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Abstract  

Neurodegenerative disorders, including Alzheimer’s disease (AD) and Parkinson’s 
disease (PD), are increasingly common in our ageing society, are remain incurable. A 
major obstacle encountered by researchers in their attempts to find effective therapies 
is represented by the current lack of understanding of the molecular origins of these 
disorders. It is becoming clear that, although the aggregation of specific proteins, 
including amyloid β  (Aβ) and tau in AD and α-synuclein in PD, hallmark these 
disorders, such behaviour is a consequence of a wider, system-level disruption of 
protein homeostasis. In order to identify the genetic factors contributing to such a 
disruption, the transcriptional changes that occur during neurodegenerative disease 
progression have received considerable scientific attention in recent years. In our 
approach, we considered another hallmark of these diseases - their characteristic 
patterns of spreading across the brain - to identify the nature of the transcriptional 
signature which underlies tissue vulnerability to protein aggregation. By 
understanding why tissues succumb in their characteristic sequential pattern in 
neurodegenerative diseases, and why some tissues remain almost completely resistant 
throughout, we hoped to obtain insight into the molecular origins of these disorders. 
Our results show that the AD progression can be predicted from a transcriptional 
signature in healthy brains related to the protein aggregation homeostasis of Aβ, tau, 
and the wider proteome. We highlight a relationship between a specific subproteome 
at high risk of aggregation (formed by supersaturated proteins), and the vulnerability 
to neurodegenerative diseases. We thus identify an AD-specific supersaturated set of 
proteins - termed the metastable subproteome, whose expression in normal brains 
recapitulates the staging of AD, with more vulnerable tissues having higher 
metastable subproteome expression. We find evidence of these vulnerability 
signatures transcending the tissue level of interrogation, with cellular and subcellular 
analysis also showing elevated levels of proteins known and predicted to predispose 
the aberrant aggregation of Aβ and tau.  These results characterise the key protein 
homeostasis pathways in the inception and progression of AD, and establish an 
approach with the potential to be applied to other protein misfolding diseases, in the 
brain and beyond.  



Table of Contents 

1 Introduction 

1.1 Protein Misfolding 
1.1.1 Routes to protein misfolding 
1.1.2 Consequences of protein misfolding 
1.2 Misfolding protein regulation and dysregulation 
1.2.1 Protein homeostasis 
1.2.2 Protein supersaturation 
1.3 Protein misfolding in disease  
1.3.1 Characterising proteins which misfold in disease 
1.3.2 Mechanisms of misfolded protein toxicity 
1.3.3 Factors of influence in protein misfolding inception in disease 
1.3.4 Mechanisms of misfolded disease spread 
1.3.5 Introducing key protein misfolding diseases 
1.4 Origins of tissue vulnerability to neurodegenerative disease 
1.4.1 Selective vulnerability 
1.4.2 Neural connectivity and activity 
1.4.3 Gluscosaminoglycans 
1.4.4 Metal ion concentrations 
1.4.5 Factors beyond neurons 
1.4.6 Inflammation 
1.4.7 Differential protein expression 
1.4.8 Protein homeostasis  

2 Aggregation Modulators 

2.1 Introduction 
2.1.1 AD specific aggregation modulator networks 
2.1.2 Assessing aggregation modulator impact on AD vulnerability 
2.1.3 Defining relative AD tissue vulnerability 
2.1.4 Evaluating the association between subproteome expression and tissue 
vulnerability 
2.2 Results 
2.2.1 Δ score analysis of Aβ and tau aggregation modulators 
2.2.2 Evaluating the predictive power of aggregation modulator levels 
2.2.3 Testing the specificity of AD-aggregation modulators 
2.3 Conclusions 
2.4 Methods 
2.4.1 Data sources 
2.4.2 Braak Staging 
2.4.3 Mapping with the Allen Brain Atlas 
2.4.4 Quantifying differential expression - the Δ score 
2.4.5 Calculation of the relative expression for aggregation regulators 
2.4.6 Evaluation of statistical significance 



2.4.7 Shading of cortical and subcortical brain structures on three-dimensional 
representation 
3 The metastable subproteome 

3.1 Introduction 
3.1.1 A broader view on protein homeostasis 
3.1.2 Elucidation of a supersaturated subproteome specific to AD 
3.2 Results 
3.2.1 Primary aggregator and co-aggregator relative expression in AD-vulnerable 
tissues 
3.2.2 Investigating the metastable subproteome specific to AD 
3.2.3 Enrichment analysis of the metastable subproteome 
3.2.4 Evaluating the predictive power of metastable subproteome levels with respect to 
AD progression in the brain 
3.3 Conclusions 
3.4 Methods 
3.4.1 Data sources 
3.4.2 Braak Staging 
3.4.3 Mapping with the Allen Brain Atlas 
3.4.4 Quantifying differential expression - the Δ score 
3.4.5 Evaluation of statistical significance 
3.4.6 Shading of cortical and subcortical brain structures on three-dimensional 
representation 
3.4.7 Enrichment analysis 
3.4.8 Defining a supersaturated subset 
3.4.9 Defining downregulated gene sets 

4 Looking beyond - further subproteomes and other protein misfolding 
diseases 

4.1 Introduction 
4.1.1 Neurones are the most vulnerable cell type to neurodegenerative diseases 
4.1.2 Excitatory neurons are more vulnerable to AD than inhibitory neurons 
4.1.3 Synapses are the most vulnerable subcellular localisation to AD 
4.1.4 Commonalities and crucial differences between neurodegenerative diseases 
4.2 Results 
4.2.1 Elevated expression of supersaturated proteins characterises most vulnerable 
tissues in neurodegenerative diseases 
4.2.2 Neurons have the highest relative supersaturation burden  
4.2.3 Neurons have an expression signature that predisposes the aggregation of Aβ 
and tau, relative to other cell types 
4.2.4 Excitatory neurons have an expression signature that predisposes the 
aggregation of Aβ and tau, relative to inhibitory neurons 
4.2.5 Synaptic proteome is enriched for supersaturated proteins and the metastable 
proteome 
4.2.6 Robustness testing of results 
4.2.7 Investigation of alternative hypotheses 
4.3 Conclusions 



4.4 Methods 
4.4.1 Data sources 
4.4.2 Allen Brain Atlas data analysis 
4.4.3 Key subproteome construction 
4.4.4 Categorisation of neurons as excitatory or inhibitory 
4.4.5 Defining a vulnerability landscape in the brain 
4.4.6 Relative expression for cell types 
5 Conclusion 
References 

Appendix A List of publications 
Appendix B1 Table of aggregation modulators and associated Δ scores 
Appendix B2 Table of co-aggregators and associated Braak I-III Δ scores 
Appendix B3 Table of metastable subproteome members and associated Δ scores 

List of figures 
1.1 Protein folding pathways 
1.2 Whole brain and tissue-specific vulnerability to AD 
1.3 Mechanisms of misfolded protein spread 
2.1 The protein homeostasis network responsible for modulating the aggregation 
dynamics of Aβ and tau 
2.2 In vulnerable tissues in healthy brains, the expression patterns of specific 
molecular chaperones and posttranslational modifiers predispose the aggregation of 
Aβ and tau 
2.3 In healthy tissues, a protein homeostasis expression signature associated with Aβ 
and tau aggregation recapitulates the progression of AD well before the onset of the 
disease 
2.4 Analysis of the average correlation between mRNA and protein levels 
2.5 ΔBI–III Scores for neurodegenerative disease–specific aggregation modulator sets 
2.6 Distributions of ΔB scores for tissues affected at different Braak stages 
3.1 Levels of proteomic interrogation for investigation of vulnerability to disease-
specific protein homeostasis loss 
3.2 Tissue-specific transcriptional analysis of a subset of aggregation-prone proteins 
specific to AD 
3.3 Analysis of ΔBI–III scores of random sets of genes 
3.4 Distributions of ΔB scores for tissues affected at different Braak stages 
3.5 Expression of metastable subproteome specific to AD is elevated in AD-vulnerable 
tissues 
3.6 Mean Δ Braak I-III score for MS-component subproteome 
3.7 Testing Δ score signal robustness 
3.8 The metastable subproteome is enriched for synaptic localisation 
3.9 All significantly enriched metastable subproteome biological processes and 
subcellular localisations  
3.10 Metastable subproteome expression in normal tissues recapitulates AD 
progression 
3.11 Distributions of ΔB scores for tissues affected at different Braak stages 



