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Summary 

Human tissue transglutaminase (TG2) catalyses transamidation and deamidation reactions 
through a nucleophilic cysteine residue (CYS277). TG2 activity was found to increase in 
celiac disease, cystic fibrosis, neurodegenerative disorders and cancer. For this, TG2 has 
received much focus as a target for drug discovery and many inhibitors have been designed 
and tested. The most important of these have an electrophilic warhead that reacts covalently 
with CYS277 resulting in an irreversible inhibition of TG2. The work presented in this thesis 
aimed at the development of computational methods that could aid in the design and testing 
of potential TG2 inhibitors. 3-D models of TG2 active site were developed starting from 
published X-ray crystal structures by means of docking experiments with known irreversible 
inhibitors followed by molecular dynamics (MD) simulations. The models were validated by 
additional docking runs and MD simulations involving a larger set of compounds with a range 
of activities against TG2. The models performed reasonably well in the validation process 
and were, therefore, chosen as active site models of TG2. No straightforward correlation 
could be found to rank the compounds based on their activities. This was the rationale for 
the next stage of the work, where the mechanism of inhibition of TG2 by two classes of 
inhibitors was studied. The covalent-bond-forming events for the inhibitors bearing 
acrylamide warheads were followed by applying quantum mechanics/molecular mechanics 
(QM/MM) umbrella sampling MD simulations to the reaction. The produced activation 
energies correlated well with the biological activities for the inhibitors and a mechanism with 
an oxyanion intermediate was proposed. The mechanism of inhibition by compounds having 
sulfonium ion warheads was investigated using reaction path experiments, where a 
transition state was first identified and verified and was used as a starting point for the 
reaction path. The activation energies again produced a reasonable correlation with 
biological activity and an SN2 mechanism was suggested for this inhibition. 

On a different level, two allosteric inhibitors proposed in the literature were docked into an 
allosteric site in TG2 predicted by a collaborator from the University of Strathclyde, and 
docking complexes were subjected to accelerated MD (aMD) to inspect whether the binding 
would induce significant conformational changes in TG2. The binding of one inhibitor in the 
predicted site caused bending in TG2 structure that could be a starting event for complete 
TG2 inactivation. The other inhibitor seemed to produce a similar effect when bound to the 
original GDP binding site. An even more profound conformational change was reported due 
to the binding of GDP in its original binding site. aMD, for the simulation times used (400-
1000 nanoseconds), was able to represent some large conformational changes in TG2 
brought about by the binding of allosteric inhibitors. To sum up, the work presented in this 
thesis was successful in applying various computational approaches to the analysis of 
inhibition of TG2 with irreversible and allosteric inhibitors. 
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1 General Introduction 

This chapter of the thesis gives an introduction to the transglutaminase enzyme family, 

human tissue transglutaminase, its biological functions, regulation and role in disease states, 

the available classes of inhibitors and their mechanisms with example structures, and the 

different computational techniques applied throughout the course of this work including 

molecular dynamics and docking. 

1.1 Transglutaminases 

Human tissue transglutaminase (TG2) belongs to the family of transglutaminases (Martin et 

al. 2013). The family has an EC code of 2.3.2.13 and the other names given to the enzymes 

include protein-glutamine gamma-glutamyltransferase, fibrinoligase, glutaminylpeptide 

gamma-glutamyltransferase, polyamine transglutaminase and TGase (Gasteiger et al. 2003) 

(http://enzyme.expasy.org). The enzymes, in general, are involved in the post-translational 

modifications of proteins (Martin et al. 2013). 

Transglutaminases act as aminoacyltransferases, where they catalyse the calcium ion-

dependent transamidation and deamidation reactions of the side chain of a peptidyl 

glutamine residue (Siegel & Khosla 2007). The amide group of a glutamine side chain acts 

as an acyl donor (electrophile) and a primary amine from another protein acts as an acyl 

acceptor (nucleophile) in transamidation reactions leading to the formation of an isopeptide 

bond between the side chains of the two residues on the two proteins. In deamidation 

reactions, water acts as the nucleophile and the result is the conversion of glutamine to 

glutamate. Both reactions proceed with the liberation of ammonia and the formation of an 

intermediate thio-ester bond between glutamine amide and an active site cysteine residue of 

the transglutaminase. The intermediate acts the initial electrophile (Figure 1-1). This catalytic 

activity is inhibited by GTP (Badarau, Collighan, et al. 2013; Siegel & Khosla 2007). 

Cross-linked proteins resulting from transglutaminase catalysis strengthen the tissues 

against degradation by chemicals and by proteolytic enzymes, since the bond that forms 

during transamidation reaction is an iso-peptide bond, rather than a peptide bond that is 

sensitive to proteolysis. The structures are also insoluble (Pinkas et al. 2007; Candi et al. 

1998). Therefore, the resultant proteins contribute to the stabilisation of hair, skin and blood 

clots (Badarau, Collighan, et al. 2013). 

The members of the transglutaminase family are distributed in various tissues of the body 

and within these tissues, they may be located inside the nuclei, in the cytoplasm or in the 

http://enzyme.expasy.org/
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extracellular space. Their deficiency or increase may be associated with various pathological 

conditions. A summary of the locations, biological functions and the associated pathological 

conditions for the transglutaminases is presented in Table 1-1. 

 

Figure 1-1: Reactions catalysed by transglutaminases. 

All the enzymes mentioned in Table 1-1 are involved in catalysing the formation of complex 

protein structures through transamidation reaction shown in Figure 1-1, with the exception of 

band 4.2. The latter is located in the membrane of the erythrocytes and has an alanine 

residue instead of the active site cysteine, making it useless with this type of catalysis. Band 

4.2 contributes to maintaining the shape of erythrocytes through mechanical support (Odii & 

Coussons 2014). Another point to mention regarding Factor XIIIA is that this is the active 

form of Factor XIII. The activation occurs in response to high calcium ion concentrations 

(Muszbek et al. 2011). 

1.2 Tissue Transglutaminase 

Tissue transglutaminase or TG2 is probably the most important member of the 

transglutaminase family due to its widespread distribution in the tissues of human body and 

its involvement in a variety of disease states (Badarau, Collighan, et al. 2013). This is the 

reason why TG2 was the focus of this thesis. The following sections will include more 

detailed information about TG2, its biological functions and substrates, its biochemical 

structure, its role in disease states and some of its established inhibitors. 
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Transglutaminase Other names Location Biological 
function 

Associated 
pathology 

TG1 
Keratinocyte TG, 
particulate TG, 

TGK 

Keratinocytes 
and squamous 

epithelia. 
Cytosolic and 

membrane 

Cell envelop in 
squamous 

epithelia and 
differentiating 
keratinocyte 

Mutations cause 
Lamellar ichthyosis 
(Odii & Coussons 
2014; Candi et al. 

1998) 

TG2 

Liver TG, tissue 
TG, endothelial 
TG, erythrocyte 

TG 

In many tissues, 
in the membrane, 

cytoplasm, 
nucleus, 

extracellular 

Apoptosis, cell 
survival 

signalling, cell 
differentiation, 

matrix 
stabilization, 
endocytosis 

Increased activity 
causes 

Neurodegenerative, 
autoimmune, 

malignant diseases 
(Facchiano et al. 

2006; Odii & 
Coussons 2014) 

TG3 
Epidermal TG, 
hair follicle TG 

Keratinocytes, 
corneocytes, hair 

follicles, 
cytoplasm 

Differentiation of 
hair follicles 

Loss may cause 
thinner hair (John 
et al. 2012; Odii & 
Coussons 2014) 

TG4 
Prostate TG, 

TGP 
Prostate gland, 

extracellular 

Reproduction 
and fertility in 

rodents (Cho et 
al. 2010) 

Increased activity 
recorded in 

prostatic cancer 
(Jiang et al. 2013) 

TG5 TGX, type 5 TG 

Mainly in female 
reproductive 

system, 
keratinocytes, 

cytoplasm 

Keratinocyte 
differentiation 

Increased activity in 
hyperkeratotic 

ichthyosis and in 
psoriasis (Odii & 
Coussons 2014; 

Candi et al. 2002) 

TG6 TGY, type 6 TG 

Testis, lungs, 
brain, unknown 

cellular 
distribution 

CNS 
development, 
motor function 

Spinocerebellar 
ataxias, 

polyglutamine 
diseases (Odii & 
Coussons 2014; 

Wang et al. 2010; 
Guan et al. 2013) 

TG7 TGZ, type 7 TG 
Mainly testis and 

lungs 
Unknown 

Unknown 
(Kuramoto et al. 

2013; Odii & 
Coussons 2014) 

FXIIIA 

Factor XIII A, 
fibrin stabilising 

factor, 
fibrinoligase, 

plasm TG 

Platelets, 
placenta, 

astrocytes, 
macrophages, 

heart 

Wound healing, 
bone growth, 
maintaining 
pregnancy, 
improving 
vascular 

permeability 
(Muszbek et al. 

2011; Odii & 
Coussons 2014) 

Deficiency causes 
impaired wound 
healing, abortion 

and severe 
bleeding tendency 

(Muszbek et al. 
2011; Odii & 

Coussons 2014) 

Band 4.2 

Erythrocyte 
membrane 

protein band 4.2, 
B4.2, ATP-

binding 
erythrocyte 
membrane 

protein band 4.2 

Surface of 
erythrocyte 

membranes, 
bone marrow, 

foetal liver, 
spleen, found in 

membranes 

Key component 
of erythrocyte 

skeletal network 
maintains 

erythrocyte 
shape and 
mechanical 
properties 

Spherocytic 
elliptocytosis (Odii 
& Coussons 2014) 

Table 1-1: Members of the transglutaminase family of enzymes (Odii & Coussons 2014). 
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1.2.1 Biological functions of TG2 

Despite the widespread distribution of TG2 in tissues, it was found that mice, with genetically 

removed TG2, led normal lives in terms of anatomy, development and reproduction; 

indicating that TG2 is not a vital enzyme (Nanda et al. 2001; De Laurenzi & Melino 2001). 

Regarding the non-vital functions that TG2 is involved in, they can be broadly categorised 

into those that are calcium-dependent (transamidation and deamidation post-translational 

modifications), and functions that are independent of calcium and do not involve reactions at 

the active site cysteine residue (Odii & Coussons 2014). 

1.2.1.1 Calcium-dependent functions of TG2 

The Ca2+-dependent actions of TG2 are the same as those for other members of the family, 

where TG2 catalyses transamidation and deamidation reactions through an active site 

cysteine residue (CYS277). Transamidation leads to the formation of insoluble protein-like 

structures, whereas deamidation leads to the conversion of glutamine to glutamate (Pinkas 

et al. 2007; Candi et al. 1998). The specific functions, or role in diseases, of transamidation-

resultant structures depend on the location of their substrate and TG2. 

TG2 located in the extracellular matrix (ECM) can catalyse the crosslinking of ECM proteins 

such as fibronectin, fibrin, collagen, vitronectin and osteopontin and the crosslinked proteins 

contribute to the stabilisation of ECM (Aeschlimann & Thomazy 2000; Belkin 2011). Within 

the cells, in the intracellular space whether in the nucleus or in the cytoplasm, TG2 

crosslinking potential is activated in the event of necrosis. The result is the formation of the 

proteinaceous structures that prevent the release of inflammatory materials outside the 

apoptotic cells. A variety of intracellular proteins and enzymes could act as substrates for 

TG2 (Nicholas et al. 2003). 

Besides transamidation crosslinking, TG2 also catalyses deamidation reactions in which 

water acts as the nucleophile and the result is the conversion of a glutamine residue in the 

protein to a glutamate (Figure 1-1). Of the glutamine-containing proteins susceptible to 

deamidation are lens β-crystallins (eye lens proteins responsible for lens integrity and 

reactivity), where age-related deamidation of glutamine residues in the N-terminal arms of 

the crsytallins can be mediated by TG2, thereby facilitating cataract formation (Boros et al. 

2008). Probably the most important deamidation reaction catalysed by TG2 is that affecting 

the wheat protein gliadin, resulting in epitopes that activate T cells and elicit immune 

response in celiac disease (Nurminskaya & Belkin 2013). This will be discussed in more 

detail in the section of diseases associated with TG2. 
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It has been reported that deamidation is favoured at low concentrations of TG2, at low pH 

and with poor substrates (Nurminskaya & Belkin 2013). Furthermore, deamidation and 

transamidation were found to be substrate specific; TG2 deamidates or transamidates 

specific and different glutamine residues (Boros et al. 2006). 

1.2.1.2 Calcium-independent functions of TG2 

Studies performed with the active site cysteine of TG2 (CYS277) mutated to serine have 

found that TG2 was still performing some biological functions, indicating that such functions 

are not related to TG2 calcium-dependent transamidating and deamidating activities (Siegel 

& Khosla 2007). One of those functions is the ability of TG2 to bind and hydrolyse GTP 

(guanosine triphosphate) converting it to GDP (guanosine diphosphate). This type of ability 

allows TG2 to function as a G-protein and transfer signals into the cells (Gundemir et al. 

2012). In this fashion, TG2 was found to transport signals from α1-adrenoceptor to 

phospholipase C (Hwang et al. 1995). Other receptors to which TG2 was shown to act as a 

G-protein are oxytocin receptor (Baek et al. 1996) and thromboxane receptor (Vezza et al. 

1999). G-protein action of TG2 is not only Ca2+-independent, but also inhibits the Ca2+-

dependent transamidating and deamidating activities (Gundemir et al. 2012). 

The ability of acting as a protein kinase (ability to phosphorylate proteins) is another calcium-

independent action of TG2. TG2 was found to be able to phosphorylate a variety of proteins, 

including insulin-like growth factor-binding protein-3 (IGFBP-3), histones, p53 and 

retinoblastoma protein (Mishra & Murphy 2004; Mishra et al. 2006; Mishra & Murphy 2006; 

Mishra et al. 2007). This activity of TG2 was in vitro only, and whether TG2 can act as a 

kinase in vivo is still unknown (Gundemir et al. 2012). TG2 can also act as protein disulphide 

isomerase (PDI), aiding in the formation and breakage of disulphide bonds between cysteine 

residues. This action was shown to occur both in vivo and in vitro (Gundemir et al. 2012). 

In addition to crosslinking the proteins of ECM, TG2 was found to facilitate the adhesion of 

ECM to cell surfaces by non-covalent binding to fibronectin (Akimov et al. 2000). TG2 has 

high affinity to fibronectin and they both bind independent of Ca2+ or G-protein or kinase 

activities of TG2 (Odii & Coussons 2014). The result is improved cellular adhesion which can 

contribute to wound healing and embryogenesis (Akimov & Belkin 2001). 

1.2.2 Regulation of TG2 activity 

TG2 is normally latent with regard to its crosslinking and deamidating activities, which 

usually require the lack of GTP or GDP and high concentrations of Ca2+. GTP and GDP 

normally bind to TG2 and induce a large conformational change in the enzyme that renders 
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TG2 inactive. In stressful conditions that involve cell injury, calcium homeostasis is 

disturbed, increasing Ca2+ concentration, and activating TG2 by releasing the bound GDP or 

GTP. This is true for intracellular TG2. Outside the cells, TG2 is also normally inactive, but 

not because of GTP binding. Instead, the majority of the enzyme is non-covalently bound to 

fibronectin making it inactive. When cells are injured, activated intracellular TG2 is released 

to the extracellular space causing detachment and activation of the extracellular TG2 (Wang 

& Griffin 2012; Siegel et al. 2008). 

1.2.3 Structure of TG2 

The PDB structure of TG2 that was used as the basis for this work had the code 2Q3Z 

(Pinkas et al. 2007). TG2 in this structure is in the form of active enzyme that is not bound to 

GTP or GDP. Active TG2 has an “open” conformation, in contrast to a “closed” conformation 

when the enzyme is bound to GTP or GDP (for example PDB code 1KV3 (Liu et al. 2002)). 

In both cases, TG2 is composed of 4 distinct regions; an N-terminal β-sandwich (green in 

Figure 1-2), a catalytic core (red in Figure 1-2) and two C-terminal β-barrels (yellow and 

cyan in Figure 1-2). The N-terminal β-sandwich is the part of TG2 that binds to fibronectin, 

and the catalytic core contains the active site cysteine residue and represents the site at 

which transamidation and deamidation reactions take place. In active TG2, the 4 major 

components are in the form of a line exposing the catalytic core and CYS277 to substrates. 

In the inactive closed conformation, the two C-terminal barrels fold on the catalytic core, 

blocking the access of substrates to CYS277 and inhibiting the transamidating and 

deamidating actions. A cleft between the catalytic core and the first β-barrel in the closed 

conformation holds the site at which GTP/GDP bind (Pinkas et al. 2007; Jang et al. 2014; Liu 

et al. 2002) (Figure 1-2). 

1.3 Role of TG2 in Disease States 

As mentioned earlier, TG2-knocked out mice could lead normal lives, indicating that TG2 is 

not vital to mammalian life, despite its various functions. However, it is the involvement of 

TG2 in a variety of disease states that makes the enzyme an attractive target in the process 

of drug discovery and development. The enzyme has been linked to a number of 

pathological conditions, including autoimmune and inflammatory diseases, 

neurodegenerative diseases, certain tumours and some metabolic disorders such as 

diabetes mellitus (Griffin et al. 2002; Facchiano et al. 2006). The exact role of TG2 in these 

conditions is still not entirely clear, but from the proteinaceous materials detected, it is 

believed that it is the Ca2+-dependent catalysis of TG2 that is important (Badarau, Collighan, 
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et al. 2013). In the following sections, a brief description of the role of TG2 in each of the 

disease states will be presented. 

 

Figure 1-2: TG2 in open (upper) and closed (lower) conformations.CYS277 is shown in both in the space 
filling form. β-sandwich is coloured green, catalytic core is red, 1st β-barrel is yellow and the 2nd β-barrel 
is cyan. In the open conformation, there is a covalent inhibitor bound to CYS277 and shown in the stick 
form. In the closed conformation, GTP is shown also in the stick form. The open conformation is PDB 
2Q3Z, while the closed conformation is PDB 4PYG (Jang et al. 2014). 

1.3.1 Celiac disease 

Celiac disease (coeliac disease or CD), also called celiac sprue and gluten-sensitive 

enteropathy, is an autoimmune disease in which TG2 plays a very distinct role. CD is 

characterised by sensitivity to gluten in wheat and other cereals. Gluten contains the 

glutamine-rich peptide, gliadin. TG2 can deamidate some of the glutamine residues on 

gliadin producing negatively charged glutamate residues. CD affected patients express 

human leukocyte antigen (HLA) molecules DQ2 and DQ8. Glutamate residues in 

deamidated gliadin can specifically bind to these antigenic molecules inducing an 



Chapter 1   General Introduction 

21 

 

inflammatory T-cell response that results in the flattening of the intestinal mucosa. 

Subsequently, nutrient absorption from the small intestine is impaired and if gluten ingestion 

is continued, symptoms would include chronic diarrhoea, malabsorption, anaemia, failure to 

thrive and weight loss (Facchiano et al. 2006; Sakly et al. 2006; Rauhavirta et al. 2013). 

TG2-autoantibodies are found in the serum of CD patients, further confirming the role of TG2 

in CD (Dieterich et al. 1997). These antibodies provide a diagnostic tool for CD and can be 

found in the intestinal mucosa even before their appearance in the serum, making their 

detection in the intestine a useful tool for confirming CD in potential patients (Tosco et al. 

2013). 

The only available standard treatment for CD is dietary gluten restriction, which is almost 

impossible to achieve successfully. This is due the cost of the gluten free diet, the difficulty of 

obtaining gluten free diet in many regions of the world and the fact that many gluten-free 

diets still contain trace amounts of gluten that can induce a response in some patients 

(Schuppan et al. 2009). Therefore, TG2 inhibition has been suggested as a promising 

treatment for CD (Sollid & Khosla 2011). In a proof-of-concept study by Rauhavirta et al. 

(2013), the authors found that treating cells and CD-patients’ intestinal biopsies with gliadin 

in the presence and absence of TG2 inhibitors resulted in reduction of gliadin toxic effects in 

the inhibitors-treated cells and biopsies. A reduction in the immune response has also been 

observed. 

1.3.2 Inflammatory disorders 

Cystic fibrosis (CF) is a genetic disorder caused by mutations in the gene encoding for cystic 

fibrosis transmembrane regulator (CFTR) and is characterised by chronic lung inflammation 

and infection. It can affect other organs of the body causing pancreatic insufficiency, biliary 

disorders and male infertility (Ratjen & Döring 2003). Peroxisome proliferator-activated-

receptor-γ (PPAR-γ) is an inflammatory regulator whose ability to prevent or reduce CF 

pulmonary inflammation was proven through its regulation of the nuclear factor-B (NF-κB), 

one of the inflammatory mediators involved in CF (Maiur et al. 2008; Perez et al. 2008). 

Defects in CFTR genes responsible for CF were found to be associated with increased 

levels and activity of TG2. It was also shown that increased TG2 activity was linked to 

reduced PPAR-γ levels; where TG2 would crosslink PPAR-γ into aggregates reducing its 

anti-inflammatory action. In addition, inhibiting TG2 irreversibly was found to restore the 

normal levels of PPAR-γ in cells (Maiur et al. 2008). 

NF-κB indirect activation by TG2 has also been linked to rheumatoid arthritis (RA), in which 

increased levels of TG2 in the synovial fluid have been reported. Increased TG2 activity was 
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linked to up-regulation of neutrophil gelatinase-associated lipocalin (NGAL) protein in RA 

patients (Katano et al. 2009). The role of TG2 in inflammation is not always harmful, where 

inflammation is a defence mechanism by which the body can fight back external injurious 

stimuli. In response to cutaneous injury, inflammation participates in the process of wound 

healing and TG2 activity is increased in response to some inflammatory mediators [for 

example, transforming growth factor (TGF)-β], and TG2 itself activates other mediators with 

the ultimate purpose of enhancing wound healing (Mehta et al. 2010). 

1.3.3 Neurodegenerative diseases 

TG2 is thought to be involved in the pathogenesis of some neurodegenerative disorders 

such as Alzheimer’s, Huntington’s and Parkinson’s diseases. The mechanism is probably 

related to the formation of insoluble protein aggregates through calcium-dependent catalysis 

(Siegel & Khosla 2007; Facchiano et al. 2006). In Alzheimer’s disease (AD), the most 

important pathological legions are extracellular senile plaques (SP) and intracellular 

neurofibrillary tangles (NFT). SPs are mainly composed of amyloid beta (Aβ) peptides, 

whereas NFTs mainly contain hyper-phosphorylated tau. Both Aβ and tau have been shown 

to act as substrates for TG2 (Wang et al. 2008). By its crosslinking activity, TG2 was shown 

to be involved in the formation of the AD lesions (SPs and NFTs), where it was found that 

TG2 catalyses the crosslinking between Aβ peptides in SPs and between tau peptides in 

NFTs (Wilhelmus et al. 2009). In addition, many of the risk factors for AD, such as head 

trauma, ischemia and brain stress, have been shown to increase the activity of TG2 (Wang 

et al. 2008). 

Huntington’s disease (HD) is a neurodegenerative disorder characterised clinically by motor, 

psychological and cognitive anomalies. It is caused by a defect in the gene encoding for the 

huntingtin (HTT) protein. The defect includes an expansion of CAG repeats resulting in an 

extended polyglutamine tract at the N-terminal of HTT (Munoz-Sanjuan & Bates 2011). The 

polyglutamine tract gets separated from the defective HTT and forms aggregates with itself 

and with other proteins. The resultant macromolecular structures eventually lead to neuronal 

death. TG2 may catalyse the formation of these aggregates (Dedeoglu et al. 2002). Lesort et 

al. (1999) found that TG2 activity is increased in the brains of HD patients and this increase 

is directly proportional to the severity of the disease. Inhibition of TG2 with cystamine 

(reversible TG2 inhibitor) was shown to reduce polyglutamine aggregates and improve motor 

function and survival in HD mice (Dedeoglu et al. 2002). Similar outcomes were obtained by 

crossing HD mice with TG2 knock-out mice (Mastroberardino et al. 2002). 
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Parkinson’s disease (PD) is another neurodegenerative disorder affecting dopaminergic 

neurons and is characterised by motor and non-motor dysfunctions (Jankovic 2008). The 

defective neurons in PD patients contain inclusions called Lewy bodies. Lewy bodies are 

insoluble aggregates containing a protein called α-synuclein which is very prone to form 

aggregates in pathological conditions including PD and Lewy body dementia. It has been 

proven that TG2 is involved in the crosslinking of α-synuclein with other proteins producing 

Lewy bodies in vitro and in cell lines (Nemes et al. 2009; Junn et al. 2003). 

1.3.4 Cancer 

Siegel & Khosla (2007) reviewed a number of studies that showed increased levels of TG2 

in more than one type of cancer including glioblastomas, malignant melanomas and 

pancreatic ductal adenocarcinomas (PDAC). Verma et al. (2006) found that high TG2 levels 

in PDAC were associated with nodal metastasis and resistance to chemotherapy. The ability 

of TG2 to induce invasion was related to its potential to activate FAK (focal adhesion 

kinase), an enzyme involved in metastasis by promoting anti-apoptosis. The authors showed 

that this role of TG2 is not related to its transamidating or deamidating actions, by mutating 

the active site cysteine residue into serine residue and still obtaining comparable results 

(Verma et al. 2006). Similar results regarding the association between increased levels of 

TG2 and resistance to chemotherapy and metastasis were reported for breast cancer 

(Mehta et al. 2004). In addition to inducing metastasis and resistance to chemotherapy, 

increased TG2 levels in malignant cells was linked to their ability to survive and defy 

apoptosis (Mangala et al. 2007). 

Park et al. (2011) proposed another mechanism by which TG2 can induce metastasis in 

pancreatic cancer cells. Their work examined sphingosylphosphorylcholine (SPC)-induced 

keratin 8 reorganisation in pancreatic cells as a possible pathway to metastasis by improving 

viscoelasticity and the migration properties of the malignant cells. The authors found that 

TG2 is activated by SPC, and the activated TG2 induces keratin 8 reorganisation by SPC. 

They also found that inhibiting TG2 by cystamine or genetically silencing TG2 would block 

the pathway resulting in reduced metastasis (Park et al. 2011). By a similar approach (gene 

silencing and cystamine inhibition), the research group, in another study, proved the 

inductive effect of TG2 on the metastasis in lung cancer cells, which is initiated through 

epithelial-mesenchymal-transition with the conversion of E-cadherin to N-cadherin (Park et 

al. 2013). 

The relationship between TG2 and cancer is not simple. There are studies that showed an 

important role for TG2 in resisting cancer. For example, it was noted that TG2 inhibits 
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angiogenesis in an in vitro assay, independently of its transamidating activity, and that TG2 

inhibits tumour growth and improves survival in mice melanoma models, compared to the 

same model from which TG2 was genetically removed (Jones et al. 2006). Therefore, 

inhibiting TG2 can be useful in certain types of cancers but the concept should not be 

generalised to all cancer cases. 

1.3.5 TG2 and metabolic disorders 

Many of the enzymes that are involved in the production of energy within the body can be 

modified by TG2; they can act as substrates for isopeptide bond formation catalysed by 

TG2. Examples include glyceraldehyde 3-phosphate dehydrogenase, alpha-ketoglutarate 

dehydrogenase, phosphoglycerate dehydrogenase and fatty acid synthase. The same 

applies for hormones and receptors involved in metabolism (Facchiano et al. 2006). In 

diabetes mellitus, TG2 is believed to have a beneficial role where it was found that TG2-

knocked out mice are intolerant to glucose and their glucose-stimulated insulin secretion 

(GSIS) is compromised. In addition, three TG2 point mutations were found in patients with 

type 2 diabetes mellitus (Bernassola et al. 2002). Salter et al. (2012) investigated the effects 

of these mutations on insulin secretion and found a positive correlation between the 

mutations and the impaired GSIS. They linked the defect in insulin secretion to a reduction in 

the transamidating action of TG2 initially and then to defective binding to GTP as a result of 

the mutations. 

The association of TG2 in the above-mentioned wide range of pathologies provides the 

opportunity for a new therapeutic target, where inhibiting TG2 may offer possible 

pharmacological solutions to one or more of the pathological conditions linked to increased 

TG2 activity. An imperative characteristic of TG2 as a therapeutic drug target is the fact that 

TG2 has been shown to be non-vital to mice, reducing the possibilities of serious side effects 

arising from its inhibition. Because the role of TG2 in many pathologies has not yet been fully 

understood, TG2 potential inhibitors, in this stage of TG2-related research, can be used to 

provide a better appreciation of the mechanism by which TG2 can be involved (by inhibiting 

TG2 and monitoring the effects on the pathological condition). This concept has actually 

been employed in more than one of the studies discussed above. Different classes of tested 

TG2 inhibitors will be presented in the next section. 

1.4 Inhibitors of TG2 

Two central themes should be considered when discussing TG2 inhibitors. The first is that 

the exact mechanism by which TG2 is involved in the various diseases is not fully 
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understood; it has been shown that sometimes it is the transamidating activity that is 

increased (as in celiac disease) and sometimes Ca2+-independent actions are detected 

(some types of cancer). Therefore, it should not be expected from an inhibitor that interacts 

with CYS277 to be effective in suppressing all the pathologies associated with TG2. 

Secondly, the other members of the transglutaminase enzyme family share similar actions, 

especially those that are Ca2+-dependent, which means that inhibiting TG2 may inhibit these 

enzymes as well. This is especially important for FXIIIA, whose inhibition may result in 

uncontrolled bleeding; and inhibition of TG1 which may lead to ichthyosis (Table 1-1). Thus, 

selectivity of potential inhibitors to TG2 should be verified before moving further in the 

process of the validation of the inhibitors. 

TG2 inhibitors can be classified into two broad categories, reversible inhibitors and 

irreversible inhibitors. Reversible inhibitors either compete with substrate lysine residues to 

bind to the thio-estered glutamine residue inhibiting the formation of the isopeptide bond, or 

they act in a similar fashion to GTP, where they bind somewhere in TG2, other than the 

transamidating active site, and induce a conformational change in the entire enzyme that 

blocks the access of substrates to CYS277. Irreversible inhibitors act by covalently binding 

to TG2 CYS277, and therefore inhibiting the enzyme in a suicidal manner (Badarau, 

Collighan, et al. 2013; Siegel & Khosla 2007). 

1.4.1 Reversible inhibitors 

The net result from these inhibitors is either the formation of the isopeptide bond with the 

wrong amine (competitive inhibitors) or a temporary loss of TG2 action as a result of a large 

conformational change induced through an allosteric inhibition (non-competitive inhibitors). 

1.4.1.1 Competitive reversible inhibitors 

This class of TG2 inhibitors is characterised by a structure having a saturated aliphatic chain 

and a terminal primary amine. They act as substrates for the 2nd step in TG2-catalysed 

transamidation and deamidation reaction and the result is still an isopeptide bond but with 

the amine inhibitor instead of being with the natural amine substrate or with water. Examples 

of these inhibitors include putrescine, cadaverine derivatives (Lorand & Conrad 1984; 

Badarau, Collighan, et al. 2013) and cystamine (Jeitner et al. 2005) (Figure 1-3). Putrescine 

has been used by many for assays of TG2 activity and examples for putrescine use include 

the work by Schaertl et al. (2010) and Ohtake et al. (2006). Cadaverine derivatives were also 

used for the same purpose and examples include van den Akker et al. (2012), Olsen et al. 

(2011) and Sarang et al. (2007). 
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Figure 1-3: Chemical structures of the amine reversible inhibitors of TG2. 

Cystamine is actually composed of 2 molecules of cysteamine [β-mercaptoethanolamine 

(MEA), NH2–(CH2)2–SH] connected by a disulphide bond. Two mechanisms have been 

proposed, by which cystamine can inhibit TG2. The first involves the intracellular reduction of 

cystamine to 2 molecules of MEA by glutathione (GSH). MEA then acts as a substrate for 

the 2nd step of transamidation, and an isopeptide bond forms between MEA and the 1st 

protein glutamine residue (Jeitner et al. 2005). This has been proven by the finding that it 

requires twice the molar equivalents of MEA to inhibit TG2 than what is required of 

cystamine (Cooper et al. 2002). 

Jeitner et al. (2005) have shown that the inhibition of TG2 by MEA is concentration-

dependent confirming that the inhibition is reversible. The authors suggested that the MEA 

thiolate group, by having an electron-withdrawing effect, would help in positioning MEA 

perfectly to be involved in the formation of the isopeptide bond through interacting with some 

positively charged moiety in the active site of TG2 due to its negative charge. The 

neutralisation of the negative charge by this interaction would also increase the 

nucleophilicity of MEA amine, thus increasing the chance for the formation of the bond. 

The second mechanism by which cystamine may inhibit TG2 is the formation of disulphide 

link with CYS277 causing irreversible inhibition of TG2. This mechanism was supported by 

the evidence that cystamine inhibited TG2 in a time-dependent manner (Lorand & Conrad 

1984; Lorand 1998; Siegel & Khosla 2007). Jeitner et al. (2005) reported that if cystamine 

was reduced intracellularly to MEA, then the disulphide bond formation will be an unlikely 

event, implying that cystamine will act as an irreversible inhibitor only in the absence of 

intracellular GSH. 

In addition to TG2, cystamine has been found to inhibit caspase 3 (an enzyme whose 

activation was linked with Huntington’s disease progression). Inhibition of caspase 3 may 

contribute to the beneficial effects cystamine has in Huntington’s disease besides inhibiting 

TG2 (Lesort et al. 2003). The authors indicated that caspase inhibition is independent of 

TG2 inhibition. 

Problems associated with inhibition by cystamine include the formation of proteinaceous 

structures resulting from the use of MEA as the amine source in transamidation reactions. 

These structures may elicit an immune response for being unrecognisable by the body. 

Putrescine Cadaverine Cystamine
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Another problem with cystamine is its lack of selectivity; cystamine was shown to inhibit 

caspase 3 and can inhibit other members of transglutaminase family, and this could result in 

undesirable effects (Badarau, Collighan, et al. 2013). Nevertheless, cystamine can still be 

used in research on cells overexpressing TG2 as an indicator of the beneficial effects arising 

from TG2 inhibition, and it has been used for this purpose as indicated earlier in HD and in 

cancer. 

Other competitve TG2 inhibitors were proposed by Sohn et al. (2003) who synthesised 

recombinant peptides with dual inhibitory effect against phospholipase A2 (PLA2) and TG2. 

The former is one of the enzymes involved in inflammatory processes and is activated by 

TG2 through the formation of intramolecular crosslinks between glutamine and lysine 

residues in PLA2. The inhibitory peptides were derived from TG2 substrates lipocortin-1 and 

pro-elafin and contained glutamine and/or lysine residues, making them suitable substrates 

for either step of the transamidation reaction, and hence the reversible action. The 

synthesised peptides were able to inhibit PLA2 alone, TG2 alone and PLA2 activated by TG2. 

Their results showed improved allergic conjunctivitis in a guinea pig model treated with these 

peptides (Sohn et al. 2003). The study did not examine the selectivity of these inhibitors 

against other members of the transglutaminase family. 

Another group of reversible inhibitors was studied by Pardin, Pelletier, et al. (2008). The 

researchers synthesised a series of cinnamoyl derivatives and tested them against TG2. 

Their findings showed two classes of potent reversible inhibitors of TG2 that compete with 

the acyl donor substrate during transamidation reactions, the cinnamoyl benzotriazolyl 

amides and 3-(substituted cinnamoyl) pyridines. The most active of their compounds (i1) 

was a benzotriazolyl derivative with a TG2 IC50 of 18 µM (Figure 1-4). 

 

Figure 1-4: Compound i1 from the work 
by Pardin, Pelletier, et al. (2008) with an 
IC50 against TG2 of 18 µM. 

From structure activity relationship studies, the authors proposed the importance of 

hydrogen bond acceptors in the inhibitor structures for better activity. They also proposed 

that non-planar rings can reduce the inhibitory effect due to steric hindrance at the 

transamidation active site in TG2. The most active compounds were also tested against 

FXIIIA and caspase 3. There was very little or no activity against these enzymes inferring 

selectivity against TG2  (Pardin, Pelletier, et al. 2008). It is worth mentioning here that the 
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researchers used guinea pig liver TG2 for testing for its ease of attaining and its 80% 

structure similarity with human TG2. 

The same research group followed on their work and synthesised a new series of 

compounds based on their most active compounds, keeping the cinnamoyl and the triazole 

groups and modifying the aromatic ring to enhance the inhibitor binding within TG2 active 

site (Pardin, Roy, et al. 2008). Their most active compound (i2) (Figure 1-5) in this group had 

an IC50 against guinea pig liver TG2 of 2.1 µM, compared to 18 µM from their previous 

research. The authors showed that a similar mechanism was followed by this group of 

inhibitors in being reversible and competitive TG2 inhibitors (Pardin, Roy, et al. 2008). No 

report of examining the selectivity of this inhibitor group was mentioned in the paper. 

 

Figure 1-5: Compound i2 from the 
work by Pardin, Roy, et al. (2008). 

1.4.1.2 Non-competitive reversible inhibitors 

It has been mentioned earlier that TG2 activity is dependent on calcium ions. This activity 

can be inhibited by the binding of guanine nucleotides such as GTP and GDP. These natural 

inhibitors bind to an allosteric site in TG2 other than the transamidation active site and 

induce conformational changes that result in the loss of enzyme activity. This inhibition can 

be reversed by high concentrations of calcium ions (Liu et al. 2002). The conformational 

change has been introduced previously and the literature showed that the site at which GTP 

and GDP bind in TG2 is distinct from the transamidation active site. In theory, it is therefore 

possible to inhibit TG2 reversibly using compounds that would induce the conformational 

change triggered by the natural TG2 inactivators, GTP and GDP. 

Case and Stein (2007), after screening a library of 110,000 drug-like molecules, were able to 

find one compound that inhibited TG2 reversibly in a manner similar to that of GTP. The IC50 

of this compound (i3, Figure 1-6) was recorded to be 0.6 µM and a selectivity study showed 

no effect of the compound on FXIIIA and caspase. 

The authors proposed an allosteric inhibition mechanism through proving that the inhibitor 

blocks the activation of TG2 by Ca2+ by a steady state velocity analysis. They could not, 

however, prove that the inhibitor binds to GTP binding site, so they suggested that the 
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inhibitor could bind to the GTP binding site or to a different site in TG2 that regulates the 

binding of GTP, but not at the transamidating site. They have also shown that the inhibitory 

effect of their compound is dependent on the structure of the substrate used in the assay, 

suggesting a competitive mechanism. The authors explained this by the fact that the 

allosteric inhibitors can bind not only to the active free enzyme, but also to enzyme-substrate 

complexes and in the latter case, the structure of the substrate is relevant (Case & Stein 

2007). 

 

Figure 1-6: TG2 allosteric inhibitor (i3) by Case and Stein (2007). 

Caron et al. (2012) used Förster resonance energy transfer (FRET) as an alternative method 

to X-ray crystallography for elucidating the changes in conformation of TG2 in response to 

activation. They used the peptide inhibitor that was bound to TG2 in the crystal structure with 

the PDB entry 2Q3Z by Pinkas et al. (2007) and proved that this compound inhibits TG2 by 

covalently binding to the active site cysteine residue locking TG2 in the open conformation. 

They also used the most potent inhibitor from the work by Pardin, Roy, et al. (2008) 

(compound i2 Figure 1-5) and showed that i2 inhibits TG2 by maintaining the closed 

conformation of the enzyme and blocking the transamidating activity. This may contradict the 

results reported by Pardin, Roy, et al. (2008), but the closing of TG2 conformation may occur 

after binding of the inhibitor. 

Both types of reversible inhibitors have the potential to inhibit other members of the 

transglutaminase family, indicating a lack of selectivity. In addition, amine competitive 

inhibitors may induce an immune reaction resulting from the formation of non-native 

structures, which could limit their applications. These limitations, besides the moderate 

potencies of the reversible inhibitors and the availability of the active site nucleophilic 

cysteine residue, were probably the reasons for studying irreversible inhibitors. 

1.4.2 Irreversible inhibitors 

These TG2 inhibitors usually have an electrophilic warhead that can easily react with the 

nucleophilic sulphur atom of CYS277 by forming a covalent bond. Since the nucleophilic 

cysteine residue is essential for TG2 activity, the result of the reaction with these inhibitors is 

complete loss of TG2 activity. The design of such inhibitors is usually based on the 
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glutamine-bearing substrates of TG2, where small similar peptides are designed, to which an 

electrophilic warhead is incorporated to achieve the irreversible inhibition (Badarau, 

Collighan, et al. 2013). 

The simplest compound that has been used as an irreversible inhibitor is iodoacetamide 

[NH2-CO-CH2-I] which is a known blocker of biochemical thiols, including the thiol group of 

cysteine residues (Reisz et al. 2013). Iodoacetamide has been used to inactivate TG2 during 

tests of the activity of the enzyme. Examples of such uses include the work performed by 

Dørum et al. (2010) and de Macédo et al. (2000). Iodine in the structure of iodoacetamide 

serves as a good leaving group increasing the electrophilicity of the terminal methyl group. 

However, the small size and high reactivity makes it possible for iodoacetamide to interact 

with other thiols within TG2 or within other thiol bearing enzymes. This probably limits the 

use of the compound to testing the activity of TG2 (Siegel & Khosla 2007). 

1.4.2.1 Peptide based inhibitors 

In addition to the electrophilic warhead and the amino acids, peptide-based inhibitors should 

have in their structure a hydrophobic group on the opposite side from the warhead to 

improve the positioning of the inhibitor within the active site of TG2, which has a hydrophobic 

loop (Pinkas et al. 2007) (more details on this will follow in the relevant Results sections). 

Among the peptide-based inhibitors, the dihydroisoxazole derivatives received the most 

attention and were validated extensively. They are derived from acivicin which is an isoster 

of glutamine. These inhibitors are characterised by a 3-halo-4,5-dihydroisoxazole derivative 

warhead attached to an amino acid by a peptide bond, with an aromatic group to increase 

specificity to TG2 active site (Choi et al. 2005; Watts et al. 2006). 

One of the best members of this group was discovered by Choi et al. (2005). The compound 

(i4) (Figure 1-7) has tyrosine as the amino acid and benzyloxycarbonyl (Cbz) group as the 

hydrophobic group. i4 was found to be very active as a TG2 inhibitor and, when tested on 

human colonic cancer cell line, it sensitised the cells to epothilone C, a tubulin binding 

anticancer agent. Similar results were obtained when compound i4 was injected into mice 

with glioblastoma. The compound also showed good oral bioavailability and low toxicity 

when administered to mice. The compound was not tested against other transglutaminases 

but it was incubated with GSH as a sulphur containing electrophile and GSH was not 

affected. GSH was chosen because it represents the most abundant physiological thiol. 

Structure activity relationship (SAR) studies showed that a bulky group such as the Cbz was 

important for activity as was the amide group connecting the dihydroisoxazole group to the 

remainder of the inhibitor molecule (Choi et al. 2005). 
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The same group followed on the work on the same chemical class (Watts et al. 2006). They 

first proved that these inhibitors act by covalently binding to CYS277 of TG2. This was 

performed using mass spectrometry and it was found that the mass of the cysteine residue 

increases by a factor corresponding to the mass of the inhibitor minus that of bromine.  

Then, the authors synthesised a different series of compounds, changing the hydrophobic 

part and the amino acid from their previous set to enhance the activity. Their most active 

compound (i5 Figure 1-7) was about 50-fold more potent than compound i4. i5 had 

tryptophan as the amino acid and a quinoline group for the hydrophobic part. 

  

Figure 1-7: 3-Bromo-4,5-dihydroisoxazole derivatives, left is compound i4 by Choi et al. (2005) and right 
is compound i5 by Watts et al. (2006). 

In addition, the authors have set the criteria for a dihydroisoxazole derivative to have 

increased activity against TG2. The criteria are (S)-stereochemistry at position 5 of the 

dihydroisoxazole moiety, the presence of a heteroatom in the side chain of the amino acid 

and the presence of hydrogen bond acceptor in the hydrophobic part of the inhibitor. 

Although the article stated that the inhibitors were selective, no measures were taken in the 

study to ascertain this (Watts et al. 2006). 

Another study came out from the same laboratory (Klock et al. 2014) in which a library of 

published dihydroisoxazole TG2 inhibitors that includes around 60 compounds was tested 

for the selectivity of the inhibitors against TG1, TG3 and FXIIIA. It was found that many 

compounds were inactive against TG3 or FXIIIA, but were active in inhibiting TG1. The 

authors attributed TG1 activity to the presence of aromatic amino acids in the structures of 

the inhibitors. Consequently, they designed and tested a series of dihydroisoxazole 

derivatives containing substituted proline instead of tyrosine or tryptophan. Their most active 

compound was about 5 times more potent against TG2 than against TG1 (i6 Figure 1-8). 

The compound has a quinoline group and a nicotinamide substituted proline residue (Klock 

et al. 2014). 

For other peptide-based irreversible TG2 inhibitors, Chica et al. (2004) were able to define 

the possible structure of small peptide-based acyl donor substrates for TG2. Understanding 

how these substrates bind to TG2 would help in the design of related irreversible inhibitors. 
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They concluded that for best results, the peptide must contain in its structure a Cbz 

protective group with glutamine and glycine residues (Cbz-Gln-Gly) (carbobenzyloxy-L-

glutaminylglycine). They also showed that tert-butyloxycarbonyl protective group (t-Boc) in 

the structure would make it unsuitable as a substrate. This is consistent with the finding from 

Choi et al. (2005) regarding the importance of the Cbz group and the requirement for the 

presence of glutamine residue in the structure. 

 

Figure 1-8: Compound i6 by Klock et al. (2014). 

Even though the researchers used the crystal structure of red sea bream TG2, which has 

about 50% structure similarity in the active site with guinea pig TG2, their basic substrate 

was the basis for non-dihydroisoxazole inhibitors designed by others (Chica et al. 2004).  

Different functional groups have been attached to the glutamine residue in the above 

substrate by different researchers to produce various groups of irreversible TG2 inhibitors. 

Examples of these functional groups are maleimides, epoxides and α,β-unsaturated amides. 

Maleimide warhead inhibitors (Figure 1-9), based on the above scaffold, have been studied 

by Halim et al. (2007) who have shown that such inhibitors demonstrated time-dependent 

irreversible inhibition, suggesting reaction with the active site cysteine residue of TG2. Their 

compounds were not very effective when compared to other warheads, such as acrylamides. 

The authors attributed this to the physical size of the maleimides warhead group and the 

difficulty of its approach to CYS277 (Halim et al. 2007). 

Based on the same scaffold, de Macédo et al. (2002) synthesised a series of compounds 

containing α,β-unsaturated amides and their corresponding epoxides as the warhead (Figure 

1-9). They did not test the compounds for their activity against TG2 but they proposed that 

they would be potential inhibitors for the enzyme. 

Pardin et al. (2006) synthesised and tested a series of peptide based inhibitors. They used 

the scaffold by Choi et al. (2005) as the basis for their peptide but replaced tyrosine by 

phenylalanine. Their primary peptide structure composed of a Cbz protective group, 

phenylalanine, an aliphatic spacer and an electrophile. The electrophile was one of three 



Chapter 1   General Introduction 

33 

 

types, an acrylamide (α,β-unsaturated amide), a chloroacetamide or a maleimide (compound 

i7, Figure 1-10). 

 

Figure 1-9: Different warheads attached to the scaffold Cbz-Gln-Gly (R is the scaffold). 

 

Figure 1-10: Compound i7, the basic scaffold used by Pardin et al. (2006) with the different warheads. 

The acrylamide and chloroacetamide compounds showed good inhibitory activity against 

TG2, with inhibitory efficiencies that were 4-50 times higher than the dihydroisoxazole 

compound, i4, by Choi et al. (2005). It was also found that this activity is related to the length 

of the aliphatic spacer, where the activity increases with increasing the length of the spacer 

(n ranged between 2 and 8). The relation of the activity of the inhibitors with the length of the 

spacer was explained based on the shape of the active site in TG2. The authors suggested 

that a reasonable distance should separate the warhead from the hydrophobic Cbz group 

because the warhead is supposed to react with CYS277 and the hydrophobic group should 

accommodate itself in a hydrophobic region of TG2 active site; and CYS277 and the 

hydrophobic region of the active site are distant from each other, hence the requirement for 

the separation of the warhead from the Cbz group (Pardin et al. 2006). 

The activity of the maleimide compounds was much lower than that of the other warheads, 

and that was attributed to the size of the warhead and the ease of access to the active site. 

All the inhibitors showed time-dependent inactivation of TG2. Irreversibility was further 

confirmed by removing the excess of the inhibitors from the reaction medium and noticing 

that TG2 activity was not restored. The authors also examined the specificity of the inhibitors 
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to TG2 by testing them against glutathione as a physiological thiol-containing nucleophile. 

The results showed that glutathione consumed only 10% of the inhibitor after 24 hours, 

compared to the fast reaction with TG2 (Pardin et al. 2006). 

Dimethyl-sulfonium ketone is another warhead that has been used in a class of peptide-

based inhibitors. Inhibitors containing the sulfonium warhead were derived from 6-diazo-5-

oxo-L-norleucine (DON), using Cbz, Fmoc (fluorenylmethyloxycarbonyl) or t-BOC as the 

protective group with various amino acids by Griffin et al. (2008) (i8 Figure 1-11). An extra 

carboxyl group was added to the inhibitors to enhance water solubility and activity against 

TG2. 

 

Figure 1-11: Peptide-based inhibitors derived from DON by Griffin et al. (2008) (i8). 

The compounds showed good irreversible inhibitory effect with a TG2 IC50 of as low as 5 µM. 

The Fmoc and t-Boc protective groups increased the IC50 to more than 30 µM, again to 

signify the importance of the Cbz group for the activity against TG2. The enhanced water 

solubility would be useful in reducing toxicity as the compounds would be less likely to cross 

cell membranes. The study, however, did not include any attempt to examine the selectivity 

of the inhibitors for TG2. In addition to the sulfonium ion warhead, an imidazolium based 

warhead was also tried using the same peptide scaffold and was found to be more active 

than the sulfonium group with an IC50 of 3 µM (Griffin et al. 2008). Consequently, the 

research group continued working by synthesising a new series with modifications of the 

imidazolium warhead (Badarau, Mongeot, et al. 2013). 

The new study came up with some active TG2 inhibitors with IC50 values of as low as 1 µM. 

Their main result was that the activity was lost by increasing the size of substitution at the 

imidazolium ring nitrogen atoms (Figure 1-12). The same observation was reported 

regarding the sulfonium warhead in the previous paper (Griffin et al. 2008). Another finding 

from this group was that the sulfonium warhead offered more specificity for TG2 over FXIIIA 

compared to imidazolium warhead (Badarau, Mongeot, et al. 2013). 
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Figure 1-12: Examples of modifications to the imidazolium warhead by Badarau, Mongeot, et al. (2013) 
and their effect as TG2 inhibitors. 

The relatively large size of the imidazolium group can be compared to that of maleimide. 

Some of the imidazolium compounds were active and the authors have attributed this to the 

higher chemical reactivity of the imidazolium group, when compared to other chemical 

groups such as maleimide. 

1.4.2.2 Inhibitors discovered by screening of compound libraries 

Several irreversible inhibitors were reported by Prime, Andersen, et al. (2012) who screened 

a library of 283,000 compounds for activity against TG2 and 4 chemotypic hits emerged. 

Three of these hits were excluded from further investigation because of high molecular 

weight or lack of selectivity. The 4th hit (4-bromophenylacrylamide, i9, Figure 1-13) showed 

good activity against TG2 with an IC50 of 3.3 µM and promising selectivity characteristic 

when tested against TG1, TG3, FXIIIA and caspase 3. Therefore this hit was used as a 

starting point for the synthesis of different groups of related compounds that were analysed 

in vitro and by a docking study (Prime, Andersen, et al. 2012). 

The first modification involved the simple additions on the phenyl group. Only one compound 

of this group (sulphonamide modification, i10, Figure 1-13) was found to be active and 

showed a TG2 IC50 of 1.9 µM. A docking study on i10 suggested that forming hydrogen 

bonds with residues TRP241 and GLN276 is important for a good pose. There was a 

possibility for another hydrogen bond between the sulphonamide group of the active 

compound and ASN333. Based on this assumption, the researchers prepared another series 

of compounds by extending the sulphonamide part to improve the chance of forming such 

hydrogen bond. 

