
1 

Li Y., F.Li, A. Emrouznejad, L. Liang, Q. Xie (2018) Allocating the Fixed Cost: An Approach based on 

Data Envelopment Analysis and Cooperative Game, Annals of Operations Research, Accepted, 

https://doi.org/10.1007/s10479-018-2860-9  

Allocating the Fixed Cost: An Approach based on 

Data Envelopment Analysis and Cooperative Game 

 

 

Yongjun Lia 

E-mail: lionli@ustc.edu.cn 

 

Feng Lia,* 

E-mail: lfeng90@mail.ustc.edu.cn 

 

Ali Emrouznejadb 

E-mail: a.emrouznejad@aston.ac.uk 

 

Liang Lianga,c 

E-mail: lliang@ustc.edu.cn 

 

Qiwei Xied 

Email: qiwei.xie@ia.ac.cn 

 

 

 

a School of Management, University of Science and Technology of China, Hefei, 

Anhui Province , PR China 

b Aston Business School, Aston University, Birmingham, UK 

c School of Management, Hefei University of Technology, Hefei, Anhui Province, PR 

China 

d CAS Center for Excellence in Brain Science and Intelligence Technology, Beijing, 

PR China 

 

 

 

* Feng Li is the corresponding author. 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Aston Publications Explorer

https://core.ac.uk/display/157583133?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/s10479-018-2860-9
mailto:lfeng90@mail.ustc.edu.cn
mailto:a.emrouznejad@aston.ac.uk
mailto:lliang@ustc.edu.cn
mailto:qiwei.xie@ia.ac.cn


2 

 

 

Allocating the fixed cost: An approach based on data 

envelopment analysis and cooperative game 

 

Yongjun Li, Feng Li, Ali Emrouznejad, Liang Liang, Qiwei Xie 

 

Abstract: Allocating the fixed cost among a set of users in a fair way is an important 

issue both in management and economic research. Recently, Du et al. (2014) proposed 

a novel approach for allocating the fixed cost based on the game cross-efficiency 

method by taking the game relations among users in efficiency evaluation. This paper 

proves that the novel approach of Du et al. (2014) is equivalent to the efficiency 

maximization approach of Li et al. (2013), and may exist multiple optimal cost 

allocation plans. Taking into account the game relations in the allocation process, this 

paper proposes a cooperative game approach, and uses the nucleolus as a solution to 

the proposed cooperative game. The proposed approach in this paper is illustrated 

with a dataset from the prior literature and a real dataset of a steel and iron enterprise 

in China. 
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1. Introduction 

The fixed cost, which refers to the expense of building a common platform by an 

organization for its subunits (Li et al., 2009), frequently appears in real applications 

such as the advertisement expenditure of a manufacturer across its retailers (Cook and 

Kress, 1999), the transportation cost within a global supply chain (Vidal and 

Goetschalckx, 2001), and the cost of a common communication cable among its users 

(Beasley, 2003). A natural question arises about how to allocate the fixed cost of a 

common platform among its various users in an equitable manner. 

Recently, data envelopment analysis (DEA), which is a classical non-parametric 

mathematical programming approach for relative efficiency evaluation (An et al., 

2018; Li et al., 2018a, 2018ff; Wu et al., 2018), becomes a novel approach in solving 

the fixed cost allocation problem for it has several advantages (Si et al., 2013). First, 

DEA can successfully address multiple attributes (inputs and outputs), and the fixed 

cost allocation problem always refers to multiple attribute decision making problems. 

Second, the common platform’s users (called as decision making units or “DMUs” in 

DEA) are independent, homogeneous, and comparable, which satisfies the 

requirement of homogeneity of DMUs in applying DEA to approach the fixed cost 

allocation problem (Dyson et al., 2001; Li et al., 2009). Third, DEA provides decision 

makers (DMs) the possibility to consider the effect of feasible allocation plans on 

performance evaluation (Li et al., 2009). 

DEA-based fixed cost allocation approaches in literature can be divided into three 

categories. The first is based on the principle of efficiency-invariance, which assumes 

that the post-allocation efficiency of each DMU should be the same as its 

pre-allocation efficiency. Cook and Kress (1999) first propose this principle in 

allocating the fixed cost and develop several linear programs to obtain an equitable 

allocation. In order to obtain a unique cost allocation, some additional weight 

constraints such as the cone ratios (Charnes et al., 1989, 1990) may be added to these 

linear programs. Later, the approach of Cook and Kress (1999) is extended by 

Jahanshahloo et al. (2004), Cook and Zhu (2005), Lin (2011a, b) and Mostafaee 
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(2013). Recently, Lin et al. (2016) proposed a new proportional sharing method for 

allocating the fixed cost based on two assumptions of efficiency invariance and zero 

slack simultaneously. Jahanshahloo et al. (2017) and Li et al. (2017) determined a 

unique allocation plan based on common weights and efficiency invariance principles 

simultaneously. Lin and Chen (2016) extended the efficiency invariance principle to 

super-efficiency situations, and then suggested three models, which guarantee 

piratical feasibility, to allocating a fixed cost as well as allocating a fixed resource 

along with sharing a common output target. However, Beasley (2003) and Li et al. 

(2013) find that the cost allocation based on the efficiency invariance principle may 

be determined entirely by the input side of DMUs, no matter how much difference 

among their outputs. 

The second is the efficiency-maximization approach, which allocates the fixed cost 

based on the principle of maximizing the sum or average of post-allocation 

efficiencies of all DMUs. Beasley (2003) first applies such a novel principle but needs 

solving several non-linear models, and later is developed by Amirteimoori and 

Kordrostami (2005), Fang and Zhang (2008), Li et al. (2009) , Amirteimoori and 

Tabar (2010), Khodabakhshi and Aryavash (2014) and Li et al. (2018d). Li et al. 

(2013) prove that non-linear models of Beasley (2003) can be changed to be linear 

since there exists a common set of weights that makes all DMUs (weakly) efficient, 

and the cost allocations based on the efficiency-maximization principle can be 

represented by a set of equations. Si et al. (2013) prove that the set of equations is the 

same as the traditional proportional sharing approach in one-dimensional case, and 

therefore call the set of equations as the extended proportional sharing approach. Most 

recently, Lin and Chen (2017) studied a situation where the allocated cost is a 

complement to the original inputs. Their approach considered the production level 

from a size point of view and is always feasible under both variable returns to scale 

and constant returns to scale properties. Yu et al. (2016), Zhu et al. (2017) and Li et al. 