4.1 Levels of interrogation for investigation of vulnerability to disease-specific protein 
homeostasis loss 
4.2 Supersaturated proteins are more highly expressed in vulnerable tissues in 
healthy brains relative to resistant tissues 
4.3 Relative expression of supersaturated proteins, in brain cell types 
4.4 Expression of different components of Aβ and tau homeostasis in specific brain cell 
types 
4.5 Relative expression of the metastable subproteome in a number of brain cell types 
4.6 Differential expression of AD-specific aggregation modulators in excitatory and 
inhibitory neurons 
4.7 The synaptic environment is highly vulnerable to protein aggregation 
4.8 ΔSNPC scores corresponding to aggregation-prone protein sets characteristic of PD 
4.9 Proteome-based ΔB scores calculated using mice data for tissues affected at 
different Braak stages 
4.10 Distributions of ΔBI–III scores for selected KEGG pathways 

List of tables 
1.1 Examples of protein misfolding diseases: a summary 
2.1 Aggregation modulators of Aβ and tau 
2.2  Vulnerable tissues for alternative neurodegenerative diseases 
2.3 A correspondence between Allen Brain Atlas and Braak Stage tissues 
4.1 Data sources for figures in chapter 4 
4.2 Coding of regional vulnerability to four key neurodegenerative diseases 



1 Introduction 

1.1 Protein Misfolding 

1.1.1 Routes to protein misfolding 

Protein folding is the process by which a protein acquires its native, biologically active 

conformation[1]. The stochastic nature and the complexity of this process can result in 

a failure to reach a correctly folded state, with proteins misfolding and aggregating 

[1-7].Given the relatively frequent failures in the folding process (Figure 1) [2], a 

complex cellular machinery has evolved to intervene with nascent, folded and 

intermediate states of proteins to ensure  their correct behaviour [3, 4]. This ‘protein 

homeostasis system’ is crucial to determine the correct conformations, concentrations 

and trafficking of proteins. 

 

Figure 1.1: States accessible to proteins 

in the cellular environment. These states 

are complex and highly interconnected. 

The hydrogen bonding propensity of the polypeptide backbone is common to all 

proteins and essential to enable their folding. However, this chemical property also 

affords polypeptide chains a ubiquitous potential to misfold and aggregate. There are 

many factors that influence the likelihood of protein misfolding, including those 

intrinsic to the amino acid sequences of proteins,  their charge distribution [5] and the 

presence of specific hydrophilic-hydrophobic patterns [6]. Other traits that lead to an 



elevated misfolding propensity can arise due to somatic or inherited mutations, or 

errors in the process of transcription or translation [7, 8]. These traits often destabilise 

the correct fold and act to favour the formation of misfolded and aggregated states. 

Misfolding can also occur due to factors associated with the cellular environment, 

including a failure of protein homeostasis machinery, errors in the post-translational 

modification or translation of proteins, or structural modifications due to 

environmental changes (such as pH) [7, 8].  

1.1.2 Consequences of protein misfolding 

In certain instances, a misfolded protein state can have a high tendency to self-

associate. The amyloid state, an example of a highly organised protein assembly, 

results from the aggregation of misfolded proteins [9]. The kinetics of amyloid 

formation have been characterised to various extents for a number of proteins [10, 11]. 

This process is initiated by a nucleation step, which is generally energetically 

unfavourable and thus rate limiting [12]. Once critical nuclei have been generated, 

fibrillar extension contributes to the aggregation kinetics. This elongation step is 

typically kinetically and energetically favourable, because fibril ends act as a template 

for the addition of new monomeric units and  fibrils are themselves more stable than 

the monomeric proteins at the typical cellular concentrations [13, 14]. Once formed, 

amyloid fibrils are more stable than even the native state [15, 16]. However, their 

formation is relatively rare because of high free energy barrier between the native and 

the aggregated states [17] and the presence of the protein homeostasis system. In 

addition to mature fibrils, a number of other structures have been described in 

association to protein aggregation, including oligomers, pores, annular structures, 

spherical micelles, and protofibrils [18, 19].  

In a non-functional aggregated form, misfolded proteins can be resistant to clearance, 

and interfere with the capacity of affected cells to function normally. Recent studies 

have focused on identifying the aggregated protein species most damaging to cells, and 

there is now a consensus that soluble oligomers have the greatest in vivo toxicity [20, 

21], although the corresponding mechanism has yet to be throughly elucidated. In 



particular, Aβ oligomers have been shown to adversely affect synaptic structure and 

plasticity in neuronal cells [22]. A wide range of studies has indicated that a broadly 

similar process of cellular damage is elicited by soluble oligomers formed from other 

misfolded proteins. Both synthetic and and natural oligomers have been shown to 

induce apoptosis in cell cultures [23, 24], even at low concentrations, to block long 

term potentiation in brain cultures [25], and to impair synaptic plasticity and memory 

in animal models [26]. Protofibrils and other intermediate assemblies may also 

contribute to cell death [27], and mature fibrils can elicit toxicity in cultured cells [28], 

but only when at significantly higher concentrations than oligomers and protofibrils.  

1.2 Protein misfolding regulation and dysregulation 

1.2.1 Protein homeostasis 

The conformations, concentrations, locations, and post-translational modifications of 

proteins are controlled by a complex cellular regulatory system, known as the protein 

homeostasis network (PHN) [29, 30]. In addition, this system ensures a balance 

between protein generation and degradation, allowing optimal cellular function whilst 

mitigating the risk of aggregation [30, 31]. Components of this network are expressed 

constitutively but at varying levels across tissues and cell types, and are often induced 

in response to a threat to protein homeostasis, for example the accumulation of 

misfolded proteins [32]. The PHN is composed of multiple molecular chaperone 

systems, quality control systems, and degradation pathways. Molecular chaperones 

are responsible for correct protein folding, for example by preventing or rescuing 

proteins (in particular nascent chains) from the formation of non-native interactions 

[4]. For example, during translation, highly hydrophobic portions of a polypeptide 

chain are exposed to the cellular environment and are vulnerable to misfolding or 

aggregation [33]. Molecular chaperones and co-chaperones, such as the heat shock 

proteins Hsp70 and Hsp40 act to ensure correct folding and avoidance of misfolding [4, 

34]. The PHN performs many roles including the surveying of nascent chains for 

errors [35], and acting as folding checkpoints [36]. Degradation pathways often act in 

response to the quality control system to dispose of proteins which are damaged or 



cannot be refolded into their native state [37]. These pathways have a key role in 

protein turnover and therefore protein levels in cells [38, 39].  

1.2.2 Protein supersaturation 

 A protein is supersaturated when it is expressed beyond its limit of solubility. Under 

these conditions, the aggregated state is more stable than the native state, creating a 

high risk of aggregation.. It is increasingly recognised that proteins in the cellular 

environment are expressed at levels that exceed their critical concentrations [31]. 

These proteins are thus supersatured [40]. This aspect of protein behaviour is of 

central importance in understanding the molecular origins of neurodegenerative 

diseases, since it implies that protein aggregation poses an intrinsic and constant 

danger to cellular homeostasis [40-42]. 

