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Abstract  

Understanding the mechanisms and consequences of attributing socialness to artificial agents 

has important implications for how we can use technology to lead more productive and 

fulfilling lives. Here, we integrate recent findings on the factors that shape behavioural and 

brain mechanisms that support social interactions between humans and artificial agents. We 

review how visual features of an agent, as well as knowledge factors within the human 

observer, shape attributions across dimensions of socialness. We explore how 

anthropomorphism and dehumanization further influence how we perceive and interact with 

artificial agents. Based on these findings, we argue that the cognitive reconstruction within 

the human observer is likely to be far more crucial in shaping our interactions with artificial 

agents than previously thought, while the artificial agent’s visual features are possibly of 

lesser importance. We integrate these findings to provide an integrative theoretical account 

based on the “like me” hypothesis, and discuss the key role played by the Theory-of-Mind 

network, especially the temporal parietal junction, in the shift from mechanistic to social 

attributions. We conclude by highlighting outstanding questions on the impact of long-term 

interactions with artificial agents on the behavioural and brain mechanisms of attributing 

socialness to these agents.  

 

Keywords: socialness attribution, animacy, anthropomorphism, artificial agents, human-robot 

interaction, social cognition 
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Introduction  

Humans readily attribute socialness to artificial agents1. We erupt in anger at the computer 

that ‘knowingly’ crashes in the middle of an important task, sympathize with a robot 

character in a film, or attribute a personality to an artificial personal assistant. The ease with 

which we ascribe agency and socialness to artificial entities has been exploited by writers, 

artists, and filmmakers for nearly a century, resulting in a rich fiction exploring the 

relationship between man and sentient machine. How do we make the transition from seeing 

a robot as a simple automaton to a sentient social being? This and related questions have 

puzzled scholars for centuries, from the discussion of the uniqueness of human social nature 

by Aristotle to the study of early automatons by Leonardo da Vinci and most recently the 

detailed empirical investigations by roboticists, psychologists, and cognitive neuroscientists 1-3.  

 

These days, robots not only work alongside people on factory floors, but can increasingly be 

found in health care, education, and service industry settings as well. Similarly, with the 

increasing use of virtual and augmented reality, interactions with virtual humans are also 

likely to play a key role in the social fabric of society in the near future. Amidst this fourth 

industrial revolution, as social robots and other artificial agents become increasingly 

sophisticated and resolutely move from fiction to reality, important questions regarding the 

flexibility and adaptability of human social cognition when interacting with these entities 

require urgent attention. 

 

Why might we perceive a robot as merely an automaton in some situations, while in other 

situations we see the same robot as an engaging social partner? Is this process of attributing 

                                                        
1 We use the term artificial agents to refer to robots (including those that are machine-like, pet-like or human-
like), virtual agents (including avatars of oneself or other virtual humans or characters), and artificial personal 
assistants (such as Siri, Cortana, Alexa, etc.).  
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socialness to artificial agents similar to that for attributing social characteristics to biological 

agents? To what extent is the same neural machinery we use to navigate our social world, 

refined over millennia of interacting with other people, co-opted when we reason about and 

interact with artificial agents? In this review, we aim to formulate answers to these complex 

and increasingly relevant social cognition questions by using an integrative approach that 

synthesises the latest findings in psychology, social robotics, virtual reality and neuroscience. 

We first review work on the role of artificial agents’ physical appearance in eliciting 

responses at the brain and behavioural level. While this work documents how variations in an 

agents’ visual features can shape human social engagement to a certain extent, we discuss 

noteworthy new findings incorporating insights from social cognition and social neuroscience 

on the impact of a person’s prior knowledge, beliefs, or expectations about an artificial agent. 

In addition, we consider the processes of anthropomorphism and dehumanization on social 

engagement at brain and behavioural levels. We discuss a model that takes into account both 

perceptual and cognitive factors of human interactions with artificial agents and shows the 

functional convergence of cognitive factors driving socialness attribution to artificial agents 

within a specialized neural network. We conclude by discussing current challenges and future 

directions. 

 

The attribution of socialness 

A social interaction between two agents involves a complex cascade of expressions and 

reactions to social and emotional signals. During these interactions, we are not passive 

observers, but instead we actively construct the social nature of the other agent. We try to 

understand and explain the behaviour and internal states of the other agent in terms of 

emotions, intentions and beliefs. As we attribute emotions or intentions to other agents, 

artificial or not, we infer and attribute socialness to these agents. Socialness can be defined as 
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the presence of intentional goal-directed recursive interactions with other beings. This 

process of attribution is closely related to the perception of other agents’ minds 4, or the 

representation of their mental state, also referred to as mentalizing or Theory-of-Mind 5. If we 

attribute socialness to an agent, we adopt what Dennett 6,7 calls the intentional stance. We 

view and treat the agent as rational, with beliefs, desires and behavioural consistency. This is 

in contrast to the design stance, in which we view and treat an agent based on knowledge of 

its function or design (for example, predicting the response of a robot based on the 

knowledge of its software or actuators), or physical stance, in which we view and treat an 

agent based on knowledge derived from physics and chemistry (for example, predicting the 

trajectory of a ball or a self-driving car based on its mass and velocity).  

 

The attribution of socialness to artificial agents should not be viewed as a binary decision or 

an all-or-nothing process. An agent’s socialness or the presence of intentional goal-directed 

recursive interactions with other beings is not dichotomous, but is instead a continuum 

constructed across multiple dimensions 4,8. Researchers have described at least two 

dimensions that summarizes different parts of socialness. People use experience, or the 

ability to sense and feel, and agency, the ability to plan and act, to distinguish the minds of 

agents 9. For instance, data suggest that people rate an adult human being as high on both 

experience and agency, a dog or a chimp as high on experience and low on agency, and a 

robot as low on experience and medium on agency. Other researchers suggest a different, but 

related, distinction between warmth (similar to experience) and competence (similar to 

agency) 10. Yet other researchers discuss a distinction based on human nature (aspects related 

to emotion that allow for a human-inanimate distinction), and human uniqueness (aspects 

related to morality that allow for a human-animal distinction) 11,12. Regardless of which 

distinction is used, the important point is that socialness can be distinguished on multiple 
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dimensions. In order to been seen as a social being, an agent does not need to qualify as 

social across all dimensions (for example having both agency and experience). While other 

researchers have discussed humanness or animacy, derived from the Latin word animat, 

meaning ‘instilled with life’, here we mainly use socialness to highlight this notion of a 

continuum and multidimensionality, and to capture the full dimensions of these attributions. 

