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Recent work indicates that the strong cosmic censorship hypothesis is violated by

nearly extremal Reissner-Nordström-de Sitter black holes. It was argued that pertur-

bations of such a black hole decay sufficiently rapidly that the perturbed spacetime

can be extended across the Cauchy horizon as a weak solution of the equations of

motion. In this paper we consider the case of Kerr-de Sitter black holes. We find

that, for any non-extremal value of the black hole parameters, there are quasinor-

mal modes which decay sufficiently slowly to ensure that strong cosmic censorship

is respected. Our analysis covers both scalar field and linearized gravitational per-

turbations.

I. INTRODUCTION

The strong cosmic censorship conjecture [1] asserts that, for generic asymptotically flat

initial data for Einstein’s equation, the maximal Cauchy development is inextendible, i.e.,

Cauchy horizons do not form. It is well-known that the presence of a Cauchy horizon

inside an asymptotically flat charged or rotating black hole does not constitute a violation

of strong cosmic censorship because of an infinite blue shift at the Cauchy horizon, which

renders it unstable and therefore non-generic [2–5]. Some time ago, it was observed that the

mechanism behind this instability is weaker when the cosmological constant Λ is positive [6].
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This is because there is a redshift of late time perturbations entering the black hole, arising

from the fact that these perturbations have to climb out of the gravitational potential well

associated with the cosmological horizon.

Early calculations (reviewed in Ref. [7]) indicated that, for charged or rotating black

holes sufficiently close to extremality, a violation of strong cosmic censorship would indeed

be possible with positive Λ. However, subsequent work argued that the decay of scalar field

perturbations outside the black hole was still sufficiently slow to ensure that the gradient

of the scalar field would diverge at the Cauchy horizon, with backreaction then causing a

curvature divergence, and so strong cosmic censorship would be respected [8].

Recent interest in this topic has been stimulated by the recognition that a divergence in

curvature does not necessarily imply that spacetime cannot be extended beyond the Cauchy

horizon. For Λ = 0, it is always possible to extend the perturbed solution so that the metric

(and scalar field) are continuous across the Cauchy horizon [4]. It has also been known for

a long time that the divergence in curvature can be sufficiently weak that extended objects

may be able to cross the Cauchy horizon without being destroyed [9]. On the other hand, a

divergence in curvature seems problematic because if the metric is not C2 then how could

the Einstein equation be satisfied at the Cauchy horizon?

The new interest in this topic stems from the fact that one can still make sense of the

Einstein equation even if the metric is not C2. A metric with lower regularity may still

constitute a weak solution of the Einstein equation. The notion of of a weak solution is not

just of mathematical interest: physical phenomena, such as shocks in a fluid, are described by

weak solutions of equations of motion. For the Einstein equation, the appropriate regularity

of weak solutions was determined by Christodoulou [10]: in some chart the metric should

have locally square integrable Christoffel symbols. Therefore the modern statement of the

strong cosmic censorship conjecture is that, although it may be possible to extend the metric

continuously across the Cauchy horizon, generically it should not be possible to do so with

locally square integrable Christoffel symbols [10].1

For Λ = 0, it seems very likely that this conjecture is true (see Ref. [11] for a detailed

discussion). However, with Λ > 0 it was observed in [11] that calculations similar to those of

1 For a review explaining why this formulation of strong cosmic censorship improves upon earlier formula-

tions see the discussion in the introduction of Ref. [11].
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[8] suggest that Christodoulou’s version of the strong cosmic censorship conjecture may be

false for near-extremal Reissner-Nordström-de Sitter and Kerr-de Sitter black holes. Very

recently, Ref. [12] has presented compelling evidence that this is indeed the case for near-

extremal Reissner-Nordstrom de Sitter. The argument is based on recent mathematical

developments in the study of black holes with positive Λ, as we will now explain.

The behaviour of perturbations at the Cauchy horizon depends on the rate of decay

of perturbations along the event horizon [13]. Faster decay along the event horizon gives

a milder instability of the Cauchy horizon. With positive cosmological constant, it has

been proved that perturbations decay exponentially along the event horizon. Specifically,

for massless scalar field perturbations of Reissner-Nordström-de Sitter, or slowly rotating

Kerr-de Sitter, black holes it has been proved that, there exist constants Φ0 and C, α > 0

such that, outside the black hole [14–19]

|Φ− Φ0| ≤ Ce−αt (1.1)

where t labels a foliation by spacelike hypersurfaces that extend from the future event horizon

to the future cosmological horizon (e.g. the surface Σ of Fig. 1), with the hypersurfaces

related by the time translation symmetry of the black hole. The constant α is called the

spectral gap. The spectral gap can be determined by looking at the most slowly decaying

quasinormal modes of the black hole: α is the largest number such that α ≤ −Im(ω) for all

quasinormal frequencies ω.

If α is known then one can determine the behaviour of generic perturbations at the Cauchy

horizon and hence ascertain whether or not strong cosmic censorship is violated. And α can

be determined by looking at quasinormal modes of the black hole. This is what was done

in Ref. [12] for Reissner-Nordström-de Sitter black holes. By determining (numerically) the

most slowly decaying quasinormal modes, the value of α was determined. For black holes

sufficiently close to extremality, the value of α was sufficiently large to indicate that, when

nonlinearities are included (e.g. using results of Ref. [20]), it would be possible to extend

the solution across the Cauchy horizon as a weak solution of the equations of motion, in

violation of the strong cosmic censorship conjecture.

Reissner-Nordström-de Sitter black holes are not very relevant physically. However, they

are often viewed as a toy model for the much more physical case of Kerr-de Sitter black

holes. The massless scalar field can be viewed as a toy model for linearized gravitational
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FIG. 1: Penrose diagram for Kerr-de Sitter. The event and cosmological horizons are H+ and

H+
C , respectively, the blue lines are the left and right Cauchy horizons CH+

L,R, the green line is a

spacelike hypersurface extending from the cosmological horizon across the event horizon and the

left Cauchy horizon. Quasinormal modes blow up along the white hole horizon (red line) and also

along the past cosmological horizon.

perturbations. So the results of Ref. [12] suggest that maybe there is a violation of strong

cosmic censorship for nearly extremal Kerr-de Sitter black holes in vacuum. Indeed this was

conjectured in Ref. [11]. That is what we will investigate in this paper.