(2018b) extended the fixed cost allocation problem to network situations by 

considering the internal two-stage processes, all three methods are implemented under 

the efficiency-maximization assumption. Li et al. (2018e) considered the feasibility of 
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possible allocation plans and suggested a new non-egoistic principle, which states that 

each DMU should propose its allocation proposal in such a way that the maximal cost 

would be allocated to itself. Further, the optimal allocation plan is generated in a way 

that maximizes the efficiency scores for all DMUs. 

The last is the game-based approach which takes into account the game relation 

among DMUs. This game relation can be understood since the less cost one DMU 

afford, the more the others. Nakabayashi and Tone (2006) first address the game 

relation among DMUs and use the cooperative game to solve the “egoist’s dilemma” 

in the fixed cost allocation. Their approach directly defines the allocated cost as a 

ratio between the weighted inputs (outputs) and the weighted overall inputs (outputs), 

and doesn’t take into account the fixed cost in efficiency evaluation of DMUs. Du et 

al. (2014) creatively apply the game cross-efficiency approach to addressing the game 

relation in the efficiency evaluation. The numerical example in Du et al. (2014) shows 

there may exist multiple cost allocations and these cost allocations make all DMUs 

(weakly) efficient, which is similar to the extended proportional sharing approach in 

Li et al. (2013). Li et al. (2018d) propose a DEA-game cross-efficiency approach for 

allocating the fixed cost, where all DMUs focus more on the cross-efficiency 

improvements than the allocated costs. 

These observations motivate us to address two questions as follows:  

1. What is the relation between the game cross-efficiency approach in Du et al. 

(2014) and the extended proportional sharing approach in Li et al. (2013)?  

2. How to take into account the game relation among DMUs in allocating the fixed 

cost when there exist multiple cost allocations? 

This paper first addresses the relation between the two approaches and finds that 

the game cross-efficiency method of Du et al. (2014) is equivalent to the extended 

proportional sharing method of Li et al. (2013). Then, all the feasible cost allocations 

can be represented as the extended proportional sharing equations. Based on the set of 

equations, this paper takes into account the game relation among DMUs, and proposes 

a cooperative game approach to allocate the fixed cost.  

The remainder of this paper is organized as follows. Section 2 introduces the novel 



6 

game cross-efficiency method of Du et al. (2014) and the extended proportional 

sharing method of Li et al. (2013), and then address the relations between the two 

approaches. Section 3 proposes a cooperative game DEA approach to obtain a unique 

fixed cost allocation, and applies the nucleolus as a solution to the cooperative game. 

Section 4 illustrates the proposed approach with two numerical examples, one from 

previous literature and the other a real application from a company in China. 

Conclusions and future research are given in the last section. 

2. Preliminaries 

This section first introduces the classical CCR model (Charnes et al., 1978), the game 

cross-efficiency method from Du et al. (2014) and the extended proportional sharing 

method from Li et al. (2013) and then addresses the relation between the two 

methods. 

2.1. Efficiency measurement taking into account the fixed cost 

Suppose there are n  homogenous DMUs, and each DMU consumes m  inputs to 

produce s  outputs. Denote the input vector and output vector of ( )1,...,jDMU j n=  

as ( )1 ,...,j j mjX x x=  and ( )1 ,...,j j sjY y y= , respectively. The CCR efficiency of 

( )1,..,dDMU d n= can be calculated as follows: 

* 1

1

1

1

. . 1,

, , 0, , .

s

r rdr
d m

i idi
s

r rjr

m

i iji

r i

u y
Max

v x

u y
s t j

v x

u v r i

 =

=

=

=

=

 

 







                                           (1) 

Here ,r iu v  are unknown weights attached to the rth output and the ith input, 

respectively, and the optimal objective function *

d  is defined as the CCR efficiency 

score of dDMU .  

Suppose the total fixed cost R should be covered by n  DMUs, and 

( )1,...,jDMU j n=  affords a non-negative cost jR  such that 
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1
, 0, .

n

j jj
R R R j

=
=                                               (2) 

Formula (2) ensures that the sum of allocated fixed costs precisely equals to R, and 

the amount of allocated cost jR  to each ( )1,...,jDMU j n=  ranges from zero to R. 

By taking into account the allocated fixed cost, the post-allocation efficiency of 

( )1,...,dDMU d n=  can be calculated as follows: 
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                                      (3) 

It is noteworthy that the allocated cost in model (3) is treated as an extra input and 

attached with a positive weight ( 1 0mv +  ). For details on this treatment, readers can 

refer to Beasley (2003).  

Based on the literature review, the first cost allocation approach based on the 

principle of efficiency invariance finds cost allocations which make *

d =Ed
*. The 

other two cost allocation approaches are introduced as follows.  

2.2. The game cross-efficiency method 

Based on the game cross-efficiency concept, Du et al. (2014) adjust model (3) as 

follows: 
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                                  (4) 

The major difference between model (3) and (4) is that model (4) adds a lower 
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bound ej on the efficiency of DMUj. This adjustment can ensure that 
dDMU  

maximizes its own efficiency score in choosing a cost allocation without reducing 

other DMUs’ efficiency scores. Du et al. (2014) initially set ej=θj
* (j=1,2,…, n), 

whereθj
* is the CCR efficiency score of DMUj based on model (1). Here,   is a 

sufficiently small positive value and  = 610−  in the numerical example of Du et al. 

(2014). 