Socialness comprises capacities like actions, emotions, and intentions, and some scholars 

have argued that at its essence, a social agent is an agent that is capable of influencing the 

behaviour of another agent 13. 

 

Crucially, the attribution of socialness is an ongoing, dynamic process between the perceived 

agent and the observing agent 4, and is composed of many cues 14. Some of these cues are 

derived from features of the artificial agent, such as its form and motion, and are referred to 

as bottom-up or stimulus cues to socialness. Above and beyond these cues, recent studies, as 

reviewed here, show that the prior knowledge of the observer, based upon beliefs, 

expectations, and experience, is key in the attribution of socialness. These observer-oriented 

factors are collectively referred to as top-down or knowledge cues to socialness. The 

distinction between these two type of cues provides the necessary framework to distil and 

disentangle the factors that influence the attribution of socialness to artificial agents.  

 

At a basic level, brain regions associated with the person perception network (PPN), the 

action observation network (AON) and the Theory-of-Mind (ToM) network have been shown 

to selectively respond to animate agents 15,16. The PPN includes regions in the occipital and 

temporal cortex, such as the fusiform face area (FFA) and body area (FBA), occipital face 

area (OFA), extrastriate body area (EBA) and posterior superior temporal sulcus (STS) 17-19. 

Of course, these regions do not represent discrete animate and inanimate categories, but 
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instead are responsive to a wide variety of stimuli 20,21. Activity within these regions appears 

to index an observed agent’s features (e.g., facial features, body posture, motion) 17,18,22, the 

interactive nature of the situation 23, context 24,25 and perceived animacy and socialness 26,27. 

The AON comprises frontoparietal regions spanning the posterior inferior frontal gyrus and 

inferior parietal lobule, which are engaged in a similar manner for executed and observed 

actions 28-30. Activity within this network is also modulated by animacy and socialness. The 

very first work on this system demonstrated a distinction in parietal and premotor neural 

firing when non-human primates observed animate (a grasp being performed by a human 

hand) compared to inanimate actions (a grasp being performed by pliers) 31,32. Social 

processing performed by the PPN and AON is further informed by the ToM network, which 

comprises cortical regions spanning the medial prefrontal cortex (MPFC), temporoparietal 

junction (TPJ), precuneus and temporal pole 33-35. This network is crucial for the inferring the 

mental state of other agents, including even inanimate agents 36. 

 

As we show in the next sections, a mechanistic understanding of the attribution of socialness 

to artificial agents can be advanced through use of a social and cognitive neuroscientific lens. 

Some researchers have even suggested that measures of brain activity can serve as a ‘neural 

Turing test’ 37,38, a way of assessing the ability of an artificial agent to be indistinguishable 

from a human being 39. Whether or not this is (yet) feasible, findings from social and 

cognitive neuroscience can nonetheless illuminate the factors underpinning the attribution of 

socialness to artificial agents.  
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Impact of Artificial Agent’s Visual Features  

Form 

Form follows function, not just in the world of architecture, but also in the design of artificial 

agents. The first cue towards socialness is the form and shape of an observed agent. The 

perception of the face and body of a human agent provide access to a rich set of cues to 

socialness that facilitate subsequent behaviour. Besides identity, the human face and body 

communicate emotions and intentions 17-19. The perception of this information is partly 

influenced by stimulus cues, such as the shape and gender of an agent. Importantly, the 

perception of animacy is at the core of face processing 40. By directly evaluating the 

perception of artificial compared to human agents, important first insights of the impact of 

artificial agents’ visual features have come to light.  

 

Several studies have looked at the pattern of activation in the PPN when observing emotions 

expressed by artificial agents. So far, both electroencephalography and neuroimaging studies 

suggest that activity within this network is not necessarily decreased by the appearance of the 

artificial agent 41-47. Two influential studies provided the first insight into the effect of 

stimulus cues of socialness 45,46. In both studies, participants observed a wide variety of 

emotional facial expressions (e.g., happiness, disgust, anger) made by a humanoid robot or a 

human. Regardless of the instruction to either passively observe or actively rate the 

expressions, similar findings emerged in the neuroimaging data. Specifically, both studies 

reported no attenuation in activity within the PPN when observing robotic facial expressions. 

In terms of the response profile of individual regions, activity within the superior temporal 

gyrus did not discriminate between humanoid robot or human facial expressions, while 

activity in the fusiform face area was increased for the robotic face compared to the human 

face 45,46. However, the study by Gobbini and colleagues 46 reported the first evidence of 
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decreased activity in the ToM network, specifically the right MPFC and the right TPJ, when 

observing artificial agents. This finding has recently been corroborated by Wang and 

Quadflieg 47 in a study on the perception of human-robot interactions. In this study, 

participants observed a human interacting with either another human or a humanoid robot, 

and were instructed to indicate if one agent was helping the other agent. This instruction was 

given to focus participants’ attention on the relational aspect of the interaction between the 

two agents. Similar to previous findings, no robust differences were observed between the 

perception of human-robot interactions compared with the perception of human-human 

interactions within the PPN. Only three out of ten regions in this network, the right fusiform 

face area and bilateral posterior superior temporal sulcus, showed greater activation for 

perception of human-human interaction compared with human-robot interaction. However, 

this study also showed sensitivity to the socialness of the agent within the ToM network, with 

more activation for human-robot interaction in the vMPFC and precuneus, but less activation 

in the left TPJ during the observation of these interactions compared to human-robot 

interaction.  