Our approach is the following. We will study linear perturbations of a non-extremal Kerr-

de Sitter black hole. These perturbations could be either a massless scalar field or linearized

gravitational perturbations. Such a linear perturbation will source a second order metric

perturbation. The linear perturbation will be continuous but not necessarily differentiable

at the Cauchy horizon. However, in order to extend beyond the Cauchy horizon, the linear

solution needs to be sufficiently regular that the equation of motion for the second order

perturbation can be satisfied in a weak sense at the Cauchy horizon. As we will explain,

this leads to the criterion that the scalar field, or linearized metric perturbation, must have

a locally square integrable derivative, i.e., it should belong to the Sobolev space H1
loc. This

was also the criterion used in Ref. [12].

Consider a scalar field quasinormal mode in a non-extremal Kerr-de Sitter spacetime.

Such a solution has definite frequency and satisfies ingoing boundary conditions at the
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future event horizon H+, and outgoing boundary conditions at the future cosmological

horizon H+
C (see Fig. 1). Working in coordinates regular across H+, a quasinormal mode

can be analytically continued into the black hole interior (region II of Fig. 1). We will

determine how such a quasinormal mode behaves at the Cauchy horizon CH+
R of Fig. 1. It

is straightforward to show that it belongs to H1
loc if, and only if, minus the imaginary part

of the quasinormal frequency exceeds a certain value, i.e., the mode decays fast enough.

We will use geometric optics and numerics to show that there always exist “photon

sphere” quasinormal modes whose decay is slow enough that, when continued inside the

black hole, they do not belong to H1
loc at the Cauchy horizon CH+

R. We can now prove that

strong cosmic censorship is respected as follows. Assume that one is given initial data on

the surface Σ shown in Fig. 1, for a linearized perturbation which belongs to H1
loc at CH+

R.

Now “perturb this perturbation” by adding the initial data for our quasinormal mode, with

an arbitrary amplitude. This produces a new perturbation which does not belong to H1
loc at

CH+
R. Hence a generic perturbation does not belong to H1

loc and so it cannot be extended

beyond CH+
R consistently with the equations of motion. Hence strong cosmic censorship is

respected.2

For linearized gravitational perturbations, we exploit the fact that there exist a gauge

invariant component of the Weyl tensor which satisfies a decoupled equation of motion. If

the linearized metric perturbation belongs to H1
loc in some gauge then the blow up of this

Weyl component at CH+
R cannot exceed a certain rate3. However, for some photon sphere

quasinormal modes we find that the blow up does exceed this rate. This proves that there

exists no gauge in which the linearized metric perturbation is in H1
loc. Hence strong cosmic

censorship is respected by gravitational perturbations of any non-extremal Kerr-de Sitter

black hole.

Note added. As this paper was nearing completion, we received Ref. [21]. This paper

considers perturbations of Reissner-Nordström-de Sitter black holes by a scalar field which

is charged and has non-zero mass. It was argued that, for sufficiently large charge and mass,

the decay of such a field is always sufficiently slow to ensure that strong cosmic censorship

2 Note that we do not need to assume the validity of equation (1.1), which is just as well because (1.1) has

been established only for slowly rotating black holes.
3 The precise condition is that, in a regular tetrad, this Weyl component must belong to the Sobolev space

H−1loc .
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is respected.

II. WEAK SOLUTIONS

We will be discussing linear perturbations which are continuous, but not necessarily

differentiable, at the Cauchy horizon. The fundamental question that needs to be addressed

is whether there is any sense in which such a perturbation can satisfy the equations of

motion at the Cauchy horizon. Moreover, we are primarily interested in answering this

question for nonlinear perturbations. We will explain why this leads to the condition that

linear perturbations should belong to H1
loc.

Consider a scalar field Φ satisfying 2Φ = 0. Treat this as a first order perturbation,

sourcing a second order metric perturbation h
(2)
µν . Then h

(2)
µν will satisfy

Lh(2)
µν = 8πTµν [Φ] , (2.2)

where L is a certain second order differential operator and Tµν [Φ] is the energy momentum of

the scalar field. Now assume that Φ and h
(2)
µν are not necessarily continuously differentiable.

One can still make sense of the above equation by multiplying by a smooth, compactly

supported, symmetric tensor, ψµν and integrating by parts:4∫
d4x
√
−g
(
h(2)
µνL†ψµν − 8πψµνTµν

)
= 0 , (2.3)

where L† is the adjoint of L arising from the integration by parts. If this equation is

satisfied for any smooth, compactly supported symmetric ψµν then we say that we have a

weak solution of (2.2). In order for this equation to make sense, the terms involving the

scalar field must be finite, which is guaranteed by demanding that Φ belongs to H1
loc. This is

the space of functions Φ defined by the condition that, for any smooth compactly supported

function ψ, the quantity (Φ̂2 + ∂µΦ̂∂µΦ̂) is integrable, where Φ̂ ≡ ψΦ.

Similarly, if one starts from a linearized gravitational perturbation hµν one can consider

the second order perturbation h
(2)
µν sourced by the linear perturbation. This satisfies an

equation analogous to (2.2) where the RHS is quadratic in first derivatives of hµν . So

repeating the above argument, the minimum regularity required of hµν in order for the

equation for h
(2)
µν to be satisfied weakly is that, in some gauge, hµν should belong to H1

loc.

4 The test function ψµν permits integrating by parts without introducing boundary terms.
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We can relate this to the criterion for weak solutions of the full nonlinear vacuum Einstein

equation. Applying the above procedure to the Einstein equation results in the criterion

that, in some chart, the Christoffel symbols should be locally square integrable [10]. In such

a chart, perform a perturbative expansion of the metric gµν = ḡµν + hµν + h
(2)
µν + . . . and

consider the integral of the sum of squares of the Christoffel symbols. At first order this will

give terms linear in hµν and its first derivative. So at first order the minimum regularity

required is that hµν and its first derivative be integrable. However, at second order, terms

quadratic in first derivatives hµν will arise, and so we will need first derivatives of hµν to be

square integrable and hence we will need hµν to belong to H1
loc. Continuing to higher orders

does not give anything new because all terms are at most quadratic in first derivatives of

hµν .