A number of subproteomes have been suggested to influence tissue and brain specific 

risk to protein aberrant aggregation. These subproteomes include the primary 

proteins (protein aggregators) found in characteristic disease deposits [43], and the 

proteins in the protein homeostasis networks associated with protein aggregators [44]. 

In addition, one could consider the aggregation propensity of the wider proteome. An 

insoluble protein would provide a significant burden on the protein homeostasis 

system, allowing the most insoluble proteins to escape regulation and follow 

misfolding pathways towards aggregation [45]. Indeed this phenomena has been 

observed in C. elegans where the protein regulatory system was overwhelmed using 

aggregation-prone protein over-expression [46]. In response, discrete cytoplasmic 

aggregates were observed, and researchers further demonstrated that aggregate 

formation could be prevented using co-expression of the yeast heat shock chaperone 

Hsp104 [46]. This phenomenon has also been demonstrated in mammals; amyloidosis 

in mice can be induced by a diverse array of insoluble assemblies, including the yeast 

protein Sup35, and curli fibrils from the bacterium E. coli [47]. More generally, 

aggregation can affect a wide spectrum of proteins, as observed during ageing in C. 

elegans, where deposition was found to be widespread in the proteome [48]. These 

results can be rationalised by the observed anti-correlation between protein 



aggregation rates and expression level, indicating that protein levels in the cell are at 

the limit of their solubility [31]. In this instance, one would expect a small 

perturbation in the PHN to result in widespread precipitation of proteins. This 

phenomenon is likely due to an evolutionary trade off between solubility and optimal 

functionality - as the vast majority of point mutations reduce protein stability [49].   

In previous studies leading to the work that I present in this thesis, a supersaturation 

score was recently developed by researchers in our Centre to quantify the aggregation 

risk of specific proteins. This quantification allows the assessment of the burden on 

the protein homeostasis system from a subproteome, or the proteome as a whole [40]. 

This score is calculated using both experimentally measured and computationally 

predicted components - expression level and solubility respectively. The balance 

between these two factors determines the extent to which a protein is expressed 

beyond its solubility limit, and therefore provides a prediction of its risk of aberrant 

aggregation in the cell [40]. Proteins within the 5th percentile of this score are termed 

‘supersaturated’. Studies have found supersaturated proteins to be enriched in the co-

aggregators found in amyloid plaques and neurofibrillary tangles, and the deposits 

found in ageing worms [40]. This result suggests that distinct stresses, including age 

and disease, can induce these proteins of high predicted risk to loose solubility in the 

cell when the aggregation threshold in a cell is reduced. It has also been suggested 

that since supersaturated proteins are highly vulnerable to aberrant aggregation [40], 

they could put a pressure on protein homeostasis and induce the misfolding and 

aggregation of other proteins that would otherwise be relatively soluble. 

When considering protein homeostasis, supersaturation therefore presents another 

aspect of protein behaviour that needs to be highly regulated. By defining the most 

supersaturated proteins, we enable a more complete understanding of the factors 

which influence risk to aberrant aggregation.  

1.3 Protein misfolding in disease  



1.3.1 Characterising proteins which misfold in disease 

Each protein misfolding disease is characterised by the deposition of a small specific 

subset of aggregating proteins [9]. The factors that determine which proteins will 

misfold and deposit in disease remain under intense investigation [9, 50, 51]. Although 

there is no known sequence or structural homology which unifies these molecules, an 

amyloidogenic propensity is common to all proteins. In addition, supersaturated 

proteins (see section 1.2.4) are enriched in the proteins which co-aggregate to form the 

disease-associated inclusions found in AD and PD [40].  

Several theories exist for the pathogenic mechanism for protein misfolding diseases 

[52-55]. Some argue that protein aggregation is an artefact of neuronal death and not 

the cause, however there is much evidence to the contrary. Mutations in the gene that 

codes for tau are known to be associated with the incidence of various 

neurodegenerative diseases [56]. Transgenic animals expressing the mutant variants 

of misfolding proteins associated with the disease in humans develop 

neuropathological and clinical characteristics which reflect, at least in part, those 

found in the human pathology [57]. Perhaps the most compelling evidence of a crucial 

role for protein homeostasis in neurodegenerative diseases came from the discovery of 

a protective mutation for AD. The rare gene variant A673T has been found to decrease 

Aβ deposition in the brains of those who have developed AD. The mutation occurs 

close to the site of enzymatic cleavage necessary to form the aggregation prone 

polypeptide. Consequently, lower levels of the Aβ peptide were produced - giving 

indication that lower levels of key aggregation prone proteins have the potential to 

protect neural tissue against neurodegenerative disease. Given that another mutation 

at an identical site results in an Aβ variant more prone to misfolding and pathological 

aggregation, it is possible that this site also acts to influence the stability and 

solubility of Aβ, modulating pathological aggregation [58].  



1.3.2 Mechanisms of misfolded protein toxicity 

As discussed in section 1.1.2, oligomeric species have recently been shown to be the 

most toxic assemblies - several studies have suggested that levels of soluble Aβ 

oligomers show a better correlation to the presence and degree of cognitive deficits 

than the occurrence of plaque (large insoluble amyloid deposits) [59]. As is typical for 

the rapidly evolving field of protein misfolding diseases, the mechanisms by which this 

toxicity is conferred are under active study.  

Evidence of oligomeric toxicity has been found in a number of neurodegenerative 

diseases, and in addition to much studied Aβ assemblies, there is evidence of the PD 

protein α-synuclein forming pathogenic oligomers [20]. Further, tau cytotoxicity has 

been associated to oligomeric structures [60], which arise prior to the paired helical 

filaments found in AD-characteristic tangles. However, it is unknown whether the 

mechanism of oligomer toxicity is common for different proteins and due to oligomer 

biophysical characteristics, or instead due to specific interactions, perhaps with a 

particular cell receptors or target proteins.  

Researchers have suggested that specific neuronal or glial receptors could be 

conferring a response to Aβ oligomers. Work done by Malaplate-Armand et al. has 

suggested that extracellular oligomers could activate a signal transduction pathway 

that ultimately leads to cellular apoptosis [61]. A number of studies have also 

proposed that Aβ oligomers could stimulate a pro-inflammatory cascade through 

interaction with local astrocytes and glia [62]. Alternatively, oligomers may be 

indiscriminately affecting the function of diverse receptor channel proteins on 

neuronal cell membranes. 

It has also been proposed that oligomers could be acting to drive aggregation of other 

disease-associated assemblies. This process could occur via a targeted and specific 

mechanism; for example Aβ oligomers could be inducing the hyperphosphorylation of 

tau [63], thereby driving its aggregation into paired helical filaments. However, the 

triggering of aberrant aggregation could be more widespread throughout the 



proteome, damaging cells through a loss of function. The sequestration of proteins 

within neurons, in particular molecular chaperones, could perturb key cellular 

processes. These processes include protein synthesis, folding, trafficking and 

degradation, thereby inhibiting protein homeostasis and escalating the aggregation 

process [64]. In the protein misfolding disease amyotropic lateral sclerosis (ALS), gene 

regulatory proteins co-aggregate in the cytoplasm, preventing them from performing 

their designated roles in the nucleus [65]. In cystic fibrosis, pathology arises from the 

misfolding and defective trafficking of the primary disease-associated protein, CFTR 

[66-68]. Neurons could be particularly vulnerable to this threat, due to their limited 

renewal capacity [69]. 