 

These findings of overlap between artificial and human agents at the level of the PPN are 

complimented by studies probing this network using schematic faces or bodies 18,22. With 

minimal cues present, people readily see faces in face-like objects or even random patterns, 

with similar activation patterns observed within dedicated brain areas implicated in person 

perception 48,49. Differences in how an agent’s physical appearance impacts person perception 

compared to the cognitive processes of Theory-of-Mind are further borne out by behavioural 

findings. For instance, emotions expressed by artificial agents, especially in the case of 

negative emotions, are sometimes difficult to recognize by human observers 50. Martini, 

Gonzalez and Wiese 51 directly investigated the role of a humanlike appearance of an 
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artificial agent on the attribution of different states to the artificial agent, including emotions, 

goals and agency. Findings from two experiments suggest that the attribution of these states 

is a two-step process. While observers seldom attribute socialness to artificial agents below a 

threshold of human-likeness, this linearly increases as more human features become part of 

the artificial agent. Studies examining these effects on social interactions with artificial 

agents show decreased human cooperation during direct economic interactions with a small 

humanoid robot compared to a person 52, and that people are prone to punish artificial agents 

more that people 53,54. In sum, these findings suggest a differential impact of artificial agents’ 

form on processing in the PPN and ToM network. Whereas the PPN might not rely as heavily 

on them being human-like, the ToM network and related behaviours might. It should be 

noted that while the study of perceiving artificial agents is an emerging topic, the few studies 

published have mostly been limited to facial expressions, with the exception one study on 

perceiving whole-body interactions between humans and humanoid robots 47. This reflects a 

similar face-centric bias observed in studies on the perception of human social signals 55 As 

such, it will be valuable for future studies to use a larger variety of social signals to probe the 

effect of artificial agent’s form on engagement of the PPN and ToM network, in order to 

build a more complete picture of social perception.” 

Movement  

Numerous studies document how the human brain reliably extracts a wealth of socially-

relevant information from simple motion cues. Since the seminal work by Johansson on 

point-light displays 56, it has been shown that videos featuring a handful of points following a 

biological motion profile, containing no further information on the form of the agent, can be 

used to distil not only the direction and type of actions performed by an actor, but also the 

actor’s emotions, gender, and identity 57. Some researchers have argued that biological 

motion might serve as a ‘life-detector’ 58-60, which helps us to detect conspecifics and other 
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animals. In an important early study, Pelphrey and colleagues 61 showed that the STS is 

selective to biological motion cues but not the form of the agent. While biological motion is 

clearly an important social cue, with some researchers arguing for a biological tuning of the 

motion node of the PPN 62, as well as the human motor system and the AON 63-65, open 

questions remain concerning whether biological motion is necessary for engagement of each 

of these networks. 

 

First insights into such questions can be found via studies on the attribution of socialness to 

simple animated shapes. Since the influential work by Heider and Simmel 66, multiple studies 

found that the observation of animations of simple shapes or social animations featuring non-

biological, but self-propelled, motion not only trigger the attribution of goals and intentions 

to these shapes 67,68, but also robustly activate the posterior part of the STS (pSTS) 36,69-71, a 

core node of the PPN. Activity in this region increases when movement parameters suggest 

an interaction between animated shapes and decreases when movement parameters suggest 

less interactive and more random motion, implying a ‘perception of animacy’ response 

gradient 72. A recent study provides further insights into the role of pSTS that extend beyond 

motion per se 73. In two experiments, the authors presented participants with short clips of 

point-light displays with two agents interacting or completing individual actions, as well as 

animations of simple shapes engaging in helping or hindering social interactions. Results 

showed that pSTS maximally respond to social interactions between point-light figures as 

well as simple shapes. Further analysis revealed that activity in this region does not depend 

on shape, goal or animacy of the agent, per se. Crucially, the pSTS appears to be specifically 

sensitive to decoding the nature of these interactions, whether the interaction was helpful or 

hindering. Together these findings suggest that a role for the pSTS that is more flexible, 

moving beyond mere selectivity for biological motion 62. While these findings complement 
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previously discussed findings of the role of the PPN, it is important to note that perception of 

social animations also engages brain activity beyond this network. For example, the goal-

directed movement of simple shapes triggers activation in the anterior intraparietal sulcus, 

part of the AON 74, similar to human goal-directed movements 75, and social animations can 

be used to functionally localize the ToM network 76 and robustly activate the TPJ 77.  

 

These findings are corroborated by studies examining automatic imitation during human-

robot interactions. Automatic imitation studies seek to the quantify the reflexive imitation of 

observed behaviour, in this case, the interference of an observed robot’s movements on the 

human perceiver’s executed movements. Some evidence suggests that a biological motion 

profile of an observed agent impacts an observer’s ongoing or subsequent movement more 

than a non-biological motion profile 64,78,79, and that automatic imitation is greater for robotic 

movements with quasi-biological motion 80,81. However, other studies call into question the 

necessity of biological motion in an observed action in order for an observer’s motor 

performance to show interference effects. While automatic imitation of robotic actions is 

smaller compared to human actions in absolute value, it is not completely absent, and several 

studies document automatic imitation of movements made by real and virtual full-body 

humanoid robots 80,82-84, regardless of the presence of biological motion. A key factor driving 

automatic imitation appears to be the presence of human-like joint configuration, and not 

human-like motion per se 85. Interference effects of observed movements on executed 

movements are reported for both humanoid robot and mechanical robot arms, as long as the 

latter had human-like joint configurations. No interference effects are observed if the 

mechanical robot arm had a non-human joint configuration, despite having quasi-biological 

motion. Interference effects are also found for apparent motion movements made by robotic 

hands 86-89. Thus, little direct evidence exists for biological tuning at the behavioural level. 
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In contrast to an early study 65, the majority of studies report that activity in the AON is not 

reliably decreased when observing actions performed by artificial agents compared to 

humans 37,90-93. Indeed, motion parameters and an agent’s appearance appear to not impact 

the AON in isolation, but rather in combination, and based on context 90,91. In an innovative 

study, Saygin and colleagues 90, compared the observation of simple actions performed by a 

human, an android, or a robot. Importantly, the android and robot shared the identical motion 

profile, but differed in appearance. This was achieved by removing or replacing all of the 

external ‘human-like’ features of the android so the appearance looked far more mechanical. 