III. KERR-DE SITTER

A. Coordinates

We will write the Kerr-de Sitter metric [22] as follows [23]

ds2 = ρ2

[
dr2

∆r

+
dχ2

∆χ

]
+

1

ρ2Ξ2

[
∆χ

(
dt− σr

a
dφ
)2

−∆r

(
dt− σχ

a
dφ
)2
]

(3.4)

where

σr = a2 + r2 , σχ = a2 − χ2 , ρ2 = r2 + χ2 , Ξ = 1 +
a2

L2
(3.5)

and

∆r = σr

(
1− r2

L2

)
− 2M r , ∆χ = σχ

(
1 +

χ2

L2

)
, Λ =

3

L2
. (3.6)

In these coordinates, φ ∈ [0, 2π) and χ ∈ [−|a|, |a|]. It is convenient to define

Ω(r) =
a

r2 + a2
. (3.7)

We assume that the solution describes a non-extremal black hole, which implies that there

are three real positive roots of ∆r, satisfying r− < r+ < rc. These correspond to the Cauchy

horizon, event horizon and cosmological horizon, respectively. The angular velocities of the

horizons will be denoted by

Ω− = Ω(r−), Ω+ = Ω(r+), Ωc = Ω(rc). (3.8)
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Starting from the above metric with r+ < r < rc, which we call region I (see Fig. 1), we

define ingoing coordinates (v, r, χ, φ′) as follows:

dt = dv − Ξσr
∆r

dr dφ = dφ′ − aΞ

∆r

dr . (3.9)

In the ingoing coordinates, we can extend across r = r+ into a new region, region II (see

Fig. 1), with r− < r < r+. In the new coordinates grr = 0 so ∂/∂r is globally null. In fact

∂/∂r is also geodesic and shear free: it is one of the repeated principal null directions of the

solution; −∂/∂r is tangent to ingoing null geodesics.

In region II we can re-introduce the original coordinates (t, r, χ, φ) using (3.9). The metric

in these coordinates takes the same form as (3.4). Now, in region II, we introduce outgoing

coordinates (u, r, χ, φ′′) defined by

dt = du+
Ξσr
∆r

dr dφ = dφ′′ +
aΞ

∆r

dr . (3.10)

This lets us analytically continue the metric across the “right” Cauchy horizon CH+
R in region

II into a new region with r < r−. In these coordinates, −∂/∂r is null, geodesic and shear

free, and future-directed. It is the second repeated principal null direction of the solution.

It is tangent to outgoing null geodesics in region II, i.e., null geodesics which cross CH+
R.

We will parametrise Kerr-de Sitter solutions using the dimensionless quantities

{y+, α} ≡ {r+/rc, a/rc} (3.11)

These variables are in one-to-one correspondence with members of the Kerr-de Sitter family

of solutions and mean we essentially normalise all our quantities to rc. The moduli space of

solutions is shown in Fig. 2. Kerr-de Sitter black holes have three distinct extremal limits:

r+ = r−, r+ = rc and r+ = r− = rc. The first two are marked as the black dashed line and

red dotted-dashed line in Fig. 2, respectively. For completeness, we also show in Fig. 2 the

Schwarzschild limit marked as a green solid line. When r+ = r−, we have

|a| = |aext| ≡
rc√

2

√
(1 + y+)

√
1 + 2y+ + 9y2

+ − y+(2 + 3y+)− 1 . (3.12)

B. Tetrad

When we study gravitational perturbations of Kerr-de Sitter black holes, it will be useful

to introduce a null tetrad {`,n,m, m̄} satisfying the following orthogonality relations

` · n = −1 , m̄ ·m = 1 (3.13)
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FIG. 2: Moduli space of solutions in the (y+, α) plane: the dashed black curve corresponds to

extremality where r+ = r−, the red dotted-dashed line corresponds to the limit where the black

hole horizon coincides with the cosmological horizon and the green solid line to a Schwarzschild-de

Sitter black hole.

with all remaining combinations of inner products giving zero, and gµν = −2`(µnν) +

2m(µmν).

There is obviously a lot of freedom in choosing such tetrad, and some choices make the

equations governing gravitational perturbations of Kerr-de Sitter black holes easier than

others. Here we will choose the Chambers-Moss null tetrad {`,n,m,m} [23], which in

{t, r, χ, φ} coordinates, reads:

`µ∂µ =
1

√
2
√
r2 + χ2

(
Ξ
a2 + r2

√
∆r

∂t +
√

∆r ∂r +
aΞ√
∆r

∂φ

)
,

nµ∂µ =
1

√
2
√
r2 + χ2

(
Ξ
a2 + r2

√
∆r

∂t −
√

∆r ∂r +
aΞ√
∆r

∂φ

)
,

mµ∂µ = − i
√

2
√
r2 + χ2

(
Ξ
a2 − χ2√

∆χ

∂t + i
√

∆χ ∂χ +
aΞ√
∆χ

∂φ

)
, (3.14)

and m is the complex conjugate of m.

We will need to investigate the regularity of such a tetrad across the Cauchy horizon. So
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we need to write it in outgoing coordinates {u, r, χ, φ′′}:

`µ∂µ =

√
∆r√

2
√
r2 + χ2

∂r,

nµ∂µ =

√
2√

r2 + χ2

(
Ξ
a2 + r2

√
∆r

∂u −
√

∆r

2
∂r +

aΞ√
∆r

∂φ′′

)
,

mµ∂µ = − i
√

2
√
r2 + χ2

(
Ξ
a2 − χ2√

∆χ

∂u + i
√

∆χ ∂χ +
aΞ√
∆χ

∂φ′′

)
. (3.15)

However the tetrad (3.15) is not regular when ∆r = 0 (for instance at the Cauchy horizon

r = r−) since n blows up there. To fix this, we change to a new tetrad where

˜̀=
1√
∆r

` , ñ =
√

∆rn and m̃ = m , (3.16)

which is now smooth when ∆r = 0.

IV. SCALAR FIELD QUASINORMAL MODES

A. Preliminaries

Consider a scalar field Φ obeying the wave equation 2Φ = 0. Quasinormal modes are

solutions of the following form

Φ = e−iωteimφSω`m(χ)Rω`m(r) (4.17)

where ` = 0, 1, 2, . . ., |m| ≤ ` and the frequency ω is determined in terms of `,m and an

“overtone” number n = 0, 1, 2, . . .. These quasinormal frequencies are determined by the

condition that the solution obeys ingoing boundary conditions as r → r+ and outgoing

boundary conditions as r → rc, i.e., the solution is smooth at the future event horizon

H+ and at the future cosmological horizon H+
C . Quasinormal frequencies are complex:

ω = ωR + iωI with ωI < 0 so quasinormal modes decay exponentially with time outside the

black hole.