Model (4) can be transformed to be a linear programming by the Cooper-Charnes 

transformation such that ( )1 1 11
1 , , ,

m d d d d d d d d d

i id m d r r i i m mi
v x v R u w v w v    + + +=

+ = = = = , 

and 1

d d d

j m jr w R+=  as follows: 
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                         (5) 

  Denoting the optimal solution to model (5) as ( )*d

r r  , ( )*d

iw i , *

1

d

mw + , and 

( )*d

jr j , the d-cross-efficiency for each ( )1,...,jDMU j n=  (Doyle and Green, 1994) 

can be calculated by 

  ( )
*

1

* *

1
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s d

r rjr
j m d d
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y
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
=
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                                       (6) 

Then the cross-efficiency for ( )1,...,jDMU j n=  is most commonly calculated as 

the arithmetic mean value of all of its d-cross efficiencies (Doyle and Green, 1994; Li 

et al., 2018c) as follows: 

  ( )
*

1

1 1 * *

1

1 1
, .

s d
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  Hence, the algorithm of cross-efficiency iterative method proposed by Du et al. 

(2014) can be summarized as below: 
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Step 1: Solve model (1) and obtain ( )* 1,...,j j n = . Let 1 *

j j je e = = . 

Step 2: Solve model (5) for each ( )1,...,dDMU d n= . 

Let 
( )

( ) ( )

*

1 1

1 * *

1

1
, ,

s d t

n r j rjt r

j md d t d t

i j ij j ji

e y
e j

n w e x r e


+ =

=

=

= 
+





 where ( )*d t

r je , ( )*d t

i jw e , and 

( )*d t

j jr e  are optimal values of d

r , d

iw , and d

jr , respectively, when t

j je e= . 

Step 3: If 1 ,t t

j je e j+ −   , where   is a pre-specified small enough positive value 

( = 610−  in Du et al. (2014)), then the iterative algorithm terminates. If not, let 

1t

j je e +=  and go to step 2 again. 

When the iterative algorithm terminates, each ( )1,...,dDMU d n=  gives an 

allocation plan 
( )
( )

( )
* 1

*

* 1

1

1,...,

d t

j jd

j d t

m j

r e
R j n

w e

+

+

+

= = , and the average of the above allocations 

*

1

1
, ,

n d

j jd
R R j

n =
=   is taken as the final fixed cost allocated to ( )1,...,jDMU j n= . 

In addition, the numerical example in Du et al. (2014) shows the optimal 

cross-efficiency for each DMUj equals one and there may exist multiple cost 

allocations. 

2.3. The extended proportional sharing method 

Li et al. (2013) use model (3) to maximize the efficiency of each DMU, and prove 

that there exist some cost allocations which make each DMU’s efficiency be one, 

even based on a common set of weights across all DMUs such that  
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By inserting 1j m jr v R+= , system (8) can be changed to be the following form: 



10 
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The fixed cost allocated to ( )1,...,jDMU j n=  can be denoted as 1j j mR r v += . Li 

et al. (2013) prove that cost allocations based on system (9) can be generated by a 

common set of weights across all DMUs. Si et al. (2013) find that the system (9) in 

the one-dimensional case equals to the standard proportional sharing method, and 

therefore call it as the extended proportional sharing method. 

2.4. Relationship of these two methods 

2.4.1. Equivalence 

This subsection addresses the relations between the game cross-efficiency method of 

Du et al. (2014) and the extended proportional sharing method of Li et al. (2013). 

Here, we introduce two theorems. 

Theorem 1. Each fixed cost allocation under a common set of weights based on 

system (9) can satisfy the algorithm of the game cross-efficiency method. 

Proof: See Appendix 1.  

This theorem shows that there exist efficient fixed cost allocation plans under a 

common set of weights based on system (9) that are also optimal solutions to the 

cross-efficiency iterative procedure. This result is consistent with the connotation of 

common weights, indicating that equal valuations of the input-output measures in the 

reference set (i.e., common weights) can be eventually accepted by all bargainers. 

Further, as Li et al. (2013) indicated that there will be multiple possible allocation 

plans that can satisfy the constraints of system (9), thus there will be also multiple 

allocation plans derived from the cross-efficiency iterative procedure. 

Theorem 2. When the algorithm of the game cross-efficiency method terminates, the 

resulted fixed cost allocation can be generated based on system (9) under a common 

set of weights. 

Proof: See Appendix 2.  

Theorem 2 shows that any fixed cost allocation resulted from the cross-efficiency 

iterative procedure can be realized based on system (9) using a set of common 
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weights. Although DMUs will not necessarily select identical relative weights in the 

cross-efficiency iterative procedure, a common set of weights can be used to replace 

the negotiation results yet without changing the allocation plan derived from the 

cross-efficiency iterative procedure. Hence, using a set of common weights 

automatically realizes the game cross-efficiency equilibrium in the fixed cost 

problem. 

Based on Theorem 1 and 2, a corollary is obtained as follows: 

Corollary 1. The optimal cost allocation of the game cross-efficiency method is 

equivalent to that of the extended proportional sharing method under a common set of 

weights based on system (9). 

Proof: See Appendix 3.  

Corollary 1 shows the equivalence of the two cost allocaiton methods, one is the 

game cross-efficiency method of Du et al. (2014), and the other is the extended 

proportional sharing method of Li et al. (2013). This interesting finding shows (a) the 

efficiency maximization cost allocation approach in fact considers the game relation 

among DMU in efficiency evaluation; and (b) all cost allocations based on the method 

of Du et al. (2014) can be represented as the syetem (9).  

However, Li et al. (2013) show there may exist multiple cost allocations based on 

system (9). Readers can refer to the Appendix 4 for a detail discussion. In this case, 

DMUs still have flexibility of bargainning (game) in allocating the fixed cost. Then, 

the second question arises that how to take into account the game relation among 

DMUs in allocating the fixed cost when there exist multiple cost allocations.  

3. A cooperative game DEA approach 

This section proposes a cooperative game DEA approach to solve the second question. 

The cooperation and competition relations among DMUs exist at the same time. For 

example, DMUs are cooperative in jointly using a common platform rather than set up 

the platform independently, since this cooperative relation can save individual DMUs’ 

costs. And also individual DMUs are competitive to cover the fixed cost. Therefore, 

to address such cooperation and competition relations among DMUs, a cooperative 

game is proposed in this section. 
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Based on the framework of Nakabayashi and Tone (2006) and Lozano (2012), we 

make following assumptions to develop the cooperative game among all DMUs: 

(1) DMUs are generally selfish. This principle implies that each DMU wants to 

minimize its allocated cost (or maximize its profit from our perspective); 

(2) DMUs would like to participate in the grand coalition, and arrive at an equitable 

and acceptable allocation plan ( )1,..., nz z z= . We will demonstrate this point using 

the characteristic function as explained below. 