Results showed most AON engagement for android compared to human or robot movements. 

Thus, activity in the AON appears to be mediated by an interaction between form (human-

like) and motion (machine-like). The authors interpreted their finding in terms of a predictive 

coding model 94. In this model 95, observing unfamiliar actions can lead to increased activity 

in the AON due to greater prediction error. Further evidence for the importance of familiarity 

above and beyond the effect of motion parameters and appearance comes from a study by 

Cross and colleagues 91. Across two experiments, they showed that AON activity was reliably 

greater when participants watched unfamiliar robotic dancing movements compared to 

natural dancing movements, regardless of whether these movements were performed by a 

person or a robot. These studies provide critical evidence that it is not simply stimulus cues, 

like an agent’s form and motion, that drive engagement of brain regions involved in social 

perception, but also an observer’s previous experience, familiarity, and expectations about 

how an artificial or human agent moves. In sum, while biological motion is an important cue 

to socialness, a number of lines of evidence suggest it is not necessary. Instead, the core 

networks implicated in social perception can be flexibly engaged when observing an artificial 

agent in action, depending on a number of other mostly stimulus-independent factors.  
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Presence 

The first visual encounter with an artificial agent provides a human observer with a first, 

albeit partial, indication of the agent’s socialness. This understanding is only partial at first, 

since socialness attribution is a dynamic, emergent property of the active social interaction 

between two or more agents 96. One important feature that supports social interactions is the 

physical co-location of both or all agents in the same environment. However, to maximise 

experimental control and efficiency, most studies so far merely explore how people perceive 

other (artificial) agents, which is a far leap from active social interaction during which each 

agent’s ongoing behaviour has the potential to influence and be influenced by the behaviour 

of the other agent. Investigations that use agent observation as the main measure of interest 

focus on offline social cognition, while investigations employing reciprocal social interaction 

can delve more deeply into online social cognition, thereby tapping into distinct 

psychological and neural processes 97. Physical embodiment and agent presence are crucial 

features for studying social interaction between human and artificial agents 98,99. Besides 

sharing a virtual environment in virtual reality 100, physical embodiment is another way to 

ensure artificial and human agents share the same space 101. A physically embodied artificial 

agent is a real, physical agent that is physically present in the same room as the human agent 

and allows for physical and face-to-face interaction between the two agents. A physically 

embodied agent can also be physically present in another room but presented on a screen, 

thereby reducing the presence of the artificial agent but maintaining the potential for face-to-

face interaction. Lastly, a virtually embodied artificial agent is a virtual construction of an 

artificial agent presented on a screen, thus having neither presence in the real world nor 

physical embodiment. Initial evidence documents the impact of embodiment and presence on 

the attribution of socialness. 
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Engaging in mutual gaze, compared to averted gaze, with a physically embodied robot 

increases engagement and can drive perceived human-likeness 102. Confirming previous 

observations 103, humans perceive a physically embodied and collocated robot more 

positively and persuasively than a visual representation of the same robot 104. In addition, 

people also recognize physically present robots’ emotions more accurately 105, and even 

report higher levels of empathy for robots with whom they share the same space 106,107. A 

recent study showed that the presence of an android robot directly influences perceived 

humanness and spontaneous mimicry by participants 108. First, participants rated the android 

higher on human-likeness when it was collocated with them, compared to being presented on 

a computer screen. Second, while spontaneous mimicry was robustly observed across 

participants for a collocated android, only participants who rated the visually presented 

android higher on human-likeness showed spontaneous mimicry for this agent.  

 

While evidence is so far limited to behavioural studies, indirect evidence of the impact of an 

artificial agent’s physical embodiment and presence on social engagement at the brain level 

can be distilled from studies on gaze interaction 98,109. Displaying the gaze behaviour of a 

human agent via a virtual avatar can result in increased feelings of presence of the human 

agent and increased positive evaluations of this agent 110. Schilbach and colleagues 111 used 

an interactive gaze task to tease apart the effect of self-initiated and other-initiated joint 

attention at behavioural and brain levels. They found that other-initiated joint attention 

increased activation in the MPFC, a core region of the ToM network, and self-initiated joint 

attention increased activation in the ventral striatum, a region associated with reward 

processing. Interestingly, activity in these regions is decreased when participants believe that 

the gaze behaviour of the avatar has a computer origin 112, suggesting less involvement of 
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social neurocognitive processing when an interactant has artificial origins. These findings 

thus contribute to our understanding of how the physical embodiment and presence of an 

agent might potentially shape attributions of socialness, in addition to the agent’s form and 

motion characteristics.  