If we use ingoing coordinates (v, r, χ, φ′), regular in regions I and II of Fig. 1, then a

quasinormal mode is an analytic function of the coordinates in region I and can be ana-

lytically continued into region II. In the ingoing coordinates, a quasinormal mode has time

dependence e−iωv, so it will diverge as v → −∞, i.e., along the red line on Fig. 1. We
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are interested in the behaviour of the mode at the Cauchy horizon CH+
R. To investigate

regularity there we need to convert to outgoing coordinates in the black hole interior.

In region II, we can convert from the ingoing coordinates to coordinates (t, r, χ, φ) and

the quasinormal mode will again take the form (4.17). Now converting (4.17) to outgoing

coordinates (u, r, χ, φ′′) in region II gives

Φ = e−iωueimφ
′′
Sω`m(χ)R̃ω`m(r) (4.18)

for some function R̃ω`m. Near the right Cauchy horizon CH+
R, there are two independent

solutions of this form, which behave as follows

Φ(1) = e−iωueimφ
′′
Sω`m(χ)R̂

(1)
ω`m(r) , (4.19a)

Φ(2) = e−iωueimφ
′′
Sω`m(χ)(r − r−)i(ω−mΩ−)/κ−R̂

(2)
ω`m(r) , (4.19b)

where R̂(1,2) denote smooth functions which are non-zero at r = r−, and Ω− = Ω(r−). Notice

that Im(ω) < 0 implies that Φ(2) vanishes at r = r−. However Φ(2) is not smooth at r = r−.

At the Cauchy horizon, our quasinormal mode will be some linear combination of the above

two solutions. There is no reason why either of the coefficients in this linear combination

should vanish. Hence the regularity of the quasinormal mode is determined by the non-

smooth solution Φ(2). What is the condition for Φ(2) to be locally square integrable? We

have Φ(2) ∼ (r− r−)p with p = i(ω−mΩ−)/κ−. Hence ∂rΦ
(2) ∼ (r− r−)p−1 which is square

integrable if, and only if, 2(β − 1) > −1 where β = Re(p). In other words the condition for

our quasinormal mode to belong to H1
loc at the Cauchy horizon is

β >
1

2
where β ≡ −Im(ω)

κ−
. (4.20)

Therefore if we can find a quasinormal mode with β < 1/2 then the scalar field cannot be

extended across the Cauchy horizon in H1
loc and so strong cosmic censorship is respected.

On the other hand if all quasinormal modes have β > 1/2 then strong cosmic censorship

may be violated. Ref. [12] argued that the latter is what happens for nearly extremal

Reissner-Nordström-de Sitter black holes.

B. Geometric optics

In the eikonal limit, also known as geometric optics limit, where `� 1 (` ∼ |m| � 1 for

spinning backgrounds) there are quasinormal mode frequencies − known as “photon sphere”
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quasinormal modes − which are related to the properties of the unstable circular photon

orbits in the equatorial plane. Namely, the real part ωR of the frequency is proportional to

the Keplerian frequency Ωc of the circular null orbit and the imaginary part of the frequency

is proportional to the Lyapunov exponent λ of the orbit [25–34]. The latter describes how

quickly a null geodesic congruence on the circular orbit increases its cross section under

infinitesimal radial deformations.

These photon sphere quasinormal modes turn out to play a fundamental role in our

discussion. Therefore, in this section we will use geometric optics to compute these modes for

the Kerr-de Sitter background. In the next section we will find that the resulting analytical

expression for the frequency matches extremely well the values that we find numerically

already for values of ` = m as low as 10.

The geodesic equation, describing the motion of point-like particles around a Kerr-de

Sitter black hole, is known to lead to a set of quadratures. This is perhaps an unexpected

result, since Kerr-de Sitter only possesses two Killing fields, given in our coordinate system

as K = ∂/∂t and M = ∂/∂φ and thus seems one short of leading to an integrable system.

However, there is another conserved quantity, the Carter constant, associated to a Killing

tensor Kab, which saves the day [39].

The most direct way to see this integrable structure is to look at the Hamilton-Jacobi

equation [39]:
∂S

∂xµ
∂S

∂xν
gµν = 0 , (4.21)

where S is known as the principal function. One can recover the motion of null particles by

noting that, according to Hamilton-Jacobi’s theory,

∂S

∂xµ
≡ pµ and pµ =

dxµ

dτ
, (4.22)

with τ denoting an affine parameter.

We then take a separation ansatz of the form

S = −e t+ j φ+R(r) +X(χ) , (4.23)

which gives the following coupled ordinary differential equations for R(r) and X(χ)

∆2
r(∂rR)2 − Ξ2 (eσr − aj)2 +

[
Q+ Ξ2(j − ae)2

]
∆r = 0 , (4.24a)

∆2
χ(∂χX)2 − Ξ2 (eσχ − aj)2 −

[
Q+ Ξ2(j − ae)2

]
∆χ = 0 , (4.24b)
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where Q is a separation constant known as the Carter constant. The constants e and j are

the conserved charges associated with the Killing fields K and M5 via

e ≡ −Kµẋ
µ and j ≡Mµẋ

µ . (4.25)

Eqs. (4.24) translate into a statement about the particle trajectories via (4.22) and (4.23).

