bee may become part of solution. It is
possible after perform some iterations, bees on node i tends to
choose same node in next iteration. However, in choosing that
node, a bee performs the same calculation process that takes
longer time. In more detail, the distance between nodes i and
J is computed repeatedly. Process to select destination each
nodes with their probability must be done whereas possibility
get node j as a destination is very high or limit 1. Therefore,
this algorithm offers one role. If edge eij is identified as edge
preferred, then once a bee on position node i, she decides




acclamation move to node j without considering the other
nodes.

Second, solution (the best tour) of each iteration will be stored.
In each iteration, one bee, in the first stage, travel on some
cities. It is possible that her first stage-tour will be same as a
part tour of the best previous-iteration tour. Furthermore, if the
bee continues her next stage-tour until the end, she tends to
follow the best previous-iteration tour. However, the bee has
to perform the same process such as choosing cities in next
stage.

In this paper, we will employed a fast method to enhance the
performance of BCO, called pattern reduction (PR). The basic
idea of PR is to eliminate redundant computation for making
efficient process. PR technique was first implemented to reduce
computation time for k-means clustering [22]. PR was also
successfully implemented on some optimization problems,
such as Genetic Algorithm on TSP, ACO on TSP [23][24]. The
main method PR is detect the redundant process and compress
it to single process in order to reduce computation time. In this
research, PR is embedded into BCO to reduce computation
time.

B. The Algorithm BCOPR

As mentioned concept above, BCOPR. involves two operator
BCOPRI and BCOPR2 to solve the redundant process on
BCO. Both of operators have 2 important steps:

1) Detection Step: On operator 1, BCOPR1 detects the
high frequently edge visited. This detection is implemented
by setting the number of threshold values &, of each edge.
Each bee travels one edge eij will increase number visiting of
edge eij, namely §;;. If one edge was visited at least number of
threshold value (§;; = dg) then the edge will compressed. As
a notion, values of d; should be given as fair values. If &y is
too small, BCOPR1 tends to generate local optimal, contrary
the large 4y makes the computation time still be high.

On operator2, BCOPR2 will record bee’s tour in the first
stage. BCOPR2 will check whether her first stage-tour equals
with part of the best previous-iteration tour. If they are equal,
a bee will not continue her tour, but only copies the best
previous-iteration tour. For instance, if there is one of the best
tour until z iteration when the solution is 5-3-2-1-8-7-6-10-9-
4-5. In iteration z+1, if a bee in the first stage was 2-1-8-7, she
need not continue to next stage process. It is because her first
stage-tour equals with part of the best previous-iteration tour.
BCOPR only detects forward sequence. So, for above example,
if a bee in her stage-tour was 7-8-1-2, it is not indicated
as a part of of the best previous-iteration tour. In addition,
this method only detects the first stage tour. Detecting on the
second, third, fourth, etc stage-tour takes longer time, whereas
benefit to skip some nodes will be less. Therefore, it is more
efficient, if this method only detects the first stage-tour.

2) Compression Step: On operatorl, if BCOPRI detects
edge eij that already visited several certain times, then one
time a bee in node i, BCOPRI automatically chooses node j
without consider the other node. Therefore, equation of 1 will
be modified as follows :
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Based on this equation, if d;; = dp, a bee on node i,
BCOPRI1 forces to choose node j and ignores considering the
other nodes. d; can be set as constant*number bee. In this
research constant will be 5. By choosing automatically one
node, BCOPR1 eliminates some process such as determine
distance edges as well as probability computation.

1. For each iteration
2. For each stage st

3. For each bee
/Perform operator BCOPR1

4. Bee chooses some cities on stage st by using Eq 3
/fPerform operator BCOPR2

5. If st=1, check tour of stage 1, whether match with part of

the best each previous iteration tour.

6. If match, PR2+Yes, otherwise PR2+No.

i If (PR2=Yes) copy best tour previous iteration

8. If (PR2=No) do

9. Categorized bee to be a Scout or (Recruiter and Follower)

10. Determine the length of bees stage tour

11. End if (PR2=No)

12. End for bee

13. On each bees, If (PR2=No)

14. Categorized bee to be a Rec or Fol by Eq 2

151 All bees Recruiter and Follower will exchange information,
bee Follower tends to follow the Recruiter bee tour.

16. End if (PR2=No)

17.  End for stage

18, Get the best tour iteration by comparing the all bees tour.