 

In sum, a number of studies have attempted to address the extent to which stimulus cues, 

including the physical features, movement parameters and presence of an artificial agent, 

influence behavioural and brain measures of socialness. To date, we argue that there is not 

enough evidence to suggest a reliable, clear impact of any of these features on socialness 

attributions. Instead, the work reviewed demonstrates that both the PPN and the AON are 

flexibly engaged when perceiving a diverse array of artificial agents, from schematic faces to 

social animations of shapes to mechanical and humanoid robots. Regarding the AON, several 

studies already suggest that it is not the appearance and motion of an artificial agent, but 

instead expectations or familiarity that might be more important in driving engagement of 

this network. In contrast, activity in the ToM network appears to be sensitive to the physical 

presence of an artificial agent, and whether or not there is a social narrative that can be 

ascribed to groups of animated shapes, but is not particularly sensitive to the presence or 

absence of biological motion. In contrast, several researchers have concluded that visual 

features of the artificial agent influence the attribution of socialness at the brain and 

behavioural level to some extent 63,113. Naturally, it seems likely that the prospect of social 

behaviours being present, and thus the potential for a human interaction partner to attribute 

socialness, is higher in a robot designed to look like a human than a robot with a more 

machine-like appearance. However, the attribution of socialness will not necessarily follow 

from a human-like visual appearance of the artificial agent only. As we describe below, 

beliefs, expectations and the prior experience of the individual also all contribute to 
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attributions of socialness above and beyond the artificial agent’s appearance. For instance, 

the previous experience of the human agent with a sophisticated mechanical robot or the 

unrealistic high expectation of the individual for the humanoid robot can counteract any 

effect of visual appearance 114. 

 

Impact of Knowledge Cues the Human Observer  

Belief and expectations 

Turning our focus from the artificial agent to the human observer or interaction partner, in 

this section we explore how the knowledge, thoughts, beliefs, and expectations that a person 

brings to an interaction with an artificial agent shapes the extent to which the agent is 

perceived in a social or non-social manner. In the classic cognitive psychology literature, 

such factors fall under the category of top-down processes. Top-down cognitive processes are 

endogenous to the perceiving/acting individual, driven by contexts, knowledge or goals. Such 

processes can help facilitate perception, in that our past experience or knowledge can help us 

to formulate predictions about what is going to happen next115,116. Internal knowledge 

representations guide visual processing 117, and importantly, the attribution of mental states 

influences the perception of social cues 118. Below, we examine how research insights from 

the behavioural and brain sciences advance our understanding of the human side of human-

robot interaction, and the importance of knowledge cues in attributing socialness to artificial 

agents and fostering social connections with these agents. 

  

Some of the earliest work on the impact of knowledge cues on social perception comes from 

Stanley, Gowen and Miall 119. In this study, the authors used an elegant paradigm that 

required participants to follow the trajectory of a bouncing dot with their arm. The dot 

followed either a biologically plausible or biologically impossible (i.e., mechanical) velocity 
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profile, and participants were instructed that the movement they were watching was either 

pre-recorded human movement or computer-generated movement. The authors found that 

participants’ belief about the human origins of the moving dot stimulus had a stronger impact 

on their actions than whether or not the velocity profile was biological or mechanical in 

nature. This led Stanley and colleagues to conclude that even when a cue is a simple 

bouncing dot, our beliefs about the human origins of a dot’s movements can shape behaviour 

more than the whether or not the dot moves in a biologically plausible manner. A related 

study by Liepelt and Brass 120 also examined the extent to which an observer’s actions are 

influenced by their beliefs about an observed action’s humanness, but this time, in a further 

step toward ecological validity, the stimuli featured hands performing finger lifting 

movements. Critically for our purposes, before this task, half the participants received 

instructions that the hand they were about to see was a human hand wearing a glove, while 

the other half were shown that the same gloved hand was in fact a wooden hand artist’s 

model wearing a glove. The authors reported stronger automatic imitation in participants who 

were told they were watching a human hand wearing a glove, suggesting here again that our 

beliefs about the human origins of an action strongly shape the extent to which we 

behaviourally respond to them in a social manner 120.  

 

Converging evidence comes from a number of other studies employing various belief 

manipulations and paradigms 121-128. For example, Wykowska, Wiese and colleagues showed 

across a series of gaze cueing experiments that an observer’s belief also shapes gaze 

following 126,127. When people were told they were observing an intentional agent (a human 

or a human-controlled robot), gaze following was stronger than when they were told the 

agent had no intention (a robot or a human-like mannequin). While these studies contrast the 

belief that an agent is human versus a robot or machine, one study comparing a ‘human-like’ 
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robot versus a ‘machine-like’ robot found similar effects during a joint action task 122. 

Crucially, the effect of belief manipulations is related to true imitation 125, rather than 

attentional effects in combination with general stimulus-response compatibility effects that 

can confound automatic imitation studies 129. It is of note, however, that earlier work 

contrasting knowledge and stimulus cues found that only stimulus cues appeared to impact 

automatic imitation of hand movements 88. 

 

On balance, behavioural findings build a largely (though not completely) consistent case for a 

strong influence of knowledge cues on shaping perceptions of socialness. In the past several 

years, a number of brain imaging studies have further advanced our understanding of the 

influence of knowledge cues to socialness by revealing marked differences in neural 

processing based on participants’ expectations about the human or artificial origins of a 

perceived agent. The first study along these lines was again performed by Stanley, Gowen 

and Miall 130. This time, the authors asked participants undergoing fMRI scanning to watch a 

number of point light animations of simple actions (such as walking, kicking a ball, lifting a 

box, etc), which could either be presented as originally recorded, or with different levels of 

noise introduced so that the dots appeared to be moving in an increasingly random manner. 

Participants were notified before each video whether it featured human or computer-

generated movement, and their task was to decide whether this label was accurate or 

inaccurate. The authors found that participants were more likely to agree that a stimulus 

looked like a person moving if they were told a video had human origins, while watching the 

identical video paired with a computer-generated label led to different behavioural responses, 

as well as different patterns of neural activation. Specifically, the ventral paracingulate cortex 

was most strongly engaged when watching those videos believed to have human origins, 

while the dorsal paracingulate cortex was most active when participants viewed ambiguous 
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stimuli (such as scrambled dots with human instructions, or human action-like dots with 

computer generated instructions).  