All the 16 compounds in this new series showed very good activity against TG2 with little or 

no effect on TG1, TG3 and FXIIIA (i11 is an example with a Cbz group and an IC50 of 0.12 

µM, Figure 1-13). The next step involved modifications in the acrylamide moiety of the latter 

active series. The alterations in the warhead lead to significant reductions in the activity with 

complete loss of selectivity; epoxides, esters, ketones and nitriles as substituents of the 

 Active                  Inactive                               Inactive                   Active 
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acrylamide warhead all resulted in inactive inhibitors of TG2. The same applied to 

substitutions at the α- and β-carbons of the acrylamide double bond with the exception of 

substituted chlorine. The same results (few active and none selective compounds) were 

reported for another series in which the modifications involved the phenyl group linking the 

acrylamide warhead to the sulphonamide part. 

One final series of compounds was prepared by modifications to the Cbz protecting group, 

such as adding halo and alkyl substituents to the terminal phenyl group, or entirely replacing 

Cbz with urethanes and amides. Many of those modifications enhanced the activity and 

selectivity profiles for the inhibitors, and one compound in this series (i12, Figure 1-13), in 

which Cbz was replaced by an admantyl amide, showed the best activity and selectivity in 

this study with a TG2 IC50 of 0.01 µM and an 18-fold higher activity against TG2 than FXIIIA, 

and even higher selectivity against TG1 and TG3 (Prime, Andersen, et al. 2012). The results 

from the final series imply that the lipophilic parts of irreversible TG2 inhibitors represent a 

good area for development and modifications, in contrast to the warhead groups which can 

only be restricted to few classes of chemical groups. 

 

Figure 1-13: Four compounds representing different series of TG2 inhibitors from the work by Prime, 
Andersen, et al. (2012). 

1.4.2.3 TG2 inhibitors used in this project 

The structures of a total of 21 active TG2 inhibitors and 8 proven inactive compounds have 

been used during the course of this project in the various stages. These compounds were in-

house compounds; designed, synthesised and tested for their activity and selectivity against 

TG2 in the laboratories of the School of Life and Health Sciences in Aston University, 

Birmingham with the participation of researchers from chemical and biological backgrounds. 

All the compounds have been patented (Griffin et al. 2014) and the most important of them 

were published (Badarau et al. 2015). The basis for the design of the new set of compounds 

i9 i10

i11 i12
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was molecular dynamic simulations applied on docking complexes for a sulfonium ion and 

an imidazolium inhibitors from previous work (compound i7, Figure 1-10) (Griffin et al. 2008; 

Badarau, Mongeot, et al. 2013). The simulations showed that the dihedral angle between the 

nitrogen from Cbz group, and the alpha carbon, the carboxylic carbon and the amine 

nitrogen of the central amino acid stabilised around 0°. 

The value of the dihedral angle inferred stability around that region, therefore, that part was 

replaced by a more rigid piperazine ring. The resultant inhibitor (compound i13, Figure 1-14), 

which had glycine as the amino acid and a dimethyl sulfonium as the warhead, had a TG2 

IC50 value of 1.4 µM and showed an irreversible inhibition mechanism with minimal cellular 

toxicity. It was used as a prototype, from which several other compounds were derived. 

Changing the warhead to diethyl sulfonium retained the activity, while replacing it with an 

imidazolium group caused loss of activity. These same changes to diethyl sulfonium and 

imidazolium warheads produced the opposite effects on activity against TG2 in the previous 

set of compounds (Griffin et al. 2008), implying that the 2 sets, though related, cannot be 

compared to each other as they exhibited different activities. 

 

Figure 1-14: Compound i13, which 
was the basis for the compounds 
designed by Badarau et al. (2015). 

Lipophilic warheads were also tried; vinyl sulphonamide and acrylamide, with the aim of 

producing TG2 inhibitors with enhanced cellular permeability to specifically target 

intracellular TG2. Both warheads were active with the sulphonamide being slightly better 

(IC50 for vinyl sulphonamide was 1.725 µM and for the acrylamide 5.925 µM). Next, the 

emphasis was turned on modifying the carbamate moiety in compound i13 and combining 

this with various warheads. The rationale this time was to enhance the binding within the 

hydrophobic region of TG2 active site. Different sized aromatic and other hydrophobic 

groups were tried, with the best results obtained when the adamantyl hydrophobic part was 

combined with an acrylamide warhead (compound 1a, Table 3-1, with a TG2 IC50 of 0.125 

µM), and when a tert-butyl part was used with a dimethyl sulfonium warhead (compound 1b, 

Table 3-1, with and IC50 of 0.273 µM). A naphthalene group for the lipophilic part with an 

acrylamide warhead also gave good activity against TG2 (compound 1c, Table 3-1). 

Amino acids other than glycine have also been tried. Changing to a bulky group such as 

phenylalanine resulted in complete loss of activity, while changing to alanine with the 
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dimethyl sulfonium warhead improved TG2 inhibition over that obtained with compound i13 

(compound 1d, Table 3-1, with an IC50 of 0.7 µM). 

The final alteration involved applying a fluorescent tag on the lipophilic part of the inhibitors 

and the goal was to track the inhibition within the cells and to test that the inhibitor is 

physically bound to TG2. Two compounds having a dansyl group in their lipophilic end were 

synthesised and tested; the first had an acrylamide warhead (compound 1e, Table 3-1) and 

produced the best inhibitory effect against TG2 with an IC50 of 0.0061 µM. The second 

compound was designed with a dimethyl sulfonium warhead and showed descent TG2 

inhibitory activity with an IC50 of 0.38 µM (compound 1f, Table 3-1). 

An additional test was applied to confirm that these inhibitors act on the active “open” form of 

TG2. Two versions of TG2 were incubated for 30 minutes, once with TG2 activator Ca2+ and 

one with the TG2 inactivator GTP. Each TG2 version was then incubated with the inhibitors 

1e and 1f for 30 minutes and the excess inhibitor removed. TG2 activity was measured and 

it was found that TG2 incubated with Ca2+ lost its activity upon the addition of the inhibitors 

while TG2 incubated with GTP retained its activity. This indicates that for these inhibitors to 

work, Ca2+ must be available to induce the open conformation of TG2 to give them access to 

CYS277. 

To examine the selectivity of the inhibitors to TG2, the activity of compounds 1e and 1f 

against caspase 3 and 7 was measured and the compounds were found to be inactive 

against these enzymes. In addition, all the active compounds showed very good selectivity 

towards TG2 when tested against TG1, TG3 and FXIIIA and this was especially true for the 

dansyl compounds. Next, the toxicities of the active inhibitors were determined using XTT-

base assay. The toxic concentrations for the compounds ranged between 25-100 µM, with 

some halogenated inhibitors having the highest toxicities, whereas the water soluble 

compounds with sulfonium warheads were the best tolerated. The toxic concentrations were 

much higher than TG2 IC50 values. It should be noted that the toxicity from the halogenated 

compounds was not unexpected, and they were never intended to be used as potential 

drugs; rather, they served as intermediates during the syntheses and were tested for their 

activity as TG2 inhibitors. 

Compound 1e with the dansyl fluorescent group was used to confirm the covalent inhibitory 

mechanism by incubating TG2 with the compound and Ca2+ for 3 hours. The same was 

applied for a mutant version of TG2 in which a serine residue replaced the active site 

cysteine residue. After incubation, the enzyme was separated from the remaining inhibitor 

and fluorescent bands were checked under the microscope. Wild type TG2 incubated with 

1e showed bands for the dansyl group while the mutant TG2 did not show any bands, 
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indicating the covalent binding of the inhibitor to the active site cysteine. When cellular 

permeability was tested on a subset of inhibitors, it was observed that the acrylamide-based 

inhibitors could penetrate cells and inhibit intracellular TG2 better than the sulfonium ion 

compounds. This is consistent with the water solubility profiles for both types of warheads 

(Badarau et al. 2015). 

The version of TG2 that was used in the majority of studies for testing the inhibitors was the 

guinea pig liver TG2 (Sohn et al. 2003; Pardin et al. 2006; Pardin, Pelletier, et al. 2008; 

Griffin et al. 2008). Although this can be justified by the fact that this version of TG2 has 80% 

resemblance to the human version (Pardin, Pelletier, et al. 2008), testing the inhibitors 

against human TG2 will certainly produce more relevant results. The human version of the 

enzyme has been used in the studies by Choi et al. (2005), Watts et al. (2006), Prime, 

Andersen, et al. (2012), Badarau, Mongeot, et al. (2013) and Badarau et al. (2015). Griffin et 

al. (2008) used guinea pig TG2, but in addition they tested two of their compounds against 

human TG2 and found comparable results. 

1.5 Computational Techniques 

Computational chemistry is a general term which describes chemical events that can be 

represented by mathematical terms developed enough to be automated to make use of the 

rapidly increasing powers of computers (Young 2001). The term has been used 

interchangeably with molecular modelling and theoretical chemistry (Cramer 2013). Two 

main computational or modelling techniques have been used throughout this thesis; 

molecular dynamics (MD) and protein-ligand docking. Within each, several sub-techniques 

have been applied; with MD, for example, conventional MD was the major techniques used, 

in addition to enhanced sampling techniques with quantum mechanical treatment and 

covalent MD. With docking, flexible and rigid receptor approaches have been applied using 

more than one scoring function as well as rescoring a docked conformation and covalent 

docking. Both of these methods rely heavily on the principles of energy minimisation or 

geometry optimisation. In the following sections, brief descriptions for the various 

computational approaches will be presented. 

1.5.1 Energy minimisation 

The potential energy of any chemical system is a function of its atomic coordinates giving 

rise to the potential energy surface (PES), which is a multidimensional shape showing how 

the energy changes with the coordinates of the atoms. The surface is composed of hills, 

corresponding to high energy conformations, and valleys for the lower energy structures. 
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When building a computer model of a chemical system, the structure produced may not 

reflect the most stable conformation for that molecule. This results from the fact that the 

drawn structure will most probably be located outside the deepest valley in the PES (global 

minimum), which represents the most stable conformation for that system. The structure will 

have a higher chance of being within one of the local minima. The process of optimising the 

geometry of the chemical system to minimise its energy to the lowest possible value is called 

energy minimisation (Leach 2001). 

Several minimisation methods are available. Examples include the Newton-Raphson 

method, which is the most computationally expensive because it calculates the first (slope) 

and second (curvature) derivatives of energy at each geometry point. Another example is the 

steepest descent method which calculates the first derivative only and assumes that the 

second derivative is a constant. Steepest descent is the fastest minimisation method and 

moves the system in the direction of the largest slope (steepest gradient). Conjugate 

gradient method is another minimisation method that is similar to the steepest descent, but 

the new search direction contains some information from the previous search direction 

(Höltje & Folkers 2008). All these are mathematical methods that optimise the geometry to 

minimise the energy. Energy is calculated at each step of the optimisation using one of two 

major methods. These are discussed in the next sections. 

1.5.1.1 Molecular mechanics (MM) 

Molecular mechanics or force field methods make use of classical mechanics to handle 

chemical systems and treat molecules as being composed of atoms connected by bonds. 

Therefore, to model a new molecule, one can use the bond connecting parameters from 

known molecules (Hinchliffe 2003). Databases for those parameters can be obtained from 

experiments or from higher level calculations (Boeyens & Comba 2001). The force field 

refers to the energy terms investigated within a molecule, together with the parameters for 

those terms. The energy terms are generally divided into bonded terms (bond length, bond 

angle and dihedral angle) and non-bonded terms (van der Waals and electrostatic 

interactions). The total energy of the system is taken as the sum of these energy terms 

(Leach 2001). 

1.5.1.1.1 Bonded terms 

The energy associated with bond length is calculated based on Hook’s law, in which the 

energy is related to the difference between the actual bond length and some value that 

represents the ideal or equilibrium length for that bond (Leach 2001). Bond angle term is 

also handled according to Hook’s law as in bond length. However, its contribution to the total 
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energy of the system is less than that from bond length (Leach 2001). The angle between 

the 2 planes defining 4 successively bound atoms (the dihedral angle) is another bonded 

term in the force field. The energy of dihedral angle is calculated depending on the number 

of possible rotations around the angle. Its contribution to total energy is the least, but this 

should not make the angle less important than the previous term, because it means that it 

can be distorted very easily resulting in non-realistic conformations (Vinter & Gardner 1994). 

1.5.1.1.2 Non-bonded terms 

The terms describe the interactions between each atom pair that are not connected by a 

covalent bond and are of two types. Attraction or repulsion between non-bonded atoms, that 

are not caused by charges are represented by van der Waals forces. The contribution from 

this interaction is calculated by the Lennard-Jones 6-12 potential, where the energy will have 

a minimum at certain distance separating the atom pair. Electrostatic interactions arise from 

attraction and repulsion resulting from the charges on the various atoms in the system. The 

energy of the interaction between 2 atoms depends on the distance between them and the 

partial charges they are carrying and is calculated by Coulomb law (Vinter & Gardner 1994). 

Non-bonded interactions tend to fade at higher distances, but in theory they extend infinitely. 

To save computer time, cut-off distances are introduced, which are distance limits beyond 

which the non-bonded energy will not be calculated for atom pairs. Force field methods 

perform the minimisation process by iteratively changing the parameters and calculating the 

energy at each step, until reaching the lowest possible energy for the system or the 

maximum number of iterations (Vinter & Gardner 1994). 

Molecular mechanics methods are computationally very efficient, making them suitable to 

handle large systems including biological macromolecules. The force fields are transferrable, 

so they can be applied to a variety of systems (Leach 2001). On the other hand, their 

accuracy is not the best among the energy calculation techniques, and the lack of 

representation of electrons in the force fields means that they cannot be used to simulate 

chemical reactions (Vinter & Gardner 1994). 

1.5.1.2 Quantum mechanics (QM) 

These methods use the principles of quantum chemistry to describe a chemical system and 

calculate its energy. They handle molecules as being composed nuclei and electrons moving 

around them (Vinter & Gardner 1994). Quantum mechanical methods estimate the energy of 

a system by finding the appropriate wave function to describe the system. The wave function 

is a probability function for the movement of the electrons around the nuclei (orbitals). An 
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exact wave function can only be found for systems containing one electron only by solving 

the Schrödinger equation, and this is only be applicable to hydrogen atom (Leach 2001). For 

poly-atomic systems, the energy of the electrons has more than one component; a core 

component (interaction between electron and nucleus), an exchange component (electrons 

on different orbitals) and a Coulomb component (electrons on the same orbital). Therefore, 

the Schrödinger equation cannot be solved exactly and the result is multiple wave functions 

to describe the system. Based on the variation principle, the best wave function is the one 

that gives the lowest energy to the system (Leach 2001; Vinter & Gardner 1994). Depending 

on the level of approximation, QM methods are of 2 major types. 

1.5.1.2.1 Ab initio methods 

Ab initio is the Latin term for “from scratch”, which means that these methods do not use 

approximations or parameters from experiments, and perform optimisation by handling every 

single electron in the system (Dorsett & White 2000). Some approximations are, however, 

inevitable to make the calculations possible; one example is the use of the linear 

combination of atomic orbitals (LCAO) to represent the molecular orbital of the system in 

which the wave functions corresponding to the individual atomic orbitals are added together 

to give a wave function for the molecule, and the wave function with the lowest energy is the 

minimum for that molecule (Vinter & Gardner 1994). 

Ab initio methods are defined by a choice of a method and a basis set. The method is a 

mathematical representation for the calculation of the wave function of the molecular orbital 

from the individual atomic orbitals. Hartree-Fock (HF) is an example of ab initio methods that 

deals with single-electron wave functions (Dorsett & White 2000) and density functional 

theory (DFT) which performs the calculations based on electron density, rather than single 

electrons (Koskinen & Mäkinen 2009). The basis set is an analytical term used to represent 

the atomic orbitals (Vinter & Gardner 1994). 

Ab initio methods are highly accurate when compared to other means of geometry 

optimisation, and because they do not rely on parameters, they can be used for newly 

designed systems for which no experimental data exist. They can be used to derive 

parameters for other methods, such as force fields and semi-empirical methods (Dorsett & 

White 2000; Leach 2001). Their major disadvantage is that they are very computationally 

expensive, especially with the use of more complicated methods and basis sets, making 

them applicable only to small systems (Vinter & Gardner 1994). 
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1.5.1.2.2 Semi-empirical methods 

They are methods that also deal with electrons and nuclei but they involve approximations 

that allow them to be much faster than ab initio methods (Hinchliffe 2003). The 

approximations include neglecting the integrals of overlaps between atomic orbitals (Leach 

2001), substituting some integrals by parameters from experiments and performing the 

calculations on valence shell electrons only (Höltje & Folkers 2008). Depending on the level 

of neglect involved in the method, there are several types of semi-empirical methods, such 

as CNDO (complete neglect of differential overlap), MNDO (modified neglect of diatomic 

overlap) and PM3 (parameterisation method 3) (Leach 2001). Semi-empirical methods are 

faster than ab initio methods and their results are more reproducible, being based in part on 

parameters. They are less accurate, however, especially when applied on systems larger 

than the systems from which the parameters were derived (Vinter & Gardner 1994; Seabra 

et al. 2009). 

1.5.2 Molecular dynamics 

X-ray crystallography is probably the best technique that can be used to elucidate the 3-

dimensional (3D) structure of biological macromolecules. The main drawback of this 

technique, among others, is that the structures produced are static and do not represent the 

entire conformational space the macromolecule can adopt. NMR spectroscopy is another 

technique that can give more insight on the flexibility of a biological system, through 

uncovering the structure of the macromolecule as an ensemble of conformations. 

Nonetheless, the technique remains extremely difficult to apply and time consuming (Mortier 

et al. 2015). 

The static structures from X-ray crystallography and the ensembles from NMR spectroscopy 

have succeeded in providing essential information about biological macromolecules and 

their spatial arrangements. However, the inflexibility of the structures renders them less 

useful in recounting events that involve dynamics of the biological system. Example events 

include the continuous motion of proteins in biological solutions, the conformational changes 

in proteins brought about by binding of ligands, whether natural substrates or exogenous 

molecules, and the allosteric regulation of enzymes that signifies an important regulatory 

mechanism for many enzymes and usually involves a large conformational modification of 

the enzyme that alters its activity. Similar examples can be found within nucleic acids, where 

the binding of DNA to transcription factors is regulated by base sequence as well as the 

potential of the DNA molecule to accommodate the transcription factor (Hospital et al. 2015). 

Molecular dynamics (MD) is a computational method that could be used to predict the 
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possible conformational space a biological macromolecule can explore, as well as the paths 

taken by the biological system during this exploration. When applied to the static structures, 

MD can extend the level of flexibility of the system (Mortier et al. 2015). 

Advances in computational powers witnessed in the last few years have enabled the 

application of MD on larger and larger systems. At the same time, these advances have 

allowed for extended simulation times; simulations on large proteins, receptors, membrane 

proteins, phospholipids, nucleic acids and other macromolecules for microseconds are now 

routinely conducted (Mortier et al. 2015). 

1.5.2.1 Basic principle 

MD simulations operate on the basis of solving Newton’s equations of motion: 

𝒇𝒊 = 𝒎𝒊𝒂𝒊 

where 𝒎𝒊 is the mass of atom i and 𝒂𝒊 is the acceleration of atom i and 𝒇𝒊 is the force acting 

on the atom. The force is a function of the potential energy of the system and the latter is 

dependent on the positions of all atoms in the system. The result from MD is a time series of 

conformations that represent the dynamic spatial configuration of the biological system, and 

from which, thermodynamic properties can be calculated. The application of MD requires 4 

basic fundamentals; the resolution of the system, description of the interactions within the 

system, production of the time series conformations and solvation (Mortier et al. 2015). 

1.5.2.1.1 System resolution 

The resolution describes how the elementary particles of the system are given. The particles 

can be presented as nuclei and electrons, as atoms or as coarse-grained (CG) particles, 

each composed of several atoms. Nuclei and electrons description is utilised when there is 

QM treatment and the description gives the most accurate results, but is very slow that it 

would be impractical to apply to large systems. QM treatment is, therefore, reserved for the 

study of enzymatic reactions and reaction pathways where only a small fraction of the 

system is treated by QM while the remainder is handled conventionally. CG description is 

the other extreme where the number of particles in the system is reduced significantly 

allowing more space to be explored more rapidly, at the expense of the accuracy of the 

information obtained. Particles treated as atoms represents the best compromise between 

speed and accuracy and is the most popular approach in conventional MD (Mortier et al. 

2015). Within the system resolution also lies the solvation of the system. This will be 

discussed in a separate section. 
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1.5.2.1.2 Force field 

The potential energy function used within MD simulations describes the interactions within 

the system particles and is generally termed ‘force field’. Force fields, as mentioned 

previously, commonly use two main terms to define the interactions between atoms; bonded 

interactions term and non-bonded interactions term (Mortier et al. 2015). Force fields, with 

their parameters, allow the calculation of the forces acting on each atom in the system, 

which in turn permit the prediction of the velocities and accelerations of these atoms and 

consequently the new atomic positions according to Newton’s equations of motion. Due to 

the method of integration used in the calculation of the forces, a short time step must be 

used. The term ‘short’ means that the time step should be shorter than the fastest atomic 

motion and therefore, time steps are generally in the order of 1-2 femtoseconds. The use of 

larger time steps can significantly improve computation time and this is possible with CG 

representation of the system but on the expense of the accuracy of the information obtained 

(Hospital et al. 2015). 

The parameters embedded in the force fields are derived from higher level computational 

methods or from experiments. Because biological macromolecules are composed of a finite 

set of building units (for example, amino acids for proteins and nucleotides for nucleic acids), 

the use of force fields would sound reasonable as those contain information on this finite set 

of building blocks. For organic, drug-like molecules or ligands, no building blocks can be 

used for the representations because of the diversity in the structures of these ligands. 

Separate force fields are used to describe these atoms which have the information for 

bonded and non-bonded terms taken from the general force fields while the partial atomic 

charges are derived from higher level QM calculations (Mortier et al. 2015). 

Multiple reliable force fields exist today, and examples include the AMBER (assisted model 

building with energy refinement) force field (Hornak et al. 2006) used with the AMBER MD 

package (Case et al. 2012), CHARMM (Chemistry at HARvard Macromolecular Mechanics) 

(MacKerell et al. 1998) with the CHARMM program (Brooks et al. 2009) and GROMOS 

(Groningen Molecular Simulation) (Oostenbrink et al. 2004) with the GROMACS 

(GROningen MAchine for Chemical Simulations) program (Hess et al. 2008). Those force 

fields differ mainly in the methods used for their parameterisation and the sources of the 

parameters; the force fields cannot be used interchangeably, but the trajectories resulting 

from them are comparable (Hospital et al. 2015). 
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1.5.2.1.3 Production of the time series 

After the forces acting on atoms are calculated and the new atomic positions are predicted, 

the new conformation is recorded and is used as the starting point for the next time step 

force calculation. The ultimate result of the MD simulation is a time series of the new 

conformations that would represent a trajectory for the dynamics of the biological 

macromolecule as predicted by Newton’s equations of motion (Mortier et al. 2015). As stated 

earlier, the calculation of the new atomic positions requires integrating the equation of 

motion. An analytical integration is not possible due to the complexity of the equation. A 

numerical integration is used instead. Several numerical algorithms are available such as 

Verlet algorithm and the leap frog algorithm (Paquet & Viktor 2015). 

1.5.2.1.4 Solvation and periodic boundary conditions 

Biological macromolecules are found in solutions in biological system, and this should be 

considered when applying MD simulations. Two main solvation models exist; implicit 

solvation and explicit solvation. In the implicit solvation model, solvent, usually water, 

molecules are not added physically to the simulated system. Instead, they are replaced by a 

potential that is used to simulate the effect of the presence of the actual solvent molecules. 

This model is computationally fast because the number of the atoms of the system is not 

increased. In addition, the model allows for infinite representation of the solvent, which is the 

case in bulk liquid. On the other hand, there is the fundamental compromise in computation 

between speed and accuracy due to the absence of water molecules, and thereby the 

absence of the effects that could result from their presence such as hydrogen bonds and 

ligand solvation effects (Paquet & Viktor 2015; Onufriev 2008). 

In the explicit solvation model, water molecules are added physically to solvate the biological 

system. Although water molecules in bulk solution are in the form of an infinite solvation box, 

only a finite number of water molecules can be added during MD due to the limited capacity 

of the computer memory. Solvation boxes are used for this purpose and these can take the 

shape of cubes, dodecahedrons or truncated octahedrons. The larger the solvation box, the 

more accurate the simulation would be, but this will have a great effect on the speed of the 

simulation. In fact, much of the computation time is spent on dealing with the solvent 

molecules as they usually constitute the majority of the components in the test system 

(Tuckerman & Martyna 2000; Paquet & Viktor 2015). 

Because solvation boxes are finite, periodic boundary conditions are employed to make the 

representation more realistic. Periodic boundaries work by generating replicate translational 

images for the system in all the dimensions and the true system is in the centre of those 
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replicates. When a water molecule reaches the boundary of the box and eventually leaves it, 

its copy will replace it from the corresponding image. The representation is more realistic 

than the implicit solvent but explicit solvent with periodic boundary is computationally 

expensive due to the requirement to handle long distance electrostatic interactions between 

the atoms from various images. One approach around this is the use of the particle mesh 

Ewald method. This approach works by dividing the Columbic potential into a shot-range 

component (calculated by conventional means) and a long-range component whose 

contribution is calculated through a Fourier transform (the potential is calculated in the 

reciprocal space) (Tuckerman & Martyna 2000; Paquet & Viktor 2015). 

1.5.2.2 Stages of MD 

According to the authors of the CHARMM MD program (Stote et al. 1999), conventional MD 

is ideally performed in 5 stages. The first stage involves preparing the initial coordinates of 

the system to be simulated. These can be from a crystal structure from the Protein Data 

Bank, a homology model for a protein whose 3D structure has not been yet elucidated or a 

docking complex generated by one of the docking programs. The type of solvation should be 

chosen at this stage, whether implicit or explicit, as well as the force field that will be applied 

to define the atoms and the interactions. The second stage is performing energy 

minimisation on the system. The objective is to remove any bad clashes from the original 

crystal structure, and therefore, local optimisation would be sufficient where the goal is not to 

find a global minimum. Another objective for minimisation is to allow water molecules added 

during solvation to accommodate themselves to the biological system without any overlap. 

The third step comprises heating the system. This is done because the system starts at a 

temperature of 0 K. During this phase, velocities are allocated to the atoms of the system at 

low temperature and MD is applied and the system is propagated over time by solving 

Newton’s equations. Periodically, new velocities are allocated to the atoms while slightly 

increasing the temperature. Heating is continued in the same way (allocating velocities while 

raising the temperature) until the desired temperature is reached. Heating is followed by 

equilibrating the system (4th step). The purpose of this stage is to run the MD on the solvated 

system while monitoring properties such as pressure, temperature and energy. This phase 

should be continued until these properties become stable over time. When the properties are 

stable, the system is said to have equilibrated and can proceed to the final phase which is 

the production of the actual MD trajectory. Production phase can be extended for any 

desired period of time, and it is the trajectory produced during the production that could be 

inspected to gather information and perform analyses about the biological system. 



Chapter 1   General Introduction 

48 

 

The most popular MD packages such as AMBER, CHARMM and CROMACS have made a 

great use of the computational advances. For example, they all use the messaging passing 

interface (MPI), which allows the computation to be spread over multiple cores within the 

computer, and hence greatly speeding the process. Each core will handle a section of the 

system and will perform the calculations on that section. The communication between the 

cores is reduced, since it will be reserved for those handling adjacent sections of the system, 

which will also speed the process. Graphical processing units (GPUs) are components of 

computers that were originally intended to handle different aspects of graphics. A major 

enhancement of computer abilities to perform MD simulations was made when the GPUs 

were allowed to be used as processors to run MD. With GPUs, microsecond-long MD 

simulations are now conducted routinely (Hospital et al. 2015). 

1.5.2.3 Enhanced sampling techniques 

Even with the recent advances in computational powers and the codes running MD, the 

complexity of the potential energy surface of biological macromolecules remains a major 

hurdle in the face of MD. The simulation will be trapped in an energy minimum near the 

starting conformation, without the possibility of crossing the high energy barriers separating it 

from the global minimum. Enhanced sampling techniques are methods developed to 

overcome the high energy barriers in the potential energy surface allowing more accessible 

exploration of conformational space. In addition, these techniques enable the sampling of 

events that accompany such high energy barriers, such as protein folding and bond breaking 

or formation (Hospital et al. 2015), keeping in mind that bond breaking and formation 

requires in addition QM treatment. Examples of those techniques are presented in the 

following sections, with a more detailed description of those used in this work. 

1.5.2.3.1 Replica exchange molecular dynamics 

This method of enhanced sampling involves simulating multiple copies or replicas of the 

biological system at the same time but at different temperatures. A swap is performed 

between the replicas every predefined number of steps, so that a replica starting at low 

temperature will be allowed to sample at a higher temperature and vice versa. A weighting 

analysis is performed to give the conformational space that was sampled during the method, 

which would be much wider than that sampled by conventional MD, since the simulations of 

replicas at higher temperature will overcome some of the high hills present in the potential 

energy surface of the molecule (Mitsutake et al. 2001). A major disadvantage of this 

approach, arising from the fact that multiple simulations are run at the same time, is its 
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computational cost (Michel & Essex 2010). The method has, however, proven superior to 

classical MD in predicting events such as protein folding (Bernardi et al. 2015). 

1.5.2.3.2 Umbrella sampling 

The basic idea behind umbrella sampling is that a MD simulation is performed while adding 

a biasing potential to push the system to sample a predefined coordinate over a certain 

range of values. These values are defined by a restraint added to the coordinate. A record is 

kept for the manner in which the coordinate has changed over the simulation. The process is 

repeated by moving the minimum of the restraint governing the predefined coordinate to 

some higher or lower value. Each of the resultant trajectories is called a window. The 

individual windows must have some degree of overlap. This means that each recorded value 

of the coordinate must have been sampled in more than one window. The change in the 

coordinate between the windows must be small enough to ensure a quasi-static process. At 

the end, the biasing potential is removed and the potential of mean force (PMF) can be 

calculated, which represents the free energy change as a function of the coordinate 

(Lonsdale et al. 2012; Kästner 2011). Umbrella sampling can be used to calculate the free 

energy difference between two states (defined by the coordinate) through calculating PMF. 

That is why it was used in this work to simulate the reaction between some irreversible 

inhibitors and TG2. The elements of umbrella sampling are presented in the next sections. 

1.5.2.3.2.1 The coordinate 

Several system parameters can be used as the coordinate, or reaction coordinate (RC) for 

umbrella sampling simulations. The chosen RC should have the ability to represent the 

change between the initial and final stages of the system during the sampling simulations. It 

should also be possible to calculate the RC as a function of the atomic coordinates of the 

system being simulated. Accordingly, parameters such as distances, bond lengths, angles, 

dihedral angles, hydrogen bond lengths and root-mean-squared deviation (RMSD) from 

some reference structure, can all be used as reaction coordinates (Spiwok et al. 2015). 

1.5.2.3.2.2 The biasing potential 

During umbrella sampling, the RC is set to change from one value to another, where each of 

the 2 values characterises a definitive state of the system. As mentioned earlier, the change 

in RC between these 2 values is supposed to proceed over small steps, or windows and 

during each window a biasing potential is added to bring the desirable change. Usually, the 

biasing potential is applied in the form of a harmonic potential. The potential produced from 

applying the harmonic restraint is added to the energy of the system at that value of reaction 
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coordinate. This can then be removed to calculate PMF. The strength of the restraint is a 

criterion that requires attention; too low restraints will not be enough to push the system to 

cross the high energy barriers in the potential energy surface, and too high restraints will 

result in a very narrow distribution of RC with the subsequent lack of overlapping between 

the windows. Trying several values of the restraint, starting from the lowest possible and 

moving up until the change is observed with reasonable overlap indicates that the chosen 

restraint is suitable. This can be performed beforehand using smaller windows, but it will still 

be expensive in terms of computational time. The use of experimental values, if available, 

would produce more promising results (Kästner 2011; Mills & Andricioaei 2008). 

1.5.2.3.2.3 Potential of mean force 

The result from umbrella sampling is usually expressed as a graph of the free energy 

change in the system along the sampled reaction coordinate. This is the definition of PMF 

(potential of mean force). The free energy or the PMF is obtained from the time series of the 

changes in the reaction coordinate in each window under the influence of the biasing 

potential. The weighted histogram analysis method (WHAM) (Souaille & Roux 2001) is used 

to remove the effect of the biasing potential and calculate PMF based on the probability of 

the distribution of the reaction coordinate over the windows. For the best PMF results, 

WHAM requires that umbrella sampling windows are overlapping (Kästner 2011; Baştuğ et 

al. 2008). 

1.5.2.3.3 Steered molecular dynamics 

The concept of steered molecular dynamics (SMD) also involves the application of an 

external force or perturbation to drive a particular process in the desired direction, and thus 

would reduce the time needed to observe the final outcome. The work involved in the 

process could then be converted to binding free energy using the Jarzynski’s equality 

(Jarzynski 1997b; Isralewitz et al. 2001; Park et al. 2003; Suan Li & Khanh Mai 2012). 

Jarzynski’s equality (Jarzynski 1997a; Jarzynski 1997b) is a mathematical expression that is 

used to convert the work performed in non-equilibrium processes to a free energy. The basic 

equation is: 

𝑒
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𝑘𝐵𝑇
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where 𝜟𝑮 is the free energy of the system, 𝑾 is the work performed in the process, 𝒌𝑩 is 

Boltzmann constant and 𝑻 is the temperature of the system. The angled brackets indicate an 

average of the work over a number of the non-equilibrium processes. 
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The main drawback in Jarzynski’s relationship lies in its very definition, where it applies only 

when the work is averaged over an infinite number of the non-equilibrium processes and 

when a finite number is used, correction must be applied to account for this bias (Dodson et 

al. 2012). Gore et al. (2003) have devised equations for the bias correction as well as the 

calculation of mean square errors associated with the bias correction. The equations involve 

calculating and correcting the dissipated work to ultimately calculate the bias-corrected 

Jarzynski’s average. 

1.5.2.3.4 Accelerated molecular dynamics 

This is another enhanced sampling method that is aimed at improving the exploration of the 

potential energy surface of the studied biological systems by allowing the biological systems 

to break free from the local energy minima in which they are trapped. A major difference 

between accelerated MD (aMD) and umbrella sampling is that the latter requires a 

knowledge of the system to define the coordinate along which to apply the biasing potential. 

In aMD, a biasing potential is added such that it would be used every time the system is 

trapped in a local minimum, and if the system is next to a barrier or a hill on the energy 

surface then the biasing potential will not be used. In this way, prior knowledge of the system 

is not an absolute requirement. As in umbrella sampling, the effect of the biasing potential 

can be removed at the end of the simulation. aMD has enabled access to milliseconds of 

simulation information by performing nanoseconds of simulations (Pierce et al. 2012; 

Hamelberg et al. 2004). 

The bias is added when the true potential of the system falls below a predefined value (E), 

which is an indication that the system is in a local minimum. The bias addition is done in 

such a way to keep the shape of the minimum; in other words, the bias will help in raising the 

minimum and smoothing the associated well rather than making it flat. The predefined value 

of the true potential (E), below which the bias will start acting, must be larger than the 

minimum potential of the system in its starting conformation; otherwise, the result would be 

conventional MD. The recommendation is to apply conventional MD for a short period and to 

calculate the average potential energy of the system at the end of this period. The average 

potential energy can then be used to define E (Pierce et al. 2012; Hamelberg et al. 2004). It 

is possible to obtain the original potential energy surface of the simulated system by 

reweighting the aMD simulation using exponential averaging and Boltzmann factor (Miao et 

al. 2014). 
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1.5.2.4 Quantum mechanical treatment 

As mentioned in the sections covering system resolution and force fields, conventional force 

fields mostly used in MD handle the systems as being composed of atoms connected by 

strings and have special terms to account for non-bonded interactions. In some situations, 

the system involves a chemical reaction between 2 or more molecules and there is bond 

formation and/or breakage during the reaction. Classical force fields cannot simulate such 

types of system, regardless of the simulation time allowed. 

QM methods deal with electronic structures; they account for electrons when handling the 

systems and hence can simulate chemical reactions. The main problem with these methods 

is their computational cost; because they deal with electrons, their simulations can take very 

long times. One way around the problem is to apply a combined quantum 

mechanics/molecular mechanics (QM/MM) method. In a QM/MM treatment, the reaction 

centre (for example and inhibitor and an active site residue) is treated by a QM method, 

while the rest of the system is treated by a classical force field using a MM method. The 

relatively small QM region will allow the simulation to be performed within an accessible time 

scale. The MM treatment enables the inclusion of the effect of the environment (remainder of 

protein structure, for example) on the reaction as well as any conformational changes 

associated with or resulting from the reaction (Ranaghan & Mulholland 2010). 

Two approaches for calculating the total energy of the system in QM/MM have been 

proposed. The first is the additive approach, in which the QM region is only treated by a QM 

method and the total energy of the system would be simply the sum of that of the QM region, 

the MM region and the energy of the interaction between the 2 regions (van der Kamp & 

Mulholland 2013). The 2nd approach is a subtractive method, in which the energy of the total 

system (including the QM region) is calculated by MM, and the energy of the QM region is 

calculated additionally by the QM method. The energy of the system is then taken as the 

sum of the total energy calculated by MM for the whole system and the energy of the QM 

region calculated by QM, and from this sum the energy of the QM region calculated by MM 

method is taken away (Vreven et al. 2006). 

If the QM region is covalently bound to the rest of the system (MM region), then additional 

atoms are added to the QM region at the positions of the covalent bonds linking the 2 

regions. They are called link atoms and are usually hydrogen atom. They are treated as 

being a part of the QM region and their main purpose is to satisfy the valence of the atoms at 

the interface between the 2 regions (Walker et al. 2008). Many QM methods are available to 

be used for QM/MM simulations. Semi-empirical methods such as AM1, PM3, PM6 and 
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SCC-DFTB are reasonable choices, considering that higher level methods such as ab initio 

methods are much more computationally expensive. It should be noted that it is the QM 

method and the treatment of the QM region that will determine the speed at which the 

simulation is performed (van der Kamp & Mulholland 2013). 

Two semi-empirical QM methods were used in QM/MM simulations in this work; PM3 and 

SCC-DFTB. Semi-empirical methods deal with electrons and molecular orbitals in their 

attempts to optimise or minimise molecular systems. They differ from the higher level ab 

initio methods in that certain aspects of the calculations have been simplified by 

parametrisation. PM3 (parameterisation method 3) belongs to a class of the semi-empirical 

methods called Modified Neglect of Diatomic Differential Overlap (MNDO) that is based on 

parametrising all two-electron integrals to avoid involving them in the calculations and 

therefore to save computational time. PM3 has been parametrised to reproduce large 

number of molecular properties. The method includes terms to handle hydrogen bonds, and 

many important elements were incorporated in the parameter set (Stewart 1989; Stewart 

2007). 

SCC-DFTB (self-consistent charge density functional tight-binding) is an approximation for 

the density functional theory (DFT) method, which is one of the ab initio methods (Elstner 

2006). The Hartree-Fock method handles single electrons, and when an electron is being 

treated, the other electrons in the system are fixed. DFT moves around this approximation 

by dealing with the electron density. With the latter, it is possible to represent the density of 

all the electrons by 3 variables, rather than 3 variables for each electron in the system. The 

energy is then taken as a functional (function of a function) of the electron density, and by 

minimising the density, the geometry is optimised (Orio et al. 2009). 

Tight binding is a semi-empirical approximation to DFT, which assumes that the electrons 

are tightly bound to the atoms and have limited interactions with the surrounding 

environment (Goringe et al. 1997). This allows introducing an approximation to the electron 

density by splitting it into a tightly bound reference region and an external region on which 

the calculation is performed (Foulkes & Haydock 1989). SCC-DFTB is a variation of DFTB in 

which the charge fluctuation is taken into account by decomposing the electron density into 

atomic-like contributions which fade as the distance from the atoms is increased (Elfturi 

2014). 

1.5.2.5 Principal component analysis 

Principal component analysis (PCA) is a statistical method used to reduce the complexity of 

large data sets, such as MD trajectories. PCA extracts from the trajectories principal 
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components (PCs), each of which corresponds to a distinct molecular motion mode within 

the trajectory. Each PC is an eigenvector that has an eigenvalue, where the latter can 

numerically describe the contribution of that particular PC to the total motion within the MD 

trajectory. By comparing the PCs and their eigenvalues, it is possible to discriminate 

between important modes of motion from those that are not very influential. This will greatly 

facilitate the analysis of large MD trajectories, by giving the opportunity to focus the analysis 

on the major modes of motion observed during a given MD simulation (Ng et al. 2013; 

Skjaerven et al. 2011; David & Jacobs 2014). 

1.5.2.6 AMBER overview 

AMBER 12 (Case et al. 2012) was the version of AMBER that was used to run various MD 

simulations in this work. AMBER refers to a collection of force fields designed to handle 

various biological molecules including proteins, nucleic acids and lipids in addition to small 

organic molecules. The term AMBER also applies to a package of programs and codes 

designed to perform various functions related to MD. The most important of these programs 

are presented below (Salomon-Ferrer, Case, et al. 2013). 

1.5.2.6.1 sander 

Sander (simulated annealing with NMR-derived energy restraints) is the main program within 

AMBER involved in running MD. It is also responsible for running replica exchange and 

QM/MM simulations. 

1.5.2.6.2 pmemd 

This program is similar to sander but is applicable to a narrower range of MD simulations. It 

is faster than sander and performs better on parallel cores. It also includes the GPU 

acceleration recently introduced to AMBER (Salomon-Ferrer, Götz, et al. 2013). 

1.5.2.6.3 LEaP 

This is the program used to generate the parameter-topology and coordinate files that can 

be read by sander and pmemd to run MD. It can read PDB files and it can add hydrogen 

atoms, water molecules and neutralising ions. 

1.5.2.6.4 antechamber 

This program is similar to LEaP but is used to generate the input files for small organic 

molecules that are not included in the standard AMBER force fields. Its output files are then 
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loaded into LEaP to be used with the files for the biological molecule (Wang et al. 2006; 

Wang et al. 2004). 

1.5.2.6.5 CPPTRAJ 

This program is used for the analysis of the trajectories generated from various MD runs. It 

can calculate a wide range of information including distances between specific atoms, 

hydrogen bonds, root-mean-squared deviations from a reference structure, atomic 

fluctuations of the individual residues during a simulation, principal component analysis and 

many more (Roe & Cheatham 2013). 

1.5.2.6.6 MMPBSA.py 

This is another program that is used for post-processing purposes where it can be applied 

following a simulation of a complex between two molecules (ligand and protein for example) 

to calculate an estimate of the binding energy between the 2 molecules (Srinivasan et al. 

1998; Miller et al. 2012). 

AMBER programs and force fields are very popular MD tools. AMBER as a software has 

been cited more than 4,000 times until 2013 whereas AMBER force fields have been cited 

more than 9,000 times to that year (Salomon-Ferrer, Case, et al. 2013). 

1.5.3 Molecular docking 

Molecular docking, or docking for short, is another computational method used to predict the 

interaction between two molecules, usually a ligand and a receptor. This prediction involves 

posing the ligand within a binding site in the receptor. An accurate guess of the binding 

mode is an important goal for docking, and together with correct estimation of the binding 

affinity that reflects biological activity of the ligand, represents the major sites of development 

of docking softwares. For posing the ligand in the binding site, the software uses a docking 

method to find the most plausible mode for ligand binding. This is not a straightforward task 

due to the large number of conformations a ligand molecule can adopt. For the prediction of 

the binding affinity, a scoring function is applied on the poses generated by the docking 

method to score the poses based on the interactions between the ligand and the receptor 

(Kitchen et al. 2004). 

1.5.3.1 The docking method 

The docking method or the search algorithm attempts to reproduce the experimental binding 

mode for a ligand in the binding site of a receptor, or to predict the binding mode if no 
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experimental one is identified. The algorithm accomplishes that by exploring the degrees of 

freedom of the ligand, and sometimes, of the receptor active site. Ideally, all the degrees of 

freedom of the involved residues should be tested and the resultant binding modes 

examined, but this approach is not applicable as it would be computationally very expensive. 

Therefore, approximations are applied to make the process more computationally 

accessible; restraints and constraints are applied to the ligand to limit its degrees of freedom, 

and the binding site of the receptor is treated as rigid body or partially flexible (Meng et al. 

2011; Taylor et al. 2002). How the docking methods or the searching algorithms differ in the 

handling of the flexibility of the ligand and the receptor represents the major determinant of 

the method category. 

1.5.3.1.1 Docking methods handling ligand flexibility 

These docking methods were designed mainly to find a way of posing the ligand within the 

binding site of the receptor. They are more concerned about handling the flexibility of the 

ligand than that of the receptor. 

1.5.3.1.1.1 Shape-matching search algorithms 

The basis of these docking algorithms is that they generate binding modes by fitting the 

ligand within the binding site of the receptor, such that the molecular surface of the ligand 

complements the molecular surface of the receptor binding site. They are the simplest of the 

docking methods and the most efficient in terms of computational time required to perform a 

docking task. Their accuracy, however, is limited by the rigid treatment of the ligand. The 

shape-matching methods are usually applied during virtual screening of libraries of 

thousands of compounds to identify hits, that could then be tested using more rigorous 

search methods (Meng et al. 2011; Huang & Zou 2010). 

1.5.3.1.1.2 Systematic search algorithms 

Two type of search algorithms fall under this category, the exhaustive search and 

fragmentation methods. In exhaustive search algorithms, ideally, all of the ligand’s degrees 

of freedom are explored and since this is not computationally practical, some constraints are 

added to the ligand to reduce the number of rotatable bonds and hasten the searching 

process (Huang & Zou 2010; Friesner et al. 2004). The fragmentation method is also called 

incremental construction and involves breaking the ligand into small pieces at its rotatable 

bonds, and then rebuilding the ligand within the binding site piece by piece. Usually, a 

nucleus from the ligand is selected to be docked first (anchor). This, typically, is the largest 

core in the ligand and/or is responsible for important interactions with the binding site. The 
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remainder of the ligand is added incrementally to the anchor. The final outcome is the 

generation of several possible orientations of the ligand with better handling of its flexibility 

(Meng et al. 2011; Cross 2005). 

1.5.3.1.1.3 Stochastic or random searching algorithms 

These methods produce random changes to the ligand within the binding site to generate a 

binding mode. The changes are accepted or rejected after being judged by a predefined 

probability function. Different random algorithms have been proposed based on the criteria 

for accepting or rejecting the random changes (Sousa et al. 2006). Monte Carlo is an 

example of random searching method that utilises a Boltzmann-based probability function to 

judge the quality of the random alterations on the ligand. The function takes the decision 

based on the energy scores of the ligand before and after the alteration. Monte Carlo 

methods are computationally efficient when compared to MD methods, as the energy 

function is simpler and due to the ability of Monte Carlo methods to cross high energy 

barriers (Sousa et al. 2006; Meng et al. 2011). Tabu searching is another random algorithm, 

which performs docking by randomly changing the pose of the ligand within the binding site. 

The decision to accept or reject a new pose is based on comparing the RMSD of the new 

pose to all the previously generated poses. The algorithm also prevents the generation of 

previously explored poses by keeping a record of them (Kitchen et al. 2004; Sousa et al. 

2006). 

Another type of the random searching methods is the genetic algorithm. As the name 

suggests, these algorithms use the principles of genetics and evolution to perform docking. 

The ligand’s degrees of freedom; its rotation, orientation and translation, are encoded into 

chromosomes as genes. Therefore, the chromosome would be composed of genes that 

define the states of the ligand (genotype) while the atomic coordinates resulting from the 

genotype represent the actual pose of the ligand within the binding site (phenotype). The 

chromosomes are altered randomly by applying genetic operations, namely mutations and 

crossovers to produce new chromosomes, and thereby, new poses for the ligand. Mutations 

involve making random changes to the genes constituting the chromosomes, and crossover 

operations exchange genes between chromosomes. Any new pose generated by the genetic 

operations is scored by a fitness or a scoring function; if the score is better than the that of 

the previous genotype, the resultant pose is retained and subjected to further alterations, 

and if the score was worse, the pose is rejected and the previous pose is altered differently. 

The process is repeated until a predefined number of operations is reached (Meng et al. 

2011; Sousa et al. 2006; Jones et al. 1995). 
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1.5.3.1.2 Docking methods handling receptor flexibility 

Receptors, usually proteins, are dynamic molecules that are in continuous motion within the 

biological system. This is complicated by the conformational changes induced in the receptor 

by the binding of the ligand (ligand-induced fit). In order to simulate the docking process 

more realistically, the protein potential to move should be taken into consideration. However, 

because of the huge magnitude of the degrees of freedom of the protein, this is not usually a 

straightforward task (Huang & Zou 2010). The following methods have been used as 

approaches to tackle the issue of receptor flexibility in docking. 

1.5.3.1.2.1 Soft docking 

Using soft potentials in docking is the easiest and fastest method to handle protein flexibility. 

The method involves softening the van der Waals component of the scoring functions. The 

result is allowing or tolerating some clashes or overlaps between the ligand atoms and those 

from the receptor. Being fast and computationally efficient is the major advantage of the 

method. However, it can only handle minor side chain movements in the protein and cannot 

represent backbone dynamics (B-Rao et al. 2009; CCDC Software Limited 2013). 

1.5.3.1.2.2 Rotamer libraries 

Rotamer libraries represent a database for the most commonly observed conformations or 

rotamers for the side chains of the amino acids. Implementing such databases in the docking 

software allows the program to perform a survey of the possible conformations the side 

chain of a particular amino acid can adopt during docking to produce the most favourable 

complex for the ligand and the receptor. The computational cost is highly dependent on the 

size of the library. The method only handles side chains and cannot produce conformations 

that are not included in the library (B-Rao et al. 2009; Alberts et al. 2005). An example of 

rotamer libraries is the Penultimate library (Lovell et al. 2000) that is used by the docking 

program GOLD (Genetic Optimisation for Ligand Docking) (CCDC Software Limited 2013). 

1.5.3.1.2.3 Docking into multiple protein structures 

This approach is similar in concept to applying rotamer libraries and involves performing the 

docking task of the same ligand more than once into different conformations of the same 

receptor while treating each receptor conformation as a rigid body. Depending on the 

number of receptor structures used, the method can be computationally expensive but it will 

be able to handle side chain and backbone motions in the receptor. It should be noted that 

the chosen structures may not represent the entire conformational space of the receptor 

(Huang & Zou 2007; B-Rao et al. 2009). The multiple structures of the protein can be 
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obtained from a variety of sources including NMR structures, multiple X-ray structures of the 

same protein or conformations of the protein generated from a MD simulation on an initial 

structure (Carlson 2002). 

Ensemble docking is a variation of docking into multiple protein structures, in which an 

average grid structure for the receptor is generated from the multiple conformations before 

docking, and a rigid docking is performed on the single average structure. The approach is 

more efficient in terms of the computational time required, but the drawbacks include that not 

all the features in the structures can be averaged, and the resultant structure may produce 

non-realistic ‘artificial’ complexes with the ligands (Cozzini et al. 2008). 

1.5.3.1.2.4 Molecular relaxation 

This approach involves firstly docking the ligand into the binding site of the receptor without 

any account for receptor flexibility. Then, the generated complex is relaxed as a whole or just 

the part that involves the ligand and the neighbouring receptor residues. The relaxation is 

performed through MD simulations. These methods allow for the exploration of a wider 

space of the conformational universe of the protein, including its backbone. They also give 

the possibility of testing the stability of the docking generated poses of the ligands; in other 

words, the methods enable the monitoring of the ability of the ligand to maintain its pose for 

any given period of simulations time. The main drawback of relaxation methods, however, is 

that they are computationally very expensive. MD can also be used on the receptor on its 

own to generate multiple conformations that could be used separately (Hospital et al. 2015; 

B-Rao et al. 2009; Huang & Zou 2010). 