19. End for iteration

20. Get the best tour by comparing the best of all iteration.
21. The best tour performs 2-opt

22. Find the best tour

Fig. 4. Algorithm BCOPR

On operator 2, BCOPR2, a bee that her first stage-tour is
same with part of the best previous-iteration tour, the bee will
stop her process in next stage-tour. Her total tour duplicates
the best previous-iteration tour. In other words, she skips the
second stage, third stage, etc until last stage tour. So, using this
operator, a bee probably produces one complete tour though
she only takes one stage-tour. For above example, a bee which
travels first stage-tour 2-1-8-7 has a complete tour 5-3-2-1-
8-7-6-10-9-4-5 without performing all stages. Algorithm of
BCOPR is described on Fig.4.




IV. EXPERIMENT RESULTS
Experiments are conducted to evaluate the performance of
BCOPR. The performance is compared with original BCO
or without PR. To know the performance of each operators,
BCOPR1 and BCOPR2 also are tried to compare BCO.
All algorithms are executed 10 times on each seven dataset

original author. On small dataset (eil51, st70), BCO is able to
find the optimal value (best known solution/BKS) while the
average achievement worse 1.1-1.8% than the BKS. In other
datasets, although not achieving optimal quality, BCO differs
only 2.1-7.6% of BKS.

TABLE IV
benchmark TSP [11]. The experiments focus 2 aspects : quality RESULTS BY OBTAINED BCO FOR 10 DIFFERENT RUN
solution (Q} and duration compul:ation time (T) Dataset BKS | QBCO- | AQBCO QBCO | AQBCO- | TBCO-
The quality solution is given in terms of best solution : best | best(f) avg ave(%) | ave (s)
: : els] 36 426 0| @307 [ 12.67
(Qbest), and average solution of 10 experiments (Qavg). 570 &5 75 ] B87.2 8 067
QBCO, QI, Q2, Q12 represent the result for quality solution el 629 642 207 | 6549 4l 74,10
: a280 3579 7643 75 | 26008 i3 1265
for BCO w;thoi.lt‘ PR, only operator BCOPRI, only operator bl | 308 | 5 =1 sa089 53 T30
BCOPR2,combining operator BCOPR1 and BCOPR2 respec- u724 | 41910 | 43633 A1 | 44847 70 | 22081
tively either for best case (best) or average case (avg). Term LD | eeig | GEesul D | s B | #mS
AQ for quality solution shows the difference/error to best
known solution (BKS). TABLE V
The duration of computations time is determined on seconds RESULTS OBTAINED BY OPERATOR BCOPR1 FOR 10 DIFFERENT RUN
(s) and given in terms of average of 10 experiments (Tavg). Dataset ol- R01 Ql A0I T | AT
TBCO, T1, T2, T12 represent the duration of computation time — ';;‘6' "“““t"“{; - ;‘I‘-'g ""'*]‘r’z*; 2“;3] ‘]“9’ "'"’B] 1"“-"
for BCO without PR, only operator BCOPRI, only operator 70 578 AT eE0E 315 370 o
BCOPR2, combining operator BCOPR1 and BCOPR2 respec- eil}’% ’22? if]’; 2?;:;; ;-29 609—?’? i;
tively for case (avg). Term AT for the duration of computation pc::mz 095 T35 54013 63; 540 o]
shows the difference ferror to TBCO (avg). w7z | #4196 545 | a8z 78 | 16907 31
Furthermore, Table II shows setting of various parameters gl | wisea | Sw) | epived | Wl | GO9S | BS
of proposed algorithm. Number stage (s) on table II is set
such that number node of each stage is 15 to 25. That TABLE VI
number is considered as a fair number. If number stage is RESULTS OBTAINED BY OPERATOR BCOPR2 FOR 10 DIFFERENT RUN
too small, frequency of interaction becomes higher and takes Datasel Qz- AQ2 @2 Q2 T2 | AT2
more computation time. Contrary if number stage is too high, = ';‘;: M““%r: = "‘"'gr::‘;’; ne (15,: ""Eli%}
frequency of interaction becomes lower and makes opportunity S0 570 059 | 6876 187 355 16
to discard the bad stage-tour be lower. eil101 644 238 | 6494 3.24 64.2 15
2280 2636 26 | 26827 01 1085 17
TABLE II pebdd2 | 53731 581 | 54264 686 | 4119 fE)
w724 | 43994 397 | 4436 581 | 18854 7
PARAMETER SETTING OF BCOPR ALGORITHM ST003 | 377430 e b o
Parameter Symbol | Set value
number of bee B 20
paramater a lorl250r L5 TABLE VII
teration M 100 RESULTS OBTAINED BY BCOPR (COMBINE OPERATOR
““‘“";"3‘ length b 22;0 S —— BCOPR1+BCOPR2) FOR 10 DIFFERENT RUN ON SEVEN DATASET
number stage 5 eil51=3 ; st » eill0l= BENCHMARK
a280=19; peb441=25; u724=30
1002240 Datset | QI2- | AQIZ QiZ | aqiz Tz | ATIZ
Dossiblity 10 be scout FI)U %' best | hesti%) avg | avg(%e) | avg(s) | avg (%)
151 126 0| 4307 L.l 992 2
threshold preferred edge | do 5 *number bee e;tm B30 074 5916 746 0.0 )
Sl 637 127 | 6498 331 542 37
: : s e 4280 2681 395 | 27158 530 861 a7
Table 111 summarizes the experiment reg;u]t of BCO origi T R T e e 44
nal that was introduced by PLucic and friends [12][13][14]. w24 | 42954 749 | 44970 730 | 4800 | 49 |
P.Lucic and friends use the real type to determine the length pIO02 | 278694 .15 | 280404 802 | 27402 30

tour.