 

A subsequent functional neuroimaging study used a similar automatic imitation paradigm to 

Liepelt and Brass’s 120 paradigm, described above, with a few important differences 131. First, 

this study employed a within-subjects design to determine the extent to which differences in 

stimulus and knowledge cues to human animacy can be observed in the same group of 

participants. Second, the authors asked participants to watch a 20-minute bespoke 

documentary wherein two kinds of cutting-edge film making techniques were described: 

human motion capture, and computer keyframe animation. They were then shown two 

different hand stimuli – one that featured an avatar of realistic-looking human hand, and the 

other featured two blocky robot-like fingers. Participants performed the same imitation for 

both kinds of “hand” stimuli, but half of the trials were preceded with instructions that the 

following stimuli were made from human motion capture, and the other half with the 

instructions that the following videos were made with computer keyframe animation. In 

reality, all stimuli followed the identical motion profile, regardless of instructions. Somewhat 

in contrast to what Liepelt and Brass 120 reported with their between-subjects behavioural 

study, Klapper and colleagues found that any cue to humanness led to greater motor priming 

compared to when no cues to humanness were present (in other words, more interference of 

executed movements was observed when participants observed a human hand avatar and/or 

either kind of hand paired with the instruction that the video had human motion capture 

origins). In contrast, the brain imaging data demonstrated that the right TPJ, a brain region 

that is often associated with cognitive processes that involve self-other distinctions, was most 

strongly engaged when participants were performing the imitation task when both knowledge 

and stimulus cues to human animacy were present 131. The authors suggest that this finding 
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underscores the critical role the right TPJ plays in mediating interactions with other human 

(but not artificial) agents. These findings are corroborated by a number of other previous and 

subsequent findings 132-136. For instance, a recent study using an established gaze cueing 

paradigm 126,127,137 reported increased activation in bilateral TPJ for gaze following when 

participants thought the gaze had human origins compared to a pre-programmed, computer-

determined origin 135.  

 

Another recent functional neuroimaging study helped to further illuminate the differential 

roles played by stimulus and knowledge cues in social perception 14. In this study, Cross and 

colleagues made use of the same documentary used by Klapper and colleagues 131, but this 

time paired the documentary with an elaborate cover story that the researchers were working 

for the German Film Commission and were tasked with evaluating participants’ perceptions 

of the smoothness and likeability of different simple action movies, based on their human 

versus computer origins. Again, the motion profiles were the same for each video and half the 

videos featured a human avatar performing a number of simple goal-directed actions (such as 

tidying a table, stacking blocks, or hammering a nail), or an abstract-looking robotic avatar 

performing the same actions. Participants reported liking and finding most smooth those 

videos that were paired with human origin instructions (regardless of whether the actions 

were performed by a human or robot avatar). The brain data demonstrated that visual features 

of an agent appear to primarily influence ventral temporal brain regions, such as the fusiform 

gyrus, when observing a robot compared to a human avatar. This increase in activity in the 

fusiform gyrus for robotic compared to human agents is in accordance with previous studies 

on the perception of facial expressions of emotions in robotic agents 45,46. Crucially, brain 

regions associated with Theory-of-Mind processes, including the precuneus, are more 
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strongly engaged when videos are paired with human compared to computer-generated 

instructions. 

 

Taken together, the studies examined in this section begin to build a compelling case that the 

knowledge cues that a participant has when perceiving or interacting with another agent, 

whether human or artificial in appearance, have a strong impact on behaviour and underlying 

brain circuits.  

 

Anthropomorphism and Dehumanization 

Corroborating evidence of the central role played by knowledge cues to socialness comes 

from research on anthropomorphism. Anthropomorphism can be defined as our propensity to 

attribute human-like qualities, characteristics and behaviours, to non-human agents, entities, 

or objects, by the observer. The tendency to anthropomorphise animals, robots and computers 

is a stable characteristic that is robust over time 138, and already present in young children 135. 

Research on anthropomorphism suggests that it is not the visual features of the agent, but 

instead knowledge factors and the social motivation of the observer that are central in 

attributing socialness to non-human agents 139.  

 

Several studies have investigated the process of anthropomorphising and corresponding brain 

networks. A recent study reported that an individual’s disposition to anthropomorphize is 

related to grey matter volume of the left TPJ 140. Specifically, they found that a greater 

tendency to anthropomorphize non-human animals is positively correlated with TPJ volume. 

However, the authors did not observe any correlation between brain structure and a 

disposition to anthropomorphize non-animal agents or objects. While this already provides 

evidence on the role of the ToM network in anthropomorphism, further details come from 
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studies measuring brain activity during the active process of anthropomorphising 141,142. An 

early study by Chaminade, Hodgins and Kawato 141 investigated how the visual appearance 

of an animated character influenced the perception of motion. The agents ranged from an 

animated simple or complex point-light display, to a stick figure, robot, alien, clown or a 

human-like jogger. Participants’ task was to indicate if the agents’ movement was biological 

or computer-generated. Importantly, all agents moved with the same motion parameters, 

which came in one condition directly from motion capture data of a human actor’s 

movements (biological motion), while in the other condition they were computer-generated 

movements (non-biological motion). Crucially, brain activity did not serve as a function of 

characters’ appearance, but was instead modulated by participants’ anthropomorphic bias (in 

this study, a participant’s tendency to report the observed motion as biological). The authors 

reported a positive correlation between this response bias and activity in the ToM network, 

specifically within left TPJ and bilateral precuneus. Thus, a tendency to perceive the motion 

of the less human-like agents as biological in nature tracked with increased engagement of 

the left TPJ. Interestingly, however, this response bias was negatively correlated with activity 

in regions of the AON 141. 