1.5.3.2 The scoring function 

A scoring function is the second half of any docking protocol besides the searching 

algorithm. Scoring functions are responsible for estimating the binding free energy of the 

complexes generated by the searching algorithm. They are included in the docking process 

for several purposes; to distinguish between a correct binding mode of the ligand within the 

binding site from an incorrect one, to rank the generated poses of the ligand based on their 

binding affinities, to discriminate between active compounds and non-binders, and to rank 

several active compounds according to their biological activities toward the receptor. An 

ideal scoring function would be able to do all that, but this will be computationally impractical. 

Therefore, scoring functions are developed with approximations to achieve reliable results 

within feasible computation time (Meng et al. 2011; Sousa et al. 2006). The types of most 

widely used scoring functions are presented below. 
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1.5.3.2.1 Force field-based scoring functions 

Force field functions attempt to estimate the binding energy between the ligand and the 

receptor by calculating two terms, the ligand internal energy and the energy of the non-

bonded interactions between the ligand and the receptor. The non-bonded interactions 

involved are of two types, van der Waals interactions, which are calculated by a Lennard-

Jones potential, and electrostatic interactions estimated through a Columbic formula (Sousa 

et al. 2006). Classical functions of this kind do not account for hydrogen bonds and solvation 

and entropic effects and include a cut-off distance for handling long range non-bonded 

interactions. Some newer functions based on force fields do include terms for hydrogen 

bonds or solvation (Meng et al. 2011). An example is the GoldScore function used within the 

GOLD docking program (CCDC Software Limited 2013; Verdonk et al. 2003). 

1.5.3.2.2 Empirical scoring functions 

The binding free energy between the ligand and the receptor in this type of functions is 

decomposed into several terms that describe hydrogen bonding, van der Walls interactions, 

metal ligation, hydrophobic effects, entropy, solvation and electrostatic interactions. 

Parameters for those terms are included in the scoring function for the calculation of the 

binding energy. The parameters are derived from a defined set of protein-ligand complexes, 

usually from the Protein Data Bank. Empirical scoring functions are more efficient than the 

force field functions because of their simpler energy terms. Nonetheless, their performance 

is highly dependent on the training set used to derive the parameters and may not function 

with the same efficiency between different protein-ligand systems (Meng et al. 2011; Huang 

& Zou 2010). 

1.5.3.2.3 Knowledge-based scoring functions 

Knowledge-based scoring functions estimate the score of a particular pose for the ligand 

within the binding site by calculating the sum of interaction energies between each atom pair 

from the ligand and the protein, within a predefined cut-off sphere. The interaction energies 

for the atom pairs are obtained from a statistical analysis of different ligand-receptor atom 

pairs in crystal structures, after converting them into distance dependent pairwise potential 

(potential of mean force or PMF). This type of scoring functions provides a compromise 

between speed and accuracy and is a middle ground between the previously mentioned 

scoring functions (Moitessier et al. 2008; Huang & Zou 2010). 

Consensus and clustering scorings are scoring techniques designed to improve the scores 

obtained from the various scoring functions. In the former, the scoring information from 
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multiple scoring functions is merged to obtain better, consensus score. In clustering scoring, 

the generated binding modes for the ligand are clustered and the entropic contribution to 

scoring can be estimated by examining the clusters, thereby, adding entropic impact to the 

docking score (Huang & Zou 2010). 

1.5.3.3 GOLD overview 

GOLD (Genetic Optimisation for Ligand Docking) program version 5.2.2 (CCDC Software 

Limited 2013; Jones et al. 1997; Jones et al. 1995; Nissink et al. 2002; Verdonk et al. 2003; 

Cole et al. 2005; Verdonk et al. 2005; Hartshorn et al. 2007) was the main docking software 

used during the course of this thesis. The docking method used in the program is genetic 

algorithm that provides flexible treatment of the ligand and optional flexible handling of the 

side chains of up to 10 residues of the receptor active site. The flexible treatment of the 

receptor is achieved through one of 3 options; either allowing the side chain to rotate freely, 

choosing rotamers for the side chain from the Penultimate rotamer library (Lovell et al. 2000) 

or choosing the rotamers for the side chain that are specified in the PDB file for the protein. 

In addition to rotamers, the program offers the possibility of docking with soft potentials for 

any number of active site residues. GOLD is equipped with 4 different scoring functions; the 

Astex Statistical Potential (ASP) scoring function (Mooij & Verdonk 2005) (knowledge-

based), ChemScore (Eldridge et al. 1997; Baxter et al. 1998) (empirical), CHEMPLP (Korb et 

al. 2009) (empirical) and GoldScore (Verdonk et al. 2003) (force field). Detailed description 

and comparisons between the scoring functions is presented in section 3.6. 

Besides standard docking, GOLD provides some non-standard docking functions. Examples 

are the possibility of including up to 25 water molecules within the active site to test the 

effects of the presence of water on the docking in terms of water displacement and using 

water to mediate interactions with the protein. Another function is the use of hydrogen 

bonding constraints during docking. This utility forces the formation of a hydrogen bond 

between predefined atoms from the ligand and the protein and is used to reproduce certain 

structural hydrogen bonds during the docking. The third example involves docking with a 

distance constraint, which is similar to the hydrogen bond constraint in specifying a ligand 

atom and a protein atom and forcing them during the docking process to lie within a 

predefined distance range. The final example is the possibility of covalent docking, in which 

GOLD forces the formation of a covalent bond between predefined atoms from the ligand 

and the protein, and poses the rest of the ligand accordingly. In the biased docking methods 

(hydrogen bond and distance constraint), a penalty is added to the score if the specified 

conditions are not met. 
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1.6 Computational Chemistry and TG2 Inhibitors 

Very few studies used computational chemistry techniques to aid in the design and testing of 

TG2 inhibitors. One of the earliest studies was by Iwata et al. (2000) and involved docking a 

series of in vitro tested compounds with a cyclopropenone ring against FXIIIA. Their results 

showed that the cyclopropenone ring should come close to the catalytic cysteine for activity. 

They also pointed the importance of a neighbouring tryptophan residue through forming a 

hydrogen bond with the inhibitor. The tryptophan residue (TRP279) is located at the top of 

the tunnel in which the catalytic cysteine is located and corresponds to residue TRP241 in 

TG2 (more details in section 3.1). Additionally, they showed that the terminal phenyl ring of 

the inhibitor would position in the hydrophobic region of the enzyme active site. 

Chica et al. (2004) performed molecular modelling experiments involving their proposed 

peptide substrates of TG2 (section 1.4.2.1) to aid in the understanding of the mode of 

binding of the substrate. The researchers performed docking and molecular dynamics (MD) 

studies using the coordinates for red sea bream TG2. Their most significant findings were 

the role of TRP329 (TRP332 in human version) in acting as a gate to the active site, where 

its side chain moves to open and close the active site, possibly depending on calcium ion 

concentration. They also recorded a hydrophobic interaction with the substrate involving 

TRP236 (TRP241 in human TG2) that is important for positioning the glutamine residue to 

the catalytic cysteine. 

Another study was performed by Tagami et al. (2009) to investigate the binding mode of a 

peptide substrate (Cbz-Gln-Gly) to microbial transglutaminase using a docking study and 

MD. They were able to conclude that a distance of around 4 Å between the side chain of 

glutamine residue in the substrate and the catalytic cysteine sulphur atom is important for 

activity along with some pi-interactions between the substrate and some active site residues 

such as leucine, isoleucine, phenylalanine and tyrosine. 

Prime, Andersen, et al. (2012) conducted GOLD covalent docking experiments on 

compound i10 (the initial sulphonamide modification, Figure 1-13). Their results identified the 

key residues of TG2 which are involved in forming interactions with the inhibitors. Examples 

of these interactions included hydrogen bonds between the warhead acrylamide CONH 

groups and TRP241 and GLN276. The generated poses also suggested the possibility of 

hydrogen bonding involving the central sulphonamide group and ASN333. This potential 

hydrogen bond would facilitate the interactions of the lipophilic part of the inhibitor within the 

hydrophobic loop of TG2 active site. That was the basis for their next series of modifications 

(section 1.4.2.2). 
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The study published by Badarau, Mongeot, et al. (2013) also included docking and MD. Two 

inhibitors with sulfonium ion and imidazolium warheads were docked into TG2 active site 

and MD simulation was applied on the docked complexes to examine the change in pose 

with time. The docking and MD results showed that the inhibitors adopt a bent conformation 

to facilitate the access of the warhead to the catalytic cysteine residue. The bent 

conformation involves posing the warhead deep in the catalytic tunnel. A hydrogen bond with 

residue TRP241 was seen to stabilise the bent conformation during MD simulation, in 

addition to interactions with TRP332 (the other bridging tryptophan residue). These 

interactions were mostly evident with the imidazolium warhead, and the authors suggested 

that they are responsible for the lower selectivity towards FXIIIA because these residues are 

conserved in FXIIIA (Badarau, Mongeot, et al. 2013). 

No studies are available that include docking of larger sets of compounds or examination of 

the interactions within TG2 active site in more details. Furthermore, MD simulations, which 

are very powerful tools in computational chemistry, have not been used extensively with 

regard to TG2. 

1.7 Aim and Objectives 

The project involved computational analysis of TG2 enzyme and its inhibitors with the 

ultimate aim of developing modelling methodologies that could aid in the design and testing 

of new potential inhibitors for the enzyme. Towards this aim, a series of computational 

objectives have been sought. These included: 

 Docking a small set of known TG2 inhibitors into the enzyme active site. 

 Application of MD to the docked complexes. 

 Development of TG2 active site models from the MD trajectories. 

 Validation of the TG2 models by docking of additional known TG2 inhibitors, MD 

simulations, covalent docking and binding free energy calculations, with a view to 

establishing a correlation between the experimentally-determined biological activities 

and calculated molecular properties such as docking scores and binding free 

energies. 

 Investigation of the mechanism of covalent inhibition of TG2 by the use of QM 

methods with the aid of techniques such as umbrella sampling and reaction path 

experiments, with a view to establishing a correlation between experimentally-

determined biological activities and activation energies and reaction energies. 

 Attempting to validate predicted allosteric sites of inhibition in TG2 for known 

allosteric inhibitors by means of docking and MD simulations. 
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2 Materials and Methods 

A general description of the methods followed during the course of this thesis is presented in 

this chapter, proceeded by a listing of the computers and the programs used to carry out the 

simulations. Some specifics for certain calculations are mentioned in the relevant results 

chapters. 

2.1 Materials 

2.1.1 Computers 

For Microsoft Windows XP® Professional Version 2002 Service Pack 3, a desktop computer 

with the following specifications was used: Intel(R) Core(TM) i7-2600, CPU 3.4 GHz, RAM 

2.94 GB. A Windows 7 Enterprise® 64-bit computer with the following specifications was 

also used; Intel(R) Core(TM) i5, CPU 3.4 GHz, RAM of 6.00 GB. Ubuntu 12.04 operating 

system was used to run the AMBER Package on an Intel(R) Core(TM) i7-3820 with a CPU 

of 3.6 GHz and a RAM 6 GB desktop computer. The latter computer is also equipped with 

two GeForce® GTX TITAN GPU cards from NVIDIA®, each with 6 GB of memory and 2688 

CUDA cores. This was the main PC used for AMBER. In addition, AMBER was run on a 

number of other PCs and Aston University servers. The PCs were similar to the main Ubuntu 

PC but with GeForce® GTX 780 GPU cards, also from NVIDIA®. The servers had 

GeForce® GTX 780 and GeForce® GTX 780 Ti and their CPUs were Intel(R) Xeon(R) and 

varying memories. All the PCs and servers are the property of Aston University. 

2.1.2 Programs 

1. AMBER (Assisted Model Building and Energy Refinement) Package, Version 12 

(Case et al. 2012), was used for the minimisation of the protein and later on for the 

MD simulation. This version of AMBER supports GPU acceleration through CUDA 

(CUDART driver version 5.5 and CUDA Runtime version 5.0) (Salomon-Ferrer, Götz, 

et al. 2013). 

2. AmberTools 13 (Salomon-Ferrer, Case, et al. 2013) is a package of supporting 

programs developed by AMBER group for the preparation of input and analysis of 

AMBER MD trajectories. Example programs used in this work include LEaP which 

was used for the generation of input files for MD, antechamber which was used for 

the generation of parameter and topology files of non-standard residues, CPPTRAJ 

was used to perform the post-MD analysis on the trajectories including calculating 

root-mean-square deviation (RMSD), hydrogen bond profiles and others, and 
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MMPBSA.py used for the calculation of the binding free energy between ligands and 

protein after a MD simulation (section 1.5.2.6). 

3. GOLD Suite (Genetic Optimisation for Ligand Docking) Version 5.2.2 (CCDC 

Software Limited 2013; Jones et al. 1997; Jones et al. 1995; Nissink et al. 2002; 

Verdonk et al. 2003; Cole et al. 2005; Verdonk et al. 2005; Hartshorn et al. 2007) was 

used for various types of docking applied in the course of this work, for instance, 

flexible active site, covalent and water dockings. 

4. CAChe (Computer-Aided Chemistry) WorkSystem Pro Version 7.5 (Fujitsu Limited 

2006) was used for the drawing and minimisation of test compounds, docking and 

preparing the enzyme for MD. CAChe was also used to perform reaction path 

experiments on the sulfonium ion TG2 inhibitors. 

5. Accelrys Discovery Studio (DS) Visualizer Version 3.5 and 4.0 (Accelrys Software 

Incorporation 2012; Accelrys Software Incorporation 2013) was used for visualisation 

of the docked complexes and analysis of the interactions between the compounds 

and the active site. It was also used to generate the 3-dimensional pictures presented 

in this work. 

6. VMD (Visual Molecular Dynamics) Version 1.9 (Humphrey et al. 1996) was used for 

visual inspection of MD trajectories as well as for performing analysis on the 

trajectories including hydrogen bonding and RMSD. 

7. GAMESS (General Atomic and Molecular Electronic Structure System) version 13-64 

(Schmidt et al. 1993) was used to calculate the electrostatic potential for ligands 

during covalent docking and MD. 

8. pyPcazip (Shkurti et al. 2016) was the program used to perform the principal 

component analysis (PCA) for the MD simulations. 

AMBER, CPPTRAJ and pyPcazip were run under Ubuntu. The others were run on Windows 

(7 and XP). VMD was run on both. 

2.1.3 Compounds 

A range of active and inactive TG2 inhibitors were used in this work for the testing and 

validation of the various active site models and for the subsequent experiments. The details 

of the structures of the used compounds are in the relevant results chapters. The 

compounds were mainly adopted from the work by Badarau et al. (2015) and the associated 

patent (Griffin et al. 2014). 
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2.2 Methods 

2.2.1 Chapter 3 methods (model development and validation) 

2.2.1.1 MD simulation on empty TG2  

2.2.1.1.1 Preparation of TG2 for molecular dynamics 

The crystal structure of TG2 was downloaded from the Protein Data Bank (www.rcsb.org) 

(Berman et al. 2000) as the PDB entry 2Q3Z (Pinkas et al. 2007). Human TG2 contains 687 

amino acid residues; in the crystal structure 2Q3Z, 32 of these residues were missing. In 

addition, the structure contains a covalently bound inhibitor, Ac-P(DON)LPF-NH2, in the 

active site that is connected to CYS277 by a covalent linkage. The structure also contains 5 

sulphate ions and 261 water molecules. The names and numbers of the missing residues 

are (Pinkas et al. 2007): 

GLN307, ASN308, GLU319, PHE320, GLY321, GLU322, ILE323, GLN324, GLY325, 

ASP326, LYS327, GLN407, ASP408, ASP409, GLY410, SER411, VAL412, HIS413, 

LEU462, ASN463, LYS464, LEU465, ALA466, GLU467, LYS468, GLU469, GLU470, 

THR471, ILE684, GLY685, PRO686, ALA687  

All the missing residues were added using CAChe Workspace’s ‘Insert Residue’ function. 

Hydrogen atoms were added to the structure and water molecules and sulphate ions 

deleted. The whole protein was then locked (atoms’ X, Y and Z coordinates frozen) with the 

exception of the added residues and an MM2 energy minimisation (Allinger 1977) was 

applied to relax these added residues. Residues 1-154 and 586-687 were deleted being far 

from the active site (Badarau, Mongeot, et al. 2013) to reduce computational cost. The 

remaining residues represent the catalytic core in TG2, while the deleted residues represent 

the N-terminal β-sandwich and the C-terminal β-barrels (section 1.2.3). 

At this point the active site was defined. It was taken as a sphere of radius 8 Å working 

outwards from residues TRP241 and TRP332 (bridging residues of the active site tunnel, 

more detail in Chapter 3). The inhibitor was deleted and the residues forming the active site 

were recorded. CAChe Workspace was used for this. This is a list of these active site 

residues: 

GLY170, SER171, ALA172, ASN229, LEU237, LEU238, GLY239, ARG240, TRP241, 

ASP242, ASN243, ASN244, TYR245, SER250, PRO251, MET252, TYR274, GLY275, 

GLN276, CYS277, TRP278, VAL279, PHE280, THR299, ASN300, TYR301, ASN302, 

http://www.rcsb.org/
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SER303, ALA304, PHE316, ARG317, ASP326, LYS327, SER328, GLU329, MET330, 

ILE331, TRP332, ASN333, PHE334, HIS335, CYS336, TRP337, ASP358, PRO359, 

THR360, PRO361, GLN362, ALA395, GLU396, LEU420, ILE421, VAL422, GLY423, 

LEU424. 

Hydrogen atoms were deleted and a PDB file was saved as the starting point for the MD run. 

CYS277 was converted to CYM for AMBER to handle it as deprotonated and HIS335 to HIP 

to be treated as protonated. 

The file was loaded into the LEaP program of the AMBER package to prepare the 

parameter-topology (PRMTOP) and coordinate (INPCRD) files using the AMBER force field 

ff99SB (Hornak et al. 2006). Before that 10 sodium ions were added to neutralise the charge 

of the protein. The latter was then solvated in a truncated octahedron of TIP3P (transferable 

intermolecular potential 3P) (Jorgensen et al. 1983) water molecules that extended for 8 Å 

from the protein surface. The total number of water molecules that were added was 7486. 

Finally, the PRMTOP and INPCRD files were generated and saved. 

2.2.1.1.2 Applying energy minimisation 

The PMEMD (Particle Mesh Ewald Molecular Dynamics) program of the AMBER package 

was used to run the minimisation on TG2. The minimisation was run for 2,000 cycles 

(maxcyc = 2000) using steepest descent for the first 1,000 cycles and conjugate gradient for 

the second 1,000 cycles (ncyc = 1000). The cut-off distance for treating non-bonded 

interactions was taken as 12 Å. Also, the minimisation was run at a constant volume (ntb = 

1) with no pressure scaling, and using an explicit water model (igb = 0). 

2.2.1.1.3 Initial MD simulation (MD1), heating up the system 

The minimisation output file was used as the starting point for this stage of the MD 

simulation (ntx = 1). The heating stage of MD was also run under constant volume (ntb = 1) 

using a cut-off distance of 12 Å without any restraints (ntr = 0). An explicit water model was 

used (igb = 0) and the temperature of the system was taken from 0-300 K using Langevin 

dynamics (ntt = 3) at a collision frequency of 1 ps-1 (gamma_in = 1). The simulation was run 

for 20,000 steps (nstlim = 20000) at 0.001 ps time step for a total of 20 ps. The random 

number generator (ig = -1) was used during this stage. 

2.2.1.1.4 Second MD simulation (MD2), equilibrating the system 

The restart file obtained at the end of MD1 was used as the starting structure for this stage 

of the MD simulation. MD2 was run at constant temperature of 300 K for 5 nanoseconds 
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(5,000,000 steps of 0.001 picoseconds). The simulation was run under constant pressure 

periodic boundaries (ntb = 2) using isotropic position scaling (ntp = 1). Updating output files 

was done every 10,000 steps. The remaining criteria were the same as those of MD1. The 

random number generator was also applied during the equilibration phase. 

2.2.1.1.5 Third MD simulation (MD2_fast), production phase 

Again, the restart file of MD2 was used to start this stage of MD. The simulation was run for 

30 ns (15,000,000 steps of 0.002 ps). In this stage, constant volume periodic boundaries 

were applied with no pressure scaling (ntb = 1, ntp = 0). The run was also performed at 

constant temperature (300 K) but this time using the weak coupling algorithm with zero 

collision frequency (gamma_in = 0). The SHAKE algorithm was applied to restrain bonds 

involving hydrogen atoms (ntc = 2, ntf = 2). The wrapping function (iwrap = 1) was used in 

this stage so that the coordinates written to the output files were to be wrapped into the 

primary box to make the trajectory more realistic. The output files were updated every 

12,500 steps. 

During the heating phase (MD1), using constant pressure will result in an unstable system 

as the system is cold at the start. However, constant pressure must be used during the 

equilibration phase (MD2) to allow for the density of the system, and water molecules in 

particular, to equilibrate. The weak coupling algorithm (ntt=1) was used in the production 

phase (MD2_fast) to hasten the calculation. This algorithm does not ensure even distribution 

of the temperature and therefore should only be used after equilibrating the system (Walker 

& Cheatham 2010). 

The minimisation and the three stages of MD simulation were applied using the CUDA 

version of commands for AMBER 12 that involves the use of GPUs rather than CPUs to run 

AMBER calculations (Götz et al. 2012; Le Grand et al. 2013; Salomon-Ferrer, Götz, et al. 

2013). 

The production run was continued by applying new simulations at the end of every 30-ns 

simulation using the restart file from the last simulation as the starting structure for the new 

one. To take the system to a simulation time of 515 nanoseconds, MD2_fast was repeated 

17 times (5 ns from equilibration plus 30ns*17 for each production run). The CPPTRAJ 

program of the AmberTools was used with each resulting trajectory from MD2_fast to centre 

the protein in the solvent box. CPPTRAJ was also used to generate a single trajectory 

combining all the individual trajectories to be used later by the same program for the 

generation of RMSD and atomic fluctuation charts. A PERL script was used to extract 

temperature and energy data from the OUT files for the analysis of the resulting trajectories. 
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2.2.1.1.6 Extracting models from MD trajectory 

The VMD program was used for the extraction of conformations from the production phase 

trajectories. The conformations used for the initial docking were taken at every 5 ns starting 

from the tenth to the 100th nanosecond. The models were named by the nanosecond at 

which they were taken. These conformations were edited in a text editor to remove water 

molecules and sodium ions and to convert CYM and HIP to CYS and HIS respectively. Each 

of the conformations was checked for structural plausibility by means of a Ramachandran 

plot (Ramachandran & Sasisekharan 1968) using DS Visualizer. 

2.2.1.2 Preparation of the compounds 

All the test compounds used in this work were drawn and corrected for bond lengths, bond 

angles and atom valence and hybridisation states using CAChe Workspace. They were then 

energy minimised using a molecular mechanics force field (MM2) (Allinger 1977) and a 

semi-empirical quantum mechanics with PM3 parameter set (Stewart 1989; Stewart 2002) 

methods. CONFLEX conformational search (Gotō & Ōsawa 1993) was also applied to the 

rotatable bonds within the individual compounds prior to the PM3 energy minimisation. The 

energy minimisation and the CONFLEX search were performed using the CAChe 

Workspace. 

2.2.1.3 Docking 

At this stage of docking, the objective was to obtain some valid complexes to run MD on. For 

this reason, only six active test compounds were used. 

2.2.1.3.1 CAChe docking 

The FastDock program within CAChe Project Leader was used to perform the docking study. 

The following specifications were used for the docking: 

Type of docking: Flexible active site side chains and flexible ligands. 
Docking method: Lamarckian genetic algorithm 
Scoring Function: PMF (potential of mean force) 
Calculation Type: Dock (Use Grids) 
Use Amber van der Waals: Grid Spacing (Å) 0.30000 
Pop Size: 50 
Crossover Rate: 0.80000 
Elitism: 5 
Maximum Generations: 3000 
Mutation Rate: 0.20000 
Convergence: 1.0000 
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Four dockings were performed for each compound to increase the probability of finding the 

correct binding mode. All the complexes of the docking results were converted to PDB files 

to be viewed by DS Visualizer for analysis of the docking pose. Typically, the run time for a 

single docking was in the region of 4 hours. 

2.2.1.3.2 GOLD docking 

Hermes 1.6 of the GOLD Suite 5.2 was used to set up and run the dockings. The protein 

was loaded into Hermes as a PDB file and the active site was defined using the “List of 

atoms or residues” method of defining the binding site in Hermes. The compounds were then 

added to Hermes as MOL2 files. The number of GA (genetic algorithm) Run (corresponding 

to the number of docking solutions) for each compound was set to 20. GoldScore (Verdonk 

et al. 2003) was used as the primary scoring function for docking. Each docking was also 

rescored using the CHEMPLP (Korb et al. 2009) scoring function. 

Early termination (a function in GOLD that terminates the docking if the top ranked solutions 

are very similar) was turned off to allow for complete exploration of the binding possibilities. 

“Genetic algorithm search options” was set to ‘Automatic' where search efficiency was set to 

200% (Very Flexible) with 10,000 operations to be performed as a minimum. Ten residues 

were selected from the active site residues to be treated as flexible during docking. The 

flexibility was applied using the “Library” option in “GOLD”. The “Library” option produces 

rotamers for the side chain that are consistent with the Penultimate Rotamer Library (Lovell 

et al. 2000) which includes the most commonly observed side chain conformations for the 

natural amino acids. Molecule Explorer in Hermes and DS Visualizer were both used for the 

analysis of the docked complexes. 

2.2.1.4 AMBER MD simulations on docked complexes 

A good docking complex for each of the six compounds was chosen to be taken into further 

MD simulation. The criteria chosen to define a “good docking complex” are presented in 

section 3.1 of the results. Each complex was first edited by removing the hydrogen atoms 

from the protein but not from the ligand and changing CYS277 to CYM and HIS335 to HIP. A 

separate file containing the ligand’s coordinates only was also saved. 

The antechamber programme in the AMBER package was used to generate the parameter 

and topology files (PREPIN and FRCMOD files) for the ligand using the general AMBER 

force field (GAFF) (Wang et al. 2006; Wang et al. 2004). The generated files were loaded in 

the LEaP program of the AMBER package together with the complex PDB file to prepare the 
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parameter-topology (PRMTOP) and coordinate (INPCRD) files after neutralising the complex 

with sodium ions and adding an 8-Å truncated octahedron of TIP3P water molecules. 

Minimisation and 3-stage MD simulation were then applied to the protein using the same 

settings as those used for empty TG2. The simulation in this case was allowed to continue 

for 275 nanoseconds for each ligand-protein complex. CPPTRAJ was also used here as for 

the empty TG2 to combine all the trajectories in one trajectory and to generate RMSD and 

atomic fluctuation charts. In addition, CPPTRAJ was used to generate, from the original 

combined trajectory, a new trajectory in which all the water molecules were deleted except 

25 molecules that were closest to CYS277. 

The trajectory obtained from each MD run was analysed thoroughly using VMD especially 

looking for hydrogen bonds between the ligand and active site residues. Also the distance 

between the warhead and the sulphur atom of the catalytic cysteine residue was measured 

over the whole trajectory. RMSD for the individual ligands and that of TG2 and the atomic 

fluctuation data were all computed for all the simulations. 

2.2.1.5 Docking into models from MD trajectories of complexes 

Models of the active site were extracted from these trajectories at 30-nanosecond intervals 

to perform docking experiments and to select valid models. GOLD was the main docking 

program used at this stage with settings similar to those used previously with the exception 

of turning on ‘Early Termination’ and using default settings for docking speed. Valid models 

were TG2 active site models which gave good docking results (section 3.1 for a definition of 

“good”). These valid models were further validated by the docking of additional active and 

inactive compounds, docking with changed GOLD settings (docking with water molecules in 

the active site and covalent docking) and applying 5-ns MD simulations on different docked 

complexes. 

2.2.1.5.1 Binding free energy calculations 

Binding free energy calculations were applied to the trajectories obtained from the 5-ns MD 

simulations (section 3.4.5), where the trajectories were first subjected to post-MD treatment 

with CPPTRAJ (Roe & Cheatham 2013) that involved auto-imaging. This was followed by 

the generation a specific set of parameter and topology files for the ligand, the protein and 

the complex with LEaP program to be used in the calculation of the binding free energy. The 

complex was prepared by combining the PDB files of the ligand and the protein. Parameter-

topology and coordinate files were additionally prepared for the complex after neutralising 

and solvating it with an 8 Å octahedron of TIP3P water molecules. 
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The binding free energy was calculated with Poisson Boltzmann (PB) and Generalized Born 

(GB) models using the MMPBSA.py program of the AMBER package (Srinivasan et al. 

1998; Miller et al. 2012). In addition, QM treatment was also applied to the ligand and the 

active site cysteine residue during separate calculations with the GB model. The QM 

methods used were PM3 (Stewart 1989) and DFTB (Seabra et al. 2007; Elstner et al. 1998). 

For the GB calculations, igb=5 [GB-OBC model (Onufriev et al. 2004)] was used for the 

normal and QM calculations. A value of 0.1 M was used for the salt concentration. For the 

PB model (Srinivasan et al. 1998), the default settings were used except for the ionic 

strength which was set to 0.1 M. The calculations were performed on all the 200 frames in 

each simulation (5 ns and saving every 0.025 ns) without omitting any frame. 

2.2.1.6 Covalent docking and MD 

2.2.1.6.1 Docking 

The GOLD software offers the possibility of performing docking experiments that involve the 

formation of a covalent bond between predefined atoms from the ligand and the receptor. 

The function requires that the same linking atom be present on both molecules, the protein 

and the ligand (CCDC Software Limited 2013). The protein atom selected was the SG atom 

of CYS277. A sulphur atom was added to the ligand as a linking atom. It was added to the 

electrophilic carbon atom of the acrylamide warhead. Other GOLD settings were similar to 

those used in the first validation experiment (20 solutions per ligand, GoldScore for primary 

scoring and CHEMPLP for rescoring and default docking speed settings). 

2.2.1.6.2 Molecular dynamics 

Since there is a covalent bond in the complex to be used as the starting structure in MD, a 

new residue should be defined for AMBER to recognise the ligand. This was performed over 

multiple steps. 

2.2.1.6.2.1 Capping the ligand 

The ligand was extracted from the complex file obtained after GOLD covalent docking and 

the connecting sulphur atom was deleted. A cap was introduced to account for the missing 

valence in the electrophilic carbon of the ligand. The cap chosen was -SCH3. The cap was 

added using CAChe Workspace. The whole molecule was then minimised by MM2. A 

CONFLEX (Gotō & Ōsawa 1993) search with MM2 was applied followed by a PM3 

minimisation on the lowest energy conformation produced by CONFLEX. The ligand was 

then saved as a PDB file and taken to GAMESS program to calculate its charge. 
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2.2.1.6.2.2 GAMESS calculation 

The GAMESS program (Schmidt et al. 1993) was used to perform an energy minimisation 

with a high level method and to calculate the electrostatic potential of the molecule. The 

latter was then used to assign charges to the individual atoms of the ligand. Molby program 

(Nagata 2014) was used to prepare the input files of the various ligands for GAMESS 

calculations. The settings involved running an optimisation (RUNTYP=OPTIMIZE) for 100 

cycles (NSTEP=100) using 6 3-1G* method (GBASIS=N31 NGAUSS=6 NDFUNC=1). The 

electrostatic potential calculation was requested using IEPOT=1. 

2.2.1.6.2.3 RESP fitting 

RESP (restrained electrostatic potential) (Bayly et al. 1993) is a free program incorporated 

into AMBER and can be used to assign charges to the atoms of a molecule whose 

electrostatic potential has been calculated. A script written by Hans de Winter (Rega Institute 

for Medical Research, Belgium) was used to convert the electrostatic potential grid produced 

by GAMESS into a format that is readable by RESP. Charge fitting was performed over 2 

stages. In the first stage, the charges of the cap atoms were fixed to the values of the 

charges of atoms SD, CE, HE1, HE2 and HE3 of the side chain of methionine residue in the 

AMBER force field. 

The second stage involved restraining all non-carbon, non-hydrogen atoms to the charges 

fitted in the first stage. Carbon and hydrogen atoms that are not parts of methyl or methylene 

(CH2- or CH3-) were also restrained to the charges of the first stage. Methyl and methylene 

carbon atoms and the first hydrogen atom attached to them were fitted freely while the 2nd 

and/or 3rd hydrogen atoms were assigned the same charge as the first hydrogen of that 

group. 

2.2.1.6.2.4 Library building 

The antechamber program of the AMBER package was used to assign atom types for the 

atoms of the capped ligands based on the GAFF force field (Wang et al. 2006; Wang et al. 

2004). The Parmchk2 program of the AMBER package was used on the file generated by 

antechamber to check the parameters produced. Antechamber and Parmchk2 were used on 

the capped ligand to account for the types and parameters of the ligand atoms involved in 

forming the covalent bond. A PDB file of the original ligand without the cap and after 

removing the connecting sulphur atom was loaded into LEaP program of AMBER package to 

generate a library file of the ligand. Atom types and charges were assigned manually for 
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individual atoms from antechamber and RESP respectively using LEaP, and a library file 

was saved. 

2.2.1.6.2.5 Parameter-topology and coordinate files 

All the above stages were applied on individual ligands once and the library file produced 

from LEaP and frcmod file from Parmchk2 were used to build parameter and coordinate files 

for all the complexes involving that specific ligand. The complex PDB file was loaded into 

LEaP program of AMBER package together with the library and frcmod files. CYS277 was 

converted to CYX. A covalent bond was added explicitly between SG of CYS277 and the 

electrophilic carbon of the ligand using LEaP. The complex was then neutralised with sodium 

ions and solvated with an 8 Å octahedron of TIP3P water molecules and parameter and 

coordinate files were saved. 

2.2.1.6.2.6 Molecular dynamics 

After the generation of parameter and coordinate files, conventional MD was applied as 

before. The process started with a 2,000-cycle minimisation, followed by 20 ps of heating 

MD under constant volume, equilibration under constant pressure for 5 ns and production 

under constant volume for 15 ns. Only the production phase was analysed. The analysis 

included measuring the RMSD of the ligand using the “RMSD Trajectory tool” of VMD 

program as an indicator for the ligand behaviour during the simulation. Hydrogen bond 

analysis was also performed using the CPPTRAJ program of the AmberTools package. 

2.2.2 Chapter 4 methods (QM work) 

2.2.2.1 AMBER umbrella sampling simulations 

These experiments were applied to 6 active compounds, all having acrylamide warheads. 

Their structures as well as biological activities are presented in Chapter 3. The starting 

structures were either docked complexes taken from the various validation processes or 

snapshots from the 5-ns MD simulations. For each compound, the structure selected was 

the one that had the lowest distance between SG from CYS277 and the compound’s 

electrophilic carbon (the beta carbon of the acrylamide double bond Cβ or EC). Good 

docking rank and favourable interactions with active site residues were also considered in 

the selection process. 

The starting structures were loaded in the LEaP program of the AMBER package to 

generate the parameter and coordinate files after generating those files for the compounds 

with antechamber with ff99sb and GAFF force fields respectively, neutralising and solvating 
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the complexes with in an 8-Å truncated octahedron of TIP3P water molecules. The systems 

were then minimised for 2,000 cycles and heated under constant volume from 0 K to 300 K 

over 20 picoseconds (ps) using Langevin dynamics. The heating was followed by 

equilibrating the system for 5 ns under constant pressure also using the Langevin dynamics. 

NMR restraints were used during MD to restrain the distances involved in the reaction at 

their starting values. The force constant used was 500 kcal/mol.Å2. The distances fixed were 

the one between SG of CYS277 and EC of the compound (D1 in Figure 2-1) and the 

distance between HD1 from HIS335 and the alpha carbon of the double bond of the 

acrylamide (Cα or C2) (D2 in Figure 2-1). 

 

Figure 2-1: Restrained distances in umbrella sampling simulations. 

2.2.2.1.1 QM/MM 

Umbrella sampling (US) was performed using quantum mechanical treatment (Walker et al. 

2008) of the region involved in the chemical reaction. The rest of the system was treated 

molecular mechanically using the ff99SB force field (Hornak et al. 2006). The QM region was 

composed of the acrylamide compound and the side chain of CYS277 (the negatively 

charged sulphur, SG and the connecting carbon with its 2 hydrogen atoms) and the 

imidazole ring of HIS335.  PM3 (Stewart 1989) and SCC-DFTB (Elstner et al. 1998; Seabra 

et al. 2007) were the methods used to calculate the energy of the QM region in this work. 

PM3 was applied with a 12-Å cut-off distance. The same cut-off was used with SCC-DFTB 

along with an electronic temperature of 100 K. 

2.2.2.1.2. Umbrella sampling (US) 

For each compound and for each QM method, 2 US experiments were performed. The first 

simulation assumed that the reaction occurs over a single stage and the second simulation 
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involved two stages to drive the reaction to completion. All the simulations were performed 

under constant pressure. Before starting US, a 100-ps MD under constant pressure was 

applied on the structure resulting from the equilibration step. This MD was run with QM 

treatment of the reaction centre while fixing the distances between SG and EC and between 

HD1 and C2 to their starting values with a force constant of 250 kcal/mol.Å2. Each US 

simulation used the restart file from the 100-ps QM relaxation as the starting structure. The 

simulations were divided into windows along the reaction coordinate (RC); the number of 

these windows depended upon the starting value of the RC and the method used (1 or 2 

stages). Each window was run over 5 ps. RC was controlled by a flat well restraint potential 

in all the US experiments. 

2.2.2.1.1.1 Single-stage US simulations 

The reaction coordinate in this case was taken as a “generalised distance coordinate” 

involving the summation of 2 distances; the SG-EC distance (D1 in Figure 2-1) and the HD1-

C2 distance (D2 in Figure 2-1). The RC for the 1-stage simulations was set to change over 

the windows from its starting value to 4.5 Å by 0.2-Å reductions and 50 kcal/mol.Å2 force 

constant. After that, the reductions were 0.1 Å per window and the force constant was 

increased to 100 kcal/mol.Å2. The end value for the RC was set to 2.8 Å (≈1.8 Å for SG-EC 

bond and ≈1 Å for HD1-C2 bond). The same changes in the RC and the same number of 

windows were used for each compound with PM3 and SCC-DFTB. The number of windows 

ranged from 38 to 62 depending on the value of RC in the starting structure. 

2.2.2.1.1.2 Two-stage US simulations 

The RC for the first stage of the 2-stage US simulation was a simple distance coordinate 

involving the distance between SG and EC. This was set to change from its original value to 

1.6 Å over 0.1-Å reductions using a force constant of 250 kcal/mol.Å2; between RC values of 

2.1 and 1.9 Å the reductions were set to 0.05 Å. These settings were used with PM3 and 

SCC-DFTB. The number of windows ranged from 19 to 43, also depending on the starting 

value of RC in the individual compounds. 

For the 2nd stage of the 2-stage simulations, RC was defined as a “generalised distance 

coordinate” sampling the difference between the HD1-C2 distance (D2 in Figure 2-1) and 

HD1-ND1 distance (D3 in Figure 2-1). RC was set to change over 0.4-Å reductions using a 

force constant of 250 kcal/mol.Å2 up to a value of 2.0 Å when the change was 0.2 Å per 

window with the same value for the force constant. The end point was set at -2.0 Å. The 

restart file generated from the last window of the 1st stage was used as the starting structure 

for this stage. 



Chapter 2   Materials and Methods 

78 

 

2.2.2.1.2 PMF calculations 

The weighted histogram analysis method (Souaille & Roux 2001) was used to calculate the 

PMF profiles for the US simulations. The WHAM program (Grossfield 2013) was employed 

to construct the PMF graph along the reaction coordinate from the time series files 

generated during the US simulations. The number of bins for the 1-stage and the 2nd stage 

of the 2–stage simulations corresponded to how many 0.1-Å reductions were there during 

each simulation. There was 1 bin for each 0.1-Å reduction in the 1-stage experiments, while 

there were 4 bins for each 0.1-Å reduction for the 1st stage of the 2-stage simulations and 

there were 2.5 bins for each 0.1-Å reduction for the 2nd stage of the 2-stage simulations. The 

convergence tolerance used was 0.00001 in all the simulations. 

2.2.2.2 CAChe reaction path experiments 

QM reaction path experiments were applied on a set of 8 active compounds all having 

sulfonium ion warheads. The method used for the generation of the reaction path and the 

calculation of the activation energy was the same for all the compounds. The differences 

were in the choice of the starting conformation and whether it was energy minimised or not. 

The sources of the starting structures were MD frames or docking complexes (section 

4.2.1.2, Table 4-6). 

2.2.2.2.1 Map reaction experiment 

Minimisation within CAChe was applied to most of the starting structures using MM2. The 

process was applied on the compound and the cysteine residue while everything else in the 

system was locked. This was followed by deleting the entire system with the exception of the 

ligand and CYS277. Hydrogen atoms were added to CYS277 to complete its valence. Two 

reaction coordinates were chosen to map the reaction between the warheads containing the 

sulfonium ion and the negatively charged sulphur (SG) of CYS277. These were the distance 

between the electrophilic carbon (EC) of the ligand and SG of CYS277, and the angle 

between SG of CYS277, EC and the positively charged sulphur (S+) of the sulfonium ion in 

the ligand. In all the cases, the distance was allowed to change from its original value to 1 Å 

while the angle was changed from its original value to 180°. Both changes were applied over 

20 steps. The QM method used with all the compounds was PM3. 

2.2.2.2.2 Transition state (TS) choice, refinement and verification 

A map reaction experiment typically produces a 3-dimensional potential energy surface 

(PES) such as the one in Figure 2-2, when applied with 2 reaction coordinates. The axes 
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represent the reaction coordinates (distance and angle) and the energy of the system as a 

whole calculated by PM3. TS structures were chosen from the saddle points immediately 

next to the minimum having the same value for the angle as the minimum but with a different 

value for the distance (one step backwards). 

 

Figure 2-2: PES produced by map reaction. 

Refinement of the chosen TS was performed using a PM3 gradient minimisation. The refined 

TS was then verified again using a PM3 calculation of vibrational frequencies through the 

FORCE program of the CAChe package. Only TS structures that gave one, and only one, 

negative vibration in the verification process were considered. 

2.2.2.2.3 Reaction path experiment 

The refined and verified TS structure from each system was used as the starting point for the 

final experiment, the reaction path. The QM method used was also PM3 that was run for 200 

cycles using the intrinsic reaction coordinate (IRC) method. 

2.2.3 Chapter 5 methods (allosteric inhibition) 

Methods for this chapter are presented in the chapter itself (section 5.2) for their involvement 

of a technique that was detailed within Chapter 5.  
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3 Development and Validation of TG2 Active Site 

Models 

This chapter of the thesis covers the work that involved preparing models for the active site 

of TG2 which could be used for testing potential inhibitors for the enzyme by docking. The 

active site models were generated by an approach that combines MD simulations with 

docking. MD was applied initially on an empty version of TG2, and selected docking 

complexes were subjected to MD, and from the resultant trajectories, conformations were 

selected and tested for their ability to dock already tested inhibitors of TG2. The produced 

models were then validated by a series of docking experiments in which additional test 

compounds were introduced, some of them were inactive. Other docking experiments were 

also applied, that involved docking with water molecules in the active site, inflexible docking 

and covalent docking. Short MD simulations were also employed to judge the quality of the 

docking complexes produced in the various experiments. Binding free energy was calculated 

and correlated to biological activity. The behaviour of TG2 during various MD simulations 

was also discussed in this chapter. 

3.1 Results of Initial Docking 

The main purpose of the MD simulation performed initially on empty TG2 was to supply 

some conformations that could be used as models for the active site. Two reasons lie behind 

this justification for requiring more than one conformation of the enzyme for docking 

purposes. The first is that it has been around 40 years since the introduction of MD to 

biological macromolecules (McCammon et al. 1977) and the beginning of an era that started 

to consider proteins as molecules that are in continuous motion and cannot be represented 

by a single physical conformation (Karplus & McCammon 2002). The second reason is that 

a number of residues were missing from the original crystal structure and were added before 

the start of MD. These added residues needed to relax and accommodate themselves to 

their locations to improve the process of their integration into the protein, and molecular 

dynamics is an approach that could be used in this respect (Hospital et al. 2015). 

The behaviour of TG2 during this simulation is discussed in detail in a separate section of 

this chapter (3.9). For the purposes of this section of the work, it will be mentioned that the 

simulation was stable as indicated by the changes in the temperature and energy of the 

system with time as well as the change in the root-mean-square-deviation (RMSD) which are 

all presented in section 3.9. 
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3.1.1 TG2 active site 

The crystal structure that was used as the basis for this work (PDB 2Q3Z) had TG2 in an 

“open conformation”, in contrast to a GDP-bound “closed conformation” (PDB code 1KV3 

(Liu et al. 2002)). In 1KV3, the two C-terminal barrels are bent towards the active site giving 

the “closed” shape (Figure 3-1, (Pinkas et al. 2007)). The crystal structure, 2Q3Z has a 

gluten-like pentapeptide inhibitor, Ac-P(DON)LPF-NH2 covalently bound to CYS277. 

The catalytic cysteine residue (CYS277) is located in a tunnel (Figure 3-2) bridged by two 

tryptophan residues (TRP241 and TRP332) and there is a threonine residue (THR360) at 

the edge of the tunnel. The inhibitor in the crystal structure exhibited a network of 

interactions with active site residues including hydrogen bonds and hydrophobic interactions. 

The hydrogen bonds were between the inhibitor and residues TRP241, GLN276, CYS277 

and ASN333. In addition, there was the covalent bond with CYS277 (Figure 3-3). 

As it can be seen from Figure 3-3, the inhibitor assumes a bent conformation in the active 

site with the warhead in the catalytic tunnel and the other end, which is mainly aromatic, 

embedded in a hydrophobic region or loop (Figure 3-2) (Badarau, Mongeot, et al. 2013; 

Pinkas et al. 2007). This hydrophobic region is mainly composed of the following residues; 

ALA304, LEU312, ILE313, PHE316, ILE331 and LEU420. Four of these residues, ALA304, 

ILE313, ILE331 and LEU420, form pi-alkyl interactions with the terminal phenyl ring of the 

inhibitor stabilising this part in the hydrophobic region (Figure 3-4). 

 

Figure 3-1: TG2 closed and open 
conformations. The closed 
conformation bound to GDP (left), 
and the open conformation bound 
to a covalent inhibitor (right). 
Adopted from Pinkas et al. (2007). 
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Figure 3-2: Active site tunnel and the hydrophobic loop in TG2.The surface is coloured by hydrophobicity 
and the inhibitor by element. 

 

Figure 3-3: H-bonds 
between the inhibitor and 
TG2 in the original crystal 
structure.

The residues selected to be treated as flexible when using the GOLD docking program were 

based on the above information (residues involved in hydrogen bonds and lipophilic 

interactions with the inhibitor). These were TRP241, GLN276, CYS277, TRP278, TRP332, 

ASN333, PHE334, HIS335, THR360 and LEU420. Hydrogen bonds will be shown as green 

dotted lines and pi interactions as dotted light pink (pi-alkyl), dotted dark pink (pi-pi) or dotted 

Hydrophobic loop

Catalytic Tunnel
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orange (pi-cation) lines. This summary of the interactions was introduced to be used as a 

guidance during the analysis of the subsequent docking and MD trajectories. 

 

Figure 3-4: Hydrophobic 
interactions between the 
inhibitor and TG2. 

3.1.2 Initial docking 

Six active TG2 inhibitors (Badarau et al. 2015) were used for initial docking. Compounds 1a-

1f are listed in Table 3-1 along with their structures and IC50 values against human TG2. The 

goal at this stage was to obtain good poses for the active inhibitors within the active site of 

TG2 for the complexes to be taken to MD simulation. Therefore, a distance of less than 4 Å 

between the electrophilic carbon of the compound’s warhead and the sulphur atom of 

CYS277 was used as the sole criterion for selecting a good complex at this stage. 

Table 3-2 shows the six complexes selected with the distance between the warhead and the 

sulphur atom of CYS277, and the docking software used. The complexes were named in the 

form [inhibitor name-model name (ns at which the model was taken)-docking attempt]. 

Figure 3-5 shows the poses of the selected complexes. It has been mentioned earlier that a 

good pose for an inhibitor in the TG2 active site is in the form of a bent conformation with the 

lipophilic part of the inhibitor embedded in the hydrophobic loop of TG2 (Pinkas et al. 2007; 

Badarau, Mongeot, et al. 2013). However, this could not be achieved with all the compounds 

at this stage. Consequently, the selected complexes for compounds 1c, 1d and 1f had the 

lipophilic part of the inhibitor outside the hydrophobic loop. 

Neither docking programs nor the ligands could be blamed for the docking results obtained 

at this stage. The settings used during the dockings ensured that a most extensive search 
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was performed combined with flexible treatment of (the most important) active site residues. 

The ligands used were proven to be active and their IC50 values show that they are amongst 

the most active TG2 inhibitors (Badarau et al. 2015), and their structures, although sharing a 

similar core, have different lipophilic parts and two different warheads. This leaves two 

possible causes for the failure; either the active site itself is not fit to accommodate the 

ligands, or the fact that the inhibitors are irreversible and act through forming a covalent 

bond with CYS277, and the formation of the bond, although unlikely, may need to be the first 

event for the compound to position itself correctly within the active site of TG2. Molecular 

dynamics applied to these 6 docking complexes was a possible solution to the first cause of 

failure in docking at this stage by allowing the active site residues to move freely with the 

ligand within to accommodate it better by changing the conformations of the side chains or 

even the backbone structure to allow for better positioning of the ligands. Dealing with the 

bond is more complicated and requires quantum mechanical treatment or covalent docking. 

These techniques have been applied during the course of this work and are presented in the 

relevant Results sections. 

Compound name Structure IC50 (µM) 

1a 

 

0.125 

1b 

 

0.273 

1c 

 

0.440 

1d 

 

0.700 

1e 

 

0.0061 

1f 

 

0.380 

Table 3-1: Structures and IC50 for compounds 1a-1f. 
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Complex Name Distance (Å) Docking Program 

1a-85ns-3 3.4 CACHe 

1b-30ns-2 3.3 CACHe 

1c-30ns-14 3.7 GOLD 

1d-95ns-9 3.7 GOLD 

1e-40ns-10 3.0 GOLD 

1f-80ns-6 5.6 GOLD 
Table 3-2: Good complexes from initial docking. 

When the active site of TG2 to be used for docking was investigated, different centres for the 

sphere used in the definition were tried. These included the sulphur atom of CYS277, the 

whole CYS277 residue, each of the bridging tryptophan residues (TRP241 and TRP332) on 

its own and finally both the bridging residues at the same time. With each one of these 

centres, an 8-Å sphere of residues was used as the active site and a test docking was 

performed. The best results were obtained with the last definition, signifying the importance 

of these bridging residues in correctly posing TG2 inhibitors in the active site. That is why 

this active site definition was used throughout this work. 

3.2 Analysis of MD Trajectories of Initial Docking 

The main reason for performing MD simulations on docked complexes of TG2 inhibitors is to 

obtain better TG2 active site models. Taking 19 conformations of TG2 from a 100-ns 

simulation to be used for docking of 6 proven active inhibitors produced only 3 valid 

complexes with the correct proposed conformation of the inhibitor and 3 more complexes 

were assumed to be correct. Therefore, MD was applied to those complexes in an attempt to 

refine the active site by allowing for the inhibitors to adjust themselves correctly within the 

active site and at the same time permitting the active site residues to accommodate the 

inhibitors. Only the trajectories of compounds 1a and 1b will be discussed in details as they 

gave valid models in the subsequent docking. The other 4 trajectories will be discussed 

briefly. 

3.2.1 Trajectory of 1a-85ns-3  

In the starting conformation for this run, there were no hydrogen bonds between 1a and the 

protein. However, there were pi-interactions between the residues in the hydrophobic loop 

and the adamantyl part of the ligand and a pi-interaction involving TRP332 and the 

piperazine ring of 1a (Figure 3-6). Also in the starting conformation, the bridging tryptophan 

residues were very close to each other that the tunnel was almost closed (Figure 3-7). 
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Figure 3-5: Docking complexes for the 6 compounds selected to be taken to molecular dynamics. 