In particular, for χ̇, we find

(r2 + χ2)2 χ̇
2

∆χ

= Q− e2Ξ2

[
(ab− σχ)2

∆χ

− (b− a)2

]
, (4.26)

where we define the geodesic impact parameter by

b ≡ j

e
. (4.27)

Since we are interested in matching the behaviour of geodesics with that of quasinormal

modes with large values of ` = m, we can restrict attention to the equatorial plane for which

χ = 0. This can only be the case if initially χ(0) = χ̇(0) = 0 and Q = 0. The equation

governing the radial motion now gives

ṙ2 = V (r; b) , (4.28)

where

V (r; b) =
j2Ξ2

b2

{
1 +

(a− b)2

L2
+

(a− b)
r2

[
a+ b+

a2

L2
(a− b)

]
+

2M(a− b)2

r3

}
. (4.29)

We are now interested in finding the photon sphere (region where null particles are

trapped on circular unstable orbits), i.e. the values of r = rs and b = bs, such that

V (rs, bs) = 0 and ∂rV (r, b)|r=rs,b=bs = 0. (4.30)

From the second equation above we get

bs(rs) = a
a2rs + L2 (3M + rs)

a2rs + L2 (3M − rs)
, (4.31)

while from the first we get:

a4r3
s + a2

[
2L2r2

s (3M + rs)− 4L4M
]

+ L4rs (rs − 3M)2 = 0 . (4.32)

5 For massive particles, these coincide with the energy and angular momentum of the particle, but for

massless particles e and j have no physical meaning since they can be rescaled. The ratio j/e, however,

is invariant under such rescallings.
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The two relevant real roots, i.e. those that satisfy r+ ≤ r±s ≤ rc, can be written as

r±s =
2M

Ξ2

{
γ− + γ cos

[
2

3
arccos

(
∓

√
1

2
− γ−γ+

2γ3
+

a2Ξ4

M2γ3

)]}
(4.33)

where

γ ≡
√

1− 14a2

L2
+
a4

L4
, γ+ ≡ 1 +

34a2

L2
+
a4

L4
and γ− ≡ 1− a2

L2
. (4.34)

At first glance, it might appear that the argument of the square root appearing as the

argument of the arccos in Eq. (4.33), as well as the definitions above, might become negative.

However, we have explicitly checked that this is not the case whenever the line element (3.4)

describes a black hole. This is consistent with Ref. [34], which argues that a Kerr de

Sitter black hole always has two circular photon orbits. The signs are chosen such that

r+
s corresponds to prograde orbits, i.e. b+

s ≡ bs(r
+
s ) > 0 and r−s to retrograde orbits, i.e.

b−s ≡ bs(r
−
s ) < 0.

We can now compute the orbital angular velocity (aka Kepler frequency) of our null

circular photon orbit, which is simply given by

Ω±c ≡
φ̇

ṫ
=

1

b±s
, (4.35)

where in the second equality we have used Eq. (4.25) and took r = r±s and b = b±s .

On an orbit with impact parameter b = b±s , the radial potential (4.29) simplifies consid-

erably,

V (r; b±s ) =
j2 Ξ2

(b±s )2
(β±s )2

(
1− r±s

r

)2(
1 +

2 r±s
r

)
, (4.36)

where we defined

(β±s )2 = 1 +
(a− b±s )

2

L2
. (4.37)

The final step in our calculation is to compute the largest Lyapunov exponent λ, measured

in units of t, associated with infinitesimal fluctuations around photon orbits with r(τ) = r±s .

This can be readily done by perturbing the geodesic equation (4.28) with the simplified

potential (4.36) and setting r(τ) = r±s + δr(τ). One finds that small deviations obey

δr(t) = exp

[
+

√
3

Ξ
β±s

a2 − a b±s + (r±s )2

(b±s − a) b±s r
±
s

t

]
+ C+ , (4.38)

and

δr(t) = exp

[
−
√

3

Ξ
β±s

a2 − a b±s + (r±s )2

(b±s − a) b±s r
±
s

t

]
+ C− , (4.39)
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where C± are integration constants. The largest Lyapunov exponent is simply given by

λ± =

∣∣∣∣∣
√

3

Ξ
β±s

a2 − a b±s + (r±s )2

(b±s − a) b±s r
±
s

∣∣∣∣∣ . (4.40)

One reconstructs the approximate spectrum of the photon sphere family of quasinormal

modes with ` = |m| � 1 using [25–33]

ω±WKB ≈ mΩ±c − i
(
n+

1

2

)
λ± , (4.41)

where n = 0, 1, 2, . . . is the radial overtone.

In Fig. 3 we plot βWKB ≡ −Im(ω+
WKB)/κ− for n = 0. For all the range of (y+, |α|) we

find that βWKB ≤ 1/2, with βWKB = 1/2 saturated only at extremality (represented by the

dashed ‘diagonal’ black line in Fig. 3). This shows that scalar field perturbations of any

non-extremal Kerr-de Sitter black hole respect the strong cosmic censorship conjecture.

Of course this calculation was based on approximate (geometric optics/WKB) methods

and so one could ask whether corrections to these results might push the true value of β

above 1/2, especially near extremality. However, the corrections to Im(ω) are of order 1/|m|

so, for any fixed background, the corrections can be made arbitrarily small by taking |m|

large enough.6 So the WKB results should be reliable for sufficiently large |m|. In the next

section we will determine the quasinormal frequencies numerically and find that, for large

enough |m|, the WKB result is always in excellent agreement with the exact result.

C. Numerics

In this section we will compute numerically the quasinormal modes of a Kerr-de Sitter

black hole and make a matching with the analytic results of section IV B. We first note

that the massless scalar wave equation admits separable solutions of the form (4.17), with

Sω`m(χ) and Rω`m(r) obeying the following two-parameter coupled eigenvalue problem

∂χ [∆χ(χ)∂χSω`m(χ)]−
[

Ξ2

∆χ(χ)
(am− σχω)2 −K

]
Sω`m(χ) = 0 , (4.42a)

∂r [∆r(r)∂rRω`m(r)] +

[
Ξ2

∆r(r)
(am− σrω)2 −K

]
Rω`m(r) = 0 . (4.42b)

6 In fact for vanishing Λ the corrections to Im(ω) are O(1/m2) [32] and we expect that the same is true

with Λ > 0.
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FIG. 3: β computed in the WKB approximation (using co-rotating photon sphere geodesics) for

all values of (y+, α). β = 1/2 is saturated at extremality, but is otherwise smaller than 1/2. The

extremal curve is represented here by the dashed black line.

The symmetry exhibited by the above two equations is only achieved for the particular

coordinates used in the line element (3.4). The eigenvalues to be determined are (ω,K)

where K arises as a separation constant. Before describing the numerical method we used,

we first comment on the thorny issue of boundary conditions. Both equations have regular

singular points when ∆r and ∆χ vanish, so we can use Frobenius method to determine their

behaviour there.