 

Besides the features of an artificial agent and an observer’s belief, anthropomorphism is also 

influenced by the motivation to understand and predict the social environment 143. Waytz and 

colleagues 142 showed that this so-called effectance motivation is directly related to a 

tendency to anthropomorphise artificial agents as well as objects. In a series of five 

experiments, they showed that when uncertainty and unpredictability, two key determinants 

of effectance motivation, increase, so does anthropomorphism. For example, when 

participants interacted with an unpredictable robot, they rated this robot higher on 

anthropomorphic aspects, such as having its own mind, intentions, free will, consciousness, 
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desires, beliefs, and the ability to experience emotions, compared to participants who 

interacted with a predictable robot. Similarly, when asked to predict the behaviour of an 

unfamiliar robot, participants’ anthropomorphic judgements also increased, compared to 

when participants were not asked to predict its behaviour. The authors showed that the 

tendency to anthropomorphise the actions/behaviours of unpredictable objects is related to 

increased activity within brain regions associated with the ToM network. Participants first 

read about gadgets that were either predictable or unpredictable. Next, they answered the 

question to what extent the gadget had a mind of its own. Behavioural results showed that 

again participants were more likely to attribute mind-like qualities to unpredictable gadgets 

compared to predictable gadgets. Importantly, activity in the ventral part of MPFC was 

increased for unpredictable compared to predictable gadgets. The involvement of the ToM 

network in these anthropomorphism judgements was further confirmed in a connectivity 

analysis, showing functional connectivity with the precuneus as well as the anterior cingulate 

cortex. Furthermore, activity in the ventral part of the MPFC directly covaried with 

anthropomorphism judgements across participants. In sum, a greater tendency to 

anthropomorphise is related to structural and functional changes within the ToM network. An 

area ripe for future exploration concerns how predictability and appearance of the artificial 

agent interact with the belief and tendency to anthropomorphise of the human observer, and 

the role of the ToM network, especially the MPFC in these processes 144. The engagement of 

brain regions associated with the ToM network is also robustly implicated in studies on 

dehumanizing behaviour, a similar but opponent process to the attribution of socialness to 

artificial agents.  

 

Dehumanization is the process by which a human agent or group of individuals is seen to 

possess fewer human-like qualities compared to another person or group of individuals. 
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People not only view themselves as more human than others 145, but can view other humans 

or groups as closer to animals or automata 146. An early study by Harris and Fiske 147 found 

that activity in the MPFC was decreased when participants viewed pictures of members of an 

extreme outgroup that was rated low on both warmth (similar to experience or human nature) 

and competence (similar to agency or human uniqueness), such as homeless individuals or 

drug addicts. Activity in the MPFC, as well as other regions of the ToM network, have been 

documented to show similar effects for other aspects of dehumanization, such as sexual 

objectification of women 148, or viewing people as products 149. A recent study showed that 

activity in the ToM network, namely the MPFC and right TPJ, is decreased when participants 

are told that the observed person is close to a machine 150. Findings from research on 

dehumanization will inform us further on the factors that might (negatively) influence the 

attribution of socialness to artificial agents. 

 

Eyssel and colleagues showed across a series of experiments 151-153 that similar biases are 

present in human-robot interaction as in human-human interaction. That is, people favour a 

robot that belongs to their in-group and ascribe more human-like characteristics to these 

robots. Similar biases were observed for people interacting with a computer 154-156 or a virtual 

human 157,158. Thus, an increase in the human-likeness of the artificial agent might increase 

the potential for biases or stereotypes to enter the socialness equation. Another influence on 

socialness attribution comes from the perspective put forward by Ferrari, Paladino and Jetten 

159. These authors suggest that artificial agents’ threat to distinctiveness also has the potential 

to influence socialness attribution and social behaviour towards artificial agents. The authors 

argue that robots with human-like appearances threaten to blur the boundaries between 

humans, machines and other artificial agents. This perception of threat to human uniqueness 

can therefore reduce the attribution of socialness to artificial agents. This process could be 
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similar to dehumanization of human agents. Thus, the attribution of socialness to artificial 

agents is a highly contextual process that depends on the observer, the artificial agent, and the 

environment 160.  

 

In sum, these studies confirm the vital role played by the ToM network, in particular the TPJ 

and vMPFC (but see 161) in the attribution of socialness and extend our understanding of 

factors that influence these attributions. It is not so much the features of the artificial agent 

that drive the attribution of socialness to artificial agents, but the belief and expectations of 

the human observer as well as her tendency to attribute human-like qualities to human and 

artificial agents as seen in the process of anthropomorphism and dehumanization.  

 

Integrative perspective 

When attempting to link together the broad range of findings covered in this review, it is 

instructive to ask whether a common theoretical thread links much of this work examining 

whether, how, and when people engage with artificial agents in a social manner. In light of 

this, we argue that a particular theoretical position borrowed from developmental psychology 

is useful for framing past findings and future questions about humans’ social future with 

artificial agents. This theoretical position, termed the ‘like me’ hypothesis, states that 

understanding the basic similarity between self and other forms the foundation of social 

cognition, and that humans have evolved to seek out self-other equivalence in others 162,163. 

This account further proposes that actions performed by oneself and another are represented 

in common cognitive codes 162, and early neurophysiological work establishing the existence 

of mirror neurons in the non-human primate brain 31,32 has helped inspire much of the 

foundational work in this domain.  
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However, attributing socialness to another agent involves far more than linking perceived and 

executed actions between oneself and an observed other, as we have seen throughout this 

review. The representation of other agents’ minds is a three-stage developmental process 160, 

which involves not just linking observed and executed acts (via imitation), but also the first-

person everyday experience of action-intention coupling, and finally the ultimate step of 

understanding other agents by projection of one’s own state onto another agent. This 

correspondence between self and other at multiple levels is vital to the attribution of 

socialness to artificial agents. As we have seen, this process is flexible in nature, and the ‘like 

me’ hypothesis provides a useful point of departure for contextualising brain and behavioural 

findings about the impact of form, motion, knowledge, experience, anthropomorphising and 

dehumanisation on the attribution of socialness to artificial agents. For instance, some of the 

studies reviewed above adhere neatly to the ‘like me’ hypothesis by demonstrating evidence 

of behavioural overlap 63,64,78,79and increased engagement of the AON when participants 

observe familiar actions or interact with agents similar to themselves 65,130,131, while others do 

not. For example, other studies have demonstrated similar or greater AON engagement when 

participants observe very much unlike-me robotic actions compared to more familiar human 

actions 37,90-93, with similar findings for behaviour engagement 80,82-84,86-89. Likewise, almost 

no correspondence with the ‘like me’ hypothesis is found at the level of the PPN.  