 

 

 

1a-85ns-3 
1b-30ns-2 

1c-30ns-14 1d-95ns-9 

1e-40ns-10 1f-80ns-6 
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Figure 3-6: Hydrophobic interactions 
between TG2 and 1a. 

 

Figure 3-7: The tunnel in the starting conformation of 1a trajectory. A: Surface view. B: space filling view 
of the bridging tryptophans. 

3.2.1.1 Warhead position 

The acrylamide warhead of compound 1a left the tunnel and moved away from CYS277 

early in the simulation. This happened at 12.475 nanoseconds. In the frame immediately 

before this time point, the warhead was about 7.6 Å away from CYS277 sulphur atom but 

was essentially within the tunnel. The distance then started to increase to more than 20 Å 

(Figure 3-8). It has also been noted that at the same frame at which the warhead left, 

CYS277 has moved towards the bridging tryptophan residues causing the tunnel to close. 

The movement of the warhead at this time was also evident from the RMSD measured for 

1a alone during the trajectory and is shown along with the distance in Figure 3-8. By 

comparing the 2 traces, it is obvious that both have started to increase at the same time. 

3.2.1.2 Hydrogen bonds 

VMD program was used for hydrogen bond analysis using the default settings; 3.0 Å donor-

acceptor distance and 20° angle cut-off. Very few hydrogen bonds were found during this 

A B
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simulation, but there was a bond with ASN333 at the beginning that lasted to approximately 

the same time as the presence of the warhead within the catalytic tunnel. Figure 3-9 shows a 

graph for the distance between O38 of 1a and H of ASN333 along with the bond itself. Both 

the closure of the tunnel and the disappearance of the H-bond with ASN333 may have 

contributed to the movement of the warhead of 1a away from the catalytic tunnel. 

 

Figure 3-8: Graph of the distance between the acrylamide warhead and SG atom of CYS277 in the 1a 
trajectory along with RMSD for 1a alone. 

  

Figure 3-9: Distance of the H-bond between ASN333 and 1a (left) and the bond itself (right). 

3.2.1.3 The lipophilic part 

The distance between C43 of 1a and alpha carbon of SER309 (Figure 3-10 right) was used 

as a reference for the position of the lipophilic part. SER309 was chosen as a reference 

because of its position at the top of the hydrophobic loop, where it oversees the lipophilic 

part of 1a. Figure 3-10 shows a graph of this distance with the position of the lipophilic part 

within the hydrophobic region. In the starting conformation, the distance was 13.6 Å and 

from the graph it is clear that the adamntyl group did not move that much during the 

simulation. The reason behind this is the persistence of the hydrophobic interactions with the 
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adamntayl part during the simulation. An analysis of 9 conformations taken at 30 ns intervals 

from the entire simulation revealed that there were at least two residues forming pi-alkyl 

interactions with the adamntyal group of 1a in each conformation. Figure 3-11 shows one of 

these conformations. 

 

Figure 3-10: Distance between the lipophilic part and SER309 during the simulation. 

 

Figure 3-11: Hydrophobic interactions 
stabilising the adamantyl group in the 
hydrophobic loop in 1a trajectory, 
even following the leaving of the 
warhead. The frame is from 200 ns of 
the trajectory. 

3.2.1.4 TG2 

The presence of 1a did not trigger noticeable conformational change on the time scale of the 

simulation. This was observed from measuring the RMSD for the protein and comparing it to 

a measurement done on a trajectory of the same length for the MD simulation on empty 

TG2. Figure 3-12 shows the 2 RMSD measurements and indicates that no large differences 

occurred upon the introduction of 1a into TG2. 

The atomic fluctuation scores for TG2 residues in this simulation are presented in Figure 

3-13. Only the peak with red points has residues that are close to the active site. The peak 
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helix is shown in Figure 3-14. It was missing in the original crystal structure. The helix was 
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not very stable possibly due to the presence of 2 glutamate residues (GLU319 and GLU322) 

that may be repelling each other causing the un-coiling of the helix. There is also a glycine 

residue in this helix which allows greater flexibility (Lehninger et al. 2000). 

 

Figure 3-12: RMSD for TG2 in the presence and absence of compound 1a. 

 

Figure 3-13: Atomic fluctuation for TG2 residues in the trajectory of 1a. 

 

Figure 3-14: The high 
fluctuating helix from 1a 
trajectory, coloured red, 
while the rest of TG2 is 
green and showing CYS277 
to appreciate the location of 
the helix. 
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3.2.1.5 Temperature and energy 

The stability of the simulation was reflected in the changes in the temperature and total 

energy of the system. These two quantities were almost constant throughout the simulation 

after the initial relaxation and are shown in Figure 3-15. 

  

Figure 3-15: Changes in temperature and total energy during the simulation of 1a. 

3.2.2 Trajectory of 1b-30ns-2 

In the starting conformation, there was a hydrogen bond between ASN333 side chain and 1b 

and the distance between SG of CYS277 and the electrophilic carbon of 1b was 3.3 Å. 

There were no hydrophobic interactions involving the lipophilic part of 1b. 

3.2.2.1 Warhead position 

The warhead of 1b remained in the tunnel close to the sulphur atom of CYS277 for the entire 

simulation. The distance between the two averaged at 5.7 Å. Figure 3-16 shows a plot of this 

distance with time. The graph also shows the RMSD for 1b in this simulation, and its low 

values also indicate that there was no significant motion involving compound 1b during the 

simulation. 

 

Figure 3-16: A graph of the distance between the warhead carbon of 1b and SG of CYS277, with the 
RMSD for 1b during the MD simulation. 
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3.2.2.2 Hydrogen bonds 

Again, default VMD settings were used for hydrogen bond analysis and hydrogen bonds with 

3 residues were found, ARG317 (side chain), ASN333 (side chain and backbone) and 

PHE334 (backbone) (Figure 3-17). In total, bonds with these residues were present for about 

33% of simulation time. A deeper look into the time-dependent behaviour of these bonds 

showed that the ones with ASN333 and PHE334 (which were present for 28% of the 

simulation according to VMD) were probably responsible for keeping the warhead close to 

CYS277. When the hydrogen bond with ARG317 forms, a pocket in TG2 is formed that 

closes on the lipophilic part of 1b (Figure 3-18). This bond persisted for 7% of the simulation 

time and was most evident between 75 and 160 nanoseconds of the simulation. 

  

Figure 3-17: Hydrogen bonds in 1b trajectory with ASN333 (A), PHE334 (B) and ARG317 (C) showing the 
acceptor atoms on 1b. 

 

Figure 3-18: Pocket formed when there is H-bonding with ARG317 (right) and absence of the pocket when 
the interaction is not present (left). 
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3.2.2.3 The lipophilic part 

The reference atom of 1b that was used as an indication for the position of the tertiary butyl 

lipophilic part of 1b within the hydrophobic region was C42 (Figure 3-19B). SER303 was 

used instead of SER309 as the counter protein reference part because SER309 showed 

more movement during the simulation than SER303, and thus it could not be used as a 

reference. This is evident from the atomic fluctuation values for the two residues; SER303 

had a value of 0.77 Å while SER309 showed atomic fluctuation of 1.73 Å. 

In the starting conformation, the distance between C42 of 1b and CA of SER303 was 7.8 Å. 

In the simulation, it averaged around 4.9 Å. Figure 3-19A shows a graph of the change of 

this distance with time during the simulation and it can be seen that the distance has 

decreased after the start of the simulation indicating that the tertiary butyl group moved more 

inside the hydrophobic loop during the simulation. Figure 3-20 shows a comparison between 

the position of the tertiary butyl group between the starting conformation (A) and 

conformation at 65 nanoseconds (B). 

 

Figure 3-19: A: distance between C42 of 1b and SER303 in the 1b trajectory. B: the same distance on a 
PDB structure. 

An analysis of 9 conformations taken at 30 nanoseconds intervals showed at least 2 

hydrophobic interactions between residues from the hydrophobic loop within TG2 and at 

least one of the methyl groups of the tertiary butyl lipophilic part of 1b in 8 of the 

conformations. These interactions together with the hydrogen bond with ARG317 and the 

subsequent formation of the closed pocket around the tertiary butyl group are the likely 

reasons behind the persistence of the lipophilic part within the hydrophobic loop (Figure 

3-21). 

2

3

4

5

6

7

0 100 200 300

D
is

ta
n

ce
 (

Å
)

Time (ns)

A 
B 



Chapter 3   Model Development and Validation 

95 

 

 

Figure 3-20: How the tertiary butyl group of 1b moved further into the hydrophobic loop from the starting 
conformation (A) to the conformation at 65 ns (B). 

 

Figure 3-21: Example of 
hydrophobic interactions involving 
the tertiary butyl part of 1b in the 
hydrophobic loop of TG2. 

Pi-cation interactions were noticed to exist, which involved the positively charged sulfonium 

ion of 1b warhead. The most prevalent of these was the one with the benzene ring PHE334. 

Because the VMD program cannot measure the distance between an atom and the centre of 

a ring, distances were measured between the positively charged sulphur atom of 1b and C1 

of the benzene ring of PHE334 (CZ) and then with C4 (CG) of the same ring and an average 

was calculated (Figure 3-22). Although this could not be used as an ultimate judgement for 

the presence of the bond as it does not take into account the orientation of sulphur atom with 

respect to the ring, it does give an insight on the possibility of the formation of this interaction 

based on distance. 

The distance between the positively charged sulphur of 1b and the benzene ring of PHE334 

averaged around 5.1 Å (Figure 3-23). This bond with PHE334 was present in 7 of the 9 

conformations taken at every 30 nanoseconds. In the remaining 2 conformations, there was 

instead a pi-sulphur interaction involving TRP241 and/or TRP332 (Figure 3-24). Therefore, it 

A B 
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can be said that there was always a pi-sulphur interaction that, along with hydrogen bonds 

with ASN333 and PHE334, has contributed to the stabilisation of the warhead within the 

catalytic tunnel. Ringer et al. (2007) studied the optimum conditions for favourable pi-sulphur 

interactions by mining in the data of the Protein Data Bank. Their observations were 

dependent on the orientation of hydrogen atoms attached to the sulphur and in one of the 

favourable configurations, they found that the optimum distance between the sulphur atom 

and the centre of the benzene ring is 5.5 Å. This further confirms the persistence of the 

interaction with PHE334 based on the graph in Figure 3-23. 

 

Figure 3-22: Pi-cation interaction between 1b and PHE334, 
showing CG and CZ atoms used to define a distance between 1b 
and the benzene ring. 

 

Figure 3-23: Plot of 
the distance between 
sulphur atom of 1b 
and benzene ring of 
PHE180. 

 

3.2.2.4 TG2 

As in 1a trajectory, the presence of 1b within TG2 active site in this simulation did not cause 

significant changes in the enzyme itself. This was confirmed by comparing the RMSD values 

of this run to those of the simulation applied on TG2 alone for the same simulation time 

(Figure 3-25). In fact, RMSD plots show that the presence of the compound stiffens the 

enzyme and limits its overall conformational changes. This also applies to compound 1a 
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(Figure 3-12). This is consistent with the data that suggest that the covalent inhibitors of TG2 

when bind to the enzyme lock it in its open conformation (Pinkas et al. 2007). Atomic 

fluctuation analysis did not show any significant peaks with all residues having values less 

than 3 Å, with the exception of 3 residues that were a part of a loop located on the other side 

of the active site. 

 

Figure 3-24: Example of pi-sulphur interactions 
involving TRP332 and PHE334 with the positively 
charged sulphur atom of 1b. 

 

Figure 3-25: RMSD of TG2 alone in 1b trajectory compared to that applied on an empty TG2. 

There was a loop, however, consisting of residues ASP306, GLN307, ASN308, SER309, 

ASN310 and LEU311, that showed a movement toward the back and inward to the 

hydrophobic region of the enzyme (Figure 3-26). The atomic fluctuation values for the 6 

residues were all below 2.0 Å. The hydrophobic interactions with the tertiary butyl group of 

1b and hydrogen bonds between 1b and ARG317 may be responsible for the movement of 

the loop and the subsequent enclosure of the hydrophobic loop for the tertiary butyl group of 

1b. It was therefore decided to add the residues of this loop to the definition of active site 

used in the docking experiments. 
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Figure 3-26: The loop 
between ASP152 and 
LEU157 (red) and how it 
moved from the starting 
conformation (green) 
compared to 9 
conformations taken from 
the simulation at 30 ns 
intervals. 

3.2.2.5 Temperature and total energy 

Again in this trajectory the temperature and total energy during the simulation were stable as 

shown in Figure 3-27. 

  

Figure 3-27: Temperature and total energy graphs for the trajectory of 1b. 

3.2.3 Trajectory of 1c-30ns-14 

In the starting conformation for this MD run, the distance between the warhead carbon atom 

of 1c and SG atom of CYS277 was 3.7 Å. There were hydrogen bonds with CYS277 

(backbone) and ASN333 (side chain). There were also pi-alkyl interactions between the 

piperazine ring of 1c and TRP241, TRP332 and PHE334 (Figure 3-28). However, the 

naphthyl group, being the lipophilic part, was not in the hydrophobic region of TG2. No better 

pose for compound 1c in TG2 active site could be obtained and therefore this one was used. 

During the simulation, the lipophilic part of the inhibitor started to move in the direction of the 

hydrophobic loop of TG2 but it did not get fully inside the loop. This started to happen at 
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around 32.5 nanoseconds of the simulation. However, at approximately the same time, the 

warhead started to move away from CYS277 leaving the catalytic tunnel. The graph in 

Figure 3-29 shows the change in the warhead position relative to SG of CYS277. An 

analysis of hydrogen bonds showed that there were bonds at the beginning of the simulation 

up to the point when the warhead left the tunnel. The bonds were mainly with GLN276 and 

CYS277 (Figure 3-30). The disappearance of the bonds may be responsible for the warhead 

leaving the catalytic tunnel. 

 

Figure 3-28: Interactions between 
1c and TG2 active site in the 
starting conformation. 

 

Figure 3-29: Time plot for the distance between warhead of 1c and sulphur atom of CYS123 showing the 
increased distance after 32 ns. 
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In the starting conformation, the distance between the warhead carbon atom and CYS277 
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simulation, the warhead of 1d left the catalytic tunnel and moved away during the 

equilibration phase whereupon the distance between the warhead and the sulphur atom of 

CYS277 was 8.5 Å at the first conformation of the production phase. Therefore, this 

trajectory was considered a failure. 

 

Figure 3-30: Number of hydrogen bonds with 1c showing their disappearance after 32 ns. 

3.2.5 Trajectory of 1e-40ns-10 

In the starting conformation, the distance between the warhead and CYS277 was about 3 Å. 

There was a single hydrogen bond with GLN276 side chain and a pi-alkyl interaction 

involving the adamantyl group of 1e with ARG317 (Figure 3-31). 

The warhead remained in the catalytic tunnel close to CYS277 for about 187 of the 275 

nanoseconds of the simulation time (Figure 3-32). Analysing the hydrogen bonds in the 

trajectory showed that a bond with GLN276 was present up to the time at which the warhead 

left the tunnel. Figure 3-33 is a graph representing the frequency of this hydrogen bond. The 

disappearance of this bond may have been the reason for causing the warhead to leave the 

active site tunnel. 

3.2.6 Trajectory of 1f-80ns-6 

In the starting conformation, the distance between the warhead and the sulphur atom of 

CYS277 was 5.7 Å. There were 2 hydrogen bonds with CYS277 side chain and GLN324 

side chain. There were also pi-alkyl interactions between the piperazine ring of 1f and 

TRP214 and TRP332. However, the lipophilic part (dansyl group) was not in the hydrophobic 

region of TG2. During the simulation, the warhead moved further away from CYS277 and 

the dansyl group failed to enter inside the hydrophobic loop of TG2. 
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Figure 3-31: Interactions between 
1e and TG2 active site in the 
starting conformation. 

 

Figure 3-32: Graph for the 
distance between warhead of 
1e and sulphur of CYS123 
showing the increased 
distance after 187 ns. 

 

Figure 3-33: Frequency of 
the H-bond between 1e and 
GLN276 showing the 
disappearance of the bond 
after 187 ns. 

The temperature and total energy for the last four simulations (compounds 1c, 1d, 1e and 

1f) were stable throughout and very similar to graphs presented in figures Figure 3-15 and 

Figure 3-27. Also, none of these compounds caused any large scale changes in TG2. This 

was evident from the RMSD measured for TG2 only in each of the 4 simulations and 

compared to that from the simulation on empty TG2 for the same simulation time (Figure 

3-34). The atomic fluctuations for TG2 residues in the 6 simulations have also been 

compared. They also showed that there were similar modes of motions in the 6 simulations. 
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Figure 3-35 contains the atomic fluctuation values for the 6 simulations and it can be seen 

the locations of the peaks are matching. 

 

Figure 3-34: RMSD graphs for TG2 in the simulations for compounds 1c, 1d, 1e and 1f compared to the 
simulation of empty TG2. A detailed description of empty TG2 MD is presented later in section 3.9 of this 
chapter.  

 

Figure 3-35: Atomic fluctuations for TG2 residues in the 6 MD simulations. 

Several observations can be drawn from looking at the trajectories of the complexes. 

Hydrogen bonds are essential in keeping the warhead in the catalytic tunnel close to SG of 

CYS277. This was very clear with the trajectories of 1a and 1c where discontinuation of a 

hydrogen bond was associated with the warhead leaving the tunnel. ASN333 is probably the 

most important residue in this respect, being positioned conveniently to bond with the 

central, or linker, part of the inhibitors leading the warhead to the tunnel. GLN276 is another 

example, being close to CYS277, where a hydrogen bond with this residue may provide a 

means for keeping the warhead in the catalytic tunnel (trajectories for 1c and 1e are 

examples for the significance of this residue). Pi-cation interactions involving the positively 

charged sulphur atom of the inhibitors containing sulfonium ion warheads and the aromatic 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 50 100 150 200 250 300

R
M

SD
 (

Å
)

Time (ns)

1c-TG2
1d-TG2
1e-TG2
1f-TG2
Empty-TG2

0

1

2

3

4

5

6

150 200 250 300 350 400 450 500 550 600

A
to

m
ic

 f
lu

ct
u

at
io

n
 (

Å
)

Residue number

1a-TG2
1b-TG2
1c-TG2
1d-TG2
1e-TG2
1f-TG2



Chapter 3   Model Development and Validation 

103 

 

rings of the residues close to CYS277, especially PHE334, also played significant role in 

maintaining the pose of compound 1b. 

Although the warhead left the catalytic tunnel in compounds 1a and 1e, both of which were 

appropriately posed at the start of their simulations, the lipophilic parts of the 2 compounds 

remained in the hydrophobic loop of TG2 active site. This indicates that the preservation of 

the lipophilic part in its starting location is easier than preserving the warhead. The reasons 

may include the magnitude of lipophilic interactions in the region and the shape of the 

hydrophobic loop and its ability to enclose the lipophilic part of the inhibitors. This enclosure 

was particularly evident with the tertiary butyl lipophilic part of compound 1b (Figure 3-20). 

3.3 Docking into TG2 Models from MD Trajectories of 

Complexes 

Models of the active site were extracted at 30-nanosecond intervals from the six MD 

trajectories of the complexes from the initial docking to perform docking experiments starting 

from the 35th nanosecond. A total of 9 active site models were generated from each of the 6 

trajectories to perform dockings on. Again, only the 6 active compounds from Badarau et al. 

(2015) were used at this stage. CAChe docking was used with models from the trajectories 

of 1b, 1c and 1e but no good results were obtained with any model. As a result, CAChe was 

not used on models from the other trajectories. Instead, GOLD was used with models from 

all the trajectories. The GOLD settings were the same as those used for the first stage with 

the following modifications: early termination was allowed and default settings for docking 

speed with 100% efficiency were applied. 

The results of docking on models from each of the six trajectories will be presented 

separately based on the trajectory. Within the individual trajectories, only results from 

models that have shown good docking will be presented, except when there are no good 

results. The complexes were named as in the initial docking. Figures will show the pose of 

the compounds within the active site with the distance between the warhead and the sulphur 

atom (SG) of CYS277 as a red solid line. The compounds will be in a stick form except the 

warhead atom which will be shown as a ball. Hydrogen bonds will be shown as green dotted 

lines and pi interactions as dotted light pink (pi-alkyl), dotted dark pink (pi-pi) or dotted 

orange (pi-cation) lines. 

During the analysis certain criteria had been set to define a good docking complex and from 

which to select valid active site models. These criteria included: 
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1. An appropriate bent pose within the active site for the active compounds with the 

warhead in the catalytic tunnel containing the active site cysteine residue (CYS277) 

and the lipophilic part in the hydrophobic region of the active site (Badarau, Mongeot, 

et al. 2013; Prime, Brookfield, et al. 2012). 

2. A ranking in the top 4 places out of the 20 solutions generated for that compound 

based on GoldScore scoring function first and then the CHEMPLP function. In both 

scoring functions, the higher (more positive) the score, the better is the complex 

because the score is taken as the negative of the sum of multiple energy terms 

(CCDC Software Limited 2013). 

3. The presence of hydrogen bonds between the ligand and some key residues in the 

active site especially TRP241, GLN276, TRP332, ASN333 and PHE334. 

3.3.1 Docking into TG2 models from the 1a complex trajectory 

The warhead of the different active compounds was close to CYS277 in many cases for 

dockings on models from 1a trajectory. However, the lipophilic part of the active compounds 

was not under the hydrophobic loop of TG2 in the majority of these cases. Figure 3-36 

shows an example of such pose for compound 1b in the model taken at 65 ns from this 

trajectory. 

 

Figure 3-36: Example pose of 1b with the 
lipophilic part outside the hydrophobic 
loop (coloured red). 

The model taken at 95 nanoseconds (95ns) gave good results in terms of poses and scores 

and was therefore selected as a valid model to be taken for further investigation. Table 3-3 

shows the docking results of the 6 active compounds on 95ns model. Figure 3-37 presents 

the pose of compound 1b as an example of complexes generated in this model. From Table 

3-3, it can be seen that a hydrogen bond with ASN333 was present in 1b and 1e complexes. 

In all the compounds, there were hydrophobic interactions stabilising the lipophilic part in the 
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hydrophobic loop. In case of the sulfonium ion warhead (1b and 1f), there were pi-cation 

interactions with TRP241 and/or PHE334. 

Complex 
Distance 

(Å) 
H-bonds GoldScore* Rank CHEMPLP* Rank 

1b-95ns-9 6.1 ASN333 49 2nd 38 14th 

1b-95ns-18 6.3 ASN333 47 3rd 52 3rd 

1c-95ns-2 5.5 HIS335 56 2nd 46 11th 

1c-95ns-12 4.3 
CYS277 
PHE334 

47 4th 61 4th 

1e-95ns-1 4.3 
GLN276 
ASN318 
ASN333 

57.07 1st 49 4th 

1e-95ns-4 3.7 
GLN276 
ASN318 
PHE334 

57.03 2nd 39 12th 

1f-95ns-13 4.5 
GLN276 
ASN318 

52 9th 31 12th 

Table 3-3: Docking results for active compounds into the 95ns model. *GOLD scoring functions are 
unitless (Yang 2008).  

 

Figure 3-37: Poses of 1b in the 95ns model showing interactions with TG2 residues. 

ASN333 was the only residue among those in Table 3-3 to from hydrogen bonds with its side 

chain atoms as well as backbone atoms (Figure 3-37). The remaining 3 residues participated 

in either side chain or backbone atoms in hydrogen bonds with the compounds, but not both; 

GLN276 side chain, ASN318 backbone and PHE334 backbone. As a result of the good 

docking results obtained with model 95ns, two additional models were selected from this 

trajectory which are close to 95ns and were taken at 90 (90ns model) and 100 (100ns 

model) nanoseconds. The docking results on these two models are presented in Table 3-4 
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and Table 3-5. Figure 3-38 gives examples for the poses in 90ns model and Figure 3-39 

examples for 100 ns model. 

Complex 
Distance 

(Å) 
H-bonds GoldScore Rank CHEMPLP Rank 

1a-90ns-8 3.5 None 47 2nd 46 13th 

1a-90ns-14 3.5 TRP241 46 4th 55 6th 

1b-90ns-6 7.4 ASN333 41 16th 47 2nd 

1d-90ns-8 5.2 None 57 1st 62 1st 

1d-90ns-20 6.5 PHE334 55 2nd 0.33 19th 

1e-90ns-11 4.1 ASN333 48 1st 32 13th 

1e-90ns-17 3.1 
GLN276 
ASN318 
PHE334 

47 2nd 23 18th 

Table 3-4: Docking results for active compounds into the 90ns model. 

Complex 
Distance 

(Å) 
H-bonds GoldScore Rank CHEMPLP Rank 

1a-100ns-1 5.2 None 46 1st 49 9th 

1a-100ns-4 4.9 None 45 2nd 53 3rd 

1b-100ns-3 5.9 
ASN333 
PHE334 

46 4th 58 1st 

1e-100ns-1 3.5 GLN276 60 1st 46 4th 

1e-100ns-8 3.7 GLN276 55 3rd 56 1st 

1e-100ns-9 3. 6 None 59 2nd 50 2nd 

1f-100ns-4 5.1 
GLN276 
ASN318 

54 4th 51 3rd 

Table 3-5: Docking results for active compounds into the 100ns model. 

In 90ns and 100ns models, again there were hydrogen bonds with ASN333 (side chain and 

backbone) and PHE334 (backbone), in addition to TRP241 (side chain), GLN276 (side 

chain) and ASN318 (side chain). With the exception of ASN318, all the other mentioned 

residues are important in stabilising the warhead within the catalytic tunnel (Badarau, 

Mongeot, et al. 2013; Pinkas et al. 2007). In 1b and 1d complexes, the pi-cation interaction 

was also present between the sulfonium ion sulphur and the phenyl group of PHE334, 

TRP241 or TRP332 (Figure 3-38 and Figure 3-39). Hydrophobic interactions involving 

different lipophilic parts were also present. The residues participated the most were ALA304, 

ILE313, ILE331 and LEU420. In the 100ns model, there were pi-pi interactions between the 

dansyl group of 1e and 1f and the side chain of PHE316 (Figure 3-38 and Figure 3-39). 

The 95ns model gave some good results when tried first with the original definition of the 

active site. The results presented above were obtained when the active site definition of 1b 

trajectory was used. The same definition was also used for dockings on 90ns and 100ns 

models. The better docking results using this definition may give an indication to the 

significance of the 306-311 residue region (the hydrophobic loop of the active site) of TG2 

for the activity of inhibitors. They also emphasise the importance of the lipophilic part of the 
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inhibitors and its pose within the hydrophobic loop of TG2 active site for an appropriate 

docking complex. 

 

Figure 3-38: Poses of 1a, 1b, 1d and 1e in the 90ns model showing interactions with TG2 residues. 

3.3.2 Docking into TG2 models from the 1b complex trajectory 

Residues 306-311 were added to active site definition used in models of the 1b trajectory. 

CAChe was used for docking on models from this trajectory, but out of the 216 docking 

attempts (4 dockings per compound for 6 compounds in 9 active site models), only 7 

plausible poses were obtained. Figure 3-40 shows 2 of these 7 good poses for compounds 

1d and 1c in the models taken at 65 ns and 95 ns respectively. 

When GOLD was used, 3 models for the active site taken from this trajectory produced good 

docking results and were considered valid. These were 65ns, 155ns and 245ns. Their 

results will be presented separately. The other models also produced some good results but 

not as much. In all cases, the best results were obtained for compound 1b. 

 

1a-90ns-14 
1b-90ns-6 

 

1d-90ns-8 

 

1e-90ns-11 
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Figure 3-39: Poses of 1a, 1b, 1e and 1f in the 100ns model of the 1a trajectory showing interactions. 

 

Figure 3-40: Poses of 1d and 1c in 65ns and 95ns models of the 1b trajectory after CAChe docking. 

3.3.2.1 65ns model from the 1b trajectory 

Table 3-6 represents a summary of the good docking results obtained with this model. The 

poses for these results are presented in Figure 3-41. 

It can be seen from Table 3-6 and Figure 3-41 that a hydrogen bond with ASN333 is 

important for a good ligand pose. Pi interactions between residues from the hydrophobic 

loop of TG2 and the lipophilic parts of the various ligands were also evident. Finally, 

regarding the sulfonium ion warhead in 1b and 1d, pi-cation interactions were also noticed 

 

1a-100ns-4 1b-100ns-3 

1e-100ns-1 1f-100ns-4 
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between TRP332 and HIS335 from TG2 and 1b and between PHE280 and HIS335 of TG2 

and 1d. 

Complex 
Distance 

(Å) 
H-bonds GoldScore Rank CHEMPLP Rank 

1b-65ns-13 5.9 ASN333 66.32 1st 51 12th 

1b-65ns-18 6.3 
ASN333 
PHE334 

66.3 2nd 50 13th 

1d-65ns-12 4.2 
CYS277 
HIS335 

63 8th 40 17th 

1e-65ns-20 4.5 
GLN276 
ASN333 
PHE334 

68 2nd 78 1st 

Table 3-6: Docking results for active compounds into the 65ns model. 

3.3.2.2 155ns model from the 1b trajectory 

The results obtained from docking on this model are presented in Table 3-7 and Figure 3-42. 

Hydrogen bonds were not very frequent in this model but there were pi-interactions between 

the piperazine ring of the compounds with TRP241 (for 1c, 1e and 1f) and with PHE334 (for 

1f). These interactions may have served the function of keeping the warhead within the 

catalytic tunnel close to CYS277. 

  

 

Figure 3-41: Poses for 1b, 1c and 1e in the 65ns 
model showing interactions with TG2 residues. 

 

1b-65ns-13 
1d-65ns-12 

1e-65ns-20 
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Complex Distance H-bonds GoldScore Rank CHEMPLP Rank 

1c-155ns-16 4.9 
GLN276 
ASN333 

73 3rd 86 1st 

1d-155ns-19 6.4 None 66 4th 23 19th 

1e-155ns-2 4.4 None 70 3rd 67 4th 

1f-155ns-6 4.2 CYS277 76 1st 83 1st 
Table 3-7: Docking results for active compounds into the 155ns model. 

 

Figure 3-42: Poses for 1c, 1d, 1e and 1f in the 155ns model showing interactions with TG2 residues. 

3.3.2.3 245ns model from the 1b trajectory 

The results for the docking of the 6 active compounds on 245ns model are summarised in 

Table 3-8 and Figure 3-43. 

Complex 
Distance 

(Å) 
H-bonds GoldScore Rank CHEMPLP Rank 

1b-245ns-9 6.8 
ARG317 
ASN333 
PHE334 

63 2nd 73 1st 

1b-245ns-2 6.6 ASN333 69 1st 62 5th 

1c-245ns-4 5.5 

CYS277 
ASN333 
PHE334 
HIS335 

70 1st 70 7th 

1d-245ns-16 6.4 
ASN333 
PHE334 

67 2nd 71 2nd 

1e-245ns-11 5.1 None 67 1st 73 1st 
Table 3-8: Docking results for active compounds into the 245ns model. 

  

  

1c-155ns-16 1d-155ns-19 

1e-155ns-2 1f-155ns-6 
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Figure 3-43: Poses for 1b, 1c, 1d and 1e in the 245ns model showing interactions with TG2 residues. 

Again, hydrogen bonds and pi-interactions were present and participating in positioning both 

the warhead and the lipophilic part of the active compounds. It can be seen from Figure 3-43 

that the lipophilic part of 1d was not located under the hydrophobic loop of TG2. In fact, this 

conformation has been adopted by compounds 1a and 1d in many cases of the dockings on 

the valid models. In this particular case of 1d in the 245ns model, the conformation was 

ranked second in both scoring functions and the warhead was somewhat close to CYS277. 

No hydrophobic interactions were detected between the terminal phenyl group of 1d and 

TG2 residues where it was docked but it seems that the pi-interaction with TRP332 with the 

piperazine ring of 1d was responsible for positioning the lipophilic part. 

3.3.3 Docking into TG2 models from the 1c complex trajectory 

CAChe and GOLD were used for docking on models from this trajectory. Both programs 

were unable to produce plausible poses for the active compounds in the TG2 active site. 

This was true for the pose of the warhead and the lipophilic part of the ligands. The same 
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poor results were obtained after using the definition of the active site adopted from the 

trajectory of 1b. 

3.3.4 Docking into TG2 models from the 1d complex trajectory 

GOLD was used for docking into models from the 1d trajectory using the original definition 

for the active site. No good results were obtained. Both the warhead and the lipophilic part of 

the active compounds failed to dock into their appropriate places in TG2.  Active site 

definition from the 1b trajectory was then tried in models 35ns, 95ns, 155ns, 215ns and 

275ns as representatives for models from 1d trajectory. Again, no good results were 

obtained. 

3.3.5 Docking into TG2 models from the 1e complex trajectory 

CAChe was used for docking into models from this trajectory but no good results were 

obtained. In very few cases, the lipophilic part was able to position itself in the hydrophobic 

region but the warheads of the 6 compounds failed to dock close to the sulphur atom of 

CYS277. Figure 3-44 is an example for compound 1b in the model taken at 155 

nanoseconds, where the distance between the warhead and SG of CYS277 was about 9 Å. 

 

Figure 3-44: Pose of 1b in the 155ns model of 
1e trajectory after CAChe docking. 

For GOLD dockings, the results were similar to those obtained on models from the 1a 

trajectory in that the warhead managed to get close to CYS277 but the lipophilic part failed 

to be positioned under the hydrophobic loop. The lipophilic part was pointing out of the 

protein in the majority of cases. In Figure 3-45, a representative of docking on models from 

this trajectory is shown; compound 1d is docked into the 125ns model where the warhead 

was about 4.8 Å away from CYS277 but the lipophilic part is not in place. The conformation 

of TRP332 is shown as a possible cause for this. 
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Figure 3-45: The pose of 1d 
in the 125ns model of 1e 
trajectory showing the 
distance with CYS277 (4.8 Å) 
and the conformation of 
TRP332. 

The conformation of TRP332 changed during the MD simulation in such a way as to block 

the hydrophobic loop in TG2 and prevent the access of the lipophilic part of the 6 active 

compounds to this region (Figure 3-46). Although TRP332 was one of the residues that were 

selected to be treated as flexible during the docking, it appears that a movement to allow the 

lipophilic part to dock well was outside the range of the flexibility offered by GOLD. This 

flexibility was based upon The Penultimate Rotamer Library (Lovell et al. 2000) which 

includes the most commonly observed side chain conformations for the natural amino acids. 

Therefore, this orientation of TRP332 was responsible for the inappropriate poses for the 

active compounds. 

3.3.6 Docking into TG2 models from the 1f complex trajectory 

Again, no good results were obtained for the 6 active compounds when docked into the 

models taken from this trajectory. In some cases, the warhead was able to dock to a position 

that is close to CYS277, but the lipophilic part was never in the hydrophobic region of TG2. 

The reason behind this seems to be the orientation of TRP332. This residue, as in the 

models taken from 1e trajectory, was blocking the approach of the lipophilic part to the 

hydrophobic loop of TG2. Figure 3-47 presents an example of the poses on models from 1f 

trajectory. The figure shows the pose of 1d in the 245ns model with the conformation of 

TRP332. 
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Figure 3-46: Orientation of TRP332 in the 1e trajectory compared to the starting conformation (top left). 
The other conformations were taken at 30 ns intervals from the trajectory. TRP332 is shown in yellow as 
ball and stick. 

 

Figure 3-47: The pose of 1d in the 
245ns model of 1f trajectory. The 
distance with CYS277 is shown (3.3 
Å) along with the conformation of 
TRP332 to show a possible cause 
for the pose of the lipophilic part. 

The criteria set at the start of this section (3.3) for the definition of an acceptable docking 

complex have been confirmed with the results obtained from the 6 models of the first two 

trajectories. Hydrogen bonds involving the central region (the linker) of the inhibitor 

molecules are important for generating the required bent conformation of the ligand, as are 
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the lipophilic interactions at the hydrophobic loop of TG2. It has also been noted that pi-

cation interactions involving the sulfonium ion of compounds 1b, 1d and 1f may be able to 

compensate for the lack of hydrogen bonding to the linker region in positioning the warhead 

to CYS277. This role has also been played by lipophilic pi interaction involving the 

piperazine ring of some compounds. Those observations are consistent with the ones made 

during the analysis of the MD trajectories on the docked complexes in section 3.2. 

Compound 1e was the only compound that has managed a good pose in all the selected 

valid models in this stage of docking. This should not be surprising, knowing that 1e is the 

most potent compound within the group. The compound failed, however, to exhibit the 

formation of hydrogen bonds with TG2 residues in 2 models; 155ns and 245ns. The second 

best performance in terms of the correct poses was achieved by compound 1b, which 

docked appropriately in all the models with the exception of 155ns. That was combined with 

passing the other criteria as well, including the formation of hydrogen bonds and the good 

ranking. Since all the compounds share the same linker region, and each 3 compounds 

share the same warhead, it can be said that the lipophilic part of the inhibitor in this group of 

compounds was responsible for the different docking results. Therefore, a combination of a 

dansyl group with an acrylamide warhead (compound 1e), and a combination of a tertiary 

butyl group and a sulfonium ion warhead (compound 1b) (Table 3-1) may offer superiority to 

the potential of the compounds to dock well in the active site of TG2. 

Due to the significance of the lipophilic interactions in the docking complexes that proved to 

be valid, the presence of such an interaction has been added to the criteria defining a good 

docking complex; besides the appropriate bent conformation, the good rank with one or both 

of the used scoring functions and the presence of hydrogen bonds with the key residues in 

the active site of TG2. 

Despite the good results obtained with the 6 models and from 6 different compounds with 2 

types of warheads, the models need to be tested on a larger set of compounds, and some 

inactive compounds should be tested as well, in order to determine if the models could 

discriminate between potent and inactive compounds. This was the rationale of the next 

stage of this work. 
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3.4 Validation of Active Site Models 

The six active site TG2 models selected from the previous stage were validated by docking 

experiments and short MD simulations. The validation process included: 

1. Performing a docking experiment with GOLD that is similar to the previous one with 

turning off early termination and adding 3 inactive compounds to the test set. 

2. Performing a docking experiment with GOLD similar to the one described in step 1 

with the same test compounds but with having 25 water molecules within the active 

site of TG2. 

3. Applying a GOLD docking experiment identical to that in step 1 with a new set of 15 

active and 5 inactive TG2 inhibitors. 

4. Applying docking experiment using GOLD on the 6 models with settings similar to 

those in step 1 on a set of compounds that includes the original 6 active compounds, 

the 3 inactive compounds introduced in step 1 and the 20 active and inactive 

compounds from step 3. This experiment was repeated 3 times. 

5. Performing 5-nanosecond MD simulations on selected docking complexes of the 6 

valid models from the above experiments and the previous docking results. 

6. Performing docking with GOLD using settings as those in experiment 1 on a set of 3 

active compounds (different chemical type to the initial set) from the work by Prime, 

Andersen et al. (2012). 

3.4.1 Validation process 1 (3 inactive compounds) 

A valid model should not only dock active compounds in a good manner, but it should also 

give bad docking results for inactive compounds. This was the rationale behind adding three 

inactive compounds to the test set [compounds 2a, 2b and 2c (Table 3-9) (Badarau et al. 

2015; Griffin et al. 2014)]. The results will be presented by models. 

3.4.1.1 Models from the 1a trajectory 

The results of docking the 6 active compounds and the 3 inactive ones into models 90ns, 

95ns and 100ns from the 1a trajectory are summarised in Table 3-10. An analysis of the 

docking complexes from this trajectory showed that, although some complexes in models 

90ns and 100ns did not contain any hydrogen bonds, the hydrophobic interactions involving 

the lipophilic part in the hydrophobic loop of TG2 were evident in all the complexes except 

that of 1e in the 90ns model. Probably that is why the complex of 1e (1e-90ns-17) failed to 

achieve a good rank in the two scoring functions. 
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Compound Structure IC50 (µM) 

2a 

 

400 

2b 

 

> 100 

2c 

 

> 100 

Table 3-9: Inactive compounds used in validation process 1. 

There were also pi-interactions with the piperazine ring of all the compounds in models 95ns 

and 100ns except for 1e and 1f in 95ns and 1f in 100ns model. In those two compounds, 

there were pi-sulphur interactions between the sulphur atom of the sulphonamide group and 

the phenyl group of TRP332 or a hydrogen bond between the sulphonamide group and 

ASN318. Other pi-sulphur interactions were recorded involving the sulfonium ion of 1b, 1d 

and 1f in the 3 models. 

Compound 2c achieved a good pose in the 3 models with good GoldScore ranking in the 

95ns and 100ns models. The good rank is probably offset by the lack of hydrogen bonds in 

the 2 complexes. The GoldScore scoring function is the sum of multiple energy terms, one of 

which is van der Waals interactions between the ligand and the protein. Given the large size 

of 2c molecule, the van der Waals component contributed much to the score giving rise to 

the high scores associated with 2c. For 2b complex in the 90ns model, however, a rank of 4 

out of 20 would mean a favourable pose. This was the only pose for an inactive compound 

that achieved all the criteria for an acceptable docking complex. 

3.4.1.2 Models from the 1b trajectory 

The results of docking of the 9 test compounds on models 65ns, 155ns and 245ns of the 1b 

trajectory are presented in Table 3-11. It can be clearly seen from this table that the 

hydrogen bonding profile for all the models is much better than in the models from the 1a 

trajectory. This may contribute to the generally better scores for the active compounds in 

models from the 1b trajectory than from the 1a trajectory. Only one inactive compound 

achieved a good pose and score, 2b-245ns-4, but in this complex, no interactions involving 
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the lipophilic part of the molecule were recorded. This may indicate that the pose of the 

lipophilic part may change easily. 

Complex 
Distance 

(Å) 
H-bonds GoldScore Rank CHEMPLP Rank 

1a-90ns-1 3.7 None 49 2nd 19 19th 

1a-90ns-7 3.5 None 47 7th 57 1st 

1b-90ns-2 6.6 ASN333 51 1st 53 3rd 

1b-90ns-1 6.4 None 49 2nd 42 10th 

1d-90ns-5 5.3 None 58 1st 60 1st 

1d-90ns-3 5.9 None 53 4th 60 2nd 

1e-90ns-17 3.3 
ASB318 
ASN333 
PHE334 

43 12th 39 8th 

2b-90ns-8 3.3 TRP241 54 4th 64 8th 

2c-90ns-8 6.3 ASN318 46 19th 15 20th 

1a-95ns-14 5.2 TRP332 50.5 2nd 50 6th 

1a-95ns-15 4.3 TRP332 50 3rd 50 5th 

1b-95ns-6 5.9 
TRP332 
ASN333 

50 4th 41 7th 

1c-95ns-2 4.7 
CYS277 
PHE334 

53 2nd 50 8th 

1d-95ns-4 6.6 ASN333 47 5th 42 5th 

1e-95ns-15 3.7 
GLN276 
ASN318 
ASN333 

55 1st 48 5th 

1e-95ns-2 3.9 None 53 2nd 49 4th 

1f-95ns-20 5.8 
GLN276 
ASN318 

61 1st 43 5th 

1f-95ns-13 5.8 
ASN318 
ASN333 

53 4th 43.5 4th 

2c-95ns-3 5.6 None 61 3rd 4 20th 

1b-100ns-9 5.8 ASN333 51 1st 52 6th 

1b-100ns-15 5.7 ASN333 50 2nd 47 13th 

1c-100ns-6 4.0 None 54 2nd 72 2nd 

1e-100ns-3 3.9 None 60 1st 47 1st 

1e-100ns-16 4.2 GLN276 51 7th 56 1st 

1f-100ns-16 3.2 GLN276 52 6th 82 2nd 

2c-100ns-1 5.5 None 65 1st 57 4th 
Table 3-10: Docking results for validation process 1 into models from the 1a trajectory. 

Regarding active compounds, pi-interactions involving different lipophilic parts of the ligands 

were evident in all the models. The piperazine ring of the active compounds was also 

involved in pi-interactions with active site residues, mainly TRP241 and TRP332. In models 

65ns and 245ns, the lipophilic part of compounds 1a and 1f (65ns) and 1d and 1f (245ns) 

failed to locate in the hydrophobic region of TG2 in the complexes mentioned in Table 3-11. 

As it can be seen in Figure 3-48, this may be attributed to the orientation of the side chain of 

ASN333 which may be acting as a blocker to the access to the hydrophobic loop. The 

complex of 1b is shown for comparison. 
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Complex Distance (Å) H-bonds GoldScore Rank CHEMPLP Rank 

1a-65ns-16 5.0 
GLN276 
ASN333 
PHE334 

52 12th 75 1st 

1b-65ns-7 5.8 None 57 12th 30 20th 

1c-65ns-4 4.9 
GLN276 
CYS277 
PHE334 

68 4th 92 1st 

1e-65ns-2 2.9 CYS277 60 14th 48 13th 

1f-65ns-13 5.1 

CYS277 
ASN333 
PHE334 
HIS335 

75 2nd 67 3rd 

1b-155ns-10 6.2 
ARG317 
ASN333 
PHE334 

65 3rd 69 1st 

1c-155ns-17 4.7 
ASN333 
PHE334 

76 1st 89 2nd 

1c-155ns-11 5.4 GLN276 74 3rd 94 2nd 

1d-155ns-4 5.2 
GLN276 
ASN333 

58 11th 64 6th 

1e-155ns-3 5.0 PHE334 74 1st 73 2nd 

1e-155ns-11 5.2 PHE334 73 2nd 77 1st 

1b-245ns-20 6.1 
ARG317 
ASN333 
PHE334 

63 1st 66 3rd 

1b-245ns-15 5.6 
ASN333 
PHE334 

61 3rd 63 4th 

1c-245ns-13 4.9 
TRP332 
PHE334 

66 1st 84 1st 

1d-245ns-15 3.5 
CYS277 
ASN333 

71 2nd 76 1st 

1e-245ns-20 4.8 PHE334 64 4th 61 6th 

2b-245ns-4 3.9 None 58 2nd 71 1st 
Table 3-11: Docking results for validation process 1 into models from the 1b trajectory. 

 

Figure 3-48: Poses of compounds 1a, 1b and 1f in model 65ns showing the role of ASN333 in blocking 
the hydrophobic region of TG2 active site. 1b is shown for comparison. 

 

1a 1f 1b 
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3.4.2 Validation process 2 (water docking) 

GOLD is implemented with the capability of performing a docking with the presence of water 

molecules within the active site. The program can accommodate up to 25 water molecules 

and it gives the option to turn them on or off during the docking or to allow GOLD to decide 

whether a specific water molecule is turned on or off. There is also the option of keeping 

water molecules fixed or allowing them to spin about their axes (CCDC Software Limited 

2013; Verdonk et al. 2005). For this experiment, GOLD was given the option to toggle which 

water molecules to be used. The molecules were also allowed to spin. The models were 

selected from the trajectory containing 25 closest water molecules to CYS277 at the same 

time points at which the water-free models were selected. Figure 3-49 shows model 90ns 

with the water molecules. 

 

Figure 3-49: Model 90ns 
showing the water 
molecules in the active 
site.

3.4.2.1 Models from the 1a trajectory 

Compounds 1a, 1b and 2b achieved good poses and ranks in all the 3 models, compound 

1c in the 100ns model, 1d in the 90ns and the 100ns, 1e in the 95ns and the 100ns, 1f in the 

95ns and 2c in the 95ns model. The poses in general were similar to those obtained in 

validation process 1 with all the important interactions, except for compound 2b, which either 

missed the interactions in the lipophilic region or within the catalytic tunnel. Compound 2c 

did form a network of interactions within the active site but its rank within 95ns model was 

bad. 

Surprisingly, in no complex for all the compounds were there hydrogen bonds involving 

water molecules. This happened despite the presence of a minimum of 4 water molecules 

and a maximum of 11 molecules chosen by GOLD to be involved in the docking (Figure 

3-50). However, it is been explained that a reasonable binding mode may be found by GOLD 

that does not involve any interaction with key structural water molecules (Verdonk et al. 
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2005). Keeping this fact in mind, it will not be surprising to lack hydrogen bonds considering 

that these molecules were not structural; they were added by AMBER during MD 

simulations. 

 

Figure 3-50: The seven water 
molecules chosen by GOLD for 
docking of compound 1e in the 
100ns model. None of them is close 
enough to allow for hydrogen 
bonding. 

3.4.2.2 Models from the 1b trajectory 

Similar results to what was seen with models from the 1a trajectory were obtained on these 

models in terms of good poses and ranks in addition to the lack of hydrogen bonds with 

water molecules. However, Compound 1b did form hydrogen bonds with water molecules in 

models 155ns and 245ns (Figure 3-51). Only 2c of the inactive compounds achieved a good 

pose in 155ns model but the rank was bad. There was a minimum of no water molecules in 

some complexes and a maximum of 3 molecules in other complexes in models from the 1b 

trajectory. 

 

Figure 3-51: Hydrogen bonds between compound 1b and water in models 155ns (left) and 245ns (right). 
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Although many of the 25 water molecules originally present in each of the 6 models were 

displaced during the docking, leaving between zero and 11 molecules, the displacement did 

not have a great effect on the score. In other words, there was not significant change in the 

scores of the inhibitors when there was a displacement of water molecules. The gain in 

energy upon displacement of water or the so-called desolvation effect is one of two 

mechanisms by which water can affect the docking of ligands into proteins. The other 

mechanism involves mediating hydrogen bonds with the ligands (Ladbury 1996). Since 

these 2 mechanisms did not prove to offer any advantage with the docking of TG2 inhibitors, 

the approach of water docking is probably not appropriate for TG2. This is also confirmed 

from the absence of any water molecules within the active site of TG2 in the original crystal 

structure [PDB 2Q3Z, (Pinkas et al. 2007)]. 

3.4.3 Validation process 3 (more test compounds) 

Twenty additional compounds also adopted from Badarau et al. (2015) and the associated 

patent by Griffin et al. (2014) were used for this stage of testing. 15 of these compounds 

were active with IC50 values in the range of 0.006-6.8 µM and 5 compounds were inactive 

with IC50 values above 100 µM. The compound numbers, structures and IC50 values for 

these compounds are listed in Table 3-12. 

Compound Structure IC50 (µM) 

3a 

 

1.85 

3b 

 

0.89 

3c 

 

1.4 

3d 

 

0.008 

3e 

 

4.25 

3f 

 

5.925 
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3g 

 

0.0059 

3h 

 

1.07 

3i 

 

6.8 

3j 

 

6.3 

3k 

 

3.3 

3l 

 

2.1 

3m 

 

1.5 

3n 

 

0.775 

3o 

 

1.625 

4a 

 

>100 

4b 

 

>100 

4c 

 

>100 

4d 

 

>100 
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4e 

 

>100 

Table 3-12: Active and inactive compounds used in validation process 3. 

3.4.3.1 Models from the 1a trajectory 

A summary of the results of the docking of compounds used in validation process 3 is 

presented in Table 3-13. All of the presented complexes have achieved the first criterion of a 

good docking complex which is the bent conformation within TG2 active site with the 

warhead pointing in the direction of CYS277. 