For the angular equation, we find

Sω`m(χ) = (|a| − χ)±
|m|
2

+∞∑
n=0

(|a| − χ)n S
(n,+)
ω`m (4.43)

at χ = |a|. Regularity then demands choosing the + sign. A similar behaviour is found at

χ = −|a|:

Sω`m(χ) = (|a|+ χ)±
|m|
2

+∞∑
n=0

(|a|+ χ)n S
(n,−)
ω`m . (4.44)

Again the upper sign leads to the physically meaningful solution. We thus conclude that we

can factor out all non-analytic behaviour of Sω`m by setting

Sω`m(χ) = (a2 − χ2)
|m|
2 S̃ω`m(χ) , (4.45)

and solving for the smooth eigenfunction S̃ω`m(χ).
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For the radial coordinate, we have to distinguish the cosmological horizon from the black

hole horizon. At the black hole horizon a Frobenius expansion yields

Rω`m(r) = (r − r+)
± i

2κ+
(ω−mΩ+)

+∞∑
n=0

(r − r+)nR
(n,+)
ω`m (4.46)

and regularity at the black hole event horizon, which stems from demanding a smooth ex-

pansion around r = r+ in ingoing coordinates (v, r, χ, φ′) at the black hole horizon, demands

choosing the lower sign. For the cosmological horizon we find

Rω`m(r) = (rc − r)±
i

2κc
(ω−mΩc)

+∞∑
n=0

(rc − r)nR(n,c)
ω`m , (4.47)

and again imposing outgoing boundary conditions at the cosmological horizon demands

selecting the minus sign in the expression above. We thus consider the following field redef-

inition:

Rω`m(r) = (rc − r)−
i

2κc
(ω−mΩc)(r − r+)

− i
2κ+

(ω−mΩ+)
R̃ω`m(r) (4.48)

where R̃ω`m(r) should now be a smooth function with a regular Taylor series at each of the

horizons.

The procedure is now clear, we take the field redefinitions (4.45) and (4.48) and input

them into Eqs. (4.42). The resulting equations are still quadratic in ω and K, and form a

coupled eigenvalue problem with eigenfunctions
(
S̃ω`m(χ), R̃ω`m(r)

)
and eigenvalues (ω,K).

The boundary conditions for S̃ω`m(χ) and R̃ω`m(r) are then found by Taylor expanding the

equations of motion close to either boundary, and turn out to be of the Robin type, i.e.

F1,±(ω,K)S̃ ′ω`m(±|a|) = F0,±(ω,K)S̃ω`m(±|a|) (4.49)

and

Q1,+(ω,K)R̃′ω`m(r+) = Q+,0(ω,K)R̃ω`m(r+) , Qc,1(ω,K)R̃′ω`m(rc) = Qc,0(ω,K)R̃ω`m(rc) .

(4.50)

with F1,±(ω,K), F0,±(ω,K), Q1,+(ω,K), Q0,+(ω,K) Q1,−(ω,K) and Q−,+(ω,K) being

known functions which are at most second order polynomials in ω and K. For the numer-

ical procedure, it is also useful to consider coordinates whose range do not depend on the

parameters of the solution. To achieve this, we make the following simple linear coordinate

transformations

x =
|a|+ χ

2 |a|
and y =

1− r+
r

1− r+
rc

. (4.51)
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FIG. 4: β as a function of a/aext plotted for fixed several values y+ = 1/4, 1/2, 3/4 (from the left

to the right panel) and fixed ` = m = 10.

The resulting equations are then solved using a Newton-Raphson algorithm, on a unit length

Chebyshev grid, as first proposed in [24] and recently detailed in [35].

Our results are shown in Fig. 4 where we take y+ = 1/4, 1/2, 3/4 (from left to right) and

plot β as a function of a/aext. Since we are interested in tracking photon sphere modes,

we will take m = ` = 10. For most of the moduli space of solutions β � 1/2, and β only

gets close to 1/2 near extremality. This is why in Fig. 4 we restricted the range of the

horizontal axis to a/aext ∈ [9/10, 999/1000]. Also showing in Fig. 4 are the analytic WKB

photon sphere predictions of section IV B, see (4.41), denoted by the solid black lines. For

m = ` = 50 (not shown in Fig. 4) we see a maximum deviation between the analytic and

numerical data which is not larger than 10−6 anywhere in parameter space. To sum up,

our numerical results corroborate the analytic analysis performed in section IV B. For the

specific value of y+ = 1/2, we have pushed our numerical scheme to 1− a/aext = 10−5 and

see no deviation from the WKB result.

The absolute error in β is not terribly important: what is important is to show that

corrections to the WKB result cannot push β above 1/2. To this end we define

∆β ≡ β − βWKB

1
2
− β

. (4.52)

This quantity is plotted in Fig. 5 for y+ = 1/2 and ` = m = 10. It can be seen that, for

1− a/aext down to 10−5 we have

|∆β| < 10−3. (4.53)

Thus the WKB analysis is reliable even very close to extremality. Taking ` = m to be even

larger would make ∆β even smaller.
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FIG. 5: log− log plot of ∆β as a function of 1 − a/aext plotted for fixed y+ = 1/2 and fixed

` = m = 10.

V. GRAVITATIONAL QUASINORMAL MODES

A. Teukolsky equation

The Kerr-de Sitter black hole is a Petrov type D solution. Therefore, gravitational per-

turbations of this geometry can be studied using the Teukolsky equation, which uses the

Newman-Penrose (NP) framework [36–39]. We will study perturbations using the Chambers-

Moss null tetrad (3.14). For quasinormal modes we assume a separable Ansatz for the (gauge

invariant) perturbed Weyl scalars

ψ0 ≡ `µmν`ρmαδCµνρα = e−iωt+imφ
R

(+2)
ω`m (r)S

(+2)
ω`m (χ)

(r − iχ)2
, (5.54a)

ψ4 ≡ nµm̄νnρm̄αδCµνρα = e−iωt+imφ
R

(−2)
ω`m (r)S

(−2)
ω`m (χ)

(r − iχ)2
, (5.54b)
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where δCµνρα are the components of the Weyl tensor perturbation. The Teukolsky equation

then reduces to the following two sets of two-parameter eigenvalue problems7

[
D−1∆rD†1 − 6

(
r2

L2
− iΞω r

)
−K(+2)

]
R

(+2)
ω`m (r) = 0 ,

[
L−1∆χL†1 − 6

(
χ2

L2
+ Ξω χ

)
+K(+2)