 

However, neuroimaging findings consistently support the ‘like-me’ nature of ToM network 

engagement, especially within the MPFC and the TPJ, when interacting with socially similar 

others. Stimulus cues 46,47,112, knowledge cues 131-136, anthropomorphism 141,142, and 

dehumanization 147-150 processes all impact activity in these regions (Figure 1). Further 

evidence for MPFC-mediated self-other equivalence comes from studies on self/other 

identification with a virtual avatar 164 or trust during interactions with an artificial agent 165. 
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Similarly, a wealth of evidence from human-human interaction supports the notion of a 

crucial role of the TPJ in inferring the mental states of others 33-35, in differentiating the self 

from others during joint attention and perspective taking tasks 77,166, as well when making 

judgements of in-group versus out-group members 166.  

 
 

Figure 1. Functional convergence of cognitive factors driving socialness attribution to artificial agents 

within the Theory-of-Mind network. Studies on knowledge factors, anthropomorphism and dehumanization 

robustly report engagement of the temporoparietal junction, precuneus and dorsal and ventral medial prefrontal 

cortex, regions within the Theory-of-Mind network. The dots illustrate the clusters of activation found in the 

studies and do not reflect exact coordinates. The automated term-based meta-analytic brain activation map for 

the Theory-of-Mind network was created and downloaded from the ‘Neurosynth’ database 

(http://neurosynth.org, December 1 2017) 177. The maps are based on 124 studies using the term ‘mentalizing’ 

and are corrected at FDR < .01.  

 

A recent perspective on the TPJ suggests that it codes information about social context 166,167. 

This perspective dovetails with a mechanistic model on downstream effects of mental state 

attribution 118, whereby the attribution of a mind in an observed agent influences perception 

of social cues associated with this agent. A study by Carter and colleagues 168 provides 

evidence for this social bias model during interactions with artificial agents. In this study, 

participants played a game of poker against human or computer opponents. The authors used 

activity from 55 bilateral brain regions to predict the decisions of the participant throughout 
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the game. While activity in regions associated with the ToM network were predictive for 

these decisions, this was independent of social context. Only activity within the TPJ predicted 

future decisions while taking into account the social context. That is, only when the 

participant deemed the human opponent superior to the computer opponent, and therefore 

more socially relevant, was activity in the TPJ informative of subsequent decisions. 

Combined, these findings suggest that the highly context-dependent implicit or explicit 

decision of the observer that the agent is ‘like me’, partly coded in the TPJ, is key in fostering 

the attribution of socialness to artificial agents. 

 

 

Conclusions and Future Directions 

The studies reviewed here support the notion that knowledge cues consistently impact 

engagement of behavioural and brain mechanisms supporting the attribution of socialness to 

artificial agents. The data also suggest that knowledge cues play an extremely (if not more) 

important role in socialness attributions than stimulus cues. Knowledge cues, as well as the 

process of anthropomorphism and dehumanization, influence ToM network engagement and 

determine the attribution of socialness. While the research reviewed here begins to provide 

answers as to why we can sometimes perceive a robot as an automaton, and at other times as 

a social agent, several questions remain.  

 

One important question concerns how socialness attributions unfold over time. Most studies 

so far have examined passive observation of artificial agents or one-off interactions. A 

challenge for future work is to investigate real, repeated, and ongoing interactions with 

artificial agents in order to the map functional changes in socialness attribution at behavioural 
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and brain levels across time 98,99. Several examples already exist that show how incorporating 

the temporal dimension of human-robot relationships can enrich our understanding of the 

mechanisms of socialness attribution 168. For instance, repeated exposure to robotic actions 

was shown to increase automatic imitation of these actions to levels comparable to human 

actions 89. Moreover, several recent studies on trust during interactions with artificial agents 

or machines provide compelling first evidence on how expectations and changes in the 

involvement of the ToM network shape these interactions over time 165,169,170. An exciting 

opportunity for future research is to study in more detail the dynamic, temporal dimensions of 

these processes. 

 

Work in this domain already builds upon a solid foundation of findings from psychology and 

neuroscience on social cognition during human-human interaction. Integrating findings and 

approaches from additional related fields stands to advance understanding of not only the 

factors that drive the attribution of socialness to artificial agents, but also the temporal 

dynamics. To this end, future work could benefit from considering work on human 

attachment and relationship formation 171, as well as the emerging field of human-animal 

interactions 172-174. Studies on these latter interactions not only provide converging evidence 

on behavioural and brain mechanisms of socialness attribution 173, but also can help us to 

understand how long-term interaction with non-human agents shapes these attributions over 

time by studying pet owners versus non-pet owners 172,174. Thus, thinking openly and 

creatively about how work from distinct but complementary disciplines might inform our 

understanding about humans’ evolving relationship with socially-savvy technology.  

 

Given the importance of knowledge factors during interactions with artificial agents, as we 

highlight here, it will also be enormously important for future research to acknowledge and 
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investigate inter-individual and group differences, as well as developmental changes in the 

attributions of socialness. Dispositional levels of anthropomorphism and dehumanization 

work in concert with knowledge and stimulus cues. Similarly, not only are developmental 

considerations important to further our understanding of the behavioural and brain 

mechanisms supporting the attribution of socialness, they are crucial given that both children 

and the elderly are target groups for the deployment of social robots, and age-dependent 

effects have been reported with regard to socialness attribution 175,176. Lastly, group and 

cultural differences that determine the scope of attribution of socialness are likely at play. 

With the potential for far-reaching consequences, for instance on perceived human 

uniqueness, a nuanced approach that takes into account dispositional, situational and cultural 

factors is warranted to truly capture the mechanisms and dynamics of socialness attribution 

across space and time.  
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