Complex 
Distance 

(Å) 
H-bonds GoldScore Rank CHEMPLP Rank Lipo* 

3b-90ns-5 5.2 
GLN276 
ASN318 

52 1st 49 6th Yes 

3c-90ns-20 5.6 ASN333 49 4th 46 8th Yes 

3d-90ns-6 3.7 
ASN333 
PHE334 

42 3rd 49 1st Yes 

3e-90ns-1 4.0 

GLN276 
ASN318 
ASN333 
PHE334 

42 11th 52 4th Yes 

3h-90ns-10 3.7 
GLN276 
ASN333 

54 3rd 62 1st No 

3n-90ns-14 6.2 ASN333 44 19th 52 10th Yes 

3o-90 ns-3 3.8 

TRP241 
GLN276 
CYC277 
ASN318 

54 1st 57 5th Yes 

4b-90ns-8 3.0 None 50 4th 34 17th Yes 

4c-90ns-7 5.8 GLN276 63 2nd 44 17th No 

4d-90ns-18 3.4 ASN333 52 10th 39 14th Yes 

4e-90ns-1 3.4 
GLN276 
ASN333 

48 19th 39 20th Yes 

3a-95ns-19 6.6 
TRP332 
ASN333 

52 6th 38 16th Yes 

3b-95ns-12 5.7 None 57 2nd 67 1st Yes 

3d-95ns-7 6.3 
GLN276 
TRP332 
ASN333 

44 1st 33 10th Yes 

3e-95ns-16 3.6 
GLN276 
ASN333 

46 3rd 60 1st No 

3f-95ns-7 4.3 
GLN276 
ASN333 

46 1st 23 18th No 

3g-95ns-3 3.2 
GLN276 
ASN318 
PHE334 

56 2nd 23 16th Yes 

3i-95ns-10 5.7 GLN276 55 1st 30 12th Yes 

3n-95ns-6 6.3 ASN333 56 2nd 47 15th Yes 
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3o-95ns-1 4.1 
ASN276 
PHE334 

52 2nd 63 4th Yes 

4b-95ns-16 3.5 
GLN276 
ASN333 

50 1st 59 1st No 

4c-95ns-3 5.4 ASN333 57 8th 32 17th Yes 

4d-95ns-12 3.5 TRP241 48 13th 33 18th Yes 

4e-95ns-19 3.7 GLN276 56 1st 42 13th No 

3a-100ns-7 6.5 
TRP241 
ASN333 

56 1st 45 8th Yes 

3b-100ns-
16 

6.8 None 52 2nd 64 5th Yes 

3d-100ns-
10 

4.4 ASN333 42 2nd 49 3rd Yes 

3e-100ns-15 3.2 

GLN276 
TRP332 
ASN333 
PHE334 

46 2nd 46 13th Yes 

3f-100ns-13 3.4 
GLN276 
ASN332 
PHE334 

47 3rd 50 9th Yes 

3g-100ns-6 3.7 PHE334 54 2nd 59 1st Yes 

3i-100ns-20 5.6 None 59 1st 54 5th Yes 

3j-100ns-10 3.9 GLN276 42 9th 12 19th Yes 

3n-100ns-
19 

5.2 
GLN276 
ASN333 

54 2nd 75 1st Yes 

3o-100ns-7 4.4 TRP241 50 5th 74 1st Yes 

4b-100ns-6 3.4 GLN276 51 1st 52 5th Yes 

4d-100ns-7 3.1 None 43 16th 57 5th Yes 

4e-100ns-17 4.1 None 56 2nd 50 8th Yes 
Table 3-13: Docking results of validation process 3 into models from the 1a trajectory.* “Lipo” column in 
this table and the next ones determines the presence “Yes” or absence “No” of interactions between the 
lipophilic part of the inhibitors and the hydrophobic loop of TG2.  

A closer look at the distances in Table 3-13 shows that compounds with sulfonium warheads 

(3a, 3b, 3c, 3h, 3i, 3k, 3n, and 4c) achieved SG-warhead distances that are generally larger 

than 5 Å. This can be attributed to the physical size of the warhead in these compounds. For 

the 90ns model, 7 active compounds out of the 15 gave good poses, 5 of which passed the 

4 criteria for a good docking complex. Compound 3h did not have any interactions with the 

hydrophobic loop of TG2 and compound 3n failed to rank high in any of the scoring 

functions. In the same model, 4 of the 5 inactive compounds posed well in the active site but 

none of them passed the 4 criteria; 4b with no hydrogen bonds, 4c with no lipophilic 

interactions and 4d and 4e by failing to achieve high ranks in either scoring function. 

For the 95ns model, 9 active compounds achieved good poses but only 5 passed all the 

validation criteria; compound 3a was not ranked high, compounds 3e and 3f did not show 

interactions in the hydrophobic loop and compound 3b had no hydrogen bonds with TG2. 

The latter did have pi-cation interactions between the sulfonium ion and the side chains of 

TRP241 and TRP332 (Figure 3-52A). This type of interaction was also observed in 3i and 3n 



Chapter 3   Model Development and Validation 

126 

 

and may further contribute to directing the warhead to CYS277. Four of the 5 inactive 

compounds had good poses but, as in 90ns model, none passed all the criteria. In the 100ns 

model, 10 active compounds had good poses within the active site of TG2 and 7 of them 

passed all the validation criteria. 3b and 3i did not have hydrogen bonds but had pi-cation 

interactions with TRP241 which leaves only 3i as a failing active compound. Only 3 inactive 

compounds posed well and only one of them managed to pass all the criteria with the other 

two missing the hydrogen bonds. Figure 3-52B is an example pose for compound 3o for this 

group of models. 

 

Figure 3-52: A: Pose of compound 3b in 95ns model showing the pi-sulphur interaction. B: Pose of 
compound 3o in 90ns model as an example. 

3.4.3.2 Models from the 1b trajectory 

A summary of docking results of all the compounds is presented in Table 3-14. Again, in all 

the complexes in the table, the compounds have achieved the criterion of the appropriate 

bent pose within the active site of TG2. The SG-warhead distances for compounds having 

sulfonium ion warheads are also generally larger than those of acrylamide compounds. For 

the 65ns model, 7 out of 15 active compounds gave good poses. Three of the 7 passed all 

the validation criteria and 4 did not, by either not having hydrogen bonds or not ranking high 

in the scoring functions. Three inactive compounds achieved good poses in this model but 

none passed the 4 criteria. In fact, all of them passed only 2 and failed with 2 criteria. 

Complex 
Distance 

(Å) 
H-bonds GoldScore Rank CHEMPLP Rank Lipo 

3c-65ns-13 6.5 
ASN333 
PHE334 

72 1st 48 16th Yes 

3d-65ns-20 6.6 
ASN333 
PHE334 

57 2nd 45 11th Yes 

3f-65ns-1 5.3 None 62 5th 66 3rd Yes 

B A 
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3i-65ns-8 4.7 
GLN276 
CYS277 

68 5th 66 7th Yes 

3j-65ns-2 5.7 
GLN276 
CYS277 
ASN333 

82 1st 95 1st Yes 

3m-65ns-11 6.3 TRP332 65 17th 69 12th Yes 

3o-65ns-11 3.6 None 67 1st 63 6th Yes 

4a-65ns-6 3.3 
GLN276 
ASN333 

62 15th 75 5th No 

4b-65ns-16 3.2 
ASN333 
PHE334 

61 10th 67 9th Yes 

4d-65ns-5 4.9 None 69 3rd 66 9th No 

3a-155ns-8 7.1 
ARG317 
ASN333 
PHE334 

71 3rd 62 12th Yes 

3c-155ns-19 3.9 
TRP241 
HIS335 

62 7th 9 19th Yes 

3d-155ns-5 4.5 
ARG317 
ASN333 
PHE334 

58 1st 75 1st Yes 

3e-155ns-14 4.3 TRP332 57 9th 57 9th Yes 

3f-155ns-19 4.6 None 59 8th 72 2nd Yes 

3g-155ns-
12 

5.1 PHE334 73 4th 71 7th Yes 

3m-155ns-
14 

5.2 
CYS277 
ARG318 
HIS335 

76 4th 80 3rd Yes 

4b-155ns-
12 

5.0 None 68 2nd 18 20th Yes 

4d-155ns-
20 

4.9 ASN333 57 12th 65 8th Yes 

4e-155ns-2 5.2 ASN333 56 17th 41 20th No 

3d-245ns-
18 

5.2 
CYS277 
ASN333 

57 1st 60 3rd Yes 

3e-245-18 3.6 
CYS277 
ASN333 
HIS335 

61 3rd 34 17th Yes 

3f-245ns-2 4.3 PHE334 62 2nd 33 20th No 

3g-245ns-
19 

2.9 TRP241 58 11th 45 16th Yes 

3h-245ns-9 4.2 
GLN276 
PHE334 

79 2nd 70 9th Yes 

3i-245ns-2 4.6 None 63 7th 81 1st No 

3j-245ns-15 6.3 

CYS277 
TRP332 
ASN333 
HIS335 

67 2nd 65 4th Yes 

3k-245ns-5 3.4 
CYS277 
ARG317 

73 3rd 77 2nd Yes 

3o-245ns-1 3.8 PHE334 63 2nd 65 9th Yes 

4b-245ns-
18 

4.9 GLN276 61 3rd 76 1st Yes 

Table 3-14: Docking results of validation process 3 into models from the 1b trajectory. 
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In the 155ns model, 7 active compounds and 3 inactive compounds achieved the required 

pose within TG2 active site. 4 active compounds succeeded in passing the 4 criteria for a 

good docking complex and 3 active compounds passed only 3 criteria missing either the 

hydrogen bonds or the top ranking in the scoring functions. The 3 inactive compounds failed 

to pass the 4 criteria missing the hydrogen bonds, top ranks and/or the interactions involving 

the lipophilic part of the inhibitor. The performance of model 245ns was the best in this 

group, where 9 active compounds and only 1 inactive compound passed the good pose 

criterion. 6 active compounds passed the 4 criteria, 2 passed 3 criteria and one compound 

(3i) passed only 2. Compound 3i lacked interactions with the lipophilic part and hydrogen 

bonds but there was a pi-sulphur bond between the sulfonium ion and PHE280 that may 

compensate for a lack of hydrogen bonds. The only one inactive compound that posed well, 

however, has passed the 4 criteria for a good docking complex. 

It should also be mentioned that in most complexes obtained in this process, there were pi 

interactions involving the piperazine ring in the centre of the inhibitors. TG2 residues on the 

other side of these interactions were mainly the bridging tryptophan residues, TRP241 and 

TRP332 (Figure 3-53). These interactions were present in almost all the complexes except 

those from model 90ns of the 1a trajectory. These pi-interactions are weaker than the 

hydrogen bonds, but they can contribute to maintaining the bent conformation of the inhibitor 

required for its activity. 

 

Figure 3-53: Poses of compounds 3e (left) and 3i (right) in the 95ns and 245ns models respectively, 
showing the pi interactions with the piperazine ring. 

3.4.4 Validation process 4 (all compounds) 

A total of 21 active and 8 inactive compounds were docked into the 6 models using the 

default settings in GOLD with flexible treatment of the selected 10 active site residues. It was 
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performed as a triplicate. The rationale behind this experiment was to assess the 

performance of the models in testing such a comparably large set of TG2 inhibitors. The 

performance of each of the model will not be discussed in detail as it has been presented 

previously; rather a more concise presentation will be used. The docking attempt that gave 

the best results was considered, even if that was different for each model. The best result, 

rather than the average, was considered because GOLD uses a genetic algorithm as the 

docking method (Jones et al. 1997) and this is a stochastic method that works by generating 

a set of random initial solutions, scoring them and then modifying and scoring accordingly. 

Table 3-15 contains a summary of the percentages of active and inactive compounds that 

achieved good poses and that passed the 4 validation criteria in the best docking attempt for 

each model. The same information is also presented in Figure 3-54. 

Model 
% Actives / 
good pose 

% Inactives / 
good pose 

% Actives / 4 
criteria 

% Inactives / 
4 criteria 

Docking 
Attempt 

65ns 57.14 50 38.10 12.5 3rd 

90ns 57.14 37.5 47.62 12.5 1st 

95ns 76.19 37.5 61.90 25 1st 

100ns 80.95 25 38.10 12.5 2nd 

155ns 57.14 12.5 33.33 12.5 1st 

245ns 38.10 25 28.57 0 2nd 
Table 3-15: Performance of the 6 active site models in validation process 4. Percentages are 
approximated to the nearest hundredth. 

 

Figure 3-54: A graphical presentation for information from Table 3-15. 

With the exception of 245ns, all the models scored more than 50% in capturing the bent 

conformation and it was model 95ns that performed the best in terms of achieving the 4 

criteria. This was true for active as well as inactive compounds. Although model 245ns did 

not score high for good poses, no inactive compounds passed the 4 criteria in this model. 
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Model 90ns had the lowest difference between the percentage of active compounds with 

good pose and those that passed the 4 criteria. This would make 90ns suitable choice for 

docking after performing some virtual screening on 95ns and 100ns models. 

The scores from GoldScore and CHEMPLP in this experiment have been analysed. The 

best score for each of the active compounds in every model for the 2 scoring functions have 

been plotted against the IC50 values for the compound. No useful correlation could be 

obtained for all the models; not when IC50 was plotted against the scores, nor when the 

logarithm of IC50 was used, nor when the scores were divided by the molecular weight (to 

normalise the pairwise interactions during the scoring process). The R2 value did not exceed 

0.1 in any case. Furthermore, the scores for the inactive compounds were not very much 

different from those of active compounds; sometimes they were even better. Table 3-16 

presents the best scores obtained for active and inactive compounds in model 95ns from this 

experiment. Figure 3-55 shows the correlation between biological activity and the scores of 

GoldScore and CHEMPLP for 95ns model active compounds as an example. 

Compound IC50 (µM) GoldScore CHEMPLP 

1a 0.125 52 57 

1b 0.273 53 46 

1c 0.44 52 60 

1d 0.7 50 11 

1e 0.0061 59 44 

1f 0.38 60 22 

3c 1.4 54 52 

3d 0.008 44 27 

3e 4.25 45 50 

3f 5.925 44 60 

3g 0.0059 59 26 

3h 1.07 50 62 

3i 6.8 60 28 

3j 2.1 50 38 

3n 0.775 64 62 

3o 1.625 56 56 

    
2c 100 64 16 

4b 100 50 51 

4d 100 42 35 

4e 100 59 13 
Table 3-16: Scores of the active and inactive compounds in model 95ns from validation process 4. 

The fact that the activity of these inhibitors requires covalent bonding with TG2 is probably 

the reason behind these poor correlations. GOLD was able to produce the bent conformation 
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and to rank the solutions of individual compounds based on this conformation along with 

hydrogen bonding and lipophilic interactions but the program was unable to rank the 

compounds based on their activities. 

  

Figure 3-55: Correlation between scores for active compounds and biological activity in 95ns model, left 
is GoldScore and right is CHEMPLP. 

3.4.5 Validation process 5 (5-ns MD simulations) 

The rationale behind this experiment was to ensure that the different poses obtained during 

various docking experiments were valid. In other words, to show whether the active 

compounds will retain their good poses and whether a good pose within the active site for 

inactive compounds will change after 5 nanoseconds of a MD simulation. 

The docking complexes used in this experiment were taken from the primary docking study 

during the selection of the valid models (section 3.3) and from validation processes 1, 2, 3 

and 4. Similar settings for the previous MD simulations were used at this stage; the 

antechamber program was used first, and then minimisation and 3-stage MD simulation 

were applied. Only the production phase (MD2_fast) was taken to investigation. The length 

of this stage was set to 5 nanoseconds. A similar approach has been used by Badarau et al. 

(2013). 

The results will be presented in the form of separate tables for each valid model. The tables 

will contain, in addition to the complex name, a code for the performance of the compound 

during the MD. 1 is a simulation for a compound in which both the warhead and the lipophilic 

part maintained their initial positions during the simulation. 2 is a simulation in which the 

warhead has left its place next to CYS277 and 3 is a simulation in which the lipophilic part 

has left the hydrophobic loop of TG2. The distance between the electrophilic carbon and SG 

of CYS277 will be presented in the starting conformation and its average during the MD 

simulation. This will not be presented for simulations in which the lipophilic part has left the 
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hydrophobic loop. Hydrogen bonds will be presented for the starting conformation and during 

the MD simulation as the interacting residues and the percentage of time for their 

persistence. 

3.4.5.1 Models from the trajectory of 1a 

Table 3-17, Table 3-18 and Table 3-19 contain the results of validation process 5 on the 3 

models from the trajectory of 1a. 

Complex Performance 

Warhead position (Å) Hydrogen bonds 

Starting MD average 
Starting 

conformation 

MD simulation 

Residue % 

1a-90ns-8 2 3.5 15.4    

1b-90ns-4 1 6.7 5.7 
GLN276 

 
ASN333 

ASN318 
 

ASN333 
 

PHE334 

3.5 
 
2 
 

13 

1d-90ns-5 1 5.3 5.6 None 
ASN333 

 
PHE334 

10 
 
4 

1e-90ns-17 1 3.1 5.8 GLN276 

ARG317 
 

ASN333 
 

PHE334 

0.5 
 

1.5 
 
2 

3b-90ns-5 1 5.2 6.2 
GLN276 

 
ASN318 

ASN318 
 

ASN333 

1 
 

29 

3c-90ns-20 1 5.6 6.3 ASN333 
ASN318 

 
ASN333 

4 
 

1.5 

3d-90ns-6 1 3.5 6.1 
ASN333 

 
PHE334 

GLN276 
 

ASN333 
 

PHE334 

11 
 

11 
 

2.5 

3e-90ns-10 2 3.7 12    

3f-90ns-2 1 3.6 3.7 

GLN276 
 

ASN333 
 

PHE334 

ASN333 34 

3h-90ns-10 3      

3j-90ns-1 2 6.1 10.3    

3o-90ns-3 1 3.8 5.8 

TRP241 
 

GLN276 
 

CYS277 
 

ASN318 

ASN318 
 

ASN333 

10 
 

43 

2b-90ns-8 2 3.3 10.6    

4b-90ns-8 2 3 6.5    
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4c-90ns-2 3      

4d-90ns-19 1 3.4 6.2 ASN333 GLN276 15 
Table 3-17: Results of validation process 5 on the 90ns model of the trajectory of 1a. 

Complex Performance 

Warhead position (Å) Hydrogen bonds 

Starting MD average 
Starting 

conformation 

MD simulation 

Residue % 

1a-95ns-10 1 4.6 4 TRP332 
GLN276 

 
ASN318 

18 
 

18 

1b-95ns-6 1 6 6.3 ASN333 ASN333 21 

1c-95-2 1 4.9 4.3 
CYS277 

 
PHE334 

TRP241 
 

GLN276 
 

ASN333 
 

PHE334 

9.5 
 

25 
 

1.5 
 

29 

1d-95ns-4 1 6.6 5.5 179 None  

1e-95ns-17 1 3.5 5.5 GLN276 ASN333 53 

1f-95ns-20 1 5.8 6.1 ASN318 

GLN276 
 

ASN318 
 

ASN333 

88 
 

34 
 

27 

3a-95ns-19 1 6.6 7.8 
TRP332 

 
ASN333 

ARG317 
 

ASN333 

1 
 

17 

3b-95ns-16 1 6.6 6.1 None GLN276 3.5 

3c-95ns-17 1 5.8 6.2 
GLN276 

 
ASN333 

ARG317 
 

TRP332 
 

ASN333 

9.5 
 

13 
 

5.5 

3d-95ns-1 2 6.3 
Left during 

equilibration 
   

3e-95ns-10 2 3.7 8.5    

3f-95ns-11 1 4.1 3.7 ASN333 GLN276 41 

3g-95ns-8 2 3.2 10.4    

3i-95ns-5 1 5.7 8.1 ASN333 GLN324 37 

3l-95ns-19 2 4.1 7.7    

3n-95ns-6 1 6.3 6.6 ASN333 
GLN276 

 
ARG317 

5.5 
 

11 

3o-95ns-1 1 4.1 4.6 
GLN276 

 
PHE334 

GLN276 
 

ASN318 

13 
 
8 

2c-95ns-3 1 5.6 6.5 None ARG317 1 

4b-95ns-12 2 4.0 8.7    

4e-95ns-19 2 3.7 5.8    
Table 3-18: Results of validation process 5 on the 95ns model of the trajectory of 1a. 
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Complex Performance 

Warhead position (Å) Hydrogen bonds 

Starting MD average 
Starting 

conformation 

MD simulation 

Residue % 

1a-100ns-5 1 5.3 4.1 None 
GLN324 

 
ASN333 

4.5 
 
1 

1b-100ns-6 1 5.7 6.3 ASN333 
ASN318 

 
ASN333 

3.5 
 
5 

1c-100ns-6 1 4.0 3.7 GLN276 
GLN276 

 
ASN333 

5.5 
 

16 

1d-100ns-16 1 5.5 3.6 None ASN333 22 

1e-100ns-3 2 3.9 6.5    

1f-100ns-4 1 5.1 5.8 GLN276 

ARG317 
 

ASN333 
 

PHE334 

0.5 
 

1.5 
 
2 

3a-100ns-17 1 7.3 7.3 GLN324 
GLN276 

 
GLN324 

3.5 
 

2.5 

3b-100ns-19 1 5.8 5.9 GLN276 ASN318 46 

3c-100ns-1 2 6.7 8.1    

3d-100ns-7 1 4.2 6.4 

GLN276 
 

ASN333 
 

PHE334 

ASN333 46 

3e-100ns-15 1 3.2 6.1 

TRP241 
 

GLN276 
 

ASN333 
 

PHE334 

ASN333 
 

PHE334 

19 
 
6 

3f-100ns-13 1 3.4 3.9 

GLN276 
 

ASN333 
 

PHE334 

GLN276 49 

3g-100ns-6 1 3.7 3.8 PHE334 

GLN276 
 

GLN324 
 

PHE334 

17 
 
4 
 
7 

3i-100ns-10 1 5.8 6.5 GLN324 ASN333 37 

3j-100ns-10 2 3.9 12.4    

3n-100ns-19 1 5.2 5.7 
GLN276 

 
ASN333 

ASN333 
 

PHE334 

41 
 

1.5 

2c-100ns-11 3      

4b-100ns-6 1 3.4 3.8 GLN276 GLN276 60 

4e-100ns-2 2 3.7 5.5    
Table 3-19: Results of validation process 5 on the 100ns model of the trajectory of 1a. 
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In the 90ns model, a total of 16 simulations were run, 12 for active compounds and 4 for 

inactive compounds. Of those, 8 active compounds and 1 inactive compound maintained 

their initial pose by the end of the simulation. For 95ns model, there were simulations for 17 

active compounds and 3 inactive compounds from which 13 active and 1 inactive 

compounds managed to pass the simulation (performance code 1). In the 100ns model, 

there were 16 active compounds and 3 inactive compounds at the start. 13 active 

compounds and only one inactive compound finished the simulation successfully 

(performance code 1). In general, the three models performed well in terms of maintaining 

the pose of the active compounds within the active site of TG2 for 5 nanoseconds. At the 

same time, inactive compounds, for the most part, failed to stay in the active site. 

When the hydrogen bonds are considered, it was noted that ASN333 was by far the most 

common in this sense. This was seen in the 3 models from the trajectory of 1a. That only 

confirms the importance of this residue in positioning the inhibitors within TG2 active site and 

in maintaining the correct orientation. The amide group in the side chain has the ability to act 

as a hydrogen bond donor and acceptor (Johansson et al. 1974) and thereby increases the 

chance for the formation of hydrogen bonds with suitable groups on the other side. The 

location of this residue within the TG2 active site gives it an excellent opportunity to govern 

the orientation of the inhibitor (Figure 3-56). 

 

Figure 3-56: The location of residue ASN333 
relative to the active site of TG2 and 
showing a docked inhibitor and CYS277 for 
reference.

The residue is located at the bridge between the hydrophobic loop, that accommodates the 

lipophilic part of TG2 inhibitors, and the catalytic tunnel that contains CYS277 and in the 

bent conformation of the inhibitors; ASN333 will be conveniently located opposite to the 

piperazine ring in the middle of all the compounds used so far in this work. There are 2 

carbonyl groups on either side of the piperazine ring in most of the compounds (all 

compounds except 1e, 1f and 3g) and these carbonyl groups were involved in the hydrogen 
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bonds with ASN333. This did not prevent ASN333 from forming hydrogen bonds with other 

potential groups in the inhibitor molecules that are closer to the warhead. 

GLN276 and PHE334 have also been involved in high percentage of hydrogen bonds 

recorded during these simulations. GLN276 operates on the warhead end of the inhibitor 

while PHE334 formed hydrogen bonds with the central and the warhead parts of the 

inhibitors. There were also hydrogen bonds with ARG317 and ASN318 to a lesser extent. 

The latter formed hydrogen bonds mainly involving the central part of the inhibitors from the 

side of the lipophilic warhead. 

Of all the compounds, whether active or inactive, that failed to maintain their initial positions 

during the simulations, only in 3 compounds; this failure was manifested by the exit of the 

lipophilic part of the inhibitor outside the hydrophobic loop of TG2. This may indicate that, 

with the correct lipophilic parts, it is easier to keep this end of the inhibitor in place than to 

keep the warhead in the catalytic tunnel. It also indicates that for all the tested compounds, 

the various lipophilic parts were appropriate to serve the function of correctly posing TG2 

inhibitors. The fact that these inhibitors act by forming covalent bonds should not be 

forgotten; possibly if these simulations were able to account for the formation of covalent 

bonds, a different performance of the warheads may have been observed. 

3.4.5.2 Models from the trajectory of 1b 

The results of validation process 5 on models from this trajectory are presented in Table 

3-20, Table 3-21 and Table 3-22. The performance of these models was worse than the 

models of the trajectory of 1a. This was especially true for the 245ns model in which 15 

simulations were run for active compounds and only 6 maintained their initial positions after 

the simulation. The 155ns model was the 2nd worst after 245ns and the 65ns model was the 

best after 8 of the 11 tested active compounds succeeded in maintaining the orientation 

required for activity against TG2. Of the 3 inactive compounds, 2 left the active site in the 

65ns model. 

Complex Performance 

Warhead position (Å) Hydrogen bonds 

Starting MD average 
Starting 

conformation 

MD simulation 

Residue % 

1b-65ns-18 1 6.0 5.8 
ASN333 

 
PHE334 

ASN333 
 

PHE334 

0.5 
 

5.5 

1c-65ns-4 1 4.9 4.7 

GLN276 
 

CYS277 
 

None  
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PHE334 

1e-65ns-20 1 4.5 5.1 

GLN276 
 

ASN333 
 

PHE334 
 

GLN376 
 

ASN333 

32 
 

16 

1f-65ns-8 1 6.2 6.3 ASN333 

ARG317 
 

ASN333 
 

PHE334 

7.5 
 
3 
 
3 

3a-65ns-8 3      

3c-65ns-13 1 6.5 6.1 
ASN333 

 
PHE334 

TRP241 
 

ASN333 

33 
 
1 

3d-65ns-4 2 7.3 8.5    

3i-65ns-8 1 4.7 5.6 
GLN276 

 
CYS277 

GNL276 
 

ARG317 

7.5 
 
5 

3j-65ns-2 1 5.7 3.8 

GLN276 
 

CYS277 
 

ASN333 

GLN276 
 

ASN333 

1.5 
 

44 

3m-65ns-2 1 6.2 6.9 

CYS277 
 

ASN333 
 

PHE334 

ASN333 
 

ARG317 

1.5 
 

0.5 
 

3o-65ns-13 2 4.8 8.6    

2a-65ns-17 2 5.4 8.7    

2c-65ns-9 1 4.2 6.4 
GLN276 

 
HIS335 

ASN333 11 

4d-65ns-5 2 4.9 6.2    
Table 3-20: Results of validation process 5 on the 65ns model of the trajectory of 1b. 

Complex Performance 

Warhead position (Å) Hydrogen bonds 

Starting MD average 
Starting 

conformation 

MD simulation 

Residue % 

1b-155ns-10 1 6.2 5.7 
ARG317 

 
PHE334 

ARG317 
 

ASN333 
 

PHE334 

15 
 
9 
 

4.5 

1c-155ns-9 2 3.7 5.1    

1d-155ns-4 1 5.2 4 
GLN276 

 
ASN333 

GLN276 
 

ARG317 
 

ASN333 
 

PHE334 

35 
 
1 
 

1.5 
 

36 

1e-155ns-1 1 3.1 4.7 GLN276 GLN276 28 

1f-155ns-6 1 4.2 3.5 CYS277 
GLN276 

 
7 
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CYS277 22 

3a-155ns-8 2 7.1 12    

3d-155ns-5 1 4.3 6.8 

ARG317 
 

ASN333 
 

PHE334 

ARG317 
 

ASN333 
 

PHE334 

21 
 

15 
 
4 

3e-155ns-14 1 4.3 5.7 TRP332 
ASN333 

 
PHE334 

21 
 

14 

3f-155ns-10 2      

3g-155ns-12 1 4.8 3.8 PHE334 

GLN276 
 

ASN333 
 

PHE334 

16 
 

10 
 

39 

3h-155ns-3 1 3.4 5.7 HIS335 GLN276 42 

3i-155ns-3 2 3.3 6.6    
3j-155ns-17 2 5.0 8.5    

3m-155ns-14 2 and 3 6.5     

4b-155ns-1 2  
Left during 

equilibration 
   

Table 3-21: Results of validation process 5 on the 155ns model of the trajectory of 1b. 

Complex Performance 

Warhead position (Å) Hydrogen bonds 

Starting MD average 
Starting 

conformation 

MD simulation 

Residue % 

1b-245-12 1 5.9 4.9 

ARG317 
 

ASN333 
 

PHE334 

TRP241 
 

ARG317 
 

ASN333 
 

PHE334 

18 
 

19 
 

17 
 
9 

1c-245ns-13 2 4.9 10.5    

1d-245ns-18 1 6.4 6.2 

TRP241 
 

GLN276 
 

ASN333 

ASN333 2 

1e-245ns-15 2  
Left during 

equilibration 
   

3d-245ns-18 2 3.7 6.4    

3e-245ns-8 1 3.5 3.7 TRP332 CYS277 3 

3f-245ns-9 2  
Left during 

equilibration 
   

3g-245ns-15 2  
Left during 

equilibration 
   

3h-245ns-9 2  
Left during 

equilibration 
   

3i-245ns-5 1 4.2 5.6 HIS335 ASN333 13 

3j-245ns-15 2      

3k-245ns-5 1 3.4 5.3 
CYS277 

 
ARG317 

GLN276 
 

ASN333 

1 
 

10 

3m-245ns- 1 5.0 3.8 CYS277 CYS277 40 
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17  
ASN333 

 
ASN333 

 
11 

3n-245ns-6 2 3.2 6.9    

3o-245ns-2 2 3.5 4.7    

2b-245ns-4 2 3.9 6.4    

4a-245ns-4 2 3.5 8.2    

4b-245ns-18 1 4.9 4.8 GLN276 
GLN276 

 
ASN333 

27 
 
1 

Table 3-22: Results of validation process 5 on the 245ns model of the trajectory of 1b. 

Regardless of the performance, the results of the simulations in these models were similar to 

those of the models from the trajectory of 1a. This is particularly true for the hydrogen 

bonding profile, where ASN333 was the dominant hydrogen bond forming residue with these 

models, followed by GLN276, PHE334, ARG317 and ASN318. Again, it was the warhead 

that left the catalytic tunnel more easily than the lipophilic part. This happened with all the 

complexes that failed to maintain the initial orientation in TG2 active site in models 155ns 

and 245ns. Only the lipophilic part of compound 3a left the hydrophobic loop during the 

simulation in 65ns model. 

The results of validation process 5 are summarised in Table 3-23 which shows the number 

of complexes for active and inactive compounds that the experiment started with in each 

model and the number of complexes of both active and inactive compounds that maintained 

their positions after the simulations. Figure 3-57 shows this information as a percentage for 

each of the 6 models. 

Model 
Starting number Passing number 

Actives Inactives Actives Inactives 

65ns 11 3 8 1 

90ns 12 4 8 1 

95ns 17 3 13 1 

100ns 16 3 13 1 

155ns 14 1 8 0 

245ns 15 3 6 1 
Table 3-23: Summary of the performance of the 6 models in validation process 5. 

Table 3-23 and Figure 3-57 showed that the trend followed for the performance of the 

models was similar to that observed in validation process 4 (Table 3-15 and Figure 3-54). 

Models 100ns and 95ns from the trajectory of 1a performed the best in terms of the active 

compounds, followed by 65ns and 90ns which performed almost the same and 245ns was 

the worst. With regard to the inactive compounds, all the models were similar, where no 

more than one inactive complex was able to maintain its original orientation after the 

simulation in any of the 6 models. 
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Figure 3-57: Percentages of active and inactive compounds that passed the 5-ns MD simulations without 
a significant change in their starting positions in each of the 6 active site models of TG2. 

3.4.5.3 Binding free energy calculations 

As mentioned in the ‘Methods’ section, binding energy was calculated for these trajectories, 

using 2 models offered by AMBER which are MM/GBSA (Generalized Born Surface Area) 

(Onufriev et al. 2004) and MM/PBSA (Poisson Boltzmann Surface Area) (Srinivasan et al. 

1998). This calculation was not performed on all the simulations, only the complexes that 

maintained their initial positions were considered, except for a few complexes for inactive 

compounds to investigate the effect of leaving the active site on the binding energy. The 

results will be presented as tables for each model. Different correlations with biological 

activities of the compounds, expressed as IC50, were also tried and will be presented 

following the tables. Table 3-24 and Table 3-25 show binding free energies for the models 

from 1a and 1b trajectories respectively. Complexes in the tables marked with $ are for 

inactive compounds, and those marked with $* are for inactive compounds that failed to 

maintain their starting positions at the end of the simulations. 

Complex 
Energy (kcal/mol) 

IC50 (µM) 
GB PB PM3 GB DFTB GB 

90ns Model 

1b-90ns-4 -41.05 0.20 -28.87 -37.83 0.273 

1d-90ns-5 -33.33 2.57 -21.28 -32.03 0.7 

1e-90ns-17 -50.04 2.57 -44.15 -45.61 0.0061 

3b-90ns-5 -41.05 6.77 -33.62 61.80 0.89 

3c-90ns-20 -29.05 6.53 -18.53 -28.34 1.4 

3d-90ns-6 -32.43 7.36 -27.92 
 

0.008 

3f-90ns-2 -40.42 2.04 -33.13 -37.39 5.925 

3o-90ns-3 -46.66 -6.46 -47.11 -45.71 1.625 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

65ns 90ns 95ns 100ns 155ns 245ns
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2b-90ns-8$* -19.57 5.39 -18.01 -19.40 100 

4c-90ns-2$* -41.29 10.50 -30.96 -40.73 100 

4d-90ns-19$ -30.47 5.63 -28.49 -31.02 100 

95ns Model 

1a-95ns-10 -41.09 3.96 -37.23 -37.39 0.125 

1b-95ns-6 -30.34 8.06 -20.19 244.88 0.273 

1c-95-2 -41.79 0.11 -33.93 -39.76 0.44 

1d-95ns-4 -27.83 10.37 -22.19 -27.17 0.7 

1e-95ns-17 -36.24 5.38 6.00 -36.24 0.0061 

1f-95ns-20 -57.52 0.59 -32.08 -53.46 0.38 

3a-95ns-19 -33.54 6.32 -25.22 503.60 1.85 

3b-95ns-16 -35.65 7.84 -28.11 -33.36 0.89 

3c-95ns-17 -37.04 6.58 -25.47 -34.70 1.4 

3f-95ns-11 -31.83 7.38 -28.59 -30.67 5.925 

3i-95ns-5 -26.15 12.26 -20.57 289.11 6.8 

3n-95ns-6 -41.06 7.74 -36.00 -39.18 0.775 

3o-95ns-1 -35.69 11.77 -35.76 -33.65 1.625 

2c-95ns-3$ -30.37 19.75 -25.67 -30.98 100 

4b-95ns-12$* -23.55 9.52 -22.10 -22.66 100 

4e-95ns-19$* -28.58 7.81 -27.02 -29.07 100 

100ns Model 

1a-100ns-5 -35.68 7.62 -32.83 -32.91 0.125 

1b-100ns-6 -33.70 8.79 -25.19 -31.89 0.273 

1c-100ns-6 -33.26 3.10 -28.38 -32.24 0.44 

1d-100ns-16 -50.65 -5.41 -38.02 -52.57 0.7 

1f-100ns-4 -39.66 2.80 -26.57 -37.22 0.38 

3a-100ns-17 -33.90 9.61 -27.38 -32.49 1.85 

3b-100ns-19 -42.24 3.49 -31.71 -40.18 0.89 

3d-100ns-7 -24.97 7.16 -22.24 
 

0.008 

3e-100ns-15 -24.12 6.38 -24.01 -24.25 4.25 

3f-100ns-13 -32.96 9.45 -29.56 -30.32 5.925 

3g-100ns-6 -52.77 1.32 -36.94 
 

0.0059 

3i-100ns-10 -29.54 7.91 -20.58 78.41 6.8 

3n-100ns-19 -40.16 0.27 -32.18 168.24 0.775 

2c-100ns-11$* -38.64 7.94 -29.51 -37.55 100 

4b-100ns-6$ -36.32 7.63 -33.43 -34.96 100 
Table 3-24: Binding free energy values for the complexes in the 5-ns MD simulations in the models from 
the trajectory of 1a. 

Complex 
Energy (kcal/mol) 

IC50 (µM) 
GB PB PM3 GB DFTB GB 

65ns Model 

1b-65ns-18 -33.78 3.83 -27.71 -31.13 0.273 

1c-65ns-4 -32.22 7.03 -28.99 -31.00 0.44 

1e-65ns-20 -41.04 -2.78 -35.01 -41.31 0.0061 
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1f-65ns-8 -38.26 3.49 -26.25 93.24 0.38 

3c-65ns-13 -37.96 -3.40 -31.28 -35.91 1.4 

3i-65ns-8 -32.42 4.03 -23.81 -30.52 6.8 

3j-65ns-2 -33.87 2.72 -26.01 -30.07 6.3 

3m-65ns-2 -36.32 10.46 -24.31 96.38 1.5 

2c-65ns-9$ -25.10 7.69 -22.11 -32.00 100 

4d-65ns-5$* -38.71 0.52 -33.05 -37.53 100 

155ns Model 

1b-155ns-10 -39.37 -4.36 -27.29 -36.15 0.273 

1d-155ns-4 -38.27 1.46 -27.18 -41.67 0.7 

1e-155ns-1 -29.95 5.93 -26.24 -34.05 0.0061 

1f-155ns-6 -52.39 -0.53 -31.72 -46.37 0.38 

3d-155ns-5 -39.76 -4.19 -36.15 
 

0.008 

3g-155ns-12 -35.12 -4.36 -31.01 
 

0.0059 

3h-155ns-3 -43.17 5.84 -30.67 77.02 1.07 

245ns Model 

1b-245-12 -42.03 -5.23 -34.82 -40.45 0.273 

1d-245ns-18 -29.13 9.63 -24.65 -30.33 0.7 

3e-245ns-8 -25.35 4.58 -24.06 -23.30 0.0061 

3i-245ns-5 -30.65 -2.27 -21.11 -29.99 6.80 

3k-245ns-5 -24.09 15.42 -14.51 -23.82 3.30 

3m-245ns-17 -48.49 -1.93 -24.70 -42.65 1.5 

4b-245ns-18$ -37.94 2.01 -31.62 -34.73 100 
Table 3-25: Binding free energy values for the complexes in the 5-ns MD simulations in the models from 
the trajectory of 1b. 

A short glance at Table 3-24 and Table 3-25 shows that there is no general trend in the 

values of the energy within a single model and between the models. Inactive compounds 

have achieved binding free energy values that are better than those of many of the active 

compounds. When correlations with biological activity were investigated, the graphs in 

Figure 3-58 were produced. A correlation was tried between IC50 values and each of the 4 

energy values in Table 3-24 and Table 3-25 and the same was repeated with the logarithm 

of the IC50 vales. The correlations were only tested for the active compounds. For the 65ns 

model, the best correlation obtained was between logIC50 and GB calculated with PM3. In 

90ns model, this was the correlation between the log of IC50 and conventional GB. IC50 

against conventional PB gave the best correlation in 95ns. In 100ns, it was IC50 against 

conventional GB that gave the best correlation. 155ns was like 95ns (IC50 versus PB) and 

245ns had its best correlation between IC50 and GB PM3 (Figure 3-58). 
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Figure 3-58: Graphs for best correlation of a binding free energy value and biological activity as TG2 IC50 
for the 6 models. 

Figure 3-58 would give an indication that the models from the trajectory of 1b gave better 

correlations than the models from the trajectory of 1a. This is true if the R2 values were the 

only determinants, and they were not; the numbers of complexes for which the correlations 

were studied should also be considered (Table 3-24 and Table 3-25) and these numbers 

were higher for the models from 1a trajectory than for the second set of models. 

Another approach was considered that involved combining the scores from all the models 

and dividing the compounds according the warhead into sulfonium ions and acrylamides. 

Since more than one copy of a single compound may have been included in the 

combination, an average was taken for such compounds. This was then correlated to 

biological activity. Table 3-26 shows the average energy values for 10 sulfonium ion active 

compounds. These were correlated with IC50 and its logarithm, and the best R2 value was 
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obtained by plotting IC50 versus GB (0.43) followed by PM3-GB (0.39) (Figure 3-59). When 

the data for compound 3i were excluded from the comparisons for being the least active, R2 

increased to 0.56 for GB and 0.70 for PM3-GB. More interestingly, R2 for PB versus IC50 

jumped from 0.18 to 0.84 after removing 3i (Figure 3-60). Compound 3i is identical to 

compound 1d, one of the most active compounds used from the start, with the exception of 

the use of D-alanine instead of L-alanine in the amino acid linking between the piperazine 

ring and the acrylamide warhead resulting in about 10 times less activity against TG2 (IC50 of 

6.8 µM for 3i compared to 0.7 µM for 1d). 

Compound 
Average Energy (kcal/mol) 

IC50 (µM) 
GB PB PM3 GB DFTB GB 

1b -36.71 1.88 -27.34 11.24 0.273 

1d -35.84 3.72 -26.66 -36.75 0.70 

1f -46.96 1.59 -29.16 -10.95 0.38 

3b -39.65 6.03 -31.14 -3.91 0.89 

3c -34.68 3.24 -25.10 -32.98 1.40 

3h -43.17 5.84 -30.67 77.02 1.07 

3i -29.69 5.48 -21.52 76.75 6.80 

3k -24.09 15.42 -14.51 -23.82 3.30 

3m -42.41 4.26 -24.51 26.87 1.50 

3n -40.61 4.00 -34.09 64.53 0.78 
Table 3-26: Average binding free energy values for compounds with sulfonium ion warhead taken from 
all the 6 models. 

It can therefore be said that for sulfonium ion inhibitors of TG2 with IC50 values of less than 

3.5 µM, molecular mechanics Poisson Boltzmann surface area (MM/PBSA, or PB) as a 

method for calculating the binding free energy, would give the best affinity ranking compared 

to other models such as MM/GBSA and PM3/GBSA. Such meaningful correlations could not 

be obtained with the acrylamide based inhibitors. 

The results obtained from binding free energy calculations using MM/PBSA and MM/GBSA 

are not meaningful in all systems despite the popularity of the method in research, where 

100-200 papers have been published each year in the past five years. This may be due to a 

variety of reasons including the lack of proper representation for entropy in the calculations, 

incorrect representation of charges and lacking the effects of binding site water molecules, in 

addition to the dependency of the results on the system being studied (Genheden & Ryde 

2015). Having said that, it should also be noted that the results from these calculations could 

give useful correlations. In general, MM/PBSA is more rigorous and more computationally 

expensive than MM/GBSA but is not necessarily better in terms of results (Hou et al. 2011). 
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 Figure 3-59: IC50 versus GB (left) and PM3-GB (right) for 10 sulfonium ion compounds in Table 3-26.  

  

 

Figure 3-60: Correlations 
between IC50 and GB, PM3-
GB and PB for the sulfonium 
ion compounds from Table 
3-26 after removing the least 
active compound (3i). 

 

Changes in the conformation of the complex due to entropy can produce large fluctuations in 

MD and thereby render the calculated free energies unstable. This can be avoided or 

minimised by including as many frames from the trajectories as possible (Hou et al. 2011). 

During the calculations of binding free energy applied on the trajectories of the 5ns-MD of 

TG2 inhibitors, all the frames were included in the calculations. 

IC50 is the concentration of the inhibitor required to reduce the rate of the reaction by one 

half, and in general, it is not a very good measure of affinity. This is mainly because of its 
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great dependence on the conditions of the measurement and the concentration of the 

inhibitors (Ajay & Murcko 1995). The difference in the compounds used to obtain the above 

mentioned correlations between IC50 and binding free energy values, is that the IC50 values 

were obtained using the same experimental procedures including temperatures, 

concentrations and incubation times (Badarau et al. 2015; Wang et al. 2012). It is worth to 

mention here that the paper that was the source for the compounds used in the entire thesis 

(Badarau et al. 2015) did not contain any free energy measurements of the tested 

compounds. 

Another important point in this regard is the values of the free energies obtained; these 

should not be viewed as indicators of the affinity of any of the inhibitors as these values only 

measure the non-bonded interactions and the real activities of TG2 inhibitors involve the 

formation of a covalent bond with SG of CYS277 that was not accounted for. Therefore, the 

values would represent a measure of the affinity of the inhibitors to be inside the active site 

of TG2, making them ready to inhibit the enzyme by forming the covalent bond. 

3.4.6 Validation process 6 (more active compounds) 

Three active compounds were used in this validation process with GOLD settings identical to 

those used in validation process 1. The compounds (i10, i11 and i12) were adopted from 

Prime, Andersen et al. (2012) (section 1.4.2.2, Table 3-27). The results on all the 6 valid 

models are presented in Table 3-28. The active compounds all had acrylamide as the 

warhead. An analysis of the docked complexes showed good poses for compounds i11 and 

i12 similar to those obtained in the previous test set. Compound i10, however, could not 

have its pyrrolidine ring buried within the hydrophobic loop of TG2 in all the models. As 

shown in Figure 3-61, the compound assumed a straight conformation; possibly due to its 

short linker (the part of the molecule connecting the warhead to the lipophilic part). 

Compound Structure IC50 (µM) 

i10 

 

1.90 

i11 

 

0.120 
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i12 

 

0.010 

Table 3-27: Structures of compounds from (Prime, Andersen, et al. 2012) used in validation process 6. 

Complex 
Distance 

(Å) 
H-bonds GoldScore Rank CHEMPLP Rank 

Models of the trajectory of 1a 

i11-90ns-4 6.2 CYS277 58 3rd 37 16th 

i12-90ns-17 4.9 ASN333 53 1st 55 2nd 

i10-95ns-4 4.1 
CYS277 
PHE334 

45 1st 49 2nd 

i11-95ns-1 4.0 
TRP241 
CYS277 

53 12th 47 5th 

i12-95ns-14 4.1 
GLN276 
PHE334 

53 1st 66 1st 

i10-100ns-20 3.1 
TRP241 
GLN276 
PHE334 

44 11th 53 7th 

i11-100ns-1 3.7 

TRP241 
GLN276 
CYS277 
PHE334 

61 1st 57 4th 

i12-100ns-4 3.9 None 53 2nd 59 3rd 

Models of the trajectory of 1b 

i10-65ns-4 4.8 
TRP241 
GLN277 
PHE334 

63 2nd 2nd 58 1st 

i11-65ns-13 5.4 
GLN276 
CYS277 

70 4th 76 1st 

i12-65ns-19 3.9 None 76 1st 73 1st 

i10-155ns-11 4.7 
GLN276 
PHE334 

61 1st 62 2nd 

i10-245ns-12 4.9 
GLN276 
PHE334 

58 3rd 50 5th 

i11-245ns-13 5.2 
TRP241 
MET330 
HIS335 

64 15th 67 4th 

i12-245ns-4 4.8 
GLN276 
ASN333 
PHE334 

61 11th 76 2nd 

Table 3-28: Docking results of validation process 6 on all valid models. 

Regarding the interactions, as shown in Table 3-28, hydrogen bonds were present in all the 

models. Pi-interactions involving the lipophilic parts of the inhibitors were also evident in all 

the complexes. There were additional pi-interactions involving the piperazine and benzene 

rings in i11 and i12 and the benzene ring in i10. Figure 3-61 represents examples for 

complexes of i11 and i12. 
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This experiment was performed in order to check the validity of the models in testing 

compounds from another source. Although the selected pool of ligands is not very big, nor is 

representative for all the chemical types of TG2 inhibitors, the results of the experiment do 

show that compounds with different lipophilic parts and different linkers can still dock well 

into the active site of TG2 models developed in the course of this work. 

 

 

Figure 3-61: A: pose of i10 showing the upright 
pose of the compound. B: example pose of i11 
in 100ns and C is example pose of i12 in 95ns 
showing interactions. 

B: i11-100ns-1 A: i10-65ns-4 

C: i12-95ns-14 



Chapter 3   Model Development and Validation 

149 

 

3.5 Inflexible Docking 

Another experiment was run using GOLD that involved docking the 21 active and 8 inactive 

compounds used during validation process 4 into the six valid models of TG2 active site 

using different docking settings. This time, no residues were treated as being flexible during 

the docking and the search efficiency was set to “Very Flexible”. In the previous dockings, as 

well as in this one, the genetic algorithm (GA) speed was set to automatic, where GOLD will 

determine the number of genetic operations performed for each docking based on the size 

and flexibility of the ligands. In previous dockings, the search efficiency was set to default in 

which the program will apply optimum settings for each ligand. In this docking, the search 

efficiency was set to “Very Flexible”, where the efficiency will increase to 200% of the default 

(CCDC Software Limited 2013). This was applied to compensate for the inflexible treatment 

of the active site residues. Increasing the search efficiency like that would slow the docking 

but not as much as allowing 10 residues of the active site to be flexible. Therefore, the main 

objective of this experiment was to determine whether some faster settings of the docking 

experiment will produce as reliable results as the slower settings. 

The results of this docking experiment will be presented as those for validation process 4 

and are summarised in Table 3-29 and shown in Figure 3-62. The bent conformation was 

obtained in many complexes and the hydrogen bonding profile was similar to what has been 

observed during the previous experiments with dominance from ASN333 followed by 

PHE334, GLN276 and the other active site residues seen previously forming hydrogen 

bonds with the inhibitors. If only the pose of active compounds was to be considered, then 

model 100ns would have been the best. This model performed the worst, however, in terms 

of inactive compounds achieving the 4 criteria for good docking. If this were the most 

important determinant (achieving 4 criteria), then it is model 65ns that performed the best. 

Model 
% Actives / 
good pose 

% Inactives / 
good pose 

% Actives / 4 
criteria 

% Inactives / 4 
criteria 

65ns 71.43% 50% 71.43% 12.5% 

90ns 61.90% 25% 42.86% 12.5% 

95ns 71.43% 50% 52.38% 25% 

100ns 90.48% 37.5% 61.90% 37.5% 

155ns 38.10% 0% 33.33% 0% 

245ns 52.38% 12.5% 47.62% 0% 
Table 3-29: The results of inflexible docking on the individual models showing percentages of good 
poses and passing the 4 criteria in each model. 
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Figure 3-62: Performance of the 6 models during inflexible docking showing the percentages of good 
poses and passing the 4 criteria for active and inactive compounds. 

In summary, rigid docking in a system involving TG2 and its irreversible inhibitors may be 

able to produce the correct binding mode but its ability to distinguish between active and 

inactive compounds is poor. It has been stated that treating the receptor as a rigid body has 

its disadvantages including incorrect prediction of correct binding modes and unreliable 

scores (Mohan et al. 2005). Therefore, the time saved by using inflexible docking should not 

motivate the generalisation of the method, especially that GOLD allows only for 10 residues 

to be treated as flexible which should not increase the computation time substantially. 

Particularly with TG2, flexible residues should be employed whenever possible, at least 

residue 333 (ASN333), whose conformation has been proven to be very important for 

successful achievement of the bent conformation of the inhibitors within TG2 active site 

(section 3.3.6). 

3.6 Additional Scoring Functions 

The GOLD docking program offers the possibility of using one of 4 scoring functions as the 

primary function along with one optional additional function to be used for rescoring the 

solutions obtained with the primary function (CCDC Software Limited 2013). GoldScore was 

used as the primary function and CHEMPLP as the rescoring function in all the dockings up 

to this stage. To validate the choice of GoldScore as the primary function, 3 additional 

dockings were performed using each one of the other available scoring functions as the 

primary and only scoring function. The compounds and docking settings used at this stage 

were the same as those used in the initial docking when choosing the active site models (6 

active compounds from Badarau et al. (2015) and default GOLD settings with 10 flexible 

residues and early termination). 
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3.6.1 ASP scoring function 

The Astex Statistical Potential (ASP) scoring function (Mooij & Verdonk 2005) is an atom-

atom potential which was derived from analysing existing ligand-protein complexes. It 

resembles functions such as PMF and DrugScore (Mooij & Verdonk 2005). With this scoring 

function, no acceptable pose for any of the 6 compounds was obtained in 4 models; 65ns, 

90ns, 155ns and 245ns. In the remaining 2 models, one compound in each gave only one 

acceptable pose. These were compounds 1c in 95ns model and compound 1e in 100ns 

model. They were ranked 8th and 6th respectively out of the resulting 20 solutions. A scoring 

function that estimates binding energy by examining the distances and angles between 

atoms from the ligand and the receptor active site is, therefore, not appropriate for the TG2 

system. 