3.1  Characteristic function 

Let a coalition S be a subset of the player set  1,...,N n= , and its inputs and outputs 

of coalition S are denoted as ( )i idd S
x S x


=  and ( )r rdd S

y S y


= . We propose 

model (10) to calculate the upper bound of fixed cost allocated to coalition S. 
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s t r u y v x j

r v R

r j

u v v r i .

+ +=  = 

= =

+=

= −

= − 

=

 

  

   
 

              (10) 

We can convert model (10) into a linear programming by setting 

1 1,r r m i i mu v v w v + += = , and 1j j mR r v += . 
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s m

r rd i idr d S i d S
s m

j r rj i ijr i
n

jj

j

r i

C S Max y w x

s t R y w x j

R R

R j

w r i







=  = 

= =

=

= −

= − 

=

 

 

   
 

                         (11) 

For any coalition NS  , the optimal objective function value ( )C S  of model (11) 

can be regarded as the maximal “psychological price”, since each coalition (or each 

DMU) is selfish to cover the cost share as low as possible. Therefore, the cost share of 

each coalition (DMU) should not be more than the optimal objective function of 

model (11). Here, when the coalition S just has one DMU, we write C({j}) as C(j) for 
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short.  

Based on model (11), we define a characteristic function for the coalition S as 

follows: 

Definition 1: For any subset S N , its characteristic function is defined as 

( ) ( ) ( )
j S

V S C j C S


= − . 

Note ( ) ( )
j S

C j C S


−  denotes the gap between the sum of maximal 

“psychological prices” for individual DMU in S and the corresponding price of the 

coalition S. The more the savings of the cost share of the coalition S, the bigger the 

value of V(S). Therefore, V(S) can be defined as the profit (gain) by forming the 

coalition S. All coalitions aim to maximize their profits. 

The characteristic function V(S) has following properties. 

Proposition 2. ( ) ( ) ( )0,
j N

V V N C j R


 = = − . 

Proof. See Appendix 5.  

Theorem 3. The characteristic function V(S) satisfies the super-additivity such that 

( ) ( ) ( )+V S V T V S T , ,S T N and S T = . 

Proof. See Appendix 6.   

Theorem 3 shows the game (N, V) forms a cooperative game, which have 

nonempty cores (Shapley, 1967) and give stable fixed cost allocations (Lozano, 2012). 

In addition, the game (N, V) is a balanced game as follows: 

Theorem 4. The cooperative game (N, V) is a balanced game. 

Proof. See Appendix 7.  

Thus, the game (N, V) belongs to transferable utility cooperative games. Based on 

the Definition 1, the transferable utility V(S) is the “profit” (or money). The total 

payoff (or profits) of V(S) can be distributed to its members (DMUs) based on several 

famous solutions to the cooperative game. Solutions can be the kernel, core, nucleolus, 

stable set, bargaining set, Shapley value, and so on (Shapley, 1967; Kruś and Bronisz, 

2000; Nakabayashi and Tone, 2006; Lozano, 2012). For details, readers can refer to 

Owen (2013). 

3.2 Nucleolus-based allocation 
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This section takes the nucleolus solution as an example to show how to obtain a fixed 

cost allocation, and other solution-based game allocations can be gotten in a similar 

way. Theoretically, the nucleolus-based game solution always exists and is unique 

(Schmeidler, 1969), which is an important feature for the studied fixed cost allocation 

problem. Suppose the nucleolus-based cost allocation of the cooperative game DEA 

(N, V) be ( )1,..., nz z z= , it should satisfy the following rationalities: 

1) Individual rationality: ( ) ( ) 0,jC j z V j j N−  =   . 

2) Coalition rationality: ( ) ( ) ,jj S j S
C j z V S S N

 
−     . 

3) Collective rationality: ( ) ( ) ( )jj N j N j N
C j z V N C j R

  
− = = −   . 

The individual rationality ensures that the generated allocation brings improvement 

in the received profit for each individual DMU. The coalition rationality ensures that 

there exists no coalition that has incentives to quit the grand coalition. Last, the 

collective rationality ensures that all profits are distributed (i.e., the total fixed costs 

are actually allocated). 

Based on the nucleolus solution, we need to give a definition to measure the effect 

of the cost allocation ( )1,..., nz z z=  on the happiness of the coalition S as follows:  

Definition 2: Let ( )1,..., nz z z=  be an imputation for the cooperative game DEA 

( ),N V , and its excess value of coalition S is denoted as 

( ) ( )( ) ( ), jj S j S
e S z C j z V S

 
= − −  . 

Based on Definition 1, ( ) ( ), jj S
e S z C S z


= − , and thus the excess value 

measures the distance from the cost allocation ( )1,..., nz z z=  to the worst result 

( )C S , and reflects the “degree of happiness” of coalition S to the allocation z . The 

larger the excess value, the higher the “degree of happiness”. If we sort the excess 

values of all coalitions ,S N S   in descending order, a vector ( )z  can be 

defined as follows: 
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  ( ) ( ) ( )( ) ( ) ( )( )1 12 2 2 2
,..., , ,..., , ,n nz z z e S z e S z  

− −
= =  

where ( ) ( ) ( )1 2 2 2
, , ... ,ne S z e S z e S z

−
   . 

  Denote the set of all feasible cost allocations to the cooperative game DEA ( ),N V  

as Z, then the nucleolus is the set of feasible distributions that maximizes ( )z by the 

lexicographic order (Schmeidler, 1969) as follows: 

( ) ( ) ( ) , .z z Z z y y Z  =                                     (12) 

3.3 Computation algorithm 

To calculate the nucleolus-based allocation, the following max-min model is proposed 

based on the framework of Maschler et al. (1979). 