TABLE III
RESULTS BY OBTAINED BCO ORIGINAL (WITH 2-OPT HEURISTIC)
Dataset | Optimal Q- AQ- Q- AQ-
hest | best(%) avg | avg(%)
eil51 4289 4311 0.53 4338 1.14
st70 677.1 678.0 0.22 6843 1.06
eillol 640.2 642 0.35 663.6 397
ali0 2586.8 | 2740.6 595 | 27848 7.66

Table 1V shows the summarize result BCO that is built
by author. It doesn’t show the significant difference with the
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Table V shows the performance only operator BCOPRI.
It shows that best solution of BCOPRI (Qlbest) is able to
achieve nearly the results of BCO. In fact, on eil51, eil101 can
match BCO exactly with the difference 0%, 2.07% respectively
from BKS. However on that datasets, operator BCOPR1 can
reduce computation time 13%, 23%. In general, the quality
of degraded BCO between 0-7.2% of the BKS, while the
operator BCOPR1 degraded between 0-7.62% of the BKS. Yet,
BCOPRI can reduce computation time 13-33%. The greatest
difference in quality occurs in benchmark u724 : Q1lbest which




differs 5.45% of the BKS, whereas QBCObest differs 4.11%.
It only takes different 1.34%. However in this case, BCOPRI
achieves the benefit time until 31%.

Table VI shows the performance only operator BCOPR2.
On eil51, BCOPR2 can achieve BKS value as well as BCO’s
performance. Quality of BCOPR2 is worse 0-7.54% than BKS.
In other hand, quality of BCO is worse 0-7.2% than BKS. So, it
can be said, BCOPR2 gets a little loss quality from BCO, says
0-1.7%. On average case, operator BCOPR2 outperforms BCO
on eil51, eil101, a280, and u724, although differs only below
1%. However, for all of experiments, BCOPR2 can reduce
computation time range 14-23%.

Table VII shows the performance BCOPR. BCOPR com-
bines two operators, BCOPR1 and BCOPR2 as shown Fig.4.
In some cases, quality of BCOPR outperforms BCOPRI and
BCOPR2, but in other cases, quality of BCOPR1 or BCOPR2
outperforms BCOPR. Nevertheless, BCOPR leads significantly
on duration computation time than BCOPR1 and BCOPR2.
Compared with the BCO, the quality of BCOPR differs with
BKS on range 0-8.02%, while BCO produces a different
quality between (0-7.2% of the BKS. BCOPR losses quality
on range 0-1.5% compared to BCO where the difference 1.5%
occurs on pl002 in best case. On this case, quality of BCOPR,
BCO gets the difference 7.15%, 5.6% of the BKS respectively.
Yet, BCOPR reduces compuatation time until 50%. On some
cases,qaulity of BCOPR equals BCO, such as eil51 on best and
average. Even, BCOPR leads BCO on eill01, u724 (best case),
and eill0l (average case). From the above results, BCOPR
reduces computation time significantly on range 28-50% from
duration process of BCO.

V. CONCLUSION

BCOPR was successful in achieving the goal of decreasing
computing time. BCOPR involves two operator BCOPRI and
BCOPR2 to detail process two method pattern reduction.
Based on the result of the experiment, each of operator
BCOPR were successfully applied on some variants dataset
of benchmark TSP. BCOPRI, emphasizes removing the re-
dundant process on the basis of path frequented. It can reduce
time on range 13 to 33% . BCOPR2, emphasizes removing
the process of the next stage tour. It can reduce time on
range 14 to 23%. Merging BCOPR1 and BCOPR2, called
BCOPR, reduces time significantly on range 28 up to 50%.
Most of the algorithm with pattern reduction decreases a little
quality solution, says about 0.1 to 2%, nevertheless reduces
computation time significantly, says until 50%. In fact, on
some cases, algorithm with pattern reduction has a better
solution than the original BCO without pattern reduction.
The result shows clearly that many of the computation are
redundant on the converge process of BCO. BCOPR succeeses
in cutting redundant process thereby reducing computation
time significantly.
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