3.6.2 ChemScore 

ChemScore (Eldridge et al. 1997; Baxter et al. 1998) is an empirical scoring function that 

calculates the binding energy as a sum of multiple empirical terms derived from a training set 

of 82 ligand-protein complexes from the Protein Data Bank. The terms include binding free 

energy, hydrogen bonding, metal, torsional and lipophilic terms. Only 4 compounds 

managed to achieve the bent conformation within TG2 active site using this scoring function. 

These were 1d in 90ns model, 1b in 95ns model and 1c and 1e in 100ns model. Bad results 

obtained with ChemScore scoring function may be attributed to the inherent deficiencies of 

empirical scoring functions in general. Among these are the dependence of the function on 

approximations and the lack of negative data in the training set (Eldridge et al. 1997). 

3.6.3 CHEMPLP 

CHEMPLP (Korb et al. 2009) is another empirical function that includes terms such as 

piecewise linear potential for shape complementarity, and a heavy atom clash potential for 

the ligand atoms. The function also utilises some ChemScore terms such as hydrogen and 

metal bonding and torsional terms. In the studied TG2 system, the performance of 

CHEMPLP was better than that of ASP or ChemScore but not as good as that of GoldScore. 

The performance of this function was better than the previous two with 8 complexes in the 6 

models having the right bent conformation. These were 1a and 1d in 90ns model, 1a, 1b and 

1c in 95 ns model, 1a and 1c in 100ns model and 1b in 155ns model. 

Being an empirical function is probably the reason of failure of CHEMPLP to perform as well 

as GoldScore with TG2 inhibitors. However, this function was suitable for rescoring when 

used with GoldScore as the primary function and was, in some cases, able to rank the 



Chapter 3   Model Development and Validation 

152 

 

solutions of a single ligand in the same manner as GoldScore. It should also be noted that all 

the inhibitors studied here are covalently bound to TG2 and this has not been accounted for 

during the docking; all the rankings and differentiations were made on the assumptions of 

the bent conformations and the interactions involving the lipophilic part and the central part 

of the ligand. 

GoldScore (Verdonk et al. 2003) is a scoring function that is based on a force field and has 

terms for hydrogen bonds and van der Waals interactions between the ligand and the 

receptor, in addition to ligand internal van der Waals and torsional energies. The 

performance from this function was simply much better than any of the other 3 functions 

offered by GOLD. This is very obvious from the results presented so far in this work. The 

superior performance was true despite the fact that GoldScore did have flaws manifested in 

giving good scores and ranks for inactive compounds and failing to rank the compounds 

correctly based on their scores. The good performance may be due in part to the importance 

of hydrogen bonding for TG2 inhibitors, which the function was able to demonstrate for many 

of the active inhibitors during the various stages of the docking as it has a separate term for 

hydrogen bonds between the ligand and the protein. Furthermore, the ligands used 

throughout this work generally have high molecular weights ranging from 239 (1a) to 488 

(3m) and this can increase the contribution from the term describing van der Waals 

interactions between the ligand and the protein as well as the term for these interactions 

within the ligand itself during individual dockings. 

3.6.4 Rescoring 

The GOLD docking program is equipped with the ability to rescore an already docked 

conformation using any of the scoring functions available in the program. There is also the 

option of performing local minimisation on the ligand to enhance the score. The rescoring 

utility was applied on the valid models using complexes generated during different 

experiments of the validation process. Only active compounds were included in this 

experiment and the selected complexes were for compounds that achieved at least 3 of the 

criteria for a good docking complex. 

The complexes were rescored with the four scoring functions including GoldScore to 

examine the effect of local minimisation on the already generated poses and scores. 

Rescoring was performed with and without local minimisation. The minimisation process did 

not produce significant changes; in these complexes it usually produced minor changes in 

the conformation of the ligand especially involving the lipophilic part (Figure 3-63). 



Chapter 3   Model Development and Validation 

153 

 

 

Figure 3-63: Minimised (grey carbons) and non-minimised 
(green carbons) conformations of compound 1e before 
rescoring with GOLD. 

In 4 of the 6 models (65ns, 90ns, 95ns and 245ns), no useful correlation could be found 

between the scores obtained with any function during the rescoring process and biological 

activity expressed as IC50. In many of the cases in these models, the opposite of the trend 

that should ideally be seen was produced; there was a decline in the score with the increase 

in biological activity (Figure 3-64). 

For the remaining 2 models (100ns and 155ns), the correct trend of scores was obtained but 

the correlation was not very high. The best correlation obtained for model 100ns was the 

minimised GoldScore (R2 = 0.35) and for 155ns was the non-minimised ChemScore (R2 = 

0.31) (Figure 3-65). Although these correlations are poor, they are the best correlations 

obtained so far between docking scores and IC50 values in the line of this work. GoldScore 

has already been shown to be superior to the other functions in predicting the correct binding 

mode and the hydrogen bond profile; and here it has been shown that the performance of 

GoldScore with TG2 inhibitors can be improved by applying local minimisation on the docked 

ligand conformation. This further validates the choice of GoldScore as the primary scoring 

function in the dockings performed with the selected TG2 inhibitors.  

The results from ChemScore were good without the local minimisation, therefore the 

application of the local minimisation during rescoring should not always be attempted even 

though it would sound reasonable. It can be also concluded that ChemScore, though was 

unable to predict the correct binding mode when used as the primary function (section 

3.6.2), did manage to achieve the correct trend in the scores based on the activities giving 

an indication that using ChemScore for rescoring solutions obtained with GoldScore is a 

possible approach for enhancing the ranking when it comes to docking inhibitors of TG2. 
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Figure 3-64: Correlation 
between TG2 IC50 and 
GoldScore minimised 
rescoring for model 65ns 
with the inversed trend; 
lower scores for more active 
compounds (GOLD docking 
scores are unit-less). 

  

Figure 3-65: Correlations of minimised GoldScore and non-minimised ChemScore with IC50 in models 
100ns and 155ns respectively during the rescoring process. GOLD scores are without units.  

The rescoring approach in GOLD with minimisation of the top ranked solutions has been 

found to improve the ranking of the docked ligands and the overall performance of the 

scoring functions (Perola et al. 2004). However, because rescoring did not produce reliable 

results with all the 6 models, it cannot be said that it should routinely be used for this set of 

compounds with TG2. 

3.7 Covalent Docking and MD 

3.7.1 Docking 

The functionality of covalent docking in GOLD requires setting the ligand in a special way to 

allow for the formation of the covalent bond. This includes adding a link atom to the ligand 

and the protein at the point at which the bond would be formed. The link atom used was the 

sulphur atom of the active site cysteine residue. On the compounds, a sulphur atom was 

added to the electrophilic carbon and was set as the link atom. For sulfonium ion 

compounds, this would have required removing the sulfonium ion entirely and replacing it 
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with a sulphur atom. Since this removal was going to change the size of the sulfonium 

compounds considerably, this compound set was not considered for this experiment. 

A total of 7 active and 4 inactive acrylamide compounds was used in this experiment. The 

results are presented in the form of percentages and column graphs as in validation process 

4 in Table 3-30 and Figure 3-66. The bent conformation (Figure 3-67) with the required 

interactions and the top ranking were achieved for many of the active compounds during the 

docking. The inactive compounds, however, managed to dock well with the bent 

conformation at higher rates than what was seen in normal docking. This cannot be 

surprising because the program is forcing the covalent bond to be formed and the bent 

conformation for the remainder of the compound structure is probably the best it can adopt if 

the covalent bond was already there. These inactive compounds, however, did not always 

succeed with regard to the other criteria and hence the low rates in the last column of Table 

3-30. This may mean that the models (except possibly 90ns) will adopt, with the right 

conformation, any potential compound having the necessary parts (the lipophilic part and a 

linker in addition to the warhead) but will be more selective towards active compounds when 

all the criteria are considered. 

Model 
% Actives / 
good pose 

% Inactives / 
good pose 

% Actives / 4 
criteria 

% Inactives / 4 
criteria 

65ns 85.71 50 42.86 25 

90ns 100.00 75 85.71 75 

95ns 85.71 75 71.43 0 

100ns 85.71 100 57.14 25 

155ns 85.71 25 71.43 0 

245ns 57.14 50 28.57 0 
Table 3-30: Results of covalent docking using acrylamide compounds on the 6 models. 

3.7.2 Molecular dynamics 

The molecular dynamic simulations applied to the covalent complexes were analysed 

visually by VMD program to investigate whether or not the bent conformation was preserved 

with time. This was confirmed by measuring the RMSD of the ligand alone. The hydrogen 

bonds formed during the simulation were also analysed using the CPPTRAJ program of the 

AmberTools package, and the default CPPTRAJ parameters for hydrogen bonds were 

employed (angle cut-off was 135º and distance cut-off of 3 Å). Two docking complexes for 

each of the 7 active compounds and 2 docking complexes for 3 of the 4 inactive compounds 

(all except 2b) were run through this stage of the experiment. 
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Figure 3-66: Performance of the 6 models in covalent docking experiment. 

 

Figure 3-67: The pose of 
compound 1e in model 155ns 
as a representative for 
covalent docking. 

In total there were 20 simulations for 10 compounds, each presented a simulation time of 15 

ns. The behaviour of the individual compounds during these simulations was very similar, 

regardless of the activity of the compound. This behaviour can be described very briefly by 

saying that everything remained the same; the ligand maintained its bent conformation within 

the active site for the length of the simulation. This was confirmed by the very similar graphs 

for RMSD, for active and inactive compounds (Figure 3-68). The exception was in one of the 

simulations for each of these 3 active compounds, 1a, 3l and 3o. The lipophilic part of the 

compounds left the hydrophobic loop of TG2 active site causing the compound to stand 

straight. This movement did not have any effect of the position of the warhead or the 

covalent bond between the warhead and CYS277 (Figure 3-69). 
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Figure 3-68: RMSD for 
the ligand only during 
the 15-ns covalent MD 
simulations for active 
(1e) and inactive (4e) 
compounds.

 

Figure 3-69: Compound 1a from one of its 
simulations in which the lipophilic part of the 
compound straightened in the active site.The 
hydrophobic loop of TG2 is coloured yellow 
while the rest of the protein is coloured by 
secondary structure. The covalent bond between 
1a and CYS277 is shown. 

 

The angle between the sulphur atom of CYS277 (SG), and the electrophilic carbon (EC) and 

the alpha carbon (Cα) of the acrylamide bond of the compounds (Figure 3-70 Right) has 

been measured for all the simulations where the lipophilic part did not leave the hydrophobic 

loop of TG2. The graph in Figure 3-70 was produced which clearly shows that the angle 

oscillated over a short range of degrees and that the oscillation was similar for all the 

simulations. The average value for the angle across all the simulations was 112.3°. This 

value is consistent with that recorded in GAFF (AMBER General Force Field for organic 

molecules) (Wang et al. 2006; Wang et al. 2004) for c3-c3-ss which is 112.690° where c3 is 

an sp3 hybridised carbon and ss is sp3 hybridised sulphur. If the angle was considered one 

of the parameters of the covalent bond, and it is, then these results can be used to confirm 

that the all the simulations preceded without any problems with the covalent bond and that 

the parameters created for the bound compounds using GAMESS and RESP worked 

properly during the simulations. 
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Figure 3-70: Right: the angle 
measured between SG, EC and Cα 
and Left: graphs of this angle for all 
the simulations in which the 
ligands maintained their starting 
position.

The hydrogen bonding profile was not very meaningful in terms of discriminating between 

active and inactive compounds. In fact, the inactive compound 4e showed the best profile 

where in one of the 2 simulations for this compound there were hydrogen bonds with 

ASN333 for 75% of simulation time, with PHE334 for 67%, with TRP332 for 53% and with 

GLN276 for 45% of simulation time. However, in most of the cases there was an abundance 

of hydrogen bonds between the acrylamide compound and one or more of those 4 residues 

of TG2. This could be due to the presence of the covalent bond. In the previous dockings 

and MD simulations when there was no covalent bond, the objective was to get the warhead 

close to CYS277 to aid in the formation of the covalent bond and hydrogen bonds were one 

of the tools in achieving this goal. In the case of covalent MD, the covalent bond was already 

in place and therefore the compounds were in ideal positions for the formation of hydrogen 

bonds. 

Another parameter that was analysed was the radial distribution function (RDF) of water 

molecules around the covalent bond. This function measures the probability of finding water 

molecules within a predefined distance from a specified atom mask. In other words, it 

measures the density of water as a function of distance. It was measured using CPPTRAJ to 

account for all water molecules that are within 5 Å of SG of CYS277. The rationale was to 

test whether the density of water around the covalent bond would be different between 

active and inactive compounds. This is based on the assumption that water can serve as a 

proton shuttle or a source of proton during the formation of the bond. The results are shown 

in Figure 3-71 in which the RDF is presented for active (blue) and inactive (red) compounds. 

The graph shows the RDF or the probability as a function of the distance. There were no 

water molecules within the 2 Å of SG and that is reasonable as anything nearer will be within 

the van der Waals radii of the atoms, and may result in clashes. RDF starts to rise thereafter 
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with the distance without any possible distinction between active and inactive compounds. In 

any case, probability did not exceed 1 except in the simulations for 2 active compounds and 

1 inactive compound. 

 

Figure 3-71: The radial 
distribution function of water 
molecules around the 
covalent bond during the 
simulations of active and 
inactive compounds. 

When this was compared to the simulations applied initially on compounds 1b and 1e, the 

graph in Figure 3-72 was produced. The calculations for compound 1e was performed up to 

the 185th nanosecond because the warhead had left the catalytic tunnel after that and for the 

2 compounds it was performed on the SG atom as well. For the simulations containing active 

compounds within the active site, RDF was highest at 2 Å and then at 3 Å, indicating that if 

SG were free (not involved in a bond), water molecules can get very close. 

 

Figure 3-72: The same RDF 
graphs as in Figure 3-71 with 
the addition of RDF graphs 
for the initial simulations of 
compounds 1b and 1e. 

In conclusion, water molecules do not come within 2 Å of SG and EC if there was a bond 

between the 2 atoms, and after this distance, some water molecules may approach but not 

more than very few. Without the bond being there, there is much higher probability for water 

molecules to come within a 2-Å distance from SG. RDF tends to move toward unity at higher 

distances, approaching the actual density of water molecules. 
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Regarding the parameter production, the cap added to the ligand during GAMESS 

calculation was chosen because it will produce, with the acrylamide compound, a product 

that is very similar to the acrylamide-CYS277 complex built during these simulations. 

Another reason for choosing this particular cap is that it is available in the AMBER Force 

Field as a part of the side chain of the amino acid methionine and therefore the charges of 

its atoms are already available. Those charges were used during the first stage of charge 

fitting with RESP to fix the charges of the cap and distribute the rest of the electrostatic 

potential calculated by GAMESS on the atoms of the uncapped acrylamide compound. 

One simple conclusion can be drawn from the results of the covalent docking and MD. The 

difference between active and inactive TG2 inhibitors lies in their ability to place the warhead 

close to CYS277. Once these are close to each other, the covalent bond will be formed. This 

is at least true to this set of acrylamide compounds; they all had the same warhead and 

when the covalent bond was forced on the system, they all behaved in a similar way. The 

behaviour of water molecules as compared to that when there was no covalent bond may 

give an indication that water can serve as a proton source or a proton shuttle during the 

reaction but once the reaction has finished and the covalent bond was formed, then water 

molecules may leave their places next to SG. 

3.8 Analysis of the Valid Active Site Models of TG2 

The conformations that were selected from the MD trajectories as being valid models for the 

docking of TG2 inhibitors, and were then validated for this role, have been analysed to 

examine the differences between them and between the conformation of TG2 in the original 

crystal structure (2Q3Z) (Pinkas et al. 2007). The analysis involved several measurements 

which are presented in this section. 

The root-mean-squared-deviations (RMSD) of the models was measured using the structure 

of 2Q3Z as a reference. The results for the individual models are presented in Table 3-31 

which shows that the models had very comparable values for their RMSD if their source is 

considered; in other words, models from 1a trajectory (90ns, 95ns and 100ns) had an 

average RMSD of about 3.0 Å while those from the trajectory of 1b (65ns, 155ns and 245ns) 

showed a value of about 2.5 Å. These values are slightly different from the values of the 

RMSD measurement performed on the trajectories in section 3.2 (Figure 3-12 and Figure 

3-25) but this can be expected since the reference frame in the 2 measurements was not the 

same. In section 3.2, the reference was the first frame in the production phase. 
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Model RMSD (Å) 

90ns 3.1 

95ns 3.1 

100ns 2.9 

65ns 2.4 

155ns 2.5 

245ns 2.6 
Table 3-31: RMSD values of the 6 models using the original crystal structure as a reference. 

It should be noted here that the structure that was used as a reference had the missing 

residues added and minimised using CAChe only while in the models, the added residues 

would have had the time to relax and adjust themselves to their positions. This was 

especially important for the loop between residues 319 and 327, because it consisted of the 

closest missing residues to the active site. Other added residues were in locations farther 

away from the active site. In this loop, 2 distinct patterns were noticed; the behaviour in the 

models from the trajectory of 1a in which the loop moved to the inside of the active site to 

become closer to the tunnel and CYS277, and the behaviour in the models from the 

trajectory of 1b, where the loop was pointing to the outside of TG2 creating an opening in the 

active site (Figure 3-73). The different orientation of the loop between the 2 sets of models 

may be responsible for the slightly better performance of the models from the trajectory of 1a 

in posing the compounds with the correct bent conformation, for the models from the 

trajectory of 1b would have had more space to accommodate the lipophilic part; the space 

created by the added loop and the hydrophobic loop. 

 

Figure 3-73: The conformation of the loop between residues 319 and 327 in the 6 valid models compared 
to the original.The loop is coloured yellow in the “Original” picture and by secondary structure in the rest 
and CYS277 is shown to give an indication of the active site. 

90ns 95ns 100ns 65ns

155ns 245ns Original



Chapter 3   Model Development and Validation 

162 

 

This was seen during the process of selection of the valid models, one example is the results 

of docking on model 245ns in section 3.3.2.3. The justification is that in the models from 1a 

trajectory, the loop orientation will make it very difficult for the lipophilic part of the inhibitors 

to go anywhere except in the hydrophobic loop of the active site while in the models from 1b 

trajectory, there is the space created by the orientation of the added loop that can provide 

additional accommodation for the lipophilic part of the inhibitors. Although the orientation of 

the loop in the original structure is closer to the one in the models from 1b trajectory, this 

should not make the orientation more realistic, as the loop contains added residues and 

without any reference structure to compare to, there is no way of telling that the loop has 

relaxed enough to be realistic. The atomic fluctuation values for the loop residues in the 2 

trajectories from which the models were taken (Table 3-32) are comparable with the 

exception of the 1st three residues and cannot be used to judge which loop is better. 

Residue Atomic fluctuation in 1a-trajectory (Å) Atomic fluctuation in 1b-trajectory (Å) 

319 3.5835 1.4738 

320 3.4112 1.3913 

321 2.8635 1.8123 

322 2.3366 2.5744 

323 2.0198 2.2968 

324 1.7981 1.8178 

325 1.7782 1.9103 

326 1.7456 2.1469 

327 1.6844 2.046 

Table 3-32: Atomic fluctuation values of the added loop from Figure 3-73. 

One additional observation that can be easily spotted from Figure 3-73 is the orientation of 

the SG atom in the catalytic cysteine residue. In the original structure, and in the models 

from the trajectory of 1b, SG was facing to the outside of the protein while in models from 

the trajectory of 1a it was facing to the inside of the protein. This did not have any major 

effects on the dockings as manifested by the similar distances recorded in the docking tables 

between the warhead and this atom. The inclusion of CYS277 within the 10 residues to be 

treated as flexible during GOLD dockings may have minimised the effect of this difference. 

Despite the importance of residue ASN333 in the dockings of TG2 inhibitors, its 

conformation was not very different between the different models (Figure 3-74). Again it was 

one of the 10 flexible residues during GOLD docking. 
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Figure 3-74: The orientation of ASN333 in the 6 models compared to the original. 

The same cannot be said about the bridging tryptophan residues (TRP241 and TRP332) 

(Figure 3-75). In the original crystal structure, these residues formed a bridge to the catalytic 

tunnel through being stacked in the way presented in Figure 3-75, with the five-membered 

ring of the indole side chain facing each other on the 2 residues and the benzene rings are 

parallel to each other and the inhibitor is supposed to position itself between the 2 residues 

(Pinkas et al. 2007). Such orientation of the bridging tryptophan residues is more manifested 

in the models extracted from the trajectory of 1a than in those from the trajectory of 1b. This 

may contribute to the slightly better docking results in the former set of models as they offer 

more realistic representation on the approach to the active site than the second set of 

models. It should be emphasised, however, that both residues were allowed to be flexible 

during the dockings, minimising the effect of this difference. 

Finally, regarding a justification for the different docking results between the models, GOLD 

uses genetic algorithm as its docking method and this is a random searching algorithm that 

operates by generating arbitrary poses for the ligands within the active site and scoring 

them. This may result in different docking solutions for the same set of ligands being docked 

in the same protein active site models using the same settings. Such different solutions have 

actually been observed during the running of validation process 4 (section 3.4.4) when 3 

identical attempts of docking were performed on the 6 models and yet different results were 

obtained with each attempt. As a result, although the performance of the models from the 

trajectory of 1a seems slightly better than that of the models from the trajectory of 1b, all the 

90ns 95ns 100ns 65ns

155ns 245ns Original
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six models are important when it comes to testing potential compounds as inhibitors of TG2, 

if GOLD random algorithm was to be used for the docking. 

 

Figure 3-75: The orientation of the bridging tryptophan residues in the 6 models along with their 
orientation in the original crystal structure. 

3.9 Analysis of the MD Trajectory of Empty TG2 

The initial MD simulation that was applied on TG2 crystal structure to generate the initial 

models for docking was repeated twice with ig=-1 that sets the random seed for the initial 

velocity based on the current date and time. The three simulations were performed to collect 

some data on TG2 on its own, without any inhibitors during MD simulations. The results are 

presented below. The 3 runs were stable as reflected by the change in temperature and total 

energy of the system with time. Graphs of these changes are shown in Figure 3-76. 

 

Figure 3-76: Energy and temperature graphs for the 3 simulations applied to TG2 for 500 ns. 
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3.9.1 RMSD and PCA 

The stability of the simulations was also expressed by the RMSD of the runs. Figure 3-77 

shows the RMSD for the 3 runs calculated on the production phases and using the first 

frame as a reference. RMSD calculations were performed on the backbone atoms only using 

the program CPPTRAJ from the AmberTools Package (Roe & Cheatham 2013). The RMSD 

for the 1st and 3rd runs was stable between 2 and 2.5 Å. In the 2nd run there was some 

fluctuation at the start followed by stable run at RMSD between 2 and 2.5 Å until the half of 

the simulation time. After that, the RMSD was stable at values between 3 and 3.3 Å. In all 

the cases, RMSD was almost stable during the production phase. This measurement was 

followed by calculating the RMSD for the residues used in defining the active site of TG2 

during docking. Figure 3-78 shows this RMSD and it can be seen that the part of TG2 that 

constitutes the active site was moving less than the remainder of the protein. Figure 3-78 

also shows that the first 100 ns of the 1st run was almost as stable as the rest of TG2, and 

this was the part of the trajectory from which the models for the initial docking were taken 

from. 

 

Figure 3-77: RMSD curves for TG2 from the 3 runs. 

Following the RMSD calculations, principal component analysis (PCA) was performed using 

the program pyPcazip (Shkurti et al. 2016), which is a program used to compress and 

analyse MD simulations data. The analysis was applied on the trajectories after stripping 

water molecules, and included the backbone alpha carbon atoms only. The first 20 principal 

components (PCs) for the 3 runs are presented Figure 3-79. As shown from the RMSD 

graphs, it appears that the 2nd run had the highest fluctuation. This is evident in Figure 3-79 

as well. When the 1st PC was plotted versus the 2nd PC, Figure 3-80 was produced. The 

figure shows that the 3rd run was the least flexible. However, the majority of the points from 
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the 3 runs were approximately in the same region, indicating similar coverage of the 

available conformational space in the 3 runs. 

 

Figure 3-78: RMSD of the active site residues only for the 3, 500-ns runs on empty TG2. 

 

Figure 3-79: The first 20 principal components (PCs) generated by pyPcazip for the 3 MD runs with their 
eigenvalues. 

pyPcazip has the ability to derive from the principal components, a trajectory composed of 

20 frames that represents the motion of the protein in that component. This feature was used 

to investigate which parts of the protein moved the most in the 3 runs by generating such 

trajectories for the 1st PC. It was noted that in the 1st run, it was the loop between residues 

PHE320 and GLY325 that moved the most. These 6 residues were missing in the original 

crystal structure and were added before starting the simulations (Figure 3-81A). Although 

close to the active site of TG2, this loop is not involved in the inhibition mechanism at all and 

its residues are not part of the active site definition used in the docking experiments. The 

effect of this loop on the valid active site models of TG2 has been discussed in more detail in 

section 3.8. For the 2nd run, it was the loop composed of residues 449-456 that had the 
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highest motion. The loop was originally an alpha helix that opened. This loop-opening event 

has not happened in the 1st or 3rd runs. In any case, it is away from the active site (Figure 

3-81B). In the 3rd run, like the 1st run, it was an added loop originally missing from the crystal 

structure composed of residues 407-413. Again, this loop was not in the immediate vicinity of 

the active site. 

 

Figure 3-80: The first versus second PCs for the 3 runs. 

The results shown in Figure 3-81 were consistent with the atomic fluctuation data of the 

residues of TG2. This was calculated through measuring the average change in RMSD of 

the backbone atoms over time per residue. The atomic fluctuation calculation was performed 

using CPPTRAJ. The results are shown in Figure 3-82. Although the peak heights are 

different between the runs, it is obvious that the locations of the peaks are the same, 

indicating that they are the same regions of TG2 that are being more flexible than the others 

even though the extent of the flexibility is different between the runs. Also, the highest peak 

in each run corresponds to the same region in TG2 as the region observed from PCA in 

Figure 3-81. 
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Figure 3-81: Trajectories for the 1st PC of the 3 runs showing 
the highest moving part (red) and its location relative to the 
active site cysteine residue (yellow). A: 1st run, B: 2nd run, C: 
3rd run. 

 

Figure 3-82: Atomic fluctuation for the individual residues of TG2 for the 3 runs. 
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3.9.2 Water behaviour 

How water molecules were moving within the active site of TG2 was investigated by using 

the “watershell” command of the CPPTRAJ program. This command calculates the number 

of water molecules in the 1st and 2nd solvation shells as a function of the frames in the 

trajectory with respect to a reference atom mask. The CPPTRAJ default dimensions of the 

shells were used, which are 3.4 Å for the 1st shell and 5 Å for the 2nd shell, and solvation 

shells were calculated with reference to the SG atom of CYS277. Table 3-33 shows the 

average number of water molecules in the 2 shells computed for the 3 runs. Again, the 1st 

and 3rd runs appear to be very similar having an average of ≈ 3.5 water molecules within 3.4 

Å and 8 water molecules within 5 Å across the simulations. Because the numbers of the 1st 

and 3rd runs were similar, those runs will be considered for comparisons. 

 1st Run 2nd Run 3rd Run 

1st Shell Average 3.5 2.6 3.4 

2nd Shell Average 8.2 4.8 8.0 
Table 3-33: Average values for the number of water molecules in the 1st and 2nd solvation shells in the 3 
MD runs applied on empty TG2. 

Figure 3-83 is graphical representation for the number of water molecules in the 1st and 2nd 

shells during the 1st MD run and it shows that within the 1st shell, there was always at least 

one water molecules within 3.4 Å of SG (this occurred in 9 frames). The maximum was 7 

residues (4 frames only), and for the majority of time, the number was between 3 and 5, 

explaining the average values shown in Table 3-33. The same applies to the graph of the 2nd 

shell. This indicates that there were always few water residues in the immediate vicinity of 

SG in the active site. To investigate how that is related to distance from SG, RDF was used. 

  

Figure 3-83: Water molecules in the 1st (left) and 2nd (right) solvation shells of the 1st MD run as 
representative of distribution of water molecules in the 3 runs. 

The radial distribution function (RDF) was used to inspect how the density of water 

molecules around SG changed as a function of distance from SG. The results of the 

calculation are presented in Figure 3-84, in which a similar pattern can be observed within 

0

1

2

3

4

5

6

7

8

0 100 200 300 400 500

# 
o

f 
w

at
e

r 
m

o
le

cu
le

s

Time (ns)

0

2

4

6

8

10

12

14

16

0 100 200 300 400 500

# 
o

f 
w

at
e

r 
m

o
le

cu
le

s

Time (ns)



Chapter 3   Model Development and Validation 

170 

 

the 3 runs. Within 2 Å of SG, there was 5 times higher probability of finding water molecules 

than everywhere else in the 1st and 3rd runs and 4 times in the 2nd run. The probability 

decreases to about 3 within 3 Å of SG in the 3 runs. RDF goes down after 3 Å to around 1. 

This means that most of the water molecules seen in Figure 3-83 are between 2 and 3 Å and 

there are no water molecules that are less than 2 Å away from SG, due to atom radii 

restrictions. 

 

Figure 3-84: RDF of water 
molecules relative to SG 
atom of CYS277 in the 3 MD 
runs applied to empty TG2. 

 

The similar water behaviour in the 3 runs strengthens the assumption that this is how water 

molecules distribute themselves around the catalytic cysteine. The same calculation of water 

RDF was applied on the 275-ns trajectories of the active compounds. Only compound 1d 

trajectory was not considered due to the compound leaving the active site before the start of 

the production phase. Figure 3-85 shows RDF values for the 5 trajectories. It can be seen 

that the behaviour is very similar in the 2 cases, indicating that the presence of the inhibitors 

within the active site of TG2 did not affect the density of water around SG of CYS277. 

 

Figure 3-85: RDF of water 
molecules in the 275-ns 
trajectories of the active 
compounds. 
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It is true that the trajectories in Figure 3-85 had inhibitors, but it is only the one for compound 

1b that managed to finish with the inhibitor in its starting pose; in the rest, the warhead has 

left the catalytic tunnel at some point during the simulation. The compound 1e-simulation 

had the compound in its appropriate conformation for about 185 ns of the simulation time. A 

closer look at the graph in Figure 3-85 shows that within 2 Å, the probability of finding water 

was lower in the trajectories for compounds 1b and 1e. Compared to an RDF of 5 in the 1st 

and 3rd runs on empty TG2 and in the simulations for complexes in which the warhead has 

left the catalytic tunnel, this may actually mean that the presence of the inhibitor can reduce 

the density of water in the vicinity of SG, but it is until the covalent bond is formed, that all 

the water molecules within 2 Å will all be pushed away. This was shown in section 3.7 when 

discussing covalent docking and MD. 

An analysis of the number of water molecules in the 1st solvation shell was also performed 

on the trajectories of the complexes and showed that the lowest average was 1.9 molecules 

and that was for the trajectory of compound 1b and the highest was for compound 1c with 

an average of 3.6 water molecules. For the remaining 3 compounds, the averages were 3.1, 

2.9 and 3 for compounds 1a, 1e and 1f respectively. The lowest average for compound 1b is 

compatible with the RDF for the trajectory of that compound and compound 1e had the 2nd 

lowest average. Although the averages for the other simulations are not quite similar to the 

averages of the empty TG2 runs, the fact that they are higher than the averages of 

simulations in which the warhead managed to stay close to SG indicates that the presence 

of the warhead can push some water molecules away. 

The distribution of water molecules in the hydrophobic loop of TG2 has also been analysed. 

This has been calculated as RDF with reference to the alpha carbon atom of residue ILE331 

(Figure 3-86), which is one of the residues involved in the hydrophobic interactions with the 

lipophilic part of the inhibitors. The results are shown in Figure 3-87. Although residue 

ILE331 on its own does not represent the hydrophobic loop, it is one of the best choices 

available. RDF graphs for the 3 runs are very similar and show that there are no water 

molecules in the immediate vicinity of ILE331. RDF shows that water molecules start to 

appear at around 3 Å from ILE331 but at very low density when compared to SG of CYS277 

(RDF has a value of ≈ 1 at 3 Å which is the normal density of water). This was confirmed by 

calculating the numbers of water molecules residing in the 1st solvation shell which averaged 

around 0.4, 0.6 and 0.7 water molecules for the 1st, 2nd and 3rd MD runs respectively. 
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Figure 3-86: The location of ILE331 
used as reference for the RDF of 
water molecules in the hydrophobic 
loop of TG2. 

 

Figure 3-87: RDF of water 
molecules in the 3 runs in 
the hydrophobic loop of 
TG2.

The absence of water molecules from the hydrophobic loop in the simulation of the empty 

TG2 may provide an explanation for the apparent ease with which the lipophilic parts of the 

compounds maintained their positions within the hydrophobic loop, when compared to the 

warheads in the 275-ns and in the 5-ns simulations. There were much more cases for the 

leaving of the warhead than for the lipophilic part in the 5-ns simulations (section 3.4.5). In 

the 275-ns simulations, no lipophilic part left its place. 

A very similar pattern was seen when inspecting the RDF graphs for the density of water 

around ILE331 in the 5 trajectories for the compounds. The results are shown in Figure 3-88. 

The absence of water until 3 Å from ILE331 is very clear, followed by the slight increase in 

the density. Compound 1f trajectory showed the least density of water despite the fact that 

the simulation for this compound started with the lipophilic part outside the hydrophobic loop 

and continued like that for the remainder of the simulation. 

In general, the results of RDF analysis in the hydrophobic loop of TG2 show that it is highly 

unlikely for water molecules to reside underneath the loop. The presence of the lipophilic 

part of the inhibitors within the hydrophobic loop does not appear to reduce the probability of 

finding water molecules in the loop, as it would be expected from the physical occupancy, 
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since in some cases when there was a compound, the probability was actually higher than it 

was in empty TG2 (trajectory for compound 1b). 

 

Figure 3-88: RDF graphs for 
the hydrophobic loop in the 
trajectories of complexes. 

3.10 Conclusions 

The main goal of the work at this point was to derive active site models of TG2 that could be 

used to test potential inhibitors of TG2 and to validate the models. The initial MD simulation 

applied to TG2 was proven to be stable and did succeed in providing starting structures for 

MD applied on the complexes in the next stage. The MD simulations applied to the 

complexes finished appropriately only for compound 1b in terms of maintaining the initial 

pose of the compound; but in all the simulations, the importance of hydrogen bonding with 

key residues in the active site (GLN276, ASN333 and PHE334) and of the hydrophobic 

interactions involving the lipophilic parts of the inhibitors has been shown. Although the MD 

simulation of compound 1a failed to keep the compound in the active site, the trajectory 

provided 3 conformations that passed the 1st stage of testing which involved docking 6 active 

inhibitors of TG2. This supplied 3 of the 6 active site models that went to the next stage and 

the remaining 3 were extracted from the trajectory of compound 1b. The dockings at this 

stage also signified the importance of hydrogen bonding and hydrophobic interactions. 

The six models were validated next through various experiments that involved docking of 

inactive compounds, docking with water in the active site, expanding the compound test set, 

applying short MD simulations that involved calculating the binding free energies and finally 

docking of more active compounds. Even though the results were not always ideal, they 

gave the suggestion that the models can detect compounds based on their ability to inhibit 

TG2. The results also enabled the fabrication of criteria required to define a good docking 

complex for TG2 inhibitors. A positive correlation was also obtained when the binding free 

energy was related to the biological activity for compounds containing the sulfonium ion 

warhead. 
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The choice of GoldScore as the primary scoring function during the GOLD dockings 

performed was justified by testing the performance of the other functions which proved to be 

inferior to GoldScore. No scoring function, however, was able to rank the compounds based 

on their biological activity, although with GoldScore, this was slightly improved by rescoring 

after local minimisation of the docked pose. 

Covalent docking and MD proved that active and inactive inhibitors of TG2 behave similarly 

if the covalent bond was already there. They also proved that no water molecules can reside 

next to the covalent bond during MD simulations. 

The analysis performed on TG2 conformations of the 6 valid models succeeded in explaining 

the better results obtained with the models from 1a trajectory than those from 1b trajectory 

and showed that it is better to use the 6 models when trying to test some new compounds as 

inhibitors of TG2 if GOLD was to be used as the docking program. 

The behaviour of water molecules in the MD simulations has shown that there could be few 

water molecules residing very close to SG of CYS277, whether there was an inhibitor in the 

active site or not. The analysis also showed that very few to no water molecules can be in 

the hydrophobic loop of TG2 which may explain why it was easier to keep the lipophilic part 

in place than to keep the warhead. 

To conclude, the models generated during this work have been validated and proven to be 

the best available choices for testing TG2 inhibitors. More work is required to investigate the 

mechanism of inhibition to fill some of the gaps in the work so far related to the failure to 

relate some measured quantity to biological activity. This was the main rationale for the next 

chapter of the thesis. 
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4 Quantum Mechanical Experiments 

This chapter covers the results of the experiments performed with partial or total QM 

treatment to investigate the mechanism by which the various studied inhibitors react with 

TG2. Partial treatment was employed through a combined QM/MM approach with umbrella 

sampling on selected complexes of TG2 with acrylamide based inhibitors. Total QM 

treatment was applied on versions of TG2-sulfonium ion inhibitors complexes in which all the 

system was removed with the exception of the inhibitor and the catalytic cysteine residue 

and QM reaction path experiments were performed. 

4.1 Umbrella Sampling 

4.1.1 Introduction 

Umbrella sampling (US) is an enhanced sampling technique in molecular dynamics that 

permits the exploration of events which would otherwise take infinitely long time to occur. 

Candidate events would ideally involve crossing high energy barriers where conventional 

MD will only result in trapping the system in an energy minimum with no possibility of 

crossing the barrier. US applies an external biasing potential over a predefined reaction 

coordinate (RC) to drive the event to completion. The change in RC should be small to 

ensure a quasi-static process. Thus US spreads the change in RC over windows and for 

successful sampling, the windows must overlap (Kästner 2011). During the sampling, the 

change in RC in each window is recorded to represent the probability distribution along the 

reaction coordinate in that window. This distribution can then be converted to the potential of 

mean force (PMF) using the weighted histogram analysis method (WHAM) (Hub et al. 2010; 

Kumar et al. 1995). 

The next section introduces the results of the umbrella sampling applied to simulate the 

reaction between TG2 inhibitors with the acrylamide warhead and TG2 active site cysteine 

(CYS277) (Figure 4-1). The inhibitors are compounds 1a, 1c, 1e (Table 3-1, p86), 3j, 3l and 

3o (Table 3-12, p125) from the work of Badarau et al. (2015) and the associated patent 

(Griffin et al. 2014). These compounds had a range of activity expressed as IC50 from 0.006 

to 6.3 µM. 

The aim of the study is to use the US-simulated reaction to find some type of correlation with 

biological activity manifested as IC50 values for the tested acrylamide inhibitors. Since the 

formation of bonds was involved, US was performed with quantum mechanical treatment of 

the reaction centre (the acrylamide inhibitor as the electrophile, CYS277 as the nucleophile 
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and HIS335 from TG2 as the source of the proton), while the remainder of the protein and 

the water box were treated molecular mechanically. PM3 (Parametric Method Number 3) 

(Stewart 1989) and SCC-DFTB (self-consistent-charge density-functional tight-binding) 

(Elstner et al. 1998) were used as the QM methods. 

 

Figure 4-1: The reaction of inhibition of TG2 by acrylamide inhibitors. 

Two possible mechanisms for the reaction were explored; the first involves a single stage 

only during which the bond between nucleophilic sulphur of CYS277 (SG) and the 

electrophilic carbon (EC) on the acrylamide, and the bond between a proton from a nearby 

histidine residue (HD1) and the alpha carbon of the double bond of the acrylamide (C2) both 

form simultaneously. The second mechanism involved the nucleophile-electrophile reaction 

first, followed by the protonation stage. The choice of HIS335 as the proton source is 

justified in a later section of this chapter (4.1.2.4). The starting structures were frames taken 

from the 5-ns MD simulations (1a, 1c and 1e) or docking complexes from validation 

processes 3 (more test compounds) and 4 (all compounds) (3j, 3l and 3o). 

4.1.2 Results and Discussion 

The overlap between the windows of all the simulations was analysed by plotting the time 

series files where the Y-axis represented the change in RC across the simulation and the X-

axis the time of a single window in picoseconds. This was used as a measure to the success 

of the simulation. Other measures used to judge the quality of an individual simulation were 

the actual formation of the 2 bonds; SG-EC and HD1-C2, and the fact that the compound 

maintained its general pose within TG2 active site at the end of the simulation. In addition, 

RMSD of TG2 in the different simulations was measured. Figure 4-2 has been presented in 

the Methods (section 2.2.2.1) and is presented here as a reminder of the distances used to 

define reaction coordinates used in the 2 mechanisms. 
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Figure 4-2: Distances used during umbrella sampling 
for the 1-stage and 2-stage simulations. 

4.1.2.1 Single stage simulations 

In these simulations, the reaction coordinate (RC) was set as a generalised distance 

coordinate comprising the sum of D1 and D2 in Figure 4-2. This definition of the RC allows 

for the whole reaction to proceed in a single stage. SCC-DFTB was unable to drive the 

reaction to completion in compound 1c, and for the remaining 5 compounds, no useful 

correlation with the biological activity could be obtained from the US simulations. For these 

reasons, US using SCC-DFTB on acrylamide compounds assuming 1 stage for the reaction 

was not considered. Such anomalies did not occur when PM3 was set as the QM method. 

The simulations with all the compounds completed to the assigned value of the reaction 

coordinate, the 2 bonds formed, and the compounds maintained their original pose within 

TG2. In addition, a sufficient degree of overlap between the windows was observed. 

The trajectories of the simulations on individual compounds have been analysed. The 

distances involved in RC have been measured using VMD program (Humphrey et al. 1996) 

along with the SG-EC-C2 angle. The analysis showed that the 2 distances were declining 

together but the SG-EC bond would form first and that the angle would change from its 

starting value to a value between 94° and 115° at the barrier height and maintains that for 

the rest of the simulation (Table 4-1). The dihedral angle of the attack of SG on the plane of 

EC (EC, C2 and the carbonyl carbon) has also been measured. The discontinuities seen 

with compounds 1c and 3o in Table 4-1 were not flaws in the way in which the RC has 

changed during the US simulation for these compounds. Rather, the SG-EC bond was 

formed suddenly and early in the simulation, where the SG-EC distance jumped from a value 

of 2.7 Å in one frame of the trajectory for the simulation of compound 1c to a value of 1.9 Å 

in the next frame. This sudden change was accompanied by a temporary corresponding 

increase in the HD1-C2 distance from 5.9 Å to 6.6 Å to keep the change in the overall RC 

consistent. 
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Table 4-1: Distances involved in the RC for the 1-stage simulations and the corresponding angles for the SG-EC-C2 bond.X-axis is time in ps and Y-axis is in Å for 
the RC distances and degrees (°) for the angle. The black line represents the point in the simulation corresponding to the barrier height on the PMF graph. 
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As stated in the Methods section (section 2.2.2.1), PMF was calculated from the time series 

files using WHAM. The results of PMF calculations for all the compounds are presented in 

Figure 4-3. It can be seen that a similar path has been followed by all the compounds during 

their US simulations and that the barrier height was reached at a roughly similar value for the 

reaction coordinate in all the compounds. 

 

Figure 4-3: PMF graphs of the 6 acrylamide compounds generated from WHAM program.The graph starts 
from the right with the higher value from RC and ends to the left.  

The values of the parameters measured from the US MD trajectories for the structures at the 

barrier heights of the individual PMF graphs are presented in Table 4-2. The dihedral angle 

is presented in its simplest positive form to facilitate the comparisons. These structures are 

the closest one can get to transition states (TS). It can be observed from Table 4-2 that at 

the barrier, the SG-EC bond was formed only in 1a and 3o (assuming ≈1.8 Å for S-C bond) 

while HD1-C2 bond was not formed in any of the tested compounds. The value of RC 

ranged from 3.5-3.9 Å, the angle from 94-115° and the dihedral angle had values between 

56-87°. 

Compound 

TS parameters 

SG-EC (D1) 
(Å) 

HD1-C2 (D2) 
(Å) 

RC (Å) Angle (φ) (°) Dihedral (°) 

1a 1.83 2.06 3.89 98.35 56 

1c 1.94 1.61 3.54 111.51 72 

1e 2.03 1.85 3.89 94.09 80 

3j 2.15 1.71 3.85 94.47 61 

3l 1.96 1.91 3.87 114.73 87 

3o 1.83 1.63 3.46 110.71 73 
Table 4-2: RC distances and SG-EC-C2 and dihedral angles for TS structures of the 6 compounds. 

The fact that the 2 bonds have formed indicates that the chosen reaction coordinate could 

represent the reaction successfully. The end value for the RC was appropriate; the RC could 

not be pushed any further as this would have resulted in a shift in PMF scores, as there was 
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already a very slight shift at the end of the graphs (Figure 4-3). The overlap between the 

windows was checked by plotting the time series of the RC of all the windows using time 

values for the X-axis that correspond to a single window (5 ps) (Figure 4-4A). The gap seen 

in Figure 4-4A at ≈ 4 Å of overlap graph for compound 1e, has been spotted in the overlap 

graphs for other compounds. It corresponds to the barrier height as seen in Table 4-2. This 

may be expected due to the formation of the bond at this point, which could occur with a 

sudden, and rough, change in the RC. A simulation for compound 1e was run in which the 

force constant was increased from 100 to 300 kcal/mol.Å2 starting from the value of 4.1 Å for 

RC to the end of the simulation. The gap has disappeared from the overlap graph but the 

PMF graph produced was almost exactly the same (Figure 4-4C). It is for this that the default 

force constant was considered, to avoid using higher than necessary force constant. 

  

 

Figure 4-4: A: Overlap graph for 
compound 1e using the default 
values for the force constant, B: 
overlap for compound 1e using a 
force constant of 300 after RC 
reached 4.1 Å. C: PMF graphs of 
the 2 simulations. 

The reaction is expected to proceed as a Michael addition; the acrylamide double bond acts 

as the acceptor being attached to an electron withdrawing group, and SG of CYS277 being 

the donor. This can be viewed as a similar mechanism to the nucleophilic addition to carbon-

oxygen double bonds (Smith & March 2001). Hence, it may be possible to apply the Bürgi–

Dunitz angle to this reaction. This is the angle of the attack of a nucleophile (Nu) to a 

carbonyl group carbon atom (Nu-C-O angle) and its optimal value was found to be 107° 

2

3

4

5

6

7

8

9

0 1 2 3 4 5

R
C

 (
Å

)

Time (ps)

A

2

3

4

5

6

7

8

9

0 1 2 3 4 5

R
C

 (
Å

)

Time (ps)

B

0

5

10

15

20

25

30

35

40

45

50

2 3 4 5 6 7 8 9

P
M

F 
(k

ca
l/

m
o

l)

RC (Å)

C

Default-FC

Higher-FC



Chapter 4   Quantum Mechanical Experiments 

183 

 

(Bürgi et al. 1974). The same angle has actually been proposed for any reaction that 

involves a Michael addition (Sinnott 2007). 

It is true that the angles in Table 4-2 do not all agree with the value of 107° stated in the 

literature for this angle but they are close. After the barrier height and the formation of the 

SG-EC bond, the angle keeps a value that is close to the values in Table 4-2 for the 

remaining of the simulation as can be seen from the angle graphs in Table 4-1. At this point 

the angle would represent that for an ordinary S-C-C bond. According to AMBER force field, 

such angle has a value of 108.6° in normal cysteine residue and by looking at the graphs in 

Table 4-1; it can be argued that the bond formed is behaving as a typical bond involving 

sulphur and sp3 carbon. 

Another angle was measured and that was the dihedral angle between the attacking sulphur 

and the plane of EC, C2 and the carbonyl carbon (C) (Figure 4-5). The angle assumed very 

diverse distribution among the compounds and this can be attributed to MD oscillations. The 

results for 2 compounds (1a and 3j) are presented in Figure 4-6 as examples of the diversity. 

Due to the variations, the simplest positive magnitude at the barrier height was considered 

and presented in Table 4-2. The common feature within those angles is that the 2 planes 

were virtually vertical to each other. This indicates that the attack of the nucleophilic SG of 

CYS277 was almost perpendicular to the plane containing the acrylamide warhead (Figure 

4-5) or at least not in the plane of the hydrogen atoms attached to EC. Dihedral angle values 

are therefore consistent with the values of the SG-EC-C2 angles. 

 

Figure 4-5: The dihedral angle that was measured during umbrella sampling between SG from CYS277 
and the plane of EC, C2 and C of the compounds, showing two examples for the angle with compounds 
1a and 1c.  

  

1a 
1c 
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Figure 4-6: Graphs of the dihedral angle in compounds 1a and 3j as representatives of the 6 compounds 
showing the diversity in the values of the angle. The black line vertical represents the barrier height in 
the PMF graph. X-axis is time in ps and Y-axis is dihedral angle in degrees (°).  

The RMSD for TG2 in the simulations of the 6 compounds was measured as an indicator of 

the stability of those simulations, using the 1st frame of the trajectory as a reference. The 

results are presented in Figure 4-7 and imply that TG2 was stable. The RMSD in the 6 

compounds had a maximum value of 1.25 Å. 

 

Figure 4-7: RMSD graphs for the simulations of the 6 acrylamide compounds. 

Finally, the activation energy (AE) for the reaction was calculated, and was taken as the 

difference between the barrier height and the energy of the reactants; the latter being zero in 

most cases. The reaction energy (RE) was also computed by subtracting the energy of the 

reactants from that of the products. The results for the different compounds are summarised 

in Table 4-3. When the correlation between biological activity (as TG2 IC50) and the AE was 

considered, a line with positive slope was obtained indicating an increase in AE with a 

decrease in biological activity. The line had an R2 ≈ 0.6. Interestingly, the reaction energy 

gave a similar line when plotted against the log value of the IC50 (Figure 4-8). 
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Compound IC50 (µM) AE (kcal/mol) RE (kcal/mol) 

1a 0.125 42.55 6.66 

1c 0.44 29.57 8.70 

1e 0.0061 35.66 -6.70 

3j 6.3 69.71 29.66 

3l 2.1 40.44 17.57 

3o 1.625 63.19 49.69 

Table 4-3: AE and RE (both in kcal/mol) for the 6 acrylamide compounds resulting from US simulations 
using PM3 as the QM method. 

 

Figure 4-8: left: IC50 versus AE, right: log of IC50 versus RE. 

The method was able to drive the reaction to completion and to produce AEs compatible, to 

some degree, with biological activity, with the appropriate trend; the AE was lower for the 

more active compounds. The charges of the atoms of the QM region were monitored during 

the simulations. Those of SG, C2 and the acrylamide carbonyl oxygen atom were recorded. 

The changes in these were not uniform across the compounds and could not be interpreted 

to explain a possible discrete mechanism for the reaction. In compound 3j, for example, only 

the charge of SG changed considerably during the simulation while with compound 3l, there 

was a decline in the charges of the acrylamide carbonyl oxygen and C2 around the TS 

(Figure 4-9). 

The changes in the charges for compound 3j suggest that the 2 processes (attack of the 

nucleophile and the protonation) happened at the same time with a few picoseconds during 

which SG-EC bond was there but the protonation has not happened yet. This explains the 

sharp decline in the charge of C2 at around 250 picoseconds, just before the barrier height. 