  

( )
,

1 1

1

,

. . ,

0,

, 0, , .

w S

s m

j r rj i ijr i
n

jj

j

r i

Max mine S z

s t z y w x j

z R

z j

w r i







= =

=

= − 

=

 

 

 
                                 (13) 

  Let ( )min ,
S

e S z = , then the above program can be transformed into a linear one: 

  

( ) ( )

,

1 1

1

. . ,

, ,

0,

, 0, , .

w

s m

j r rj i ijr i
n

jj

jj S j S

j

r i

Max

s t z y w x j

z R

C j z V S S N S

z j

w r i










= =

=

 

= − 

=

− −    

 

 

 

 

               (14) 

  If we denote the optimal solution to model (14) as ( )* *

1 ,j j ,z , then all coalitions 

can be divided into two subsets, 

  ( ) ( ) *

1 1= = , , ,jj S j S
S C j z V S S N S

 
 − −                    (15) 

  ( ) ( ) *

2 1= , , .jj S j S
S C j z V S S N S

 
 − −                    (16) 

  Next, we maximize the smallest excess value for 2 . This process is repeated until 

the largest excess values of all coalitions are determined. The final optimal imputation 
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(the final fixed cost allocation) is uniquely given by ( )* ,jz j N  . The computation 

algorithm can be summarized as follows: 

Step 1: Let 1l = . Denote the optimal solution to model (14) as 

( )* * * *

1 1 1 1, , , , , ,r i jw z r i j   . Then the corresponding excess value of each coalition can 

be calculated via definition 2. If ( ) *

1, =e S z  , then denote the coalition set with the 

same excess value *

1  as ( ) ( ) *

1 1= = , ,jj S j S
S C j z V S S N S

 
 − −     . 

From this we get ( ) ( ) *

1jj S j S
z C j V S 

 
= − −  , and we let 

1n  denote the rank 

of the input-output matrix ( ) 1, ,j jj S j S
Y X S

 
   of coalitions with the same 

excess value *

1 . Then the other coalitions form a set denoted by 

( ) ( ) *

2 1= , ,jj S j S
S C j z V S S N S

 
 − −      . Obviously, we have 

0 1 2 =   and  0 1 2 2
= ,..., nS S

−
 . 

Step 2: If 
1n m s= + , then the algorithm terminates and the optimal solution 

( )* * * *

1 1 1 1, , , , , ,r i jw z r i j    is unique (the reason can be seen in Appendix 8). On the 

other hand, if 1n m s + , then go to step 3. 

Step 3: Let 1l l= +  and solve the following general model: 

  

( ) ( )

( ) ( )

( ) ( )

( ) ( )

*

,
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1 1
*

1 1
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2 3

*

1 2 3

2 2

. .

,

,

,

,

,

0,

, 0, , .

l
w

n

jj

s m

j r rj i ijr i

jj S j S

jj S j S

j l lj S j S

j lj S j S

j

r i

Max

s t z R

z y w x j

C j z V S S

C j z V S S

C j z V S S

C j z V S S

z j

w r i


 













=

= =

 

 

− − 

− 

=

=

= − 

− − =  

− − =  

− − =  

− −   

 

 



 
 
 

 
 

                  (17) 

  We get the optimal solution ( )* * * *, , , , , ,l lr li ljw z r i j    from model (17) and the set of 
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2 2l−  can be also divided into two subsets: 

  ( ) ( ) *

2 1= = , , ,l j lj S j S
S C j z V S S N S−  

 − −                  (18) 

  ( ) ( ) *

2 , ,l j lj S j S
S C j z V S S N S

 
 = − −      .              (19) 

Then the rank of the input-output matrix ( ) 1 3 2 1, , ...j j lj S j S
Y X S − 

     

of coalitions with deterministic excess values from *

1  to *

l  is denoted as 
ln . 

Step 4: If
ln m s= + , the algorithm terminates, and the optimal solution 

( )* * * *, , , , , ,l lr li ljw z r i j    is also unique. If 
ln m s + , then go to step 3 again. 

As discussed above, the nucleolus-based allocation plan maximizes the “degree of 

happiness” for coalitions of DMUs by the lexicographic order. More importantly, the 

nucleolus-based allocation plan first addresses the least happy coalition, aiming to 

maximize its “degree of happiness” on the fixed cost allocation results. Intuitively, 

favoring the least coalition is a generous philosophy and will cause less resistance in 

implementing the allocation plan in organizations. In such a way the acceptability of 

the resulted allocation plan will be improved, which will favor the decision maker’s 

effort in implementing the resulted allocation plan. By repeatedly maximizing the 

“degree of happiness” across all coalitions of DMUs, the decision maker will face the 

least difficulty and resistance to allocate the total fixed cost, and as a result it would 

be easier to completely allocate the total fixed cost of a common platform among its 

various users. 

4. Illustrative applications 

This section uses two datasets to illustrate the proposed cooperative game DEA 

approach, one is a dataset from Cook and Kress (1999) and the other is a real data of a 

steel and iron enterprise from China in 2015. 

4.1 A numerical example 

Table 1 shows the dataset from Cook and Kress (1999), and it has 12 DMUs and each 

DMU consumes 3 inputs to generate 2 outputs. The total fixed cost R=100 is to be 

allocated. Based on model (11), the maximal allocated cost each DMU can afford is 
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calculated and shown in the second column of Table 2. 

Table 1 A dataset from Cook and Kress (1999). 

DMU Input 1 Input 2 Input 3 Output 1 Output 2 

1 350 39 9 67 751 

2 298 26 8 73 611 

3 422 31 7 75 584 

4 281 16 9 70 665 

5 301 16 6 75 445 

6 360 29 17 83 1070 

7 540 18 10 72 457 

8 276 33 5 78 590 

9 323 25 5 75 1074 

10 444 64 6 74 1072 

11 323 25 5 25 350 

12 444 64 6 104 1199 

Based on model (14), the optimal excess value is 326.1*

1 = , and its corresponding 

coalition set is 

           1 1,7,8,9,11 , 5,7,9,11,12 , 3,4,6,7,8,10,12 , 2,3,4,6,7,10,12 , - 11N = , 

such that *

11.326,S S =   . The computation algorithm terminates, since 

( ) smMrank +== 5 , where ( ) 1, ,j jj S j S
M Y X S

 
 =   . Therefore, the fixed 

cost allocation can be determined as shown in the third column of Table 2, which is 

the nucleolus-based solution to the cooperative game ( ),N V . It is clear that the 

nucleolus-based solution shows a fairness concern by sympathizing and assisting 

vulnerable groups (i.e., the group has less excess value), thus the resulted allocation 

plan is of fairness. The calculation process of nucleolus-based allocation plan 

consistently sympathizes and assists vulnerable groups, thus the resulted allocation 

plan would be more acceptable and easily implemented in organizations in real 

managerial applications. In addition, the nucleolus-based allocation plan is very stable, 

and it is suitable for organizations consisting of a set of completing units. 