]
S

(+2)
ω`m (χ) = 0 ,

(5.55)

and 

[
D†−1∆rD1 − 6

(
r2

L2
+ iΞω r

)
−K(−2)

]
R

(−2)
ω`m (r) = 0 ,

[
L†−1∆χL1 − 6

(
χ2

L2
− Ξω χ

)
+K(−2)

]
S

(−2)
ω`m (χ) = 0 ,

(5.56)

where K(±2) are separation constants and we defined the operators [23, 39]:

Dn = ∂r + i
Ξ

∆r

(ma− ωσr) + n
∂r∆r

∆r

, D†n = ∂r − i
Ξ

∆r

(ma− ωσr) + n
∂r∆r

∆r

,

Ln = ∂χ +
Ξ

∆χ

(ma− ωσχ) + n
∂χ∆χ

∆χ

, L†n = ∂χ −
Ξ

∆χ

(ma− ωσχ) + n
∂χ∆χ

∆χ

. (5.57)

Equations (5.55) and (5.56) are isospectral8, that is to say, once appropriate boundary

conditions are imposed, they give the same values of ω and K(+2) = K(−2). So in the

following section, we shall focus on the pair {R(+2)
ω`m (r), S

(+2)
ω`m (χ)} with eigenvalues {ω,K(+2)}.

For our discussion of strong cosmic censorship, we need to determine the behaviour of

the Weyl scalar ψ0 defined in (5.54a) at the Cauchy horizon. For that we use the outgoing

coordinates (u, r, χ, φ′′) that extend the solution across r = r−. The radial equation for

R
(2)
ω`m(r) has a regular singular point when ∆r = 0 and thus a Frobenius analysis yields the

two possible behaviours at the Cauchy horizon r = r−. Converting to outgoing coordinates,

we find that the most general solution for ψ0 near r = r− is a linear combination of ψ
(1)
0 and

ψ
(2)
0 where

ψ
(1)
0 = e−iωueimφ

′′
S

(+2)
ω`m (χ)(r − iχ)−2(r − r−)R̂

(+2)(1)
ω`m (r) , (5.58a)

ψ
(2)
0 = e−iωueimφ

′′
S

(+2)
ω`m (χ)(r − iχ)−2(r − r−)−1+i(ω−mΩ−)/κ−R̂

(+2)(2)
ω`m (r) , (5.58b)

7 The reader interested on a complete but concise overview that discusses how the solutions of (5.55)-(5.56)

allow to get information about other variables can see section 2 and appendix A of [41] (with the trading

L2 → −L2).
8 We have explicitly checked this is the case, by computing the corresponding sets of quasinormal modes

associated with each of the equations.
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where Ω− = Ω(r−) and R̂
(+2)(1)
ω`m , R̂

(+2)(2)
ω`m are smooth functions of r that are non-zero at

r = r−.

This gives the behaviour in the Chambers-Moss tetrad (3.15). This tetrad is not regular

at the Cauchy horizon so we need to convert our results to a regular tetrad. Consider

the Weyl scalar ψ̃0 ≡ ˜̀µm̃ν ˜̀ρm̃αδCµνρα defined using the regular null tetrad { ˜̀, ñ, m̃, m̃}

defined in (3.16). We now have ψ̃0 = ψ0/∆r and hence, near the Cauchy horizon ψ̃0 is a

linear combination of ψ̃
(1)
0 and ψ̃

(2)
0 , where

ψ̃
(1)
0 = e−iωueimφ

′′
S

(+2)
ω`m (χ)(r − iχ)−2R̃

(+2)(1)
ω`m (r) , (5.59a)

ψ̃
(2)
0 = e−iωueimφ

′′
S

(+2)
ω`m (χ)(r − iχ)−2(r − r−)−2+i(ω−mΩ−)/κ−R̃

(+2)(2)
ω`m (r) , (5.59b)

and R̃
(+2)(i)
ω`m ≡ FR̂

(+2)(i)
ω`m (i = 1, 2) where F ≡ (r − r−)/∆r is smooth and non-vanishing at

the Cauchy horizon. It follows that the R̃
(+2)(i)
ω`m are smooth and non-vanishing at the Cauchy

horizon.

The solution ψ̃
(1)
0 is smooth and non-vanishing at the Cauchy horizon. However, the

solution ψ̃
(2)
0 diverges at the Cauchy horizon. A quasinormal mode solution will be a linear

combination of these two solutions and there is no reason why either coefficient in this linear

combination should vanish. It follows that ψ̃0 diverges at the Cauchy horizon. Defining

p = i(ω −mΩ−)/κ−, the behaviour, in the regular tetrad, of a quasinormal mode near the

Cauchy horizon is

ψ̃0 ∼ (r − r−)p−2. (5.60)

We now define β = Re(p) = −Im(ω)/κ− as before. We will show that if the quasinormal

mode corresponds to a linearized metric perturbation that, in some gauge, is in H1
loc then

we must have β ≥ 1/2.

The easiest way to see this is as follows. If the linearized metric perturbation is in H1
loc

in some gauge then its second derivative belongs to H−1
loc [40]. Hence it must be possible to

interpret the (gauge invariant) quantity ψ̃0 as a tempered distribution in H−1
loc . The latter

is the dual space of H1
loc [40] so if ψ̃0 belongs to H−1

loc then
∫
ψ̃0f should be finite for any

f ∈ H1
loc. Choose compactly supported f where the support of f contains a segment of the

Cauchy horizon with f smooth except on this segment, with f ∼ (r−r−)q in a neighbourhood

of this segment, where q is real. This f belongs to H1
loc if, and only if, q > 1/2. Then

∫
ψ̃0f

converges for all q > 1/2 if, and only if, β ≥ 1/2. Hence if (5.60) belongs to H−1
loc then we

must have β ≥ 1/2.
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A less rigorous, argument goes as follows. Assume that, in the coordinates (u, r, χ, φ′′)

each component of the metric perturbation behaves (near the Cauchy horizon) as (r− r−)q

where q = qR + i
(
Re(ω) − mΩ−

)
/κ− = qR + i Im(p). The value of the real part qR may

be different for different components. The condition that the perturbation belongs to H1
loc

is that each component must have qR > 1/2. Since the Weyl tensor perturbation involves

two derivatives of the metric, it follows that the Weyl scalar must be at least as smooth as

(r − r−)min(qR)+i Im(p)−2 and hence from (5.60) we must have Re(p) > min(qR) > 1/2, i.e.,

β > 1/2.

We conclude that if a quasinormal mode corresponds to a linearized metric perturbation

that, in some gauge, belongs to H1
loc then the mode must have

β ≥ 1

2
where β ≡ −Im(ω)

κ−
. (5.61)

Hence if all gravitational quasinormal modes have β ≥ 1/2 then strong cosmic censorship

might be violated. However, if we can find one quasinormal mode with β < 1/2 then,

as argued in the Introduction, a generic linearized gravitational perturbation cannot be

extended across the Cauchy horizon in H1
loc and so strong cosmic censorship holds.

We can use geometric optics to calculate the frequencies of “photon sphere” gravitational

quasinormal modes with ` = |m| � 1. The calculation is exactly as in section IV B. As

explained in [32] (see Eq. (51) of [32]), the spin dependence of the WKB approximation of

quasinormal frequencies with ` = |m| only comes at order 1/m. This makes sense, since in

the WKB limit we are taking ` = |m| to be large, while keeping the spin fixed (either to

zero, in the scalar case, or to two in the gravitational case). Hence for ` = |m| � 1, the

gravitational quasinormal frequencies are, to leading order, exactly the same as the scalar

field quasinormal frequences, as computed in section IV B. Furthermore, the subleading

terms in β can be made arbitrarily small by taking ` = |m| large enough.

We conclude that for any non-extremal Kerr-de Sitter black hole, there are gravitational

quasinormal modes with β < 1/2. Hence linearized gravitational perturbations of any non-

extremal Kerr-de Sitter black hole respect the strong cosmic censorship conjecture.

In the next section, we will check the accuracy of the geometric optics/WKB approxima-

tion for gravitational perturbations by computing the quasinormal frequencies numerically.

Just as for the scalar field case, we will find that the geometric optics approximation is

always very accurate for ` = m� 1.
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B. Numerics

We write the perturbation for the Weyl scalar ψ0 as in (5.54a). Our task now is to find

S
(+2)
ω`m (χ), R

(+2)
ω`m (r) and the eigenvalues {ω,K(+2)} by solving (5.55). As explained before,

(5.56) is isospectral to (5.55) and thus we do not consider it further.

This section follows mutatis mutandis section IV C, so we will only point out the differ-

ences. Regularity at the poles, located at χ = ±|a| now demands that

S
(+2)
ω`m (χ) = (a2 − χ2)

|m−2|
2 S̃

(+2)
ω`m (χ) , (5.62)

where S̃
(+2)
ω`m (χ) is a smooth function of χ for all values of m. We have discarded the irregular

solution (a2 − χ2)−
|m−2|

2 . Demanding outgoing boundary conditions at the cosmological

horizon − i.e. that the solution is regular at r = rc in outgoing coordinates (u, r, χ, φ′′) −

and ingoing boundary conditions at the black hole horizon − i.e. that the solution is regular

at r = r+ in ingoing coordinates (v, r, χ, φ′) − now motivates the following field redefinition:

R
(+2)
ω`m (r) = (rc − r)−

i
2κc

(ω−mΩc)+1(r − r+)
− i

2κ+
(ω−mΩ+)−1

R̃
(+2)
ω`m (r) , (5.63)

where again R̃
(+2)
ω`m (r) is a smooth function at both r = r+ and r = rc.
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FIG. 6: β for gravitational perturbations as a function of a/aext plotted for fixed y+ = 1/2 and

` = m = 10.

The numerical results are displayed in Fig. 6, where we have choosen y+ = 1/2, a/aext ∈

[9/10, 999/1000] and m = ` = 10. As expected, at large enough ` = m, the spin is irrelevant,



24

and the analytic approximation of section IV B is excellent. The only difference worth

noticing is that it seems we need to get to larger values of m = ` in order for the geometric

optics approximation to be as accurate as for the scalar field case. We note, however, that

the approximation remains reliable even as we approach extremality.

VI. DISCUSSION

Our work is based on a study of linear perturbations. Of course any linear analysis which

demonstrates a blow-up could be criticized on the grounds that nonlinear effects might

somehow prevent the blow-up. However, a good understanding of nonlinear effects exists

for Λ = 0 (see e.g. [11]) and there is now strong evidence that these do not invalidate the

results of the linear approximation. Since the Cauchy horizon instability is expected to be

weaker for positive Λ, it seems very reasonable that the linear analysis will also be reliable

for positive Λ, a conclusion that is supported by the arguments of Ref. [20] in the case of

spherically symmetric perturbations of Reissner-Nordstrom de Sitter.

It would be very interesting to study the nature of the singularity which replaces the

Cauchy horizon inside a Kerr-de Sitter black hole. This is beyond the scope of our paper for

two reasons. First, a proper treatment of the singularity would require a study of nonlinear

effects. Second, our work identifies a particular family of quasinormal modes whose decay

(outside the hole) is slow enough to guarantee that the Cauchy horizon becomes singular.

However, to study the nature of this singularity, even in linearized theory, we would have to

determine the decay of generic linear perturbations of the black hole. A generic perturbation

may decay even more slowly than the particular quasinormal modes that we study. The

decay may not even be exponential in time (see footnote 2).

The analysis of this paper is entirely classical. Quantum mechanically, both the cos-

mological horizon and the black hole event horizon emit thermal radiation. This radiation

would be expected to be important only over very long timescales, which implies that the

classical analysis used in this paper should be valid up until very near to the Cauchy horizon.

Understanding the role of quantum effects on the Cauchy horizon is an interesting question

but well beyond the scope of this paper.

The Kerr-de Sitter solution can be regarded as describing a black hole in a realistic

cosmology at late time, when the cosmological evolution is dominated by the cosmological
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constant. In such a universe, cosmic microwave background photons will be present and one

can ask about the effect of these, viewed as a perturbation of the black hole. The temperature

of these photons will redshift in inverse proportion to the scale factor of the universe, i.e., it

will decrease exponentially over a time scale set by the cosmological constant. On the other

hand, the black holes most likely to violate strong cosmic censorship are near-extremal,

and quasinormal modes of such black holes decay exponentially with a time scale (roughly)

inversely proportional to the surface gravity, i.e., over a much longer time scale. So the

CMB photons decay much more rapidly than linear metric perturbations and can therefore

be neglected.
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