The graph of charges for compound 3l suggests differently; the SG-EC bond formed first 

accompanied by a decline in the charges of C2 and the acrylamide carbonyl oxygen that 

continued until the protonation completed. The pattern observed with 3j was observed in 1a 

and 1e, while that of 3l was seen with 1c and 3o. By looking at distance graphs in Table 4-1 

(the distances are also presented in Figure 4-9), it can be seen that the “3j charge pattern” 

was followed by the compounds in which the 2 bonds formed at the same time and the “3l 
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charge pattern” was adopted by the compounds in which the SG-EC bond was formed 

before the protonation (Figure 4-9). 

 

 

Figure 4-9: Changes in the charges (lines, left axis, Ch-O, Ch-SG and Ch-C2) of compounds 3j and 3l 
along with change in distances for the bonds to be formed (dots, left axis SG-EC and HD1-C2) during the 
PM3, single-stage US simulations.  

The charge pattern of 3j implies a simple straightforward mechanism, in which all the events 

in the reaction happen almost simultaneously without a real chance for the participating 

atoms to have their charges altered. The change in the charges of C2 and the oxygen in 

compound 3l is indicative of the formation of 1 of 2 possible intermediates, one in which the 

lack of the proton is manifested as a negative charge on C2 (Figure 4-10A) or one in which 

the broken double bond would migrate back to the carbonyl carbon with a shift of the 

carbonyl double bond to a negative charge on the oxygen (Figure 4-10B). A combination of 

the 2 intermediates is also a possibility. 

It is because the non-uniformity in the charge graphs between the compounds and the 

consequent inability to decide a possible discrete mechanism for the inhibition that the 2-
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stage simulation was tried. It should be noted, however, that a positive correlation between 

the reaction energies and biological activity (Figure 4-8) indicates that the method was able 

to predict the energies of the reactants and products correctly but was unable to predict the 

path followed accurately. 

   

Figure 4-10: Possible intermediates formed during single-stage simulation of compound 3l. 

4.1.2.2 Two-stage US simulations 

The force constant of 250 kcal/mol.Å2 used during the 2-stage simulations was higher than 

that used previously. A lower value for the constant of 50 kcal/mol.Å2, increased to 100 

kcal/mol.Å2 towards the bond, was tired initially with PM3, but the simulation failed to drive 

the reaction to completion, especially in the protonation stage. Umbrella sampling has been 

used to describe similar reactions over 2 steps with such high force constant. Silva et al. 

(2015) investigated the inhibition of mycobacterial L,D-transpeptidase 2 by carbapenems, 

where the process involves a similar electrophile-nucleophile reaction between the 

negatively charged sulphur of an active site cysteine residue and the carbonyl carbon atom 

of a carbapenem. A proton is transferred in the second step from a nearby histidine residue 

to saturate a nitrogen atom that was originally attached to the carbonyl carbon of the 

carbapenem. They used a force constant of 250 kcal/mol.Å2 in the 2 steps (Silva et al. 

2015). 

PM3 was successful in forcing the 2 steps to completion with plausible structures and no 

change in the final pose of the acrylamide compounds. The 2 bonds eventually formed in all 

the compounds. However, no meaningful correlation could be made between the biological 

activity and any of the obtained energy values. SCC-DFTB, on the other hand, gave some 

correlation. Therefore, the results for SCC-DFTB will be presented with more detail while 

those from PM3 calculations will not be considered. The results from the 2 steps will be 

presented individually. 
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4.1.2.2.1 The first step (formation of the SG-EC bond) 

The RC for this stage was the distance between SG and EC (D1 in Figure 4-2). The overlap 

between the windows for this stage of the simulation was sufficient and Figure 4-11 is an 

example. At the end of this stage, the bond between SG and EC was present in all the 

cases, and the final conformation was used as a starting point for the 2nd step. Again, WHAM 

was used to calculate the PMF and the graphs produced are shown in Figure 4-12. All the 

PMF graphs produced had what appears like a lump or a saddle somewhere around 2 Å. 

This was selected to be the structure corresponding to the TS of the 1st stage (Figure 4-12). 

 

Figure 4-11: The overlap for the 1st step during the 
2-step simulations for compound 1a as an 
indication of the degree of overlap achieved 
during this step. 

 

Figure 4-12: PMF graphs of the 6 acrylamide compounds during the 1st step of the 2-stage reaction.The 
red balls represent the TS position. The reaction proceeds from right to left.  

When the charge of SG was monitored during the simulation, it was noted that the fully 

negative charge of SG became more positive, reaching a value of around -0.5 at the saddle 

point. The structures at the saddle point also had very similar values for the SG-EC distance 

and the SG-EC-C2 angle. The dihedral angle was also recorded at the saddle point of the 1st 

step. These transition state parameters are summarised in Table 4-4 along with the values 

of PMF at that point for each compound. The latter showed reasonable correlation with IC50 

producing a straight line with an R2 of around 0.7 (Figure 4-13). 
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Compound 
SG-EC (D1) 

(Å) 
Angle (φ) (°) Dihedral (°) Charge-SG AE (kcal/mol) 

1a 2.08 114 84 -0.49 25.67 

1c 1.99 114 64 -0.40 17.45 

1e 2.11 120 63 -0.53 19.68 

3j 2.03 114 57 -0.55 32.61 

3l 2.01 124 80 -0.59 25.61 

3o 1.96 113 76 -0.48 22.95 
Table 4-4: Parameters for the structures at the saddle point of the PMF graph of the simulation of the 1st 
step of the 2-stage simulations. 

 

Figure 4-13: Correlation 
between TG2 IC50 and the 
energy at the saddle point of 
the PMF graphs of the 1st 
step of the 2-stage 
simulations for acrylamide 
compounds.

The values of the angle of the attack of the nucleophile at the structures at the saddle point 

of the 1st step (Table 4-4) are also close to the value of Bürgi–Dunitz angle (107°) which 

describes the addition to carbon-oxygen double bonds, and can be applied to any reaction 

involving a Michael addition (Bürgi et al. 1974; Sinnott 2007). The values suggest that the 

approach of SG to EC followed the proposed route, where the nucleophile is expected to 

attack from above the plane of the electrophilic centre, rather than having the reacting 

species lining up in a straight line. 

For the dihedral angle, again it was the simplest positive form (magnitude) that was 

recorded. The values are not actually right angles but they prove that the attack of the 

nucleophile was orthogonal to the plane of the acrylamide double bond rather than from the 

same plane of the bond. This further confirms that the reaction followed the appropriate 

route. It should be emphasised that during all the US simulations, saving was being 

performed every 0.5 ps and it is possible that the trajectory produced did not contain 

conformations corresponding to the cornerstone events during the simulation. In other 

words, the attack of the nucleophile may have happened at exactly the angle of Bürgi–Dunitz 

and at exactly right dihedral angle, but was missed during the saving; the saving point was 

not the same as the point of the attack. This may also explain the differences in bonds 
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lengths observed at TS structures between the compounds, both in the concerted single-

stage and 2-step mechanisms. 

4.1.2.2.2 Second step (protonation of the initial Michael addition) 

A generalised distance coordinate was used to represent the RC for this stage comprising 

the difference between D2 and D3 distances from Figure 4-2. Although the separation 

between the windows for this stage was 0.4 and 0.2 Å, the overlap achieved was reasonable 

(Figure 4-14). The graphs generated by WHAM for the PMF of this step showed some 

degree of lack of overlap in the sense that the windows were obvious in the graphs in the 

shape of curves (umbrellas) corresponding to each window (Figure 4-15). This is especially 

true for the first section of the 2nd step when the separation between the windows was 0.4 Å 

(at distances > 2 Å in Figure 4-15). The method was able to drive this stage to completion 

and the protonation of C2 was evident in all the compounds. 

 

Figure 4-14: The overlap for the 2nd step 
during the 2-step simulations for 
compound 1e as an indication of the 
degree of overlap achieved during this 
step. 

 

Figure 4-15: PMF graphs of the 6 compounds for the 2nd step of the 2-step US simulations using DFTB as 
the QM method.The red balls represent the TS. The reaction proceeds from right to left. 

There was a common trend in the path followed by all the compounds for the 2nd step and 

this is manifest from Figure 4-15. The PMF curves start at the right side of the graphs 
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reached, followed by a decline in PMF score. The highest point on the graph was taken to be 

the transition state or the barrier height for the 2nd step. It is represented on Figure 4-15 by 

red balls. 

TS structures did not occur at similar values of RC across the compounds. The RC assumed 

values ranging from 0.4-1.1 Å. In all the cases, the HD1-C2 bond was not formed and the 

HD1-ND1 bond (the bond connecting the proton to HIS335) was still present. The charge on 

the acrylamide carbonyl oxygen averaged around -0.7 which is more negative than its 

original charge signifying that HD1-C2 bond has not yet been formed and that the electron 

density shifting from the original double bond of the acrylamide was still on this oxygen atom. 

The charge of C2 was around -0.6 and this is much more negative than its starting value (≈ -

0.2, details are presented later). This is another indication that HD1-C2 bond was not formed 

yet. The TS parameters for the 2nd step are presented in Table 4-5. 

Compound RC (Å) 
HD1-C2 
(D2) (Å) 

HD1-ND1 
(D3) (Å) 

Charge-O Charge-C2 
AE 

(kcal/mol) 

1a 0.85 1.94 1.10 -0.72 -0.60 134.27 

1c 0.70 1.80 1.09 -0.57 -0.57 107.95 

1e 1.13 2.19 1.06 -0.65 -0.61 92.24 

3j 0.85 1.91 1.11 -0.70 -0.56 209.74 

3l 0.34 1.48 1.09 -0.62 -0.56 150.15 

3o 0.48 1.63 1.03 -0.67 -0.56 137.73 

Table 4-5: Parameters for the structures at the TS for the 2nd stage of US on acrylamides using DFTB as 
the QM method. 

The activation energy for the 2nd step correlated well with biological activity producing a 

straight line with an R2 of around 0.9 (Figure 4-16). The activation energies of the 2 steps 

during this 2-stage simulation of the reaction produced reasonable correlations with the 

biological activities for the tested compounds. 

 

Figure 4-16: Correlation 
between biological activity 
and AE for the 2nd step of 
simulations on acrylamides. 
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When the charges of the reaction atoms were monitored during the 2-step simulations (both 

1st and 2nd steps combined), the patterns of changes across the compounds were more 

comparable than what was seen in the single-stage simulations. There was a similar trend 

followed by all the compounds in terms of the charge behaviour around the reaction centre. 

For the individual compounds, the changes in charges across the individual simulations 

charges are shown in Figure 4-17. 

  

  

  

Figure 4-17: Charges of the 6 compounds during the 2-step simulations. On the X-axis is the time in ps 
and on the Y-axis is the charge of the 3 monitored atoms (SG from CYS277, and C2 and carbonyl oxygen 
from the acrylamide warhead). The black vertical line marks the end of the 1st step. 
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As it can be seen in Figure 4-17, the charges of C2 and O became more negative, while that 

of SG more positive as the 1st step progresses. At the end of the 1st step, C2 and O had their 

most negative charges. Again, this would suggest that any of the intermediates in Figure 

4-10 may be the product of the 1st step. The oxyanion intermediate (Figure 4-10B), however, 

may be the most favourable because the charge of the oxygen is more negative than that of 

C2 at the end of the 1st step. In all the compounds, the acrylamide carbonyl oxygen atom 

had a charge of -0.8, which is closer to -1.0 than the charge of C2 in the compounds, the 

latter was ranging between -0.5-(-0.6) at the end of the 1st step. 

Silva et al. (2015), in their US study for the mechanism of inhibition of L,D-transpeptidase 2 

(LDT) enzyme of mycobacteria by carbapenems, proposed a 2-stage mechanism. Their 

system and the acrylamide-inhibited TG2 are not exactly the same; LDT also has charged 

cysteine and histidine residues in the active site but the inhibitor has a beta lactam ring 

instead of the acrylamide for the electrophile. The intermediate at the end of the 1st stage, 

according to Silva et al. (2015), is an anionic stable compound bearing a negative charge on 

the N4 nitrogen atom of the beta lactam ring that was protonated during the 2nd stage. The 

PMF graph of the first stage showed that the formed intermediate has lower energy than the 

reactant or the TS of that stage, confirming it being an anion. In this study, the intermediate 

at the end of the 1st stage had higher energy than that of its TS (Figure 4-12). This, in 

addition to the charges, supports the formation of the oxyanion intermediate (Figure 4-10B). 

The possibility of the 1,2-addition should not be overlooked. In this study, the 1,4 addition 

was proposed and investigated. This is because the double bond in the acrylamide is 

attached to an electron withdrawing group and this will induce the nucleophile to attach to 

the carbon away from the electron withdrawing group (Bernasconi 1989). In 1,2-addition, the 

nucleophilic addition to the acrylamide carbonyl carbon is also a possibility. The charge of 

this atom has been monitored and it did not show any change from its original value during 

the 2-stage simulation. It is true that the US was directed to drive the reaction to EC and not 

the carbonyl carbon, but the fact that the charge of the latter remained essentially constant 

during the simulations (Figure 4-18) may indicate the higher ease for directing the 

nucleophile to EC. Therefore, the 1,4 addition may be more likely with this system. 

The changes in the distances followed very similar pattern across the compounds and were 

under the control of the reaction coordinates of the two stages at all times. Figure 4-19 is a 

representation for the distances changes during the simulations. The angle between SG-EC-

C2 (φ in Figure 4-2) did not affect the 2nd step as the bond was already present, and 

therefore the angle maintained its value of that of a S-C-C bond. 
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Figure 4-18: The change in 
the charge of the carbonyl 
carbon of the acrylamide 
warhead of compound 1e 
during the 2-step US 
experiment with DFTB. 

 

Figure 4-19: Distances 
around the reaction centre in 
the 2-step simulations for 
compound 3o as a 
representative for the 
remaining compounds. 

In the 2-stage simulations, the RMSD for the individual compounds showed a similar stable 

trend to what was seen during the 1-stage simulations with a maximum value of 1.35 Å 

(Figure 4-20). Both stages achieved good correlations with biological activity. 

 

Figure 4-20: RMSD for the simulations of the 6 acrylamide compounds with the 2-step US. 
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limiting step for this reaction. This may not be consistent with the literature kinetics for thiol 

Michael addition reaction, which states that it is the attack of the nucleophile that constitutes 

the rate limiting step (Nair et al. 2014). An explanation could be offered based on the proton 

source used for the 2nd stage in this work. It was more difficult for the US simulation to take 

the proton from HIS335 than it was for the method to form the bond in the 1st step. It is the 

relative rigidity of the location of HIS335 being part of the protein, compared to the more 

freely moving acrylamide approaching SG in the 1st step, that was possibly responsible for 

the higher AE values observed in the 2nd step. An alternative proton source may have been 

better in this regard, but the choice of HIS335 here is justified (section 4.1.2.4). 

4.1.2.3 Water behaviour 

The behaviour of water molecules around the reaction centre was investigated to examine 

the effect of desolvation on the energies of the different compounds during US simulations. 

This was performed using CPPTRAJ by measuring the number of water molecules in the 1st 

solvation shell around SG (3.4 Å from SG) and by calculating the radial distribution function 

(RDF) (section 3.7.2) of water molecules up to 5 Å around SG to inspect the change in 

density of water molecules as a function of distance. 

4.1.2.3.1 Single-stage simulations 

For the single-stage simulations, RDF graphs for the individual compounds are presented in 

Figure 4-21. The probability of finding water molecules in the vicinity of SG followed a similar 

pattern to that observed during the analysis of empty TG2 conventional MD trajectories as 

well as the trajectories for 275-ns MD applied on the complexes (section 3.9). This 

probability was highest at 2 Å from SG followed by another peak at 3 Å. No water molecules 

existed in any simulation at a distance of less than 2 Å from SG. 

 

Figure 4-21: RDF graphs for the 6 compounds during the single-stage simulations. 

0

0.5

1

1.5

2

2.5

3

3.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

R
D

F

Distance (Å)

1a

1c

1e

3j

3l

3o



Chapter 4   Quantum Mechanical Experiments 

196 

 

In the simulations for compounds 1c and 1e, there were no water molecules at all within 5 Å 

of SG. This has happened since the start for these 2 compounds during the generation of 

files for MD where AMBER LEaP program did not place any water molecules within 5 Å of 

SG during the solvation of the complex for the 2 compounds. The absence of water in these 

2 cases did not change with the application of initial minimisation, heating the system, 

equilibration or even QM/MM relaxation applied prior to the US simulations. 

The numbers of water molecules found in the 1st solvation shell for the individual 

compounds’ simulations are presented in the graphs in Figure 4-22. It should be noted here 

that the graphs in Figure 4-22 are continuous, so there cannot be 2 and 3 water molecules at 

the same time point, and they appear like that because there are too many time points in 

each graph. The final graph in Figure 4-22 represents the time from the 240th to the 260th 

picoseconds of the simulation of compound 3l and was presented to clarify the continuity 

issue. 

The lack of water molecules in the 1st solvation shell is very obvious for compounds 1c and 

1e (1e not presented). For compounds 1a and 3j, it can be clearly seen that there were 

some water molecules (up to 2 in compound 1a and up to 4 in compound 3j) in the initial 

stages of the simulations and that these water molecules left the solvation shell after the 

barrier height and the formation of the SG-EC bond. In compound 3l, there were between 2 

and 4 water molecules in the solvation shell, up to 3 of them stayed within the shell even 

after the formation of the SG-EC bond. A visual inspection of the trajectory of 3l showed that 

these molecules were beneath the reaction centre, deep in the catalytic tunnel and they 

were physically trapped there for the entire simulation (Figure 4-23). They did not affect the 

simulation in terms of desolvation effect as can be seen from the free energy of the reaction 

that fitted well with respect to biological activity (Figure 4-8). 

In compound 3o, solvation shell shows that there was a water molecule close to SG after the 

formation of the bond with EC. It has been confirmed that it was a single molecule and not 

multiple molecules moving in and out of the shell, by measuring the distance between SG 

and the oxygen atom of the water molecule in question over the entire simulation (Figure 

4-24). This molecule was tightly bound even after the SG-EC bond formation which occurred 

relatively early in this simulation. A closer look at the trajectory showed the involvement of 

this water molecule in hydrogen bonds with CYS277 SG in addition to hydrogen bonds with 

the bridging tryptophan residues, TRP241 and TRP332 and backbone atoms of CYS277. 

Figure 4-25 represents the last frame in the trajectory and shows hydrogen bonds binding 

the water molecule to the active site. 

 



 

197 

 

 

 

 
Figure 4-22: Graphs of the number of water molecules in the 1st solvation shell, as a function of simulation time all for single-stage simulations.Graph for 1e was 
identical to that of 1c and was not presented. The final graph represents 20 ps only from the original graph of 3l. The black line represents the barrier height. 
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Figure 4-23: The 3 water 
molecules (coloured blue) 
that were trapped in the 1st 
solvation shell during the 
single-stage simulation of 
compound 3l, in a frame 
after the SG-EC bond has 
been formed. 

 

Figure 4-24: Distance 
between SG of CYS277 and 
the oxygen atom of the 
problematic water molecule 
during the single-stage 
simulation for compound 3o. 

 

Figure 4-25: Hydrogen bonds 
with water molecule in 
compound 3o single-stage 
simulation.
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moving in the range of 2-3 Å. The failure of compound 3o active site to desolvate completely 

prior to the reaction may be the reason for the very high PMF reading for the compound 
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difficult part. The tightly bound molecule may have contributed to an increased rigidity of the 

3o-CYS277 adduct with the subsequent difficulty in the delivery of the proton to C2. If 

compound 3o was not included in the correlation made between the activation energies 

obtained from the single-stage simulations and biological activity (Figure 4-8), then the R2 

value for that correlation would jump to around 0.9 (Figure 4-26). 

High RDF values seen at 2 Å in Figure 4-21, which indicate higher probability for finding 

water molecules at this distance, may be explained by the fact that the bond between SG 

and EC was not formed until the later stages of the simulations. Therefore, as a function of 

the entire simulation, there is higher probability to finding a water molecule within 2 Å, but if 

only the later sections of the simulations were considered in RDF analysis, then no such 

high probabilities would have been produced. This has been confirmed once for compound 

3j where the RDF was calculated for the final section of the simulation, only considering the 

frames occurring immediately before the barrier height and those after them to the end of the 

simulation (Figure 4-27). The result showed no water molecules within 4 Å, to be followed by 

an RDF approaching unity and the normal water density. This behaviour of water following 

the formation of the bond can be compared to the RDF measured during covalent MD in 

section 3.7.2 (Figure 3-71). 

 

Figure 4-26: Correlation 
between biological activity 
as IC50 and AE for the 
acrylamide compounds, 
excluding compound 3o, 
during the single-stage PM3 
US simulations. 

 

Figure 4-27: RDF graphs for 
the simulation of compound 
3j, showing the probability 
calculated for the entire 
simulation and that 
calculated for the final part 
of the simulation after the 
barrier.
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4.1.2.3.2 Two-step simulations 

For the 2-step simulations, the solvation shell graphs for the compounds are presented in 

Figure 4-28. Again, there were no water molecules within 3.4 Å of SG in compound 1c entire 

simulation (not shown). For the other compounds, the desolvation effect was not very clear. 

In compounds 3l and 3o, the simulation started with more than one water molecule in the 

solvation shell but the number decreased to only 1 molecule towards the end of the 1st step, 

showing some desolvation. This was not seen in compounds 1a and 3j, in which the number 

of molecules has remained the same or even increased after the formation of the bond. A 

possible explanation could be that at the start, SG was negatively charged and was 

attracting the water molecules and when it was neutralised through the formation of the 

bond, some water molecules left; at the same time, the charge of both C2 and the carbonyl 

oxygen on the compounds was becoming more negative before the protonation, and this 

could supply another source for the attraction of water molecules. By the end of the 2nd step, 

the protonation is established and the number of water molecules declined. 

The simulation for compound 1e started with no water molecules in the solvation shell but 

after the formation of the bond, at around the 150th picoseconds, a water molecule appeared 

in the shell and stayed there for about 75 ps. Visual inspection and hydrogen bond analysis 

with VMD showed that it was a single water molecule arriving in the vicinity of SG and that 

this molecule was involved in a hydrogen bond with the carbonyl oxygen of compound 1e for 

43% of simulation time, which makes it relatively close to CYS277. When the water molecule 

appeared in the solvation shell it was because the carbonyl oxygen of the compound moved 

closer to CYS277 during the 2nd step of the umbrella sampling and dragged the water 

molecule along. The last graph in Figure 4-28 is for the frequency of the hydrogen bond 

between the water molecule and the carbonyl oxygen of compound 1e. 

In summary, water molecules did provide some desolvation effect during the single-stage 

simulations, and to some extent in the 2-step simulations. The better desolvation effect 

observed during the single-stage simulation could be attributed to the lack of a negative 

charge in the reaction centre with the formation of the 2 bonds at relatively the same time, 

and therefore, the lack of attraction for water molecules with the subsequent desolvation. 

Capoferri et al. (2015) studied a similar system, irreversible epidermal growth factor receptor 

(EGFR) inhibition with acrylamide-based inhibitors with an approach combining steered MD 

with US at the DFTB level of theory. The inhibitors also act by alkylating an active site 

cysteine residue (CYS797). The authors proposed a single stage concerted mechanism for 

the inhibition and identified desolvation of water molecules as a key event in the process. 
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Figure 4-28: Graphs of the number of water molecules in the 1st solvation shell for 2-step simulations, 3.4 Å around SG of CYS277 as a function of simulation time 
all.The black line marks the end of the 1st step. The last graph is for hydrogen bonds in compound 5 simulation. 
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Desolvation was relatively obvious in the single-stage simulations but those simulations 

could not explain the charges of the reaction centre, which was the main reason for applying 

the 2-stage simulations. In the latter, some tightly bound water molecules remained close to 

CYS277 during the entire simulations, and it was shown that such molecules were attracted 

by negative charges either of SG or those created on the system after the formation of the 

SG-EC bond. Hydrogen bonds with some active site residues also had their role for keeping 

some water molecules tightly bound within the active site. The charges of the atoms at the 

reaction centre, however, supported the hypothesis of 2 consecutive steps for the reaction. 

4.1.2.4 Choice or proton source 

It has been stated in the literature that there is a catalytic triad in TG2 consisting of CYS277, 

HIS335 and ASP358 (Pinkas et al. 2007; Iismaa et al. 2003). CYS277 is involved in the 

transamidation and deamidation reactions through the formation of a thio-ester bond with the 

amide group from a glutamine residue (Siegel & Khosla 2007). The role of the other two 

residues remains to be clarified. One possible contribution of HIS335 was suggested by 

Iismaa et al. (2003), which involves the interaction with CYS277 to form a thiolate-

imidazolium ion pair and both residues become charged. Protonated histidine is a well-

known proton donor in proteins (Liao et al. 2013). This and the fact that HIS335 is a 

constituent of TG2 catalytic triad were the main reasons behind using this residue as the 

proton donor to saturate the α carbon of the double bond (C2) on the acrylamide 

compounds. 

Lysine and arginine residues can act as proton donors, but in TG2 there are no lysine or 

arginine residues in the vicinity of the catalytic cysteine residue, where the protonation would 

occur. The proton from such a residue is at least 9 Å apart from C2 of the acrylamide and is 

positioned inappropriately, where supplying this proton would require folding the acrylamide 

compound and most probably would not allow for the formation of the SG-EC bond (Figure 

4-29). That would make HIS335 the best option available. The latter was not always very 

close to C2 but is positioned perfectly with respect to CYS277 to allow for the protonation 

without distorting the formed SG-EC bond. 

There were water molecules within the active site that may be closer than HIS335 to C2 of 

the acrylamide (Figure 4-29), as seen during the analysis of water behaviour. However, it 

was also confirmed that they were not uniformly distributed around the reaction centre 

between the compounds, and they were entirely missing in some cases (compounds 1c and 

1e). Therefore, a single and similar reaction coordinate that involves a water molecule is not 

easy to define, but remains a possibility, either as explicit source for the proton or as a 
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proton shuttle between one of the distant protonated residues and C2 of the acrylamide 

inhibitors. 

 

Figure 4-29: The closest 
arginine (ARG317) and lysine 
(LYS176) residues to C2 of 
the acrylamide within TG2 
active site for compound 1e. 
The figure labels C2 of the 
compound along with the 
distances between the 
potential protons and C2. 

For the inhibitors bearing sulfonium ion, a single-stage US mechanism was tried using a 

generalised distance coordinate as the difference between the bond to be formed (SG-EC), 

and the bond to be broken (EC-S+, the positively charged sulphur of the inhibitor) (D1-D2 in 

Figure 4-30), with PM3 and DFTB as the QM methods. The simulations managed to produce 

the appropriate products in which the bonds formed and broke correctly, but the associated 

PMF values gave an inverse trend when correlated to IC50 values; higher PMF values for the 

more active compounds. For that, the approach was not followed any further and the 

resultant data are not presented in this work. Instead, the reaction mechanism of sulfonium 

ion inhibitors was investigated with CAChe using the intrinsic reaction coordinate (IRC). 

 

Figure 4-30: The single-
stage mechanism for the 
inhibition of TG2 with 
sulfonium ion inhibitors 
that was investigated 
with US simulation, 
showing the distances 
involved in the selected 
RC. 

D1

D2
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4.2 CAChe Reaction Path Experiments 

4.2.1 Introduction 

4.2.1.1 CAChe reaction path 

The MOPAC 2000 (Molecular Orbital PACkage) (Stewart 2002) within CAChe (Fujitsu 

Limited 2006) was used to study reaction paths. Studies were performed using quantum 

mechanical methods by having a transition state structure (TS). A “map reaction” experiment 

could be performed to identify the TS. This type of experiment within CAChe uses a semi-

empirical method (such as AM1, PM3 or PM5) to minimise the system over a predefined 

reaction coordinate (RC) (a distance or an angle). The result is a potential energy surface 

(PES) for the system as a function of the change in RC. The minimum on the PES would 

correspond to a structure of the product and the nearest saddle point (hill) would represent 

the TS structure. 

Once the TS is found, the structure needs to be refined by a conjugate gradient energy 

minimisation. This is a minimisation algorithm that operates to ensure moving down the hill 

on the PES all the time. It does so by using information obtained from the previous 

minimisation step, so that reversed progress is avoided (Höltje & Folkers 2008). The 

minimisation is followed by a verification process, which is performed by calculating the 

vibrational frequencies of the molecule through a FORCE calculation (a method that 

calculates the force matrix of the system by calculating the 2nd derivative of energy as a 

function of atomic displacements, and uses the force matrix for predicting the vibrational 

frequencies). A true TS structure would have only one negative vibration corresponding to 

only one imaginary mode of vibration. This is the vibration along the reaction coordinate 

(CAChe-Group 2006; Stewart 2002). 

After the TS structure is verified, a “reaction path” experiment is applied. This is also a QM 

based method that explores the path from a TS structure to either reactants or products. The 

method utilises an intrinsic reaction coordinate (IRC) to calculate the path of the reaction 

(CAChe-Group 2006; Stewart 2002). The IRC is a minimum energy path using the steepest 

descent energy minimisation. The characteristic of this path is that it starts from a TS 

structure and moves towards either the reactants or the products, using mass-weighted 

Cartesian coordinates (Maeda et al. 2015). IRC was first proposed for the calculation of 

reaction paths by Fukui (1970). 
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The IRC reaction path method calculates the potential energy of the system along the IRC 

and annihilates the kinetic energy. The result is a collection of structures from reactants to 

products along the IRC with the potential energies of each. Typically, this would give a graph 

in which the energy starts at certain value (reactants) and increases along the IRC until 

reaching a maximum (TS) after which the energy drops and ends with a value that is lower 

than that of the reactant (Figure 4-31) (CAChe-Group 2006; Stewart 2002). This final value 

would correspond to the product. The difference between the energies of the reactant and 

the TS is the activation energy for that reaction; which, for our system, was hoped to 

correlate to the biological activity of the individual compounds. IRC is an established method 

for the calculation of the activation energy of chemical reactions (Ikuo & Ogawa 2014; 

Yoshimura et al. 2012; Baowei et al. 2007; Yang et al. 2003; Takai et al. 1998). 

 

Figure 4-31: A typical reaction path 
between reactants (R) and products 
(P) showing the activation energy. 

In CAChe, the method is inapplicable to large systems, and there is no functionality for 

splitting the system into QM and MM regions. As such, these experiments were applied to 

smaller systems including the ligand and CYS277. The compound set involved the active 

inhibitors bearing the sulfonium ion warhead. The compromise of not including the entire 

system was made because US simulations failed to produce informative correlations when 

applied to the sulfonium ion inhibitors. 

4.2.1.2 Starting structures 

Table 4-6 shows the sources of the starting structures for each of the compounds. The table 

also shows whether the structure has been minimised or not. If minimisation was performed, 

then it would have involved only the compound and CYS277 while everything else in the 

system was constrained with CAChe locking function which freezes the coordinates of the 

locked atoms. The procedure used for the minimisation is MM2 (Allinger 1977) and was 

performed within CAChe. For the compounds whose starting structures were not minimised, 

this was because the minimised structures did not give valid map files from which to extract 
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the TS structure. It should be noted, however, that minimisation and MD must have been 

applied at one stage in acquiring these starting structures (Chapter 3). 

Compound Source of starting structure Minimisation IC50 (µM) 

1b Frame at 98.895 ns of the 275 ns MD run Yes 0.277 

1d Docking complex of 1d in 245ns model Yes 0.7 

1f 
Frame at 4.225 ns of the 5-ns MD on 1f 

in 95ns model 
No 0.38 

3b Docking complex of 3b in 95ns model Yes 0.89 

3c 
Frame at 1.775 ns of the 5 ns MD run on 

3c in 90ns model 
Yes 1.4 

3h Docking complex of 3h in 90ns model No 1.07 

3m Docking complex of 3m in 155ns model Yes 1.5 

3n 
Frame at 4.925 ns of the 5-ns MD on 3n 

in 100ns model 
Yes 0.775 

Table 4-6: Source of the starting structures of sulfonium ion compounds. Their structures have been 
presented in Table 3-1 (p86) and Table 3-12 (p125). 

After the minimisation step (or the non-minimisation), all TG2 residues were deleted with the 

exception of CYS277, leaving just the reaction centre consisting of the inhibitor with the 

sulfonium ion and the nucleophilic active site cysteine residue. Therefore, the starting 

structures used for the reaction path experiments by CAChe had the effect of the presence 

of TG2 in the sense that the initial conformation of the compounds was a one produced 

within the enzyme. A conformation taken from a MD trajectory was preferred but if this did 

not produce a reasonable PES from which to extract a TS, then a docking complex has been 

used. The starting structures were chosen as having the shortest distance between EC of 

the ligand and SG of CYS277. 

4.2.2 Results and Discussion 

The results of the experiments on compound 1b will be presented in detail while the results 

for the other compounds will be summarised. As mentioned in the methods, two reaction 

coordinates were used to generate the potential energy surface for the system; the distance 

between SG and EC, and the angle between SG, EC and the positively charged sulphur of 

the ligands (S+) (section 2.2.2.2.1). The distance of the bond to be formed (SG-EC) has 

been tried as a reaction coordinate on its own but failed to produce informative results, and 

the same applies for the two bonds to be formed and broken (SG-EC and EC-S+) (details 

are presented later in this chapter). For compound 1b, the distance and angle values in the 

starting structure after minimisation were 4.225 Å and 88.1° respectively. The generated 

map file had 441 structures. Figure 4-32 shows a graph for the energies of these structures 

as functions of the reaction coordinates (PES). 
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The structure of the minimum (the lowest energy conformation on the PES) had values of 

1.645 Å and 125° for the reaction coordinates (the Minimum in Figure 4-32) and an energy 

value of -195.133 kcal/mole. The chosen TS structure had the same value for the angle as 

the minimum but the distance was 1.80 Å and the energy -113 kcal/mole. The TS structure 

should ideally be the maximum on the potential energy surface during the movement from 

the reactants to the products. However, since the distance of the bond that is supposed to 

be formed was allowed to change from its original value to 1 Å, the highest energy 

conformation was not realistic as the distance between the two atoms forming the bond was 

very short. 

 

Figure 4-32: PES produced from map experiment on 1b with the minimum and TS. Black axis is distance 
(Å), red is angle (degrees) and blue is energy (kcal/mole). 

The chosen TS structure was refined with PM3. The refinement process produced a TS 

structure with values of 2.36 Å and 150° for the distance and angle coordinates respectively. 

In this process, the energy of the refined TS dropped to -156 kcal/mole (Figure 4-33). This 

refined TS was verified by a FORCE calculation to give only one negative vibration (Figure 

4-34) indicating a true transition state. 

When the verified TS was used as a starting point for the “reaction path” experiment, a 

typical reaction path was produced (Figure 4-35). This represents the IRC values for the 

conversion from reactants to products and going through the TS. The energy of the reactant 

was higher than that of the product but the energy of TS was the highest. The potential 
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energies of the reactant, the transition state and the product were -190.5, -156 and -214.3 

kcal/mole respectively. The TS structure from the reaction path experiment had the same 

values for the energy, distance and angle as the TS obtained previously from the map 

reaction experiment after being refined. 

 

Figure 4-33: Left: TS structure before 
refinement. Right: TS structure after 
PM3 refinement.  The dotted line is used 
by CAChe to represent weak bonds. 

 

Figure 4-34: IR spectrum of 
refined TS showing ONE 
negative vibration (red).

 

Figure 4-35: reaction path for 1b starting from reactants (left) to products (right). 
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The first set of experiments (map reaction, TS refinement and verification and reaction path) 

was then applied to the rest of the compounds and their results are presented in Table 4-7. 

The presented results include the values of the reaction coordinates in the TS structure for 

each compound along with the activation energy values. All the energy values have been 

obtained from “reaction path” experiments on TS structures that were verified by showing 

only one negative vibration in the FORCE calculation. 

Compound 

TS Coordinates Energy (kcal/mol) 

Distance (Å) Angle (°) 
TS Reactant Activation 

Start End Start End 

1d 4.99 2.33 75.7 151 -123.10 -151.18 -28.07 

1f 5.64 2.31 45.6 151 -75.70 -109.57 -33.87 

3b 4.92 2.28 67 146 -126.00 -152.82 -26.82 

3c 5.65 2.32 43 143 -117.92 -146.68 -28.76 

3h 3.68 2.34 104.4 145 -98.32 -120.14 -21.81 

3m 5.67 2.35 104.7 147 -181.76 -204.81 -23.05 

3n 4.9 2.29 81.5 148 -173.63 -202.56 -28.94 
Table 4-7: Reaction coordinates and energy values for the remaining 7 compounds. 

It can be seen from the table that the values for the reaction coordinates are very similar 

between the different compounds. This indicates that the transition state that precedes the 

formation of the product would have these values for the coordinates if the warhead was an 

electrophilic carbon attached to a sulfonium ion being attacked by a nucleophilic thiolate ion 

of a cysteine residue. It can also be deduced from the table that the structure of the 

transition state around the reacting centre is not affected by the structure of the rest of the 

ligand molecule. In addition, it can be seen that despite the wide range of the starting values 

for the angle coordinate (43-104.7°), all the TS structures had values for this coordinate in a 

range of less than 8 degrees (143.6-151°). This implies that the nucleophile and electrophile 

should get into a semi-straight line before the reaction could occur. 

The charges of the 2 sulphur atoms and the orders of the bonds to be formed and broken in 

the TS structures are donated in Table 4-8. It is evident from the table that all the ligands 

followed a similar path during reaction in terms of the charges and bond orders. Other 

quantities that were found to be very similar in all TS structures were the distance between 

SG and S+ which ranged between 4.1 and 4.2 Å and the length of the bond to be broken 

which ranged between 1.98 and 2.08 Å (Figure 4-36). 

From the information presented so far, a proposed mechanism for the reaction of inhibitors 

having sulfonium ion warheads with the positively charged sulphur of the active site cysteine 

residue of TG2 may be drawn. Such a mechanism would involve the approach of SG to S+ 

accompanied by an increase in the charge of the first and a reduction in the charge of the 

latter. At the TS, an almost isosceles triangle is formed; at its sides are the bonds to be 
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formed and broken and the base is the distance between the 2 sulphur atoms (SG and S+). 

This is followed by the neutralisation of the charges of both sulphur atoms accompanied by 

the breaking of a bond (EC-S+) and the formation of a new bond (SG-EC) (Figure 4-37). 

Compound 

Partial Charge 
TS Bond order 

Reactant TS Product 

SG S+ SG S+ SG S+ Broken Formed 

1b -0.88 0.75 -0.57 0.33 0.02 -0.02 0.53 0.38 

1d -0.69 0.71 -0.61 0.33 -0.01 -0.03 0.54 0.37 

1f -0.84 0.67 -0.59 0.32 0.00 -0.01 0.51 0.39 

3b -0.89 0.72 -0.57 0.27 -0.02 -0.01 0.47 0.43 

3c -0.89 0.69 -0.55 0.31 -0.02 0.02 0.53 0.39 

3h -0.86 0.67 -0.55 0.33 0.00 0.04 0.53 0.38 

3m -0.73 0.69 -0.57 0.33 -0.01 0.02 0.55 0.37 

3n -0.82 0.65 -0.56 0.30 -0.01 -0.03 0.51 0.39 
Table 4-8: Charges and bond orders. 

 

Figure 4-36: Distance between SG and S+ and of the bond to be broken in the 8 TSs. 

These features are consistent with an SN2 reaction mechanism, where the nucleophile (SG) 

attacks the electrophile (EC) from the opposite side of the leaving group (S+), and at the 

transition state, the three reacting groups are in a straight line with an angle of 180° (Smith & 

March 2001). The range of angles seen in Table 4-7 for the transition states of the 

compounds, although very similar, does not reflect straight lines. However, angle values and 

the way they changed from their starting standards provide evidence that the system 

attempted to render the attack of SG from the opposite side of S+. The non-180° values for 

the angles may be explained by the attraction forces between the oppositely charged 

sulphur atoms (S+ from the sulfonium ion and S- from CYS277 thiolate ion) involved in the 

reaction, causing the two sulphur atoms to try to come close to each other with a resultant 

bending in the angle to the values reported in the table. 
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Figure 4-37: Mechanism of the reaction including the change in charges and reaction coordinates 
between reactants, TS and products. 

The bond orders of the TS structures reported in Table 4-8 are also consistent with SN2 

mechanism, where such a mechanism would involve the change in the hybridization of the 

electrophilic carbon from sp3 to sp2 at the transition state with a p orbital that is shared by the 

nucleophile and the leaving group (Smith & March 2001). This would result in partially 

formed bond with the nucleophile and a partially broken bond with the leaving group. the 

bond orders shown in the table indicate that the 2 bonds are weaker than a single bond, 

confirming a TS structure of an SN2 mechanism. 

One last characteristic of an SN2 mechanism is that the three non-reacting atoms attached to 

the electrophilic carbon are nearly coplanar at the transition state to increase the chances of 

overlap between the segments of the p orbital of the electrophilic carbon with the nucleophile 

and the leaving group (Smith & March 2001). Figure 4-38 represents a different view for the 

TS of compound 1b, and it shows EC with its 3 connected atoms. All the 4 atoms appear to 

be on approximately the same plane in space, again confirming the SN2 mechanism. 

The values for the activation energy for the compounds were plotted against their IC50 

values; and a near straight line was obtained. The R2 value for the line was 0.61 (Figure 

4-39). If compounds 3c and 3m were removed from the curve, the R2 value would rise to 

0.95 (Figure 4-40). This implies that the method works best in predicting the biological 

activity if the IC50 was equal to or less than 1 µM. 

 

Reactant TS Product

CHARGES

S+ SG S+ SG S+ SG

+0.75 -0.88 +0.33 -0.57 -0.02 +0.02
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Figure 4-38: TS structure for compound 1b in the 
stick form, showing EC and the three non-
reacting atoms attached to it in the ball form to 
confirm the coplanar geometry they adopt in 
accordance with SN2 mechanism. 

 

Figure 4-39: IC50 values for the 8 compounds versus their activation energies. IC50 values are given in 
Table 4-6. 

 

Figure 4-40: Correlation with biological activity for compounds with IC50 of 1 µM or less. 
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The same protocol was also attempted on two inactive compounds (2c and 4c). In both 

cases, a reasonable PES was obtained but proper TS could not be extracted. Multiple 

conformations were taken from the PES and refined to produce TSs with acceptable 

structures in terms of the distances and the angle but they could not be verified as true 

transition states, where there always was more than one negative vibration. Most probably, 

this was due to the fact that the resultant TS structures had high energy values, in the range 

of -70 to -85 kcal/mol. 

A single label for the distance of the bond to be formed has been tried as a reaction 

coordinate for compound 1b in the map reaction experiment and a TS structure was 

extracted from the resultant PES (Figure 4-41A). The TS was refined and verified to give one 

negative vibration but it could not produce a reasonable reaction path graph (Figure 4-41B) 

and hence no relevant structures for the product or the TS could be obtained. The distances 

for the two bonds to be formed and broken have also been tried as separate reaction 

coordinates in CAChe but the PES graph from the map reaction experiment was not 

meaningful; no reasonable TS structure could be extracted. This happens because the 

breakage of the EC-S+ bond cannot be controlled by a reaction coordinate, and it takes 

place immediately and suddenly after the SG-EC bond is formally created. The two failed 

experiments with the bond to be formed on its own and the two bonds separately were the 

justification for the use of the angle with the distance as the initial reaction coordinates. 

  

Figure 4-41: PES (A) and reaction path (B) graphs for compound 1b when using 1 label as the reaction 
coordinate. 

The IRC values in the reaction path graph shown in Figure 4-35 should not be interpreted as 

any of the original coordinates used in the beginning for the generation of the initial PES. 

The IRC represents the movements of all the atom in the system in angstroms in their path 

starting from the transition state and going to the reactants and to the products (Stewart 

2002). 

It has been shown during the course of this work that the structure of the transition state for 

the reaction of the inhibition of TG2 with compounds containing sulfonium ion is the same in 

-250

-200

-150

-100

-50

0

50

100

150

1 2 3 4 5

En
e

rg
y 

(k
ca

l/
m

o
l)

Distance RC (Å)

-188

-186

-184

-182

-180

-178

-176

-174

-172

0 10 20 30 40 50

En
e

rg
y 

(k
ca

l/
m

o
l)

IRC (Å)

TS 

A B 



Chapter 4   Quantum Mechanical Experiments 

 

214 

 

the area of the reaction and is not affected by the remaining structure of the ligand. Despite 

this observation, the method used was able to produce activation energies that could be 

correlated to biological activity. This implies that the conformation of the ligand in the starting 

structure was the factor that made the difference and this conformation is related to the 

structure of the entire ligand justifying the good correlation with biological activity. Such an 

outcome would compensate for not including the entire system in the calculations. 

4.3 Conclusions 

Quantum mechanical methods are important for modelling inhibitors whose activity involves 

the formation and breakage of covalent bonds. Umbrella sampling simulations combined 

with quantum mechanical treatment of the reaction centre were able to simulate the reaction 

between inhibitors carrying the acrylamide warhead and TG2 active site cysteine residue 

using HIS335 as a source for the proton required to saturate the alpha carbon of the 

acrylamide double bond. The reaction was simulated as a single concerted stage with PM3 

level of theory and as 2 successive steps with DFTB as the QM method. The 2 mechanisms 

produced reasonable correlations with biological activities for the compounds and had 

supporting evidence. The single-stage simulations, for example, showed a more obvious 

desolvation effect happening near the formation of the bonds, when one or more water 

molecules left the active site. The charge distribution around the reaction centre, during the 

2-stage simulations, was more consistent with the reaction proceeding as 2 separate 

consecutive stages, with the formation of an oxyanion intermediate at the end of the 1st 

stage. It can therefore be concluded that the studied reaction may proceed with either 

mechanism depending on the available evidence to support one of them. 

Reaction path experiments using CAChe were able to generate typical reaction graphs for 

the transition from reactants to products and going through the transition state for inhibitors 

bearing the sulfonium ion warhead. The fact that the structures of the transition states from 

the 8 compounds were similar around the reaction centre gives these structures reliability in 

predicting the mechanism of the reaction. The latter would involve the formation of an 

isosceles triangle; at its base are SG and S+ prior to the dissociation of the sulfonium ion 

and the covalent inhibition of TG2. An SN2 reaction mechanism was proposed, and evidence 

for such mechanism in this reaction system was presented, in the form of the angles at the 

transition states, the orders for the bonds to be formed and broken and the plane involving 

the electrophilic carbon and the three atoms attached to it.  The activation energies obtained 

and their good correlation with the biological activity further validate the method. 
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5 Allosteric Inhibition of TG2 

This chapter covers the computational work that was performed with respect to the allosteric 

inhibition of TG2. This involved docking experiments using proposed allosteric inhibitors, 

followed by MD simulations on the docked complexes. Accelerated MD was applied instead 

of conventional MD, because the change in TG2 that was expected from the binding of the 

allosteric inhibitors was supposed to involve the folding of a large portion of TG2, and such 

change is unlikely to be sampled using conventional MD. 

5.1 Introduction 

As mentioned in the general introduction (sections 1.2.2 and 1.2.3), TG2 is normally inactive 

by binding to GTP or GDP. The binding of these molecules induces a conformational change 

that involves the folding of the two C-terminal β-barrels onto the catalytic core, causing the 

unavailability of CYS277 for catalysis (closed, inactive TG2 conformation). Those natural 

regulators dissociate from TG2 in conditions associated with high calcium ion 

concentrations, with unfolding of the TG2 and the exposing of CYS277 for catalysis (open, 

active TG2 conformation) (Figure 1-2) (Jang et al. 2014; Liu et al. 2002; Pinkas et al. 2007). 

The work in this chapter aimed at examining the effects of the binding of 2 proposed 

allosteric TG2 inhibitors on the TG2 open conformation, and whether this binding can induce 

the closure of the TG2 structure. This was achieved by docking the inhibitors into a predicted 

TG2 allosteric site and applying accelerated MD on the resultant complexes. 

The 2 allosteric inhibitors used in this work were compound i3 by Case & Stein (2007), which 

was proposed by the authors to bind to an allosteric site in TG2, and compound i2 by Pardin, 

Roy et al. (2008) which was proven to be allosteric by Caron et al. (2012) (Figure 5-1) 

(section 1.4.1.2). The research associated with both compounds could not prove that the 

allosteric inhibitors would bind to the same site as GTP/GDP. 

 

Figure 5-1: Compounds i3 (left) and i2 (right) which were used as allosteric inhibitors. 

The GDP binding site is located in the cleft between the catalytic core and the first β-barrel. 

In the open conformation, these two regions are distinctly separate. In the crystal structure 
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1KV3 (Liu et al. 2002), in which TG2 is in closed conformation and complexed with GDP, 

there are 31 TG2 residues within 8 Å of the GDP molecule. Of these, 7 residues are on the 

catalytic core domain of TG2 while the remaining 24 residues are on the 1st β-barrel. In the 

open conformation of TG2 (2Q3Z), the 7 residues of the catalytic core are located on a 

distant region on TG2 from the 24 residues on the β-barrel (Figure 5-2). Furthermore, the 

largest section of GDP binding site from the 1st β-barrel is located on the surface of TG2. 

Consequently, it would be difficult to define a binding site for allosteric inhibitors in the open 

form of TG2 using the binding site definition from GDP-bound closed structures. 

 

Figure 5-2: TG2 closed, inactive (top) and open, active (bottom) conformations, showing the residues that 
are within 8 Å of GDP in the closed conformation (coloured yellow and red). Yellow residues are those on 
the catalytic core while red residues are those on the 1st β-barrel. 

Since it is the open form of TG2 that requires inhibition, it may be more appropriate to use a 

binding site for allosteric inhibitors that could be defined properly in the open conformation. 

This hypothesis was strengthened by the fact that no published research for allosteric 

inhibitors, to our knowledge, proved the binding site for the inhibitors to be the same as that 
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for GTP or GDP nor suggested an alternative binding site for allosteric inhibitors. Therefore, 

an approach has been employed to predict an alternative binding site for allosteric inhibitors. 

A collaboration was initiated with Dr Blair Johnston and his PhD student Antony Vassileiou 

from the Strathclyde Institute of Pharmacy and Biomedical Sciences at the University of 

Strathclyde. They developed a computational tool for the prediction of allosteric binding sites 

in proteins. Their approach involves performing analysis on MD trajectories of the studied 

proteins; the analysis comprises residue fluctuation, accessible surface area, energy 

correlation and simple intra-sequence differences (SID). SID (Pritchard et al. 2003) is a 

bioinformatics tool built to help understand the topology of protein folding. The collaborators 

used their protocol on a training set of 40 proteins with known allosteric sites from the 

Protein Data Bank and the protocol was able to predict the allosteric site correctly in the 

majority of cases. They presented their work as a poster in the MGMS (Molecular Graphics 

and Modelling Society) Meeting in August 2014 in the University of Strathclyde. The meeting 

was held between 20th and 22nd of August, 2014 under the name Modelling Molecules and 

Materials – M3 (http://www.m3glasgow.org.uk/). 

5.2 Methods 

5.2.1 Prediction of the allosteric binding site 

A MD trajectory of the open conformation of TG2 was sent to the collaborators in the 

University of Strathclyde for the prediction of the alternative binding site of allosteric 

inhibitors. The MD trajectory comprised a run that was applied starting from the 2Q3Z 

(Pinkas et al. 2007) crystal structure after adding and minimising the missing residues, but 

this time without removing any residues from TG2; the whole protein was used. Similar 

settings to those described in section 2.2.1.1 (MD simulation on empty TG2) were used 

here; minimisation followed by heating, equilibration and finally production. The MD 

simulation was run for a total of 252.075 ns. This MD simulation was performed by Dr Dan 

Rathbone of the School of Life and Health Sciences in Aston University, using the servers 

whose details were mentioned in section 2.1.1. 

The prediction protocol found a binding site composed of 10 residues and was located in a 

pocket surrounded by 3 helices at the end of the catalytic core domain of TG2. Before it was 

used in docking, residues were added at the beginning, middle and end of the segments of 

the predicted site to raise the number of residues involved to 27 (Figure 5-3). 

http://www.m3glasgow.org.uk/
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Figure 5-3: The predicted allosteric binding site by the Strathclyde protocol (top) versus the site used for 
docking purposes (bottom) after adding residues between the segments, both coloured yellow. GDP 
binding site is shown in red for comparison of the location of the 2 sites. 