For the convenience of comparison, cost allocations based on Cook and Kress 

(1999), Beasley (2003), Li et al. (2013), and Du et al. (2014) are also given in the last 

four columns of Table 2. 
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First, the second column shows that upper bound of the fixed cost each DMU can 

afford is accepted by all approaches, except Cook and Kress (1999). The reason is that 

Cook and Kress (1999) belongs to the efficiency-invariance approach, while the 

others belongs or equals to the efficiency-maximization approach. The cost allocation 

based on Cook and Kress (1999) shows that the cost allocation may be entirely due to 

the input side, not depend on their outputs (Beasley, 2003). Readers can refer to two 

pairs of DMUs (DMU9 and DMU11, DMU10 and DMU12). This finding does not exist 

for other approaches. For example, our approach shows that DMU10 and DMU11 are 

allocated less cost than DMU12 and DMU9, respectively. 

Table 2 Fixed cost allocation results based on different approaches. 

DMU Upper 

bound 

Our 

approach 

Cook and 

Kress (1999) 

Beasley 

(2003) 

Li et al. 

(2013) 

Du et al. 

(2014) 

1 8.7859 7.27 14.52 6.78 6.38 5.79 

2 9.6907 7.61 6.74 7.21 7.42 7.95 

3 9.8192 6.57 9.32 6.83 6.68 6.54 

4 12.7309 8.77 5.6 8.47 8.83 11.10 

5 12.1649 6.99 5.79 7.08 7.63 8.69 

6 19.1686 11.50 8.15 10.06 9.70 13.49 

7 11.1340 4.63 8.86 5.09 4.28 7.10 

8 12.9434 7.89 6.26 7.74 8.35 6.83 

9 24.4768 14.05 7.31 15.11 15.87 16.68 

10 17.2763 9.77 10.08 10.08 9.75 5.42 

11 3.9468 1.33 7.31 1.58 0.46 0 

12 22.5158 13.63 10.08 13.97 14.64 10.41 

Compared with these efficiency-maximization approaches in Beasley (2003), Li et 

al. (2013) and Du et al. (2014), our approach has an advantage in reducing the 

absolute amount difference between the maximal and minimal cost among these 

DMUs, since 12.72 (=14.05-1.33) is less than 13.53, 15.41 and 16.68. As Li et al. 

(2009) suggested, a smaller gap among the allocated costs of DMUs will bring about 

less difficulty in implementing the allocation. 

It is noteworthy that the cost allocation based on Du et al. (2014) is one of multiple 

optimal allocations. The proposed approach in this paper considers cooperation and 

competition relations among DMUs, and uses the cooperative game to allocate the 

fixed cost. From the perspective of the game, the resulted cost allocation in this paper 
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may be more acceptable by DMUs as compared to other approaches.  

Table 3 Difference of five methods on three conditions. 

Conditions 
Methods 

O CK B L D 

Whether the method is linear? YES YES NO YES YES 

Whether the allocation is unique? YES YES YES YES NO 

Whether the method considers the game among 

DMUs. 
YES NO NO NO YES 

In order to observe the difference of the above five methods clearly, we further use 

Table 3 to describe different conditions that these methods satisfied: (1) whether the 

method is linear? (2) Whether the allocation is unique? (3) Whether the method 

considers the game among DMUs. From the results, we find that both Cook and Kress 

(1999), Beasley (2003) and Li et al. (2013) can determine a unique allocation, but the 

game among DMUs is not addressed, and even a series of nonlinear programming is 

used in Beasley (2003), which makes its allocation more complex. Only our proposed 

approach satisfies these three conditions simultaneously. 

4.2 A real application in a steel and iron enterprise 

A steel and iron company in Anhui Province China has ten production lines. Governed 

by the environmental and energy regulations, the firm faces enormous pressure to 

improve the structure of production and to enhance the efficiency of energy utilization. 

In 2015, the firm spent 20 million Yuan (RMB) to upgrade and retrofit some essential 

production equipment. Therefore, it requires its production lines to cover the total cost. 

In this application, each production line is considered as an independent and 

homogeneous DMU, which has four inputs (Standard coal, Iron ore, New water, and 

Labor) and two outputs (Production of steel and iron) as shown in Table 4. To offset 

the upgrade cost completely, here the fixed cost to be allocated is supposed to be 

R=2000 (unit: ten thousand Yuan (RMB)). 

Table 4 Input-output data of the steel and iron company. 

DMU Standard coal 

(ton) 

Iron ore 

(ton) 

New water 

(ton) 

Labor 

(person) 

Steel 

(ton) 

Iron 

(ton) 

1 74115 375944 2420 374 150236 41917 

2 84713 381974 3464 224 106177 68738 

3 76087 299056 2848 363 224356 42603 
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4 109150 420650 1645 397 133291 48536 

5 114462 356279 1661 324 301229 60390 

6 104493 427276 3024 356 200101 60148 

7 118825 392056 4220 351 253604 125641 

8 159620 283154 3136 290 160096 102599 

9 193873 391289 1976 341 160441 120832 

10 146680 278386 2246 442 97847 49659 

Similar to Section 4.1, we first solve model (11) and get the upper bound of 

allocated costs for all coalitions of DMUs. Here we show the upper bound for 

individual DMU in the second column in Table 5. Further, we use model (14) to 

maximize minimum excess values (i.e., the degree of happiness) among all coalitions 

of DMUs. Within the first round, we get the optimal objective function *

1 42.9418 =  

for two coalitions  1,3,6,8,9  and  2,4,5,7,10 , and the corresponding allocation 

result and excess value for each individual DMU are given in the third and fourth 

columns of Table 5. Note that at this time it holds that 1 2 6n =  , thus we would turn 

into the second round. We directly solve model (17) and get the second minimum 

excess value *

2 53.4210 =  for four coalitions, that is,  4,6,8 , 

 3,6,9,10 , 1,3,6,7,9,10  and  1,2,3,4,5,6,7,8,9 . Now the equality 2 6=n m s= +  

holds, hence the algorithm terminates. As a result, the allocation derived from the 

second round was taken as the final nucleolus-based allocation of the upgrade costs, 

which is given in the last column of Table 5. 