Since oligomeric species are often highly hydrophobic, they could cause disruption to 

cell membranes by physically puncturing and permeabilising them [70]. It has been 

suggested that oligomers within a low molecular weight range would be most potent in 

causing damage [71]. The downstream consequences of oligomeric damage are 

somewhat clearer, as there is now a body of evidence to demonstrate that Aβ oligomers 

are able to inhibit the neuronal process of long term potentiation (LTP) long-term 

potentiation in vivo [72, 73], known to be crucial in memory formation. When derived 

from cells, these oligomers were able elicit a physiological impact at concentrations 

comparable to those found in human CSF [74]. Furthermore, LTP can be restored by 

treatment with treatment using anti-Aβ antibodies in vivo [74], when introduced using 

either passive diffusion or vaccination.  

1.3.3 Factors of influence in protein misfolding inception in disease 

Because misfolded states are permissive to pathways that often end in aggregation, 

aberrant aggregation in a cell can be indicative of a protein homeostasis failure [75]. 

In the event of protein self-association, oligomeric species may cause catastrophic 

damage in affected cells, and disease manifests [70]. Therefore, the likelihood that a 

protein misfolding disease will take hold in a given tissue is elevated by factors which 

promote the self-assembly of proteins specific to that disease.  

http://www.nature.com/nature/journal/v416/n6880/abs/416535a.html


In AD, plaques and tangles, primarily composed of the proteins Aβ and tau 

respectively, and have a specific spatiotemporal pattern of deposition in the 

brain.Indeed, tangle deposition has been found to closely follow the pattern of 

neuronal death [76]. Initiating in the parahippocampal gyrus, the disease spreads out 

to a number of cortical tissues, whilst for example the cerebellum is almost completely 

spared. This differential disease resistance suggests the existence an innate tissue 

vulnerability to the protein aggregation specific to AD. Differential vulnerability is 

also seen at the whole-brain level - AD onset can occur in individuals across a wide age 

range [77].  

Two factors must be considered when determining brain tissue resistance to protein 

homeostasis failure. The first, being the contribution of brain-wide risk factors - more 

specifically genetic predisposition, age, and any lifestyle risk factors such as head 

injury. The second, a tissue intrinsic risk, is influenced by a tissue’s specific proteomic 

signature, cellular resistance, and location relative to other tissues. The combination 

of these factors determine the fate of a tissue in the brain; whether it will succumb to 

protein misfolding damage, and if so, at what time point in an individual’s lifetime 

disease inception will occur. 

Environmental and genetic risks 

Building on the identification Aβ gene mutations and their role in AD inheritance, 

subsequent genes whose variants have been identified which influence AD risk include 

those which relate to Aβ cleavage and clearance [78].  Both early and late onset AD 

have a genetic component, however the role of genetic factors is stronger for those who 

suffer from AD earlier in life - 30 to 60 years of age [79]. 

The strongest determinant of an individual’s vulnerability to AD onset is age - whilst 

one in nine people 65 or older suffers from AD, one in three over 85s are living with 

AD [80]. Studies in model systems suggest that the influence of age on protein 

misfolding disease risk is due to a decline in protein homeostasis capacity over 

lifespan. In C. elegans, proteostatic capacity declines sharply after egg laying [81], and 



in parallel it has been suggested that stem cells dedicate significantly more resource to 

proteostatic maintenance than differentiated cell types [82]. In mammals, the 

chaperone system decline is more gradual, but the end result - aberrant aggregation - 

is consistent across organisms. In addition, chemical modifications to Aβ which occur 

gradually over time could be responsible for the generation of a  protein reservoir with 

a higher pathogenic potential. AD brains have a higher proportion of Aβ with N-

terminal truncations and pyroglutamate modifications [83], both of which are known 

to occur over incrementally to proteins over considerable spans of time.  

It has been suggested that neuronal cells have a particular vulnerability to protein 

misfolding disease, due to their longevity.- there is evidence that aggregates are 

reserved in the mother cell during mitotic division [84]. Therefore one could expect 

age-related declines in chaperone capacity to impact most strongly in this cell type.  

A number of lifestyle factors have been linked to AD risk, some conclusively whilst 

others remain the subject of scientific debate. Head trauma carries a significant risk of 

AD [85], particularly upon repeated incidence and when involving a loss in 

consciousness. Traumatic brain injury (TBI) causes the deposition of Aβ in the injured 

brain [86], and studies of cortical impact injury in transgenic AD model mice found a 

significant increase in the levels of Aβ oligomers in the injured cortex [87].  

These factors impact the vulnerability of tissues to protein homeostasis dysregulation 

throughout the brain, acting to reduce the time lag before disease onset in tissues 

(Figure 1.2). The greater this brain-wide risk, the shorter the time until disease 

inception, and until the disease reaches a given vulnerable tissue (Figure 1.2). It is 

possible that even for an individual who does not live to suffer from AD, their brain 

has a quantifiable lag time, and therefore the potential to succumb to the disease.  

Tissue intrinsic risk   

Not all brain tissues have equal vulnerability to AD, and their intrinsic susceptibility 

explains why some tissues remain resistant throughout disease progression (Figure 



1.2). There are two circumstances under which a tissue can develop AD - through the 

spontaneous inception of the disease, or through the transmission of the disease from 

an adjacent tissue. Current theories for the origins of tissue intrinsic vulnerability are 

discussed in further detail in section 1.4. Results presented in this thesis will build an 

argument that a proteomic signature underlying vulnerability to the aberrant 

aggregation specific to AD is integral to determining the location in the brain where 

disease will first occur, and the subsequent patten of disease spread.  



 

Figure 1.2: Interplay between whole brain and tissue-specific vulnerability to 

determine the time point of disease onset in AD. 

A higher brain-wide risk (a) leads to a shorter lag time for both disease inception in 

the hippocampal region, and atrophy in subsequent tissues. Vulnerable tissues have a 

higher intrinsic risk and will therefore always succumb to disease first, regardless of 

brain-wide risks. Some tissues are below an intrinsic risk threshold and are resistant 

throughout. In (b), a low brain-wide risk results in a longer lag time for disease onset. 

In summary, differential vulnerability to neurological protein misfolding diseases may 

result from the distance of neuronal populations to a catastrophic cliff ending in 

disease-specific protein homeostasis loss. Differential margins of resilience to disease 

are likely to depend on their function, genetic composition and history of stress 

exposure.  



Although here AD specifically is discussed, this is a paradigm which can in theory be 

extended to all protein misfolding diseases. This model will be particularly relevant to 

protein misfolding diseases of the brain, where there are significant variations in 

connectivity and proteome composition between tissues, and a characteristic pattern of 

disease inception and spread.  

1.3.4 Mechanisms of misfolding disease spread 

For disease to spread to a secondary tissue, there are three key processes that render 

this brain region vulnerable (Figure 1.3). Protein misfolding diseases often incept 

within small specific neuronal populations, beyond which the disease progresses to 

affect a wider array of tissues, with clinically observable symptoms relating to the 

region affected by atrophy. It has be suggested by many groups in this field that the 

spatial progression of atrophy in tissues during protein misfolding disease occurs via 

the spread of the aggregated species [88]. This process parallels the onset of a cancer, 

where stochastic events at a genetic or protein homeostatic level may generate 

uncontrolled ‘seeds’ - small assemblies of misfolded proteins - catalysing further 

misfolding events. 

For a misfolded protein to be capable of transmitting disease between tissues, the cells 

affected must have a number of key characteristics. Firstly, the tissue should be 

connected to an affected tissue. This may either by via direct proximity, or neuronal 

connections. Regions with synchronous baseline activity share anatomical connections, 

allowing researchers to deduce the brain’s intrinsic connectivity networks [89]. 

Secondly, the secondary tissue must harbour an environment conducive to oligomeric 

amplification. There is currently limited evidence evaluating the relative roles played 

by these factors in influencing the time point at which a tissue succumbs to disease. 

In some protein misfolding diseases, subsequent misfolding events can be seeded by 

proteins of the same species which have already achieved a pathogenic conformation, 

and can act as a template. This process is most commonly associated to prion disease, 



a highly infectious neurodegenerative disease which can be transmitted through the 

exposure of a host organism to prion protein in it’s pathogenic conformation [90]. 

Evidence is now emerging which suggests that other protein misfolding diseases 

including AD can incept via a similar mechanism [88], however this remains a field of 

active investigation and debate.  

Finally, for disease to manifest in tissues with high oligomeric loads, neurons in the 

tissue must vulnerable to their toxicity. If seeds spread to a non-vulnerable region of 

the brain, oligomers may be controlled by an effective protein homeostasis system, or 

limited concentrations of the primary aggregating protein may deprive the 

aggregation process of it’s necessary resource.  

 

Figure 1.3: Possible mechanisms of misfolded protein 

spread. In the tissue where protein misfolding originates, an 

intrinsic environment favourable to the aggregation of Aβ 

into toxic oligomeric species (a) is present. Tissues to first 

succumb to a protein misfolding must be both in close 

proximity to the origin of aggregation, and contain neural 

tissue vulnerable to oligomeric damage (d). From the point of 

disease origin, aggregated species of misfolded protein spread 

to adjacent tissues directly, and non-adjacent tissues via 

neural connections (b). In secondary tissues which are 

exposed to misfolded protein aggregates, oligomeric 

amplification will occur at a rate determined by the proteomic 

composition and cellular characteristics (c). Secondary tissues 

with high oligomeric load will succumb to disease if they are 

vulnerable to oligomeric damage (d). 



1.3.5 Introducing key protein misfolding diseases 

Many of the most common protein misfolding diseases affect neural tissue, although 

other are systemic, or localised in specific non-neuronal tissues - a summary of notable 

examples in provided in Table 1.1.  

Table 1.1: Examples of protein misfolding diseases: a summary 

Scientific attention first turned towards the role of protein aggregation in disease in 

the 20th century, when the first autopsies of AD brains were conducted. Deposits 

discovered in diseased brains were named ‘amyloid’. This reference to the latin word 

for starch; ‘amylum’, was made because these newly discovered deposits were stained 

by same dye that stained starch [91]. It has since been shown that the aggregated 

assemblies found in AD and other such diseases are comprised primarily of proteins. 

In each condition, each deposit type is composed of primarily composed of one protein, 

often assembled into an insoluble fibril-like structure [17].  

Disease Primary 
aggregatin
g proteins

Most 
vulnerable 
tissues

Initial symptoms Genes associated with 
inherited disease form

AD Aβ, tau Parahippocamp
al gyrus 

Short term memory loss APP, presenilin 1, presenilin 
2 (most common)

PD α synuclein Substatia nigra 
pars compacta

Typically affects 
movement and 
coordination

SNCA (α syneuclin), PRKN, 
LRRK2, PINK1, DJ-1, 
ATP13A2

HD HTT Striatum Problems with mood 
and mental abilities

HTT

Spinocerebellar 
ataxia

A SCA 
protein 
variant

Cerebellum Dependent on protein 
variant, often eye 
movement affected and 
coordination suffers

The gene encoding the 
respective SCA protein 
variant

ALS SOD, FUS, 
TDP43

Upper and lower 
motor neurons

Muscle stiffness, 
twitching, and 
weakness

SOD1 (most common)

Creutzfeldt–
Jakob disease

Prion Cortex Rapidly progressing 
demetia

PRNP (prion protein)

AA amyloidosis SAA Liver, spleen 
and kidney

Weight loss, weakness, 
and edema

SAA



When Alois Alzheimer described the first case of the condition that bears his name, 

the case was seen as a medical curiosity [92]. Over 100 years later, and AD and other 

protein misfolding diseases are seen by many as the next great healthcare crisis on the 

global horizon. 5 million people currently suffer from AD in the US, 40 million people 

worldwide [93]. The trend towards an escalating incidence, thought to be an unhappy 

consequence of rising life expectancies, is set to continue over this century. By 2050, 

1-2% of people will be affected by AD, and a third to a half of those over 85s [94]. In 

the coming decades, this disease will also transition away from burdening only the 

most economically developed countries, by 2050 over 70% of cases will be in low or 

middle income nations [95] - protein misfolding diseases thus present a truly global 

healthcare challenge. In addition to the considerable emotional and social toll taken on 

sufferers and their support networks, there is also a considerable economic impact 

associated with the long term care required by many of those with AD. In the US, this 

cost was estimated to be $200 billion in 2015 [96], and is projected to exceed $1 trillion 

by 2050 [97]. There is currently no treatment available to prevent the progression of 

AD, with currently-approved pharmacotherapies providing only modest and transient 

symptomatic relief. Given that the predicted onset of the disease at a molecular level 

is decades before clinical symptom manifestation, the ability to achieve an earlier 

diagnosis will likely prove crucial to any effective treatment strategy. However, there 

are currently no fully validated biomarkers for the early diagnosis of this disease. It is 

therefore imperative that work is done to build understanding of the pathogenic 

mechanisms of these disease, and the origins of molecular tissue vulnerability, to 

provide those working to find a cure with clearer targets for prevention and early 

detection.  

Early clinical manifestations of AD typically feature short term memory loss, most 

likely due to the high vulnerability of the hippocampal region to the disease. As the 

condition progresses, those affected can suffer from confusion, mood swings, apathy, 

and longer term memory loss. The aberrant assemblies found in AD brains on autopsy 

have been named plaques and tangles, and are primarily composed of Aβ and tau, 

respectively. Plaques are found in the extracellular space, whilst tangles are 

intracellular, and known to correlate well with the progression of cellular atrophy [98]. 



Familial AD can result from mutant variants of the Aβ gene, however most cases are 

later-onset and sporadic [99].  

Aβ is produce by proteolytic cleavage of a longer membrane protein (see Section 2.1) 

encoded by the APP gene, which is expressed ubiquitously in neural and non-neural 

cells [100]. Tau, whose function is better understood, is a highly soluble cytoplasmic 

protein with an ability to stabilise microtubules [101]. Most disease-associated 

mutations currently identified within the APP gene occur either within the gene itself 

or in regions flanking the Aβ region. Mutations within flanking regions increase Aβ 

production, whilst mutations within the APP gene increase the risk of protein 

misfolding and subsequent oligomerisation [102, 103].  

After AD, PD is the most common neurodegenerative disease. Symptoms are primarily 

associated with movement, although sleep pattern disruption and gastrointestinal 

problems can also be indicators of early disease onset. Dopaminergic neurons in the 

substatia nigra pars compacta (SNPC) are the first to succumb in disease progression, 

as evidenced by Lewy body deposition - a pathological hallmark of PD [104]. Lewy 

bodies are primarily composed of the protein α-synuclein, and accordingly disease-

associated mutations have been found for the gene coding for this protein [105].  

ALS, the most common form on motor neuron disease, results in progressive paralysis 

of skeletal muscles. Here, the most vulnerable neuronal sub-populations are spinal α-

motor neurons and upper motor neurons in the brainstem and motor cortex [106]. In 

ALS, a number of species of characteristic deposits have been identified, primarily 

composed of proteins TDP-43, FUS, and SOD1. Genes encoding each of these proteins 

lead to familial forms of ALS when mutated [107].   

Something of an outlier in the protein misfolding field, prion protein has a well 

elucidated mechanism of conformational-replication, spread, and toxicity. 

Interestingly, different perturbations in the prion protein result in an array 

phenotypes, suggesting intrinsic factors in human tissue confer differential 

vulnerability to each prion misfolded conformation [108]. 



Spanning cognitive and co-ordination deficits, Huntington’s disease (HD) initially 

manifests in striatal GABA-ergic neurons [109]. Typical HD pathology involves 

deposits enriched in the protein huntingtin, whose risk of misfolding and eliciting 

disease is dependant on the number of CAG expansions in its polypeptide sequence 

[110]. Long spans of CAG repeats are also implicated in a further protein misfolding 

disease which manifests in GABAergic neurons - spinocerebellar ataxia (Sca1) [111]. 

The cell populations which succumb, however, differ; Sca1 develops in the giant 

Purkinje cells of the cerebellum [112], whereas HD manifests in neuronal populations 

in the striatum. It is interesting to note that the proteins that primarily aggregate in 

these diseases are both expressed in these vulnerable tissues, suggesting that a 

mutation associated to the CAG repeat will result in protein misfolding in different 

cellular environments dependant on the protein repeat. It is currently poorly 

understood why both regions are not affected in each case, although a number of 

theories for the origins of vulnerability to protein misfolding disease have been 

proposed, and are discussed in the following subchapter.   

1.4 Origins of tissue vulnerability to neurodegenerative disease 

1.4.1 Selective vulnerability  

Selective vulnerability in protein misfolding conditions is manifested in the innate 

differential vulnerability of tissues, cell types, and subcellular localisations to disease 

[113]. This vulnerability is determined by many macroscopic and microscopic 

characteristics, including the location and connectivity of tissues, cellular function, 

and region-specific microenvironment harbouring particular combinations of 

subcellular components, including protein homeostasis machinery, and proteins 

critical to synaptic function [114-116].  

As discussed in section 1.3.1, the concept of selective vulnerability has the potential to 

explain why differences in the spatiotemporal pattern of progression exist between 

neurodegenerative diseases. The genetic signature for neurodegenerative disease 



predisposition is complex, incompletely understood, and suggests a multifactorial 

cause (Table 1.1). Two key barriers exist to the deconvolution of potential causative 

factors in protein misfolding diseases. The first relates to the many possible 

macroscopic and microscopic levels at which disease progression can be defined. It is 

possible to consider disease manifestation from the perspective of protein misfolding, 

soluble aggregate formation, insoluble aggregate deposition, neuronal atrophy, 

neuronal network breakdown, and clinical symptom manifestation. Without clarity on 

how the disease mechanism operates and spans across these levels of pathology, it is 

difficult to identify the root cause of the disease. Secondly, these disease-

manifestations are most commonly studied in humans at post-mortem, at the end of 

the pathological cascade. The absence of a window into the presymptomatic events 

occurring in brains during protein misfolding disease, is perhaps why so much debate 

remains in the protein misfolding field around tissue vulnerability and disease origin.  

By elucidating the factors which influence vulnerability to protein misfolding disease 

at a molecular level, there is potential to build a comprehensive understanding of the 

disease pathology, from proteins to symptoms. As a consequence, the development of 

targeted approaches which specifically protect neurons at risk, or intervene with 

critical protein homeostasis processes, will be possible.  

1.4.2 Neural connectivity and activity  

Connectivity studies suggest a particular vulnerability of highly connected ‘hub’ 

regions of the brain to AD pathology. Regions of the brain with marked Aβ deposition 

early in disease progression also show the highest level of neuronal connection to 

adjacent tissues [117]. These regions include, but are not exclusive to, the default 

mode network [118]. The construction of a network diffusion model based on the 

brain’s connectivity network resulted in a prediction of AD topography in the brain, 

and studies have found that fibre pathways have a stronger statistical influence on the 

route of disease progression when compared to spatial proximity alone [119]. In vivo, 

exogenous seeding of metastable proteins in the hippocampus resulted in the 

development of diseased tissue in connected regions [120]. The mechanistic connection 



between high connectivity and AD vulnerability is likely to be complex, with pathology 

spread and elevated activity levels both suggested to play a role.  

Network hubs are more likely to be exposed to a ‘prion-like’ spread of Aβ assemblies. 

Evidence of prion-like spread of soluble aggregated assemblies has been identified in a 

number of protein misfolding diseases. Human transplanted tissue adjacent to 

endogenous, diseased tissue, has been observed to develop PD neuropathology [120]. 

Experimental transmission of AD-associated aggregates has also been observed in 

mouse models of the disease [120]. Whilst the mechanisms for this spread from cell to 

cell remain unclear, a number of possibilities have been proposed. These include the 

cellular release and free diffusion of early aggregated species through the extracellular 

space, transport via secreted vesicles, or trafficking through inter-cellular pathways.  

The mechanistic connection between hub activity and disease vulnerability is yet to be 

elucidated, however elevated levels of local neural activity have been shown to be 

associated with elevated Aβ deposition [121]. To investigate the relationship between 

connectivity, level of activity, and protein misfolding disease risk, researchers have 

developed a computational model of the human brain. By predicting progressive 

atrophy based on activity level, it was possible to predict resultant perturbations in 

the structure and dynamics of the remaining brain network. Thus these results 

support a role for elevated intrinsic levels of neuronal activity in vulnerability to AD 

[122]. A further study sought to identify common phenotypic traits linking the 

neuronal groups most vulnerable to neurodegenerative disease. Recurring themes 

identified include intense firing patterns, and dynamic control of excitability relying 

on high cytosolic calcium fluxes [123]. For example, PD-vulnerable SNPC 

dopaminergic neurons are characterised by intense firing properties that rely on fast 

oscillations in cytosolic calcium levels and a high energy supply [123]. It is possible 

that high activity levels result directly in a proteomic environment at high risk of AD-

specific aggregation: a recent study using in vivo micro-dialysis has demonstrated a 

correlation between interstitial fluid Aβ concentration and synaptic activity in APP 

transgenic mice [121].  



The energy demand of a neuronal subpopulation is largely dependent on it’s activity 

level, due to a frequent need to re-establish ion gradients [124]. Hippocampal CA1 

neurons, which succumb early in the progression of AD [125], are characterised by 

particularly high levels of energy consumption. It has been proposed that an elevated 

metabolic demand leaves these cells vulnerable to hypoxia, and other metabolic 

stresses due to high production of free radicals [126]. At a higher rate of damage, 

cellular components would require more degradation and re-synthesis, escalating the 

metabolic demand on cells. The capacity of the brain to cope with this protein 

homeostatic burden is likely to decline with age, thereby enabling the escalating self-

assembly of the most risky misfolding proteins. Indeed, mild cognitive dysfunction, 

which can often progress to AD, correlates with decreased glucose utilisation in the 

brain [127]. 

1.4.3 Gluscosaminoglycans 

Glucosaminoglycans (GAGs) are long unbranched polysaccharides [128], found in 

abundance in the extracellular matrix, especially the basement membrane [129]. 

These macromolecules have a role in many cell processes, including cell adhesion and 

signalling [130]. GAG chains can attach to proteins to form a proteoglycan, heparan 

sulphate and chondroitin sulphate are the most common GAGs which form 

proteoglycans. The presence of GAGs in Aβ deposits was first identified using staining 

techniques on brain sections of AD patients [131]. Since, GAGs have been found 

associated with amyloid fibrils isolated from a number of neurodegenerative diseases 

[132]. Work investigating a possible role for GAGs in amyloidosis have found that 

sulphated GAGs accelerate the aggregation of a wide range of proteins, both 

metastable and non-aggregation prone [133-135]. The proposed mechanism centralises 

around the role of heparin sulphate in the formation of an aggregation seed, and 

subsequent impact of amyloid fibril stability [136, 137].  

1.4.4 Metal ion homeostasis 



Metal ions, which are required for a wide range of biochemical processes, have the 

potential to elicit cellular toxicity in their free forms [138]. Metal ion homeostasis 

across the brain could therefore have a role in determining the relative vulnerability of 

tissues to protein misfolding diseases. Metal ions may also influence 

neurodegenerative disease vulnerability through more specific mechanism, for 

instance it has been shown that zinc ions can stabilise Aβ oligomers [139]. 

1.4.5 Factors beyond neurons 

Model systems of neurodegenerative disease suggest that there are factors in addition 

to the firing and neurochemical properties of brain regions which determine relative 

vulnerabilities. Knock-in mutations in mice modelling HD, Sca1 and FFI (another 

neurodegenerative disease) primarily affect the striatum, cerebellum, and thalamus 

respectively [140-142]. These are the earliest regions to exhibit disease onset in each 

case in the human disease counterpart, suggesting that these mouse models reflect 

these pathologies relatively well. However, murine thalamus contains a far lower 

proportion of GABAergic neurons than the human thalamus [143], suggesting that 

perhaps tissue location relative to other regions of the brain may play a role in 

vulnerability. In addition, non-neural cell composition could play a role - there is 

evidence for a role in glial and vascular cells in the disease process.  

1.4.6 Inflammation 

A characteristic feature of AD pathology, the inflammatory response is primarily 

driven by microglial cells, and has been suggested to be responsible for escalating 

disease progression [144]. Microglia are the primary immune cell in the brain, and 

work to prevent neural damage in the event of injury or pathogenic insult. During 

health, microglia work to support neuronal function, and have key functional roles 

including synaptic pruning, and the of promoting novel brain connectivity and 

development. The association between AD and mutations encoding the immune-

related genes TREM2 and CD33 [145, 146] underscores the role of immune 



dysregulation in disease vulnerability. However, there remains much debate about the 

stage in disease progression at which inflammation manifests - and crucially whether 

it is a causative factor or a consequence [144]. There are in the field two conflicting 

perspectives, the first being that immune system activation, mediated by microglia 

and astrocytes, follows as a consequence of Aβ deposition. The second perspective 

involves an earlier immune involvement. It is proposed that immune activity is 

sufficient to trigger AD pathology independently of Aβ deposition, and by promoting 

elevated Aβ levels initiates a self-reinforcing spiral towards neuronal atrophy [147].  

In support of this second perspective, systemic inflammation from chronic diseases 

such as psoriasis is known to confer an elevated risk of AD [148]. A heightened AD 

incidence has also been observed in those who suffer from type II diabetes [149], a 

condition for which CNS inflammation and microglial activation have been described 

as important components, and for those with traumatic brain injury, known to be 

associated with neuroinflammation. 

There is also evidence of Aβ aggregation acting to influence the inflammatory 

processes. It has been demonstrated that soluble Aβ oligomers and insoluble fibrils 

bind to a number of receptors expressed by microglia, including CD14, CD36, CD47 

and α6β1 [150, 151]. There is evidence that in neurodegenerative disease, the 

supportive homeostatic roles played by microglia are lost, and instead they trigger 

chronic neuroinflammation [152].  

1.4.7 Differential protein expression 

A final potential explanation for selective vulnerability places focus on differences 

between the expression signature of tissues [153]. Expression levels of the protein 

which catalyses an aggregation cascade in the tissues first to succumb to the 

respective disease has, accordingly, been investigated. However studies chose a small 

number of sample tissues and lacked statistic rigour, and results were inconclusive 

[43].  



1.4.8 Protein homeostasis 

Beyond primary aggregators, the protein homeostasis system responsible for the 

aggregation kinetics of these metastable proteins should also be considered. An 

improved understanding for how protein control machinery components are 

distributed across the brain would allow an evaluation of their potential to influence 

regional vulnerability. 

Much work has been done to understand the function of network of molecular 

chaperones and aggregation modulators who work to control protein misfolding in AD 

[154, 155]. To capitalise on this research, it is important to build understanding of the 

role played by the protein homeostasis networks of Aβ and tau in defining tissue 

resilience to AD. More broadly, by investigating the factors which underlie tissue 

vulnerability to AD, one can begin to interrogate the molecular mechanisms of disease 

pathogenicity. As yet, there is still no consensus in the field of neurodegenerative 

disease research about whether protein aggregation is a causative factor in disease 

inception and propagation. In the following chapter, we investigate levels of 

subproteomes responsible for the homeostatic control of two proteins key to AD 

aberrant aggregation; Aβ and tau, in normal brains. This approach allows one to 

ascertain whether the proteostatic environment in tissues most vulnerable to AD is 

conducive to aberrant disease-specific aggregation.  



2 Aggregation Modulators 

2.1 Introduction 

2.1.1 AD-specific aggregation modulator networks 

Much research effort has been dedicated to elucidating the molecular chaperone and 

post translational modification networks which modify Aβ and tau misfolding 

pathways [154, 155]. Figure 2.1 illustrates these proteins in the context of their role in 

these pathways; proteins in boxes have a scientific consensus regarding their influence 

on Aβ and tau aggregation, whilst unboxed proteins currently have conflicting or 

inconclusive results with respect to AD-specific aggregation. In the following chapter 

we discuss the roles played by the boxed proteins in Figure 2.1 in Aβ and tau 

homeostasis.  

 

Figure 2.1: The protein homeostasis network responsible for modulating the 

aggregation dynamics of Aβ and tau 



Aβ production via cleavage 

Aβ is the cleaved product of the protein APP. Once expressed, three secretases can 

cleave the protein to produce two smaller fragments. If cleaved by α-secretase 

(encoded by ADAM10), the protein modification pathway is diverted away from the 

production of amyloidogenic Aβ [156-159], by producing the two APP fragments s-

APPα and C83 [160]. By blocking synaptic trafficking of ADAM10, researchers have 

been able to generate a model of the initial phases of sporadic AD [161] by shifting 

APP metabolism towards Aβ production. Furthermore, the secreted ectodomain 

fragment aAPPα has been shown to have neuroprotective properties [162]. Such is the 

pivotal role of Aβ production in AD genesis, that two mutations in ADAM10 impairing 

the function of the secretase have been found to be associated with the familial late 

onset form of the disease [163]. If the levels of ADAM10 are elevated in mouse models 

of AD, Aβ plaque load is reduced [164].  

If instead β secretase (encoded by BACE1) cleaves first, an on-pathway product for Aβ 

production, C99, results [165]. BACE1 is a membrane-bound aspartyl protease, and 

acts as the first and rate limiting step in the pathogenic APP spliced variant 

production. BACE1 cleavage is a crucial step in the production of  Aβ; β  secretase 

depletion almost completely abolishes Aβ production in mouse models [166-168]. The 

membrane bound stub C99 is next cleaved by γ  secretase to form AICD (APP 

intracellular domain) and an Aβ variant [169]. This cleavage event occurs within the 

membrane, and liberates both polypeptides produced. This final cleavage site is 

variable and can occur at amino acids 37 to 43. Aβ42 is the most metastable variant of 

Aβ, with a strong propensity to oligomerise in vivo [170]. In addition, GSK3α, (but not 

GSK3β) has been shown to regulate APP cleavage, enhancing Aβ42 production [171, 

172]. GSK3 is a constitutively active seriene/threonine kinase, known to have a wide 

range of functions in the cell, from glycogen metabolism to gene transcription. 

Therapeutic use of lithium, a GSK3 inhibitor, blocks the production of Aβ by 

interacting with APP cleavage at the γ-secretase step [172]. 



Aβ aggregation  

Once produced, Aβ typically remains in it’s soluble form for the majority of an 

individual’s lifespan. If misfolding becomes dysregulated, this metastable peptide can 

begin to aggregate, forming soluble oligomers of low molecular weight, in addition to 

insoluble fibrillar deposits (Figure 1.1).  

The heat shock proteins Hsp70 and Hsp90 have been found to inhibit the initial stages 

of Aβ aggregation. Studies suggest that these molecular chaperones cause structural 

changes to oligomers, but have little effect on fibrils [173]. Authors of a paper 

investigating the mechanism of this inhibition propose two possible models: ‘holding’ 

and ‘refolding’ [173]. In the former model, molecular chaperones bind the misfolded 

protein, probably via its substrate binding domain. In the latter, molecular chaperone 

binding results in a change of three dimensional structure of its target. The resultant 

configuration is more kinetically robust against a transfer to the aggregated state. 

Hsp70 production has been found to be induced in neuronal models in response to 

Aβ42 expression, and in models where this molecular chaperone is over-expressed, 

neurons are protected from the toxicity associated with aberrant Aβ accumulation 

[174]. These molecular chaperones have also been shown to be effective at more 

physiological levels; Hsp70 and Hsp90 have been found to inhibit Aβ self assembly at 

sub-stoichiometric concentrations [173]. 

A co-chaperone of Hsp70 and Hsp90, stress inducible phosphoprotein 1 (STIP1), has 

also been found to intervene early in the aggregation pathway of Aβ. Shown to protect 

neurons against Aβ oligomer damage, STIP1 reduces synaptic loss and cell death in 

cultured neurons, and preserves long term potentiation in hippocampal slices. 

Furthermore, haploinsufficient neurons were demonstrated to have increase 

vulnerability to Aβ oligomeric assault, a phenotype which could be rescued by 

treatment with recombinant STIP1 [175].  

The action of the co-chaperone DNAJB6 has been analysed comprehensively by kinetic 

studies, and has been shown to retard the aggregation process of Aβ in a 



concentration-dependant manner, extending to sub-stoichiometric levels [176]. 

Mechanistic investigations suggest that the high efficiency of DNAJB6 is due to its 

interaction with early aggregated species, rather than the Aβ monomer [176]. 

Oligomeric interaction, and often sequestration, is a mechanism of action suggested to 

be employed by a number of molecular chaperones to mitigate damage by this highly 

toxic aggregated species. One such example is αB-crystallin (CRYAB). Studies indicate 

a preferential binding of this molecular chaperone for early aggregated species, 

thereby inhibiting further self-association of Aβ to form fibrils [177]. Induction of 

CRYAB expression appears to be employed in vivo as a response to the pathogenic 

threat of Aβ - this small heat shock protein is found at elevated levels in brains 

affected by AD [178]. Accordingly, αB-crystallin has been shown to protect against Aβ 

toxicity in cell culture [179]. Another heat shock protein, HspB1, is also thought to 

sequester oligomers to produce large non-toxic aggregates in a neuroprotective 

mechanism [180]. As with DNAJB6, this mechanism of action appears to be highly 

effective; substoichiometric concentrations are sufficient to abolish Aβ oligomeric 

toxicity in mouse neuroblastoma cells [180].  

Aβ clearance 

In addition to attenuating the Aβ aggregation pathway, the protein homeostasis 

system also acts to prevent aggregation by targeting this highly amyloidogenic protein 

for clearance. HspA5 achieves this goal by inducing the production of cytokines, 

resulting in microglial phagocytosis of Aβ fragments [181]. In addition, experiments 

suggest that this molecular chaperone interferes with the maturation process of the 

APP protein to decrease Aβ40 and Aβ42 secretion [182]. This Hsp70 family member 

has furthermore been suggested to interact transiently and directly with the Aβ which 

is produced to ensure correct folding and limit misfolding risk [182]. The mechanisms 

of other proteins involved in the clearance and chaperoning of Aβ remain somewhat 

less clear. In AD model mice, the absence of clusterin (apoJ) and apoE resulted in both 

an earlier onset and higher prevalence of Aβ deposition [183]. ApoE and apoJ are 

lipophilic proteins with a role in lipid homeostasis, and are synthesised in neural 

tissue by astrocytes. The effects of these molecular chaperones on Aβ aggregation is 



additive [183], however the precise mechanism of their action remains under active 

investigation.  

Tau post translational modification and clearance 

Whilst APP will only aggregate in vivo when cleaved to form Aβ, tau phosphorylation 

at number of key sites has been shown to predispose its assembly into fibrils. GSK3 is 

a ubiquitously expressed kinase, and has been shown to phosphorylate tau at most of 

the serine and threonine residues known to be hyperphosphorylated in aggregated tau 

filaments [184]. Tangle formation is known to be associated with neuronal atrophy, 

and accordingly mice with forebrain GSK3-β over-expression exhibit apoptotic 

neuronal death, in addition to tau hyperphosphorylation [185]. This model also 

recapitulates many other phenotypic aspects of AD, including an immune response, 

and impaired mental function [185]. Both GSK3-α and GSK3-β have been shown to 

induce the hyperphosphorylation of tau, in vitro and in cellular models [186-190]. It is 

thought that phosphorylation sites critical to aberrant aggregation are located around 

the microtubule binding domain, because an inability to bind microtubules is 

associated to tau’s resilience to aggregation [191, 192]. Another enzyme known to 

induce pathogenic phosphorylation of tau, HS3ST2, is predominantly expressed in 

neurons. In a zebrafish tauopathy model where HS3ST2 was inhibited, there was a 

significant reduction in abnormally phosphorylated tau epitopes [193, 194].  

Although chemical modification of tau can drive it towards aggregation, other 

processes, such as ubiquitination, can have a protective influence by signalling tau for 

clearance. Hyperphosphorylated tau bound to the molecular chaperone Hsc70 can be 

ubiquitinated by the E3 ubiquitin ligase CHIP (carboxy-terminus of the Hsc70-

interacting protein) [195].  

It is important to note that the role of Hsc70 in tau homeostasis is more nuanced and 

extends beyond this interaction alone. Hsc70 has many binding partners responsible 

for moderating it’s activity, and has been suggested to have a role in mediating the 

folding of tau [196], and even slowing the process of tau cleavage relative to the 



activity of other Hsp70 family members [197]. The ability of the molecular chaperone 

under study to accelerate tau clearance appears to depend on its capacity to recruit 

CHIP [198].  

The protein DNAJA1 has also been suggested to act to stimulate tau clearance via the 

ubiquitin pathway [199]. When over-expressed in cell culture, DNAJA1 has been 

found to significantly reduce the levels of highly phosphorylated tau species found in 

intraneuronal tau aggregates [200].  

Acting to effect the converse, FKBP5 forms a molecular chaperone complex with 

Hsp90 that prevents tau degradation [201]. In FKBP5 null mice, tau levels show a 

significant reduction, and when overexpressed in a murine model, tau is preserved 

[202]. In addition to functioning via the stabilisation of Hsp90, FKBP5 has also been 

found to influence the phosphorylation pattern of tau [201]. Another Hsp90 co-

chaperone, Cdc37, appears to elicit the same effect on tau homeostasis. Studies have 

found that suppression of Cdc37 leads to tau clearance following Hsp90 inhibition, 

whilst Cdc37 over-expression preserves this amyloidogenic protein [203]. In parallel 

with the activity of FKBP5, there is evidence to suggest that Cdc37 is also able to alter 

tau kinase stability, altering the phosphorylation profile of tau and modulating its 

toxicity [203].  

Degradation of misfolded proteins 

In addition to clearance pathways specific to Aβ and tau, there exist a number of less 

specific pathways for targeting the degradation of misfolded proteins, also relevant to 

AD pathogenesis. HspB8 is a heat shock protein which is known to complex with its 

co-chaperone BAG3. When these molecular chaperones are over expressed in cell 

culture, autophagy is stimulated and the clearance of misfolded protein results. In 

primary neurons, autophagy activation resulted in a significant decrease in levels of 

highly phosphorylated tau [204].  



Chapter 2.