5.2.2 Docking 

The GOLD program was used to run the docking experiments of compounds i3 and i2. The 

TG2 structure used as the model for docking was the last frame from the conventional 

252.075-ns MD run described previously. Similar settings to those used in the original 

dockings were used here, including the use of GoldScore as the primary scoring function 

and rescoring each pose with CHEMPLP. Early termination was turned off and 20 poses 

were generated for each of the 2 ligands. Ten residues from the core of the predicted site 

were chosen to be treated flexibly using the library option in GOLD. Default docking speed 

was used. The 27 residues from the predicted site used to define the binding site were 

(flexible residues are in bold): ARG377 ALA378 ILE379 LYS380 GLU381 PRO391 PHE392 

VAL393 PHE394 ALA395 GLU396 VAL397 ASN398 ALA399 THR442 TYR443 LYS444 

TYR445 PRO446 GLU451 GLU452 ARG453 GLU454 ALA455 PHE456 THR457 LEU462. 

5.2.3 Molecular dynamics 

Molecular dynamics was applied on the last frame from the 252.075-ns conventional MD 

without any ligands. Two docking complexes for compounds i3 and i2 in the predicted 
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allosteric site have also been subjected to MD. The aim was to examine whether the 

presence of the ligand in the predicted site would induce the closing of TG2 conformation 

into the inactive form. Since this involves a large conformational change, accelerated MD 

(aMD) was used at this stage. 

aMD was applied according to the procedure developed by Pierce et al. (2012). The systems 

were loaded into LEaP program for the preparation of the parameter and topology files after 

solvating with 8-Å octahedron of TIP3P water molecules. The systems were then minimised, 

heated and equilibrated using the same settings used previously and described in detail in 

section 2.2.1.1. The restart file from the equilibration stage was used as the starting structure 

for the aMD run. The aMD runs used the same settings used for the production runs 

previously in conventional MD with the addition of the “iamd” term which triggers aMD. The 

whole potential of the system was boosted with an additional boost for the torsions (iamd=3). 

The average potential energy obtained at the end of the equilibration phase was used to 

define the total boost (average potential energy + (0.16 kcal/mol.atom * number of atoms)) 

and the average dihedral energy was used to define the torsion boost (average dihedral 

energy + (4 kcal/mol.residue * number of the solute residues)). aMD was run over 30-ns 

trajectories to a total of 36 trajectories with a simulation time of just over 1 microsecond 

(unless otherwise specified). 

In addition to empty TG2 and the two docking complexes, 3 supplementary systems were 

subjected to aMD. These extra systems consisted of TG2 in its open form (the same 

structure used for the docking of the 2 allosteric inhibitors) around which 24 copies of each 

of the 2 allosteric inhibitors and GDP were placed at a distance of at least 7 Å from the 

protein surface. These copies were added manually using Accelrys DS Visualizer v4.0 

(Accelrys Software Incorporation 2013). Figure 5-4 shows the starting structures for these 

runs for compounds i3 and i2. 

Different analyses were performed on the resulting trajectories; mainly the RMSD and 

atomic fluctuations were measured using CPPTRAJ (Roe & Cheatham 2013), where the first 

frame of the production phase was always used as a reference and the calculations involved 

backbone atoms of TG2 residues only. Principal component analysis was also applied on 

some of the resultant trajectories. 
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Figure 5-4: The starting structures for the aMD simulations on TG2 surrounded by 24 copies of i3 (left) 
and i2 (right). 

5.2.4 Principal component analysis 

PCA was performed using the program pyPcazip (Shkurti et al. 2016). The trajectories were 

stripped of water and combined in a single trajectory for each individual simulation. The 

single trajectory was then treated with pyPcazip to calculate the principal components. 

Unless otherwise indicated, the top 2 components were considered. The program was also 

used to generate moving trajectories consisting of 20 frames each, to represent the motion 

in the protein represented by any principal component. The projections of each of the 

produced components can also be calculated by the program as a function of time. All PCA 

calculation were performed using only the alpha carbon atoms of TG2 residues. 

5.3 Results and Discussion 

5.3.1 Predicted allosteric binding site 

According to Jang et al. (2014), the catalytic core in TG2 ends with residue ASN460, and the 

1st β-barrel starts with residue GLY472. The 2 domains are connected by a strand composed 

of 11 residues, at its end the 2 C-terminal barrels fold on the catalytic core in the closed 

conformation of TG2. As shown in Figure 5-3, the location of the predicted allosteric binding 

site at the end of the catalytic core seems reasonable to handle the job of triggering the 

folding of TG2, since it is positioned just before the folding segments. GDP binds in a site 
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located at the beginning of the 1st barrel, just after the folding segment (Figure 5-5). 

Therefore, in theory, the predicted site is as close to the location of the folding event as the 

GDP binding site, and may have the potential to serve a similar function. 

 

Figure 5-5: TG2 in open conformation, showing the predicted allosteric binding site (yellow), the folding 
segment (green) and GDP binding site on the 1st β-barrel (red). 

To further confirm the prediction, the prediction protocol from the Strathclyde group was 

additionally applied on a 100-ns MD trajectory of TG2 in the closed conformation [PDB 1KV3 

(Liu et al. 2002), conventional MD run performed with the same settings used previously]. 

The aim was to examine the difference in prediction with the starting conformation of TG2. In 

this case, the predicted site was located in the N-terminal β-sandwich, far away from the 

catalytic core, the portion of TG2 that will close on the active site and the GDP binding site. 

This new site has been discarded and the one obtained from the open form of TG2 was 

used. The main evidence was based on proximity measures; the 1st predicted site was in the 

form of a pocket and was located just before the folding segments. The new predicted site, 

in addition, was on two separate regions separated by a wrapped sheet, indicating that it 

would be difficult to define a binding site (Figure 5-6). 

 

Figure 5-6: Closed 
conformation of TG2 
showing the binding site 
predicted from the 
trajectory of closed TG2 
(red) versus the original 
prediction (yellow) and 
showing GDP in its 
binding site. 
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5.3.2 Docking results 

Since the binding site used in these experiments is novel, there is no experimental or 

computational pose that could be used as a reference for an appropriate docking pose. 

Visual inspection was, thus, used to judge the 20 poses generated by GOLD, in addition to 

GoldScore ranking. One pose was selected for each compound, in which the compounds 

were more deeply embedded within the predicted allosteric site than the remaining solutions. 

Furthermore, the poses for the 2 compounds were ranked 2nd in GoldScore out of 20 

solutions. In each pose, there was a network of interactions holding the compound in place, 

mainly in the form of Pi interactions (Figure 5-7). Therefore, even though there was nothing 

to compare to, these poses were deemed to be appropriate and were considered for aMD 

simulations to test whether the presence of allosteric inhibitors in this binding site would 

trigger the conformational change brought about by the binding of GTP and GDP. 

5.3.3 Results of accelerated MD 

aMD is an enhanced sampling technique that enables the exploration of rare events which 

require passing high-energy barriers on the energy surface of the system, and the technique 

works by adding a boosting potential to the system when the energy falls below a predefined 

value (section 1.5.2.3.4) (Miao et al. 2014). It has been used to capture biomolecular events 

that involve relatively significant conformational changes such as the activation of the M2 

muscarinic receptor, a G-protein coupled receptor (GPCR) that regulates heart rate, through 

the relocation of some residues and a tilting event involving one of the alpha helices of the 

protein (Miao et al. 2013). aMD has also been used specifically to investigate allosteric 

inhibition, one example involved interleukin-1 receptor (IL-1R) allosteric inhibitors in terms of 

binding sites within IL-1R as well as the conformational changes brought about by the 

binding (Yang 2015). 

As mentioned in the ‘Methods’ section, aMD was applied on 2 docking complexes for i2 and 

i3, on empty TG2 in the open form and on open TG2 surrounded by 24 copies of the 2 

allosteric inhibitors and GDP. The results of these simulations will be presented individually. 

5.3.3.1 aMD on empty TG2 (Run 1) 

This aMD run was performed as a control for the other runs, to assess the behaviour of TG2 

in an aMD simulation with the absence of any ligand anywhere in the protein. Run 1 was 

allowed to proceed for 1,000 ns (1 µs). At the end, there was some kind of motion that 

involved the hinge region connecting the terminal β-barrel to the rest of TG2. The terminal 
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barrel showed the highest degree of fluctuation compared to other regions of TG2, and this 

is more clearly seen with the atomic fluctuations of the individual residues (Figure 5-8). 

 

Figure 5-7: Docking complexes for compounds i3 and i2 in the predicted allosteric site of TG2. At the top 
are the poses within the predicted site which is coloured red while the rest of the protein is dark green. 
At the bottom are the interactions of each compound with residues in the predicted site. Green dotted 
lines are hydrogen bonds, light purple lines are Pi-alkyl interactions, dark purple lines are Pi-Pi 
interactions, orange lines are Pi-ion interactions. 

i3
i2

i3

i2



Chapter 5   Allosteric Inhibition of TG2 

225 

 

The fluctuation of the terminal barrel produced bending in TG2 structure. The bending was 

mainly to the outside of TG2 structure and not towards the catalytic core, although some 

degree of bending to the inside was also observed. A better appreciation for the type of 

bending in the terminal barrel during Run 1 can be obtained by analysing the PCs of the run. 

When the trajectory of Run 1 was analysed with pyPcazip, ten principal components were 

produced. The 1st PC accounted for 72% of all the motion in TG2, while the 2nd and 3rd 

highest PCs contributed only 15%. Those PCs are shown in the graph presented in Figure 

5-9. 

 

Figure 5-8: Atomic 
fluctuation values for TG2 
residues during Run 1. 

 

Figure 5-9: PCs obtained by 
pyPcazip for the trajectory of 
Run 1. 

The animation produced for pyPcazip for the 1st PC is presented in Figure 5-10 and shows 

that the motion to the side was of a similar magnitude to the motion towards the catalytic 

core. This indicates that it may be difficult for TG2 to achieve the full bending required for the 

closure of the conformation with the subsequent inactivation of the enzyme. In any case, the 

bending event was not observed until more than half of the simulation was done. This was 

confirmed by visual inspection of the trajectory as well as by measuring the RMSD for TG2 

backbone atoms for Run 1 (Figure 5-11). It was found that the 2nd β-barrel was oscillating 
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from the start of the simulation but the bending was not evident and permanent until around 

560 ns of simulation time. 

 

Figure 5-10: Animation of PC1 for Run 1 shown as a side view of TG2 (top) to view the bending towards 
that catalytic core and a back view (bottom) to view the bending to the sides. 

 

Figure 5-11: RMSD for TG2 
backbone atoms during Run 
1.
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5.3.3.2 aMD on TG2 with 24 copies of GDP (Run 2) 

This aMD simulation involved the same TG2 open conformation used as the basis for the 

allosteric work surrounded by 24 copies of GDP. The rationale was to see whether one of 

the GDP molecules would find its way to the original allosteric binding site, and if a copy did, 

will it be able to induce the closure of TG2 conformation? A docking complex was not 

considered a possibility since it is difficult to define a binding site that is located on the 

surface of the protein, which is the case with GDP binding site when TG2 is in the open 

conformation. The simulation was allowed to run for a total of 635 ns of simulation time. In 

the simulation, again, it was the 2nd β-barrel that showed the greatest amount of atomic 

fluctuation as manifested by the RMSF values presented in Figure 5-12. 

 

Figure 5-12: Atomic 
fluctuation values for TG2 
residues during Run 2, when 
TG2 was surrounded by 24 
copies of GDP, and those 
from Run 1 (empty TG2). 

Visual inspection of the trajectory revealed that there was a considerable oscillation involving 

the terminal barrel at the start of the simulation, which did not result in any noticeable 

bending in the TG2 structure. Towards the end of the simulation, at ≈ 530 ns, a significant 

change in the conformation of TG2 was starting to develop. The change was manifested as 

a bending event that involved the hinge region connecting the two C-terminal β-barrels to 

TG2. There was not any noticeable change in the 2nd barrel with reference to the 1st. By the 

end of the simulation, the TG2 open conformation was transformed into a structure in which 

the two terminal barrels were straight with reference to each other and almost on a right 

angle with respect to the catalytic core and the N-terminal β-sandwich. A comparison 

between the structure at the start and the end of Run 2 is given in Figure 5-13, showing a 

clearer representation of the bending. 
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Figure 5-13: A comparison of 
TG2 structure at the end 
(blue and yellow) and start 
(red) of Run 2. The last two 
barrels are coloured yellow 
while the remainder of TG2 
is blue in the “end” 
structure. CYS277 is shown 
as space filling to appreciate 
the direction of bending. 

The RMSD of TG2 during Run 2 is given in Figure 5-14, and it can be used to explain the 

events that signified this run. In the first 100 ns there was a considerable oscillation that 

involved the 2nd barrel and resulted in high RMSD values for TG2 during this time. This was 

followed by a rather stable run for the next 400 ns. The bending event that resulted in the L-

shaped TG2 structure was not very clear on the RMSD graph, perhaps because it happened 

very smoothly. This was the rationale for measuring the RMSD for the terminal barrels only, 

which is also presented in the same graph. This graph more clearly shows the bending event 

which started at around 530 ns and continued until the simulation was stopped. 

 

Figure 5-14: RMSD for TG2 in Run 2, compared to that of the 2 terminal β-barrels during the same run. 

With regard to the behaviour of GDP copies, it was noted that 18 out of the 24 copies 

wandered around TG2 structure during the entire simulation, and that only six copies 

managed to settle themselves within different distinct regions of TG2 structure and remain in 

their spots for relatively long durations of time. No important positions were taken by the 6 

copies; the predicted allosteric site and the actual active site of TG2 did not attract any copy. 

The exception, however, was the original GDP binding site, to which one of the 24 copies of 

GDP was attracted (Figure 5-15). 
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Figure 5-15: The six GDP copies (in 
the stick form) that settled within 
distinct TG2 locations in Run 2. The 
predicted and original allosteric 
sites are shown in yellow and red 
respectively for reference, in 
addition to CYS277 (space filling). 

 

The copy of GDP within the GDP binding site started to settle in the area at around 400 ns, 

and since this was the only important event related to the movement of the copies, it can be 

assumed that the event ultimately led to the bending of TG2 structure from the middle. There 

were 14 TG2 residues lying within 5 Å of the GDP copy at the end of Run 2. Six of them 

were identical to those lying within the same distance in the closed TG2 conformation in 

1KV3 crystal structure (Liu et al. 2002). 

In addition to the induced bending, the GDP copy in Run 2 showed some of the 

characteristic interactions holding GDP in place in the 1KV3 crystal structure (Liu et al. 

2002), namely hydrogen bonds and electrostatic interactions between the phosphate groups 

of GDP and the positively charged side chains of ARG476 and ARG478 (Figure 5-16). An 

analysis of the hydrogen bonds in the region of the trajectory of Run 2 when GDP copy 

settled itself within the GDP binding site (from 400-635 ns of simulation time) showed very 

frequent hydrogen bonds with ARG476 and ARG478 (51% and 53% respectively of the 

analysed 235 ns). 

The TG2-bending event seen in Run 2, which could be a reasonable predecessor for the 

closure of TG2 conformation, and the pattern of interactions seen in the run can give an 

indication that the copy of GDP has managed a plausible binding within TG2 to induce a 

conformational change, and that the aMD run was able to simulate the induced 

conformational change in TG2 to some extent. 
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Figure 5-16: Interactions between GDP and TG2 residues, in 1KV3 crystal structure (left) and in the last 
frame in Run 2 (right), shown as dotted lines. Hydrogen bonds are green while electrostatic interactions 
are orange. 

5.3.3.3 aMD on compound i2 

5.3.3.3.1 aMD on i2 docking complex (Run 3) 

During the aMD run applied on the docking complex for compound i2 (Figure 5-7), the 

compound moved outside its starting position after about 100 ns of simulation time only. The 

compound did not leave the predicted pocket entirely but was not as deep as it was when 

the simulation started. This was confirmed by measuring the RMSD values for the 

compound on its own using the 1st frame as a reference (TG2 was aligned against the 1st 

frame) (Figure 5-17), which showed that there was a considerable movement of the 

compound at around 100 ns. The simulation was discontinued after 395 ns because of this 

motion of i2. A pose comparison for the compound at the start and end of the simulation 

within the predicted site is presented in Figure 5-18. 

 

Figure 5-17: RMSD values for 
compound i2 during Run 3. 
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Figure 5-18: A comparison between the pose of compound i2 at the start of Run 3 (left) and the pose after 
395 ns of simulation time (right). TG2 is dark green and the predicted allosteric site is red. 

When TG2 itself was examined, it was observed that the enzyme maintained its open 

conformation without any significant change. This also encouraged the discontinuation of the 

simulation. A comparison between the starting and the final conformations of TG2 in this 

simulation is shown in Figure 5-19. When the RMSD of TG2 was calculated, it gave a similar 

insight in that the protein was relatively stable (Figure 5-20). There appears to be, however, 

a slight shift in the 2nd β-barrel. This was verified by a calculation of the atomic fluctuations 

(root-mean-squared-fluctuations, RMSF) of the individual residues (Figure 5-21) which 

proved greater flexibility in the final ≈ 100 residues of TG2 (2nd β-barrel). 

 

Figure 5-19: A comparison between the structure of TG2 at the start (blue) and the end (red) of Run 3. 

Visual inspection of the trajectory with the VMD program showed that this movement was in 

the form of an oscillation affecting the 2nd β-barrel, where it moved to the inside of TG2 and 

then out again; sometimes very quickly between successive frames, which were 25 ps apart, 

and sometimes over extended periods such as the shift in the RMSD that happened around 
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the 100th ns. Because no permanent change in TG2 structure was observed, it may be 

assumed that i2, in the predicted site, does not have an influence on TG2 structure. 

 

Figure 5-20: RMSD for TG2 
during Run 3. 

 

Figure 5-21: Atomic 
fluctuation scores for TG2 
residues in Run 3. 

5.3.3.3.2 aMD on TG2 with 24 copies of i2 (Run 4) 

The rationale behind running this simulation was to examine the potential of the predicted 

allosteric site to be recognised by an allosteric inhibitor that is not in its immediate vicinity. 

Run 4 was allowed to continue for a total of 320 ns, at the end of which none of the copies 

was able to find its way into the predicted binding site, but 7 copies managed to locate 

themselves in the surrounding area of the site. It was also noticed that the terminal β-barrel 

was facing inwards, in the same direction of the folding in the closed conformation of TG2 

(Figure 5-22). 

The remaining copies were distributing themselves around the surface of the protein during 

the simulation, and none achieved a pose in which it was embedded within any region of the 

protein. One copy, however, (orange, Figure 5-22) was located in the section of the GDP 

binding site that is on the 1st β-barrel (Figure 5-23). This started to happen early in the 

course of the aMD simulation, where the copy started to move into the vicinity of the GDP 

binding site at around the 1st nanosecond of the production phase (6th nanosecond of 
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simulation time). The copy stayed in the vicinity for about 120 ns and then started to move in 

and out of GDP binding site for about 30 ns, at the end of which the copy settled within the 

pose shown in Figure 5-23. It is at this time that the 2nd β-barrel of TG2 started to fold toward 

the catalytic core. These events are better appreciated by inspecting the RMSD graph for 

this i2 copy (Figure 5-24). 

 

Figure 5-22: TG2 with the 24 
copies of i2 at the end of Run 4. 
The 7 copies that came close to 
the predicted site are coloured 
green, the predicted site is red 
and the 2nd β-barrel is coloured 
yellow. i2 copy residing in GDP 
binding site is coloured orange. 

 

Figure 5-23: Another angle for TG2 from Figure 5-22 
showing i2 copy (orange) on the GDP binding site 
within the 1st barrel (coloured red). 

 

Figure 5-24: RMSD graph for 
i2 copy that positioned itself 
in the GDP binding site 
during Run 4. 
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The shift in RMSD that occurred at around 225 ns (Figure 5-24) was caused by the copy of 

i2 leaving the GDP binding site, but it went back in and stayed there for the rest of the 

simulation, where it was adopting the pose seen in Figure 5-23. The bending in TG2 

structure was not affected by this motion and did not change once it was there. 

To further confirm that the i2 copy was residing in GDP binding site, DS Visualizer 4.0 was 

used to inspect the residues that are within 5 Å of GDP in 1KV3 crystal structure (Liu et al. 

2002), and those that are within 5 Å of i2 in the last frame of Run 4. There are 16 residues 

within 5 Å of GDP in 1KV3, 14 of them are located on the 1st barrel and 2 are on the catalytic 

core. There were 20 residues within 5 Å of i2 copy in the last frame of Run 4, 12 of which are 

identical to those that surround GDP in 1KV3, confirming that i2 was actually within a site 

that very much resembles that of GDP binding (Figure 5-25). When the atomic fluctuations of 

TG2 residues were measured, the residues for the 2nd β-barrel were found to have moved 

more when compared to the remaining residues in TG2 and when compared to the same 

region during the simulation applied on i2 docking complex (Run 3) (Figure 5-26). This is 

consistent with the 2nd barrel moving towards the inside of TG2 and attempting to produce 

the closed inactive conformation of the enzyme. Although the end result was not a fully 

closed conformation as that in 1KV3, it was a move in the right direction. 

 

Figure 5-25: Left: Residues within 5 Å of i2 copy at the end of Run 4. Right: Residues within 5 Å of GDP in 
1KV3 crystal structure. i2 and GDP are coloured by element and TG2 residues are shown as stick and 
coloured green if they are common and red if they are not. 
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Figure 5-26: Atomic 
fluctuation values for TG2 
residues during runs 3 and 
4. 

The results from the 1st simulation applied on the i2 docking complex (Run 3) indicate that 

compound i2 may not be a suitable binder in the predicted allosteric site or that the predicted 

site is not a true allosteric binding site. The results from the 2nd simulation give an indication 

that i2 has the potential to reside within the binding site of GDP and by doing this, the 

compound triggered a conformational change in TG2 that, to some extent, resembles what is 

induced by the binding of GTP or GDP. This was the inspiration that motivated the 

application of an aMD simulation starting from the last frame of Run 4 after removing all i2 

copies with the exception of the copy located within the GDP binding site (next section). 

5.3.3.3.3 aMD on TG2 with 1 copy of i2 

i2 copies from the previous simulation (Run 4), with the exception of the copy in the GDP 

binding site, were deleted for 2 reasons; the first was to reduce the computational cost by 

reducing the size of the system and the associated water box, and the second was to 

examine whether the TG2 bending was actually triggered by the binding of i2 in this site and 

not from the presence of another copy elsewhere. To further confirm that the bending was 

triggered by the binding of i2 copy in the GDP binding site, another aMD simulation was 

started which was identical to the one described here with the deletion of all the i2 copies 

including the one in the GDP binding site. 

The simulation with i2 copy (Run 5) was allowed to continue for 1,000 ns (1 µs), and at its 

end, the conformation of TG2 did not change much from that at the end of the previous run 

(Run 4) (Figure 5-27). The copy of i2 that started in the GDP binding site did not stay there 

for the entire simulation. i2 molecule left the binding site after about 850 ns and was 

wandering around the surface of TG2 until it settled itself at some point on the surface in the 

middle of TG2 molecule. This event of i2 leaving the GDP binding site did not affect the 

conformation of TG2 in terms of the bending. The RMSD of i2 molecule on its own is shown 

in Figure 5-28, in which it can be clearly seen that there was a major motion involving i2 
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molecule. This motion was confirmed to be involving the exit of i2 molecule from the GDP 

binding site by visual inspection of the trajectory with VMD. 

 

Figure 5-27: TG2 
structure at the 
end of Run 5 (red) 
compared to that 
at the end of Run 4 
(blue).

 

Figure 5-28: RMSD for i2 
during Run 5. 

When the atomic fluctuations (RMSF) values for TG2 residues during this run were 

measured, the graph in Figure 5-29 was produced. The movement of the terminal barrel was 

much lower in Run 5 when compared to Run 4. This indicates that this barrel did not move 

much in this aMD simulation, and that the bent shape of TG2 produced during Run 4 was 

maintained during this run. 
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orientation of the section involving the 2nd β-barrel seen during Run 1. A comparison in the 

direction of bending for this run with that of Run 1 and Run 4 is presented in Figure 5-30. 

 

Figure 5-29: Atomic 
fluctuation values for TG2 
residues in Run 5 compared 
to those from Run 2. 

 

Figure 5-30: Conformation at the end of Run 6 (red) compared to that at the end of Run 4 (green), and the 
one at the end of Run 1 (blue), showing CYS277 to appreciate the direction of bending of the 2nd β-barrel. 

This conformational change started to happen at around the 350th nanosecond, and the new 

form of TG2 was maintained for the remainder of the aMD simulation. The conformational 

change in TG2 observed during Run 6 may be better appreciated by examining the RMSD 

graph for the run. The graph is presented in Figure 5-31. RMSD for Run 5 is also presented. 

In Run 5, TG2 structure was mostly stable as the bent conformation of TG2 was preserved 

throughout the simulation. This has been confirmed by measuring the atomic fluctuations for 

the individual residues (Figure 5-29). For Run 6, the time and magnitude of the 

conformational change can be clearly seen in Figure 5-31. To confirm that the change in 

TG2 conformation mainly affected the 2nd β-barrel, atomic fluctuations for Run 6 were 

calculated. RMSF values are presented in Figure 5-32, which show that the residues of the 

terminal region of TG2 in Run 6 moved more than their counterparts in Run 5, and more 

than those in the remainder of TG2. 
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Figure 5-31: RMSD for Run 6, 
compared to that of Run 5. 

 

Figure 5-32: Atomic 
fluctuations for TG2 residues 
in Run 6 compared to those 
in Run 5. 

Although the final result of Run 6 did not have TG2 in the open conformation, the change in 

the direction of the bending of the 2nd β-barrel towards the outside of the catalytic core and 

the persistence of this change throughout the simulation indicates that it was no longer 

possible for TG2 to be folded into the correct closed form. The same bending orientation has 

been noticed when aMD was applied on empty TG2 in Run 1, possibly indicating that it is a 

possible orientation active TG2 can adopt, but that cannot progress into a fully closed 

inactive structure. 

The results from the 4 aMD simulations applied with i2 can be used to draw some 

observations. No change in the conformation of TG2 was observed after Run 3, in which i2 

was docked into the predicted allosteric site. This, combined with the fact that the i2 

molecule did not maintain its pose within the predicted site, may indicate that the predicted 

site is not a suitable binding site for i2, or that i2 is not an allosteric inhibitor. The latter is 

actually consistent with the research in which i2 was first mentioned (Pardin, Roy, et al. 

2008), where the compound was presented as a reversible competitive inhibitor of TG2. The 

aMD simulation with the 24 copies of i2 (Run 4) showed something different. There was one 

copy that managed to position itself within the section of the GDP binding site that is located 

on the 2nd β-barrel of TG2. This positioning of the i2 copy was associated with a change in 
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the general conformation of TG2, manifested as the bending of the terminal barrel towards 

the catalytic core of TG2. 

Run 5 was performed to test whether the pose of i2 within the GDP binding site could induce 

further bending in TG2 to result ultimately in closure of the enzyme conformation after 

removing the other 23 copies of i2. The simulation finished with the same general 

conformation of TG2 with which it started; no further bending was observed. Furthermore, 

the i2 molecule left the GDP binding site, although this did not take place until late in the 

simulation. Run 6, which was identical to Run 5 minus the i2 copy, resulted in a change in 

the direction of bending of the terminal barrel; in Run 5 the possibility of complete closure of 

TG2 conformation was still there, while in Run 5, further bending in the same direction would 

have resulted in a totally unrealistic enzyme structure. Since the only different parameter 

between Run 5 and Run 6 was the presence of the i2 copy, it could be said that i2 has the 

potential to induce large conformational change in TG2 structure, similar to that produced by 

GTP and/or GDP by binding to a similar site. 

5.3.3.4 aMD on compound i3 

5.3.3.4.1 aMD on i3 docking complex (Run 7) 

This aMD run started with compound i3 docked into the predicted allosteric binding site and 

the run was continued for a total of 1,000 ns of simulation time. The i3 pose within the 

predicted site did not change much during this simulation; although it appeared to have been 

more deeply embedded in the site at the start of the simulation than it was at its end (Figure 

5-33). The RMSD graph for i3 in Run 7 is shown in Figure 5-34. In the same figure, there is 

a comparison with the RMSD for compound i2 during Run 3, and it can be observed that i3 

was more stable in its simulation than was i2. This indicates that i3 is a more suitable binder 

in the predicted allosteric site than i2. 

With regard to TG2 behaviour in Run 7, it was detected that there was a bending in the 

enzyme structure, also involving the hinge between the 1st and 2nd β-barrels. It was similar to 

the bending observed during aMD on TG2 with 24 copies of i2 (Run 4). The barrel was 

bending towards the inside of TG2 to close on the catalytic core and CYS277. Figure 5-35 

presents the structure of TG2 at the end of Run 7, superimposed on TG2 structure at the 

start of the run, and it is clear from the figure that there was considerable bending in TG2 

structure. The bending event started to appear in TG2 after about 320 ns of the simulation 

time, and persisted in the same form for the remainder of the simulation time. This is 

confirmed by inspecting the RMSD graph for TG2 during Run 7 (Figure 5-36), which 
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demonstrates that there was an increase followed by stabilisation in RMSD after 320 ns of 

simulation time. 

 

Figure 5-33: A comparison of the pose of i3 within the predicted site (red) between the docking complex 
(left) and the conformation at the end of the Run 7 (right). 

  

Figure 5-34: RMSD graphs, the Y-axis represents RMSD values in Å. On the left is RMSD of i3 during Run 
7 and on the right is the RMSD of i3 in Run 7 compared to that of i2 in Run 3 for the same length of the 
simulation time. 

To further confirm that the bending event was the major general motion of TG2 during Run 

7, the atomic fluctuations of the individual residues of TG2 were recorded. The results are 

presented in Figure 5-37 where the RMSF values are shown in comparison with those from 

Run 4. The relatively large motion of terminal barrel during the simulation is obvious and can 

be easily be compared to that observed in Run 4. 
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Figure 5-35: TG2 structure at the start of Run 7 (blue) and after 1 µs (red), showing the bending of the 
terminal barrel (green for start and yellow for the end of the simulation), and showing CYS277 to 
appreciate the direction of bending. 

 

Figure 5-36: RMSD graph for 
TG2 residues in Run 7. 

 

Figure 5-37: Atomic 
fluctuations for TG2 residues 
during Run 7, compared to 
those of Run 4. 

Additional confirmation for the bending event was performed using PCA. pyPcazip was able 

to extract 10 PCs from this aMD simulation representing the most important modes of motion 

observed in the trajectory. These PCs are presented in Figure 5-38, which shows the 

percentage contribution of the major 3 PCs to the total motion in TG2 structure. The first PC 

0

2

4

6

8

10

12

14

16

0 200 400 600 800 1000

R
M

SD
 (

Å
)

Time (ns)

0

2

4

6

8

10

12

14

16

18

20

0 100 200 300 400 500 600 700

R
M

SF
 (

Å
)

Residue #

TG2-i3 docking complex (Run 7)

TG2-i2 24 copies (Run 4)



Chapter 5   Allosteric Inhibition of TG2 

242 

 

accounts for about two thirds of the motion performed by TG2 during Run 7 aMD simulation, 

and the second major PC contributes only ≈ 15%. The animation produced by pyPcazip for 

the first and most important PC of Run 7 is presented in Figure 5-39 which shows that the 

PC mainly involved the terminal barrel of TG2. When the frames are coloured by time step, 

the result is an open conformation of TG2 at the beginning of the simulation and a bent 

conformation involving the hinge connecting the 2nd β-barrel to the rest of TG2 at the end. 

The bending is the most important component of this PC since, as can be seen from the 

figure, the rest of the protein is mostly stable and have the same structure at the start and 

the end of the simulation. 

 

Figure 5-38: PCs produced 
for Run 7 and the 
contribution of each to the 
total motion of TG2 during 
the run. 

 

Figure 5-39: The animation 
produced by pyPcazip for 
the first PC of Run 7, 
showing the 20 frames, and 
the frames are coloured by 
time step, where red 
represent the start and blue 
the end of the simulation. 

Figure 5-39 cleary shows that the motion that accounted for 64% of total TG2 motion during 

Run 7 involved the terminal β-barrel and was in the direction that resulted in the bending of 

the TG2 in a manner that could result in the closure and subsequent inactivation of the 

enzyme. It should be noted, however, that there was a considerable oscillation involving the 

barrel and it is the frame with the darkest blue colour that represents the final form of TG2 in 

this simulation. This means that the bending did not go all the way in the fashion presented 

in Figure 5-39, rather to the frame with the darkest blue colour. 
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When the second PC was considered, it was noted that the motion represented by this PC 

also involved the terminal β-barrel. The difference was in the direction and intensity, where 

with the 2nd PC, the motion was in the form of oscillation of the terminal barrel to the sides of 

TG2 rather than towards the catalytic core of the enzyme. A visual inspection of the 

associated animation (shown in Figure 5-40) gives a clearer understanding of the mode of 

motion of TG2 terminal barrel presented by this PC; most importantly, its direction and the 

locations of the starting and end frames which were essentailly in the same position at the 

middle of TG2 with reference to the direction of motion within this PC. This confirms that the 

2nd PC involved only oscillation affecting the terminal β-barrel. 

 

Figure 5-40: The animation produced by pyPcazip for the second PC of Run 7, showing the 20 frames 
(left) coloured by time step. The first and final frames are shown to the right. 

The analysis of the animations from the top two PCs was followed by investigating the 

projections of each PC into the general subspace as a function of time. The graph in Figure 

5-41 was produced from which two important observations can be drawn. The first is the 

magnitude of PC1 when compared to PC2, especially in the first 300 ns of simulation time, 

from which the percentage contributions of the two PCs in Figure 5-38 can be better 

appreciated. The second observation is the time during the simulation at which PC1 started 

to stabilise, which is roughly the same time at which the bending event started to happen as 

shown in the RMSD for TG2 in this run (Figure 5-36). The latter observation confirms that 
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the bending event was actually presented by PC1 and it corresponds to the most important 

motion of TG2 during Run 7. 

 

Figure 5-41: The projections 
of the top 2 PCs from Run 7 
into the general subspace as 
a function of simulation time. 

To examine the difference between the bending events observed in this run and in Run 1 

(empty TG2), a comparison was made between the first and most important PC from the 2 

runs. The result is displayed in Figure 5-42, which shows that the motion in Run 7 was more 

evident. The graph additionally shows that the bending in Run 7 lead to a stabilisation of the 

associated PC while in Run 1, the bending was associated with increased motion in the 

terminal barrel. This further confirms that the bending observed in Run 1 was not going to 

result in any further closure of TG2 conformation. 

 

Figure 5-42: PC1 as a 
function of time for Run 1 
and Run 7. 

5.3.3.4.2 aMD on TG2 with 24 copies of i3 (Run 8) 

This simulation was identical to the aMD simulation in Run 4, except that the 24 copies were 

for compound i3, and the simulation was allowed to continue for 1,000 ns. There was no 

significant alteration in the general structure of TG2; the enzyme maintained its open, active 

conformation for the entire length of the aMD simulation, and this can be easily seen from 

the RMSD graph for the run which is presented in Figure 5-43. 
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Figure 5-43: RMSD graph for 
TG2 during Run 8. 

Although there was fluctuation in the RMSD graph, the values were generally ranging 

between 4 and 8 Å and averaged around 6 Å. A comparison of the TG2 general structure at 

the start and the end of this run is shown in Figure 5-44, and is compatible with the RMSD of 

the enzyme by stating that the run did not affect the general structure, specifically the 

conformation at the junction between the terminal β-barrel and the rest of TG2 structure. 

 

Figure 5-44: A comparison of TG2 structure at the start and the end of Run 8, showing the preservation of 
the open form of the enzyme. 

Regarding the behaviour of the 24 copies of i3, no general pattern could be observed, and 

the motions were mostly random. In the final 200 ns of the simulation time, some copies 

were settling themselves within 2 major regions of TG2. Eight copies positioned themselves 

randomly within the N-terminal β-sandwich, distributing between the beta sheets of the 

sandwich. Six copies of i3 were in the region of the catalytic core, specifically above the area 

between the catalytic tunnel and the hydrophobic loop of the active site of TG2. No copy, 

however, was close to CYS277, nor positioned in a manner similar to that of irreversible 

inhibitors (Figure 5-45). Neither the predicted allosteric site nor the GDP binding site were 

among the popular attractions for i3 copies. 
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Figure 5-45: i3 copies in the final frame in Run 8. Green copies are those within the N-terminal β-
sandwich, and yellow copies are those close to TG2 active site. CYS277 is show as space filling and the 
hydrophobic loop as blue tube for reference to the active site. 

The results obtained from Run 7 (aMD on i3 docking complex in the predicted site) can be 

used to draw the conclusion that i3 has the potential to act as an allosteric inhibitor and to 

induce a conformational change in TG2, and that the predicted site could function as an 

alternative allosteric site within TG2. Run 8 (TG2 with 24 copies of i3) may not necessarily 

contradict Run 7, if it was explained on the basis of the nature of the predicted site; the site 

is not readily accessible and the approach of the ligand to the interior of the site may require 

an enhanced sampling technique. In addition, it may be argued that i3, unlike i2, cannot bind 

at the original allosteric site at which GDP binds. 

The energy and the temperature change was followed during each of the discussed aMD 

simulations, and the results showed that all the simulations were stable with reference to 

these parameters. Example measurements of energy and temperature for Run 5 and Run 7 

are presented in Figure 5-46. 

5.4 Conclusions 

During the work with the allosteric inhibitors, aMD was able to simulate some relatively large 

conformational changes in the structure of TG2 molecule. It was proven that these changes 

were induced by the binding of the allosteric inhibitors. The structure of the inhibitor had an 

effect on the preferred binding site, where i2 did not produce any change in TG2 structure 

when it was bound at the predicted site, but triggered bending in the terminal β-barrel when 

it was bound at the section of the GDP binding site located in the terminal barrel after the 

compound was allowed to select a binding site during Run 4 (TG2 with 24 copies of i2). i3 

appeared to be a better binder within the predicted site in Run 7, where it induced a similar 

bending effect to that induced by i2 during Run 4. GDP produced the best bending effect 

when compared to the other tested allosteric inhibitors, and the effect was induced by 
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binding at the original GDP binding site. This may mean that GDP has better potential of 

inducing the conformational change required for inactivating TG2 than i2 or i3. 

  

  

Figure 5-46: Energy and temperature during Run 5 (top) and Run 7 (bottom). 
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6 General Discussion and Conclusions 

In the first chapter (General Introduction), TG2 was thoroughly discussed in terms of its 

biological functions and its role in diseases, in addition to the available inhibitors. The facts 

that TG2 is not a vital enzyme and its possible role in a variety of pathological conditions 

present the enzyme as an attractive target for drug discovery efforts. To this end, the work 

that was presented in this thesis was performed with the aim of developing computational 

methods to help in the prediction of potential irreversible inhibitors for TG2. In the first part of 

the work, active site models of TG2 were developed and tested rigorously, and the same 

models were used in the second part of the work to study the mechanism of TG2 inhibition 

by irreversible inhibitors. The last part was independent of the previous parts and involved 

studying TG2 allosterism. 

Molecular dynamics can be used to account for receptor flexibility during docking, either by 

supplying multiple structures of the protein or by relaxing a ligand docked structure (Hospital 

et al. 2015; B-Rao et al. 2009; Huang & Zou 2010). As shown in Chapter 3, MD was 

successful in improving the structure of TG2 at its active site to be able to achieve plausible 

docking complexes for a set of known inhibitors. This was particularly true for the active site 

models extracted from the MD simulations applied on the initial docking complexes for 

compounds 1a and 1b. The MD trajectories for the complexes themselves gave some useful 

information about the interactions between the compounds and TG2 active site, especially 

with regard to hydrogen bonding, where it has been shown that a hydrogen bond with 

ASN333 is essential for the maintenance of a good pose for an active inhibitor (bent 

conformation) within the active site of TG2. 

The active site models extracted from MD trajectories were tested using the 6 most active 

TG2 inhibitors from the work by Badarau et al. (2015) (section 3.3). The criteria selected at 

this stage to define an appropriate docking complex were sufficient to judge the ability of the 

active site models to dock active TG2 inhibitors. The criteria were reasonable and all were 

important as proven during the later stages of the work. The most important is the bent pose; 

it is this pose that prompted the design of irreversible inhibitors with lipophilic and 

electrophilic ends connected by a linker. An ideal active irreversible TG2 inhibitor would 

adopt a bent pose within the active site of TG2, with the electrophilic end pointing in the 

direction of CYS277 and the lipophilic end being embedded within the hydrophobic loop of 

TG2 active site. Hydrogen bonds connecting the linker of the inhibitor to active site residues 

such as ASN333, PHE334 and others are important for maintaining the bent pose within the 
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active site. Similarly, lipophilic interactions stabilising the lipophilic end of the inhibitor within 

the hydrophobic loop of TG2 active site are also important. 

The selected 6 active site models were validated in the next stage by multiple experiments 

(section 3.4). These experiments started with the docking of 3 inactive compounds plus the 

original 6 active compounds, in which the models were able to distinguish between the 

compounds according to their inhibitory effect on TG2. The model performance proved to be 

similarly good when the test set was extended using more active and inactive compounds 

(validation processes 3 and 4), and the criteria for defining a plausible docking complex 

sustained their usefulness at this stage as well. There were differences in the performance 

of the individual models, where some models were better in capturing the bent pose for 

active compounds. Other models were superior in preventing the inactive compounds from 

docking appropriately into the active site. In any case, the docking scores failed to provide 

any useful information in ranking the compounds according to their biological activities. The 

scores even failed with the discrimination between active and inactive compounds. This, 

however, was achievable through the application of the docking criteria set at the beginning 

of the process, which again proved successful and manged to further validate the selected 

active site models. It should be noted here that when using GOLD, GoldScore, and to a 

lesser extent CHEMPLP, were able to rank the bent pose of TG2 inhibitors within the top 4 

solutions for the active compounds, and this top ranking was one of the criteria used to 

define a plausible docking complex. Similar model performance results were achieved when 

5-ns MD simulations were applied on docking complexes. 

The selection of GoldScore as the primary scoring function during all the dockings performed 

with GOLD was validated through experiments in which the other scoring functions available 

in GOLD were tried. The 3 other functions (ASP, ChemScore and CHEMPLP) failed to 

produce results comparable to those of GoldScore in posing the active compounds correctly 

within the active site of TG2. The success of GoldScore was attributed to the importance of 

hydrogen bonding in the dockings of TG2 inhibitors and the relatively high molecular weights 

of the tested TG2 inhibitors (more van der Waals contribution), which are both important 

parameters in GoldScore (Verdonk et al. 2003). Forcing a covalent bond to be formed 

between the inhibitors and CYS277 during covalent docking and MD (section 3.7) proved 

that it is the ability of the compound to place itself in the correct pose within the active site 

that would ultimately determine its activity. This was determined from the similar results 

obtained for active and inactive compounds during docking as well as MD. No water 

molecules could be found near the formed covalent bond, and the water density around the 

bond could not be used to differentiate between active and inactive compounds. 
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When the 6 validated models were analysed, some differences in the observed docking 

results could be explained; namely, the slightly better performance for the models extracted 

from the trajectory of 1a. These have been attributed, for example, to the orientation of the 

added loop between residues 319 and 327, where the orientation of the loop was acting as a 

determinant of the space available for the lipophilic part of the inhibitors within the active site 

of TG2. Another example for the difference between the 2 sets of models was the 

arrangement of the bridging tryptophan residues (241 and 332), which showed the stacking 

parallel shape in the trajectory of 1a that is characteristic of their orientation in the original 

crystal structure. 

The 3 independent MD runs applied on empty TG2 for 500 ns showed a similar behaviour 

for TG2 residues, with the most mobile parts being the loops composed of the residues that 

had been missing in the original TG2 crystal structure (2Q3Z). This was confirmed through 

measuring RMSD, atomic fluctuations and the principal components. Regarding the 

behaviour of water, it was observed that when TG2 is simulated on its own, water molecules 

usually reside within the active site close to the catalytic cysteine residues, and their highest 

density was recorded to be at a 2-Å distance from SG atom of CYS277. The number of 

water molecules as well as their density was found to decrease when there was an inhibitor 

within the active site during the simulation, as was the case with the trajectory of 1b. Within 

the hydrophobic loop of TG2 active site, the likelihood of finding water molecules was much 

lower, and this probably explains why it was relatively easier to keep the lipophilic part of the 

inhibitor within the loop than keeping the warhead within the catalytic tunnel. 

The results from Chapter 3 have shown in different ways that the selected 6 active site 

models are valid for discriminating between active and inactive TG2 inhibitors, if the set 

criteria were considered properly. The work performed within the chapter, however, could 

not produce appropriate correlations between many of the measured quantities and 

biological activity expressed as TG2 IC50 values. The best and most easily accessible 

example was the docking score obtained from different scoring functions. This failure was 

attributed to the fact that the activity of the different inhibitors is triggered by a covalent bond 

formation with TG2 active site cysteine residue, and most of the techniques used in the 

chapter cannot account for bond formation. The production of an informative correlation with 

biological activity and curiosity behind the possible mechanisms of inhibition of TG2 by the 

studied inhibitors motivated the work in Chapter 4. Furthermore, the work in Chapter 4 

added to the validity of the models by showing that their complexes can represent the actual 

chemical reactions behind the inhibition. 
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The two classes of inhibitors, acrylamide- and sulfonium ion-bearing TG2 inhibitors, were 

subjected to two different methods to investigate the inhibition mechanism. Both of the 

methods involved quantum mechanical (QM) treatment of the reaction centre. Inhibition with 

acrylamide inhibitors was investigated through umbrella sampling simulations using the 

QM/MM approach of AMBER, while the CAChe intrinsic reaction coordinate (IRC) reaction 

path tactic was employed when studying the inhibition by sulfonium ion inhibitors. 

The inhibition by the acrylamide compounds was proposed to proceed according to one of 

two possibilities; as a single concerted step (where the nucleophilic SG from TG2 reacts with 

the electrophilic carbon of the inhibitor and at the same time a proton from HIS335 of TG2 

saturates the alpha carbon of the acrylamide or C2) or as a two-step process (the 

nucleophile and the electrophile react first and the protonation follows). In the concerted 

mechanism, PM3, as the QM method, was able to drive the reaction to completion and to 

produce a reasonable correlation between the resultant PMF values and TG2 IC50 values of 

the inhibitors. A certain level of desolvation was also observed in this method, where 1 or 2 

water molecules have left the vicinity of the reaction centre just before the formation of the 

two bonds. The pattern of the change in the charges of the reacting atoms, however, was 

not uniform across the compounds and could not be used to devise a distinct mechanism for 

the inhibition. This happened because two intermediates were suggested based on the 

charge distribution and each intermediate supports a different mechanism. 

For the 2-step mechanism, SCC-DFTB performed better than PM3 as the QM method. A 

good correlation was obtained between the PMF values and TG2 IC50 values for the 

compounds in the 2 steps, and the correlation was better for the second step (R2 of 0.71 and 

0.89 for the 1st and 2nd steps respectively). The charge distribution for the atoms participating 

in the reaction was uniform throughout the compounds and could be used to suggest a 

mechanism for the inhibition. Such a mechanism would involve the formation of an oxyanion 

intermediate having a negative charge on the oxygen atom of the acrylamide carbonyl 

group. The behaviour of water molecules did not show an obvious desolvation event during 

the 2-stage approach. To sum up with umbrella sampling, the concerted mechanism could 

show some desolvation effect while the charges agreed more with the 2 stages. Since 

CYS277 lies in a tunnel in the TG2 active site and since there were no water molecules in 

the vicinity of this residue in the original crystal structure, the water effect may not be very 

important. With that, and the charge pattern, the 2-stage approach may give a better 

representation for the inhibition of TG2 with acrylamide-based inhibitors. 

The CAChe based experiments adopted a different approach. They started by locating a 

transition state structure, refining and verifying it and then using the verified structure as a 
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starting point for a reaction path experiment. The latter follows the IRC to the reactants and 

the products. The TS structures produced for the 8 studied sulfonium ion-based TG2 

inhibitors had very similar structure parameters, such as the lengths of the bond to be 

formed and the bond to be broken and the angle at the reaction point. They had similar 

values for the charges of the 2 sulphur atoms and the orders of the formed and broken 

bonds. All these indicate a similar TS structure for inhibitors having the same sulfonium ion 

warhead. Nevertheless, the produced activation energies correlated very well with the 

biological activities, especially when only the compounds with IC50 values of ≤ 1 µM were 

considered. This difference in activation energy despite the similar mechanism was 

attributed to the starting conformation of the compounds with respect to CYS277, and this in 

turn was dependent on the compound’s ability to dock into the active site. A backside attack 

SN2 mechanism for this reaction was proposed and the values for the angle at the reaction 

centre and the bond orders agree with such mechanism. 

With regard to the work that involved allosteric inhibition, the allosteric binding site predicted 

by the University of Strathclyde group has been preferred over the original GDP binding site 

during docking, for more than one reason. The relatively buried location of the predicted site 

at the end of the catalytic core, compared to the totally exposed, and torn apart (part on the 

catalytic core and part on the 1st β-barrel in the open conformation of TG2) GDP binding site 

was the main reason. The fact that the binding site for GDP has not been actually confirmed 

as the binding site for the reported allosteric inhibitors (Case & Stein 2007; Caron et al. 

2012) was another reason. Both chosen allosteric inhibitors attained a plausible pose within 

the predicted site in terms of their settlement within the site as well as the rank their poses 

achieved with the GoldScore scoring function. 

The predicted site did not prove very useful for the binding of i2 molecule, where the 

compound failed to maintain the docked pose during the aMD run applied, in addition to the 

lack of any significant and noticeable conformational change within TG2 structure. For i3, the 

predicted site was better; the compound maintained more stable pose within the site and 

could induce a relatively significant conformational change in TG2, manifested as the 

movement of the hinge region connecting the terminal β-barrel towards the catalytic core, in 

the same direction as the actual bending in the inactive closed form of TG2. The bending 

event did not end in the closed form of TG2, but it produced a distinctly different 

conformation from the starting structure of TG2, and the direction of the bending was correct. 

It can, therefore, be assumed that this hinge movement was a first step towards complete 

closure of TG2 conformation to achieve the inactive form. 
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The aMD run performed with 24 copies of i2 distributed around TG2 (Run 4) showed that i2 

has the potential to bind at the GDP binding site to induce a conformational change in TG2 

similar to that produced by i3 in the predicted site. This has been confirmed by Run 5 (in 

which all i2 copies have been deleted from the last frame in Run 4, save the one in the GDP 

binding site) and Run 6 (the final frame from Run 4 in which all i2 copies have been deleted). 

The conformational change brought about in Run 4 was preserved in Run 5, while TG2 in 

Run 6 adopted a structure similar to that produced by empty TG2 in Run 1, in which there 

was a bending but in the wrong direction. “Wrong direction” was used to describe a TG2 

bending event where the terminal barrel was pointing towards the outside of TG2 relative to 

the catalytic core and CYS277, making it difficult to achieve the TG2 inactivating closure. 

The most significant change in the conformation of TG2, and the closest change to the 

complete closure of TG2 confrontation was observed during Run 2 when TG2 was 

surrounded by 24 copies of GDP. One of the copies found its way to the original GDP 

binding site where it induced a bending that involved the connection between the 2 terminal 

β-barrels and the catalytic core of TG2, in a manner that would be expected to end in the 

closed inactive TG2 conformation, considering the direction of the bending. The magnitude 

of the bending was more easily noticeable when compared with the bending events obtained 

from the other runs. This run confirms the ability of GDP to inactivate TG2 by closing its 

structure and that the aMD was capable of simulating this effect to some extent. 

As a final remark, the aim set at the start of the thesis is expected to have been achieved, 

where several computational methods have been employed for the purpose of the analysis 

of the activities of known TG2 inhibitors. As a result, these methods could be applied when 

the objective is to predict the activity of new potential inhibitors for the enzyme. 
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