Table 5 Fixed cost allocation results of the upgrade costs. 

DMU 
Upper 

bound 
Round 1 

Excess 

value 
Round 2 

Excess 

value 
Allocation 

1 201.8171 89.6874 112.1298 87.1106 114.7064909 87.1106 

2 262.3214 102.0070 160.3145 106.8298 155.4916676 106.8298 

3 400.8508 161.1517 239.6990 154.3165 246.5342492 154.3165 

4 170.7199 104.2614 66.4585 102.0796 68.64026791 102.0796 

5 572.2772 320.6585 251.6187 314.1732 258.1039762 314.1732 

6 261.0845 159.7399 101.3446 156.9450 104.139537 156.9450 

7 626.1986 389.9909 236.2077 400.4142 225.7844092 400.4142 

8 445.7973 269.6518 176.1455 273.6742 172.1231731 273.6742 

9 641.9022 342.8513 299.0509 351.0359 290.8663374 351.0359 

10 137.7383 60.0001 77.7382 53.4210 84.31727576 53.4210 
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According to the final optimal fixed cost allocation results, four production lines 

(DMU5, DMU7, DMU8, and DMU9) would need to pay much more than other 

production lines, and contribute more than two-third of the total costs. This could be 

due to the fact that these four production lines have a higher upper bound on possible 

allocated costs. On the contrary, DMU1, DMU4 and DMU10 are characterized with the 

lowest upper bound, so they afford the least upgrade costs as compared to its peers. 

Additionally, if we turn our attention to the operation size for these ten production 

lines, we can find that all production lines have very similar ranks in both overall size 

and allocated cost in ascending order, and even four of these ten production lines (3, 4, 

7 and 9) have identical ranks in both overall size and allocated cost, as shown in Table 

6. This fact implies that the allocation result derived from our proposed approach is 

implicitly consistent with the current input consumptions and output productions from 

a size point of view. That is to say, a DMU with larger scale is more likely to bear 

more cost, while less cost will be undertaken by DMUs with smaller sizes. This 

feature is an intuitive result and also demonstrates the validity of the proposed 

approach. 

Table 6 Operation sizes and allocated costs. 

DMU Input size Output size Overall size Rank  Allocated cost Rank 

1 0.0627 0.1043 0.0908 0.1080 0.0841 0.0581 0.0847 1 87.1106 2 

2 0.0717 0.1059 0.1300 0.0647 0.0594 0.0953 0.0878 2 106.8298 4 

3 0.0644 0.0829 0.1069 0.1049 0.1255 0.0591 0.0906 5 154.3165 5 

4 0.0923 0.1167 0.0617 0.1147 0.0746 0.0673 0.0879 3 102.0796 3 

5 0.0968 0.0988 0.0623 0.0936 0.1685 0.0838 0.1006 6 314.1732 8 

6 0.0884 0.1185 0.1135 0.1028 0.1120 0.0834 0.1031 7 156.9450 6 

7 0.1005 0.1087 0.1584 0.1014 0.1419 0.1742 0.1309 10 400.4142 10 

8 0.1350 0.0785 0.1177 0.0838 0.0896 0.1423 0.1078 8 273.6742 7 

9 0.1640 0.1085 0.0742 0.0985 0.0898 0.1676 0.1171 9 351.0359 9 

10 0.1241 0.0772 0.0843 0.1277 0.0547 0.0689 0.0895 4 53.4210 1 

* The size of a particular measure is calculated as the ratio of the measure value to 

the aggregated value across all production lines. The overall size is an arithmetic 

mean value across all measure sizes in the same row. 

5. Conclusions 

It is notable that the cooperation and competition relations among DMUs 
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simultaneously exist in allocating the fixed cost. This paper first finds that the novel 

game cross-efficiency approach of Du et al. (2014) is equivalent to the extended 

proportional sharing approach of Li et al. (2013). And both two approaches may give 

multiple cost allocations in the multi-dimensional case. This paper then considers the 

game relations in advance in the fixed cost allocation and proposes a cooperative 

game DEA approach. We define the super-additive characteristic function and adopts 

the nucleolus as a solution to the game. The resulted allocation scheme maximizes the 

“degree of happiness” of all coalitions through maximizing all excess values, which 

can be more acceptable to all DMUs. Finally, the proposed cooperative game DEA 

approach is illustrated with both a numerical example from previous literature and a 

real case of steel and iron enterprise from China. 

Future research may introduce the fairness criterion, and propose an approach 

based on trade-off between the efficiency and fairness criterion. Besides, one can 

explicitly take the operation size into account, and the generated allocation plan is 

proportional to input usages and output productions from a size point of view. 
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Appendix 

Appendix 1 

Theorem 1. Each fixed cost allocation under a common set of weights based on 

system (9) can satisfy the algorithm of the game cross-efficiency method. 

Proof. The cost allocation under a common set of weights is presented as 

1 1

11

1

,

0,

, 0, 0, ,

s m

j r rj i ijr i
n

j mj

j

r i m+

r u y v x j

r v R

r j

u v v r i .

= =

+=

= − 

=

 

  

 
                                   (A1.1) 

  Let ( )1
ˆ ˆ ˆ 1,...,j j mR r v j n+= =  be an allocation associated with ( )1

ˆ ˆ ˆ, ,r i mu v v +  in 

(A1.1), and then ( )1 1
ˆˆ ˆ ˆ ˆ ˆ, , ,r i m j j mu v v R r v+ += is a feasible solution to model (4) (or linear 

model (5)), for it can satisfy all constraints of model (4), such that 
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  ( )1 11 1 1
ˆ ˆ ˆ ˆ .

n n n

j j m j mj j j
R r v r v R+ += = =

= = =    

Hence, we have also ( )
1

1
1,

n

j jd
e e d j

n =
= =   and ( )* 1dE d = . It means that 

( )1 1
ˆˆ ˆ ˆ ˆ ˆ, , ,r i m j j mu v v R r v+ +=  is an optimal solution to model (4) and we cannot further 

improve the efficiency for any DMUj. Then for any smaller enough positive 0  , 

we have 1 0t t

j je e + − =  . The algorithm of cross-efficiency iterative method 

terminates. 

Note that ( )1 1
ˆˆ ˆ ˆ ˆ ˆ, , ,r i m j j mu v v R r v+ +=  is chosen randomly based on (A1.1), so any 

fixed cost allocation under a common set of weights based on system (9) can satisfy 

the algorithm of the cross-efficiency iterative method.  

Appendix 2 

Theorem 2. When the algorithm of the game cross-efficiency method terminates, the 

resulted fixed cost allocation can be generated based on system (9) under a common 

set of weights. 

Proof. It is proven by Du et al. (2014) that, when the cross-efficiency iterative 

algorithm terminates the optimal cross-efficiency for any DMUj equals one. Denote 

the optimal solution to the game cross-efficiency method as ( )* * * *

1
ˆ ˆ ˆ ˆ, , ,d d d d

r i m ju v v r+ . 

Based on formula (7) we have 
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  Since the input-oriented d-cross-efficiency is no more than one, it must be that 
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Then, * * *

1 1
ˆ ˆ ˆ , , .
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r u y v x d j

= =
= −                          (A2.3) 

Further, we have 
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Let *

1

1
ˆ

n d

r rd
u u

n =
=   and *

1
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ˆ

n d

i id
v v

n =
=  , then we have system (A2.5). 
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By combining system (A2.5) and the non-negative/positive constraints on variables, 

we get the same formulation as system (9). Therefore, when the cross-efficiency 

iterative algorithm terminates, the resulted final fixed cost allocation can be realized 

under a common set of weights based on system (9).   

Appendix 3 

Corollary 1. The optimal cost allocation of the game cross-efficiency method is 

equivalent to that of the extended proportional sharing method under a common set of 

weights based on system (9). 

Proof. It can be easily proven by combining theorems 1 and 2.   

Appendix 4 

Based on Corollary 1, all cost allocations based on Du et al. (2014) can be represented 

by system (9). And it can be transformed as follows: 

( ) 1 11 1 1 1
, 0.

s n m n

r rj i ij m mr j i j
R u y v x v v+ += = = =
= −                       (A4.1) 

In the one dimensional case, the allocation based on Formula (A4.1) is unique and 

the same as the standard proportional sharing method (Li et al., 2013; Si et al., 2013).  

In the general multi-dimensional case, however, the two approaches of Du et al. 

(2014) and Li et al. (2013) may give multiple allocations, since there exist 

( )1m s n+ + +  variables and ( )1+n  equations in system (9). Based on Li et al. 

(2013) and Si et al. (2013), we present Proposition 1 here to show the non-uniqueness. 

Proposition 1. According to the extended proportional sharing method based on 

system (9):  

(i) The unique allocation can be obtained if the cost allocation problem is a 

one-dimensional case in which only one output measure is considered, i.e., s=1 

and m=0; 

(ii) Multiple allocations may be available if and only if 1+ sm . 

Proposition 1 can be easily proven using basic results in linear algebra, and here we 

omit the proof.  

Appendix 5 
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Proposition 2. ( ) ( ) ( )0,
j S

V V N C j R


 = = − . 

Proof. The first part is held automatically. For the second part, 

( ) ( ) ( ) ( ) 0
j N j N

V N C j C S C j R
 

= − = −   .  

Appendix 6 

Theorem 3. The characteristic function V(S) satisfies the super-additivity property, 

i.e., we have ( ) ( ) ( )+V S V T V S T , if ,S T N and S T = . 

Proof. ( ) ( ) ( ) ( ) ( ) ( )
j S j T

V S V T C j C S C j C T
 

+ = − + −   

( ) ( ) ( )( )
j S T

C j C S C T


= − +  

  Based on the egoist’s dilemma in Nakabayashi and Tone (2006), we can find that 

the fixed allocation problem in model (11) would be sub-additive. That is, 

( ) ( ) ( )C S T C S C T +  for any ,S T N . As a result, we have 

  ( ) ( ) ( ) ( ) ( )( )
j S T

V S V T C j C S C T


+ = − +  

( ) ( )
j S T

C j C S T


 −  

( ) , ,V S T S T N S T=   = .  

Appendix 7 

Theorem 4. The cooperative game ( ),N V  is a balanced game. 

Proof. Consider a vector λ  with 2 2n −  nonnegative components ,S S N  , 

which satisfies that 1,Sj S N
j N

 
=   . Then, according to Shapley (1967) the 

game ( ),N V  is said to be balanced if it holds ( ) ( )SS N
V S V N


 .  

According to model (11) and definition 1 on the characteristic function, we have 
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  The above inequality is an immediate result of Nakabayashi and Tone’s (2006) 

egoist’s dilemma. 

Hence, the cooperative game ( ),N V  is a balanced game.  

Appendix 8 

Combine equations in system (9) and equation ( ) ( ) *

1=jj S j S
C j z V S 

 
− −  , 

we have ( ) *

1 1,r rj i ijr j S i j S
C S y w x S 

 
− = −      .            (A8.1) 

where 1 1,r r m i i mu v v w v + += = , and 1j j mR r v += . Apparently, it contains m s+  

variables ( ), , ,r iw r i  . If 1n m s= + , we have m s+  equations that are 

reciprocally linearly independent, then the unique solution can be obtained according 

to theories in Linear Algebra. Accordingly, the fixed cost allocation plan can be 

uniquely determined, and then the algorithm terminates. If 1n m s + , the rank of 

coefficient matrix is smaller than the number of variables. As a result, there still 

leaves flexibility in the variables, and we cannot terminate the algorithm but go to 

step 3. A similar situation occurs in step 4. If ln m s= + , then we get uniquely 

determined fixed cost allocation plan and terminate the algorithm, else do until there 

are m s+  linearly independent equations uniquely determining the variables and 

resulted allocation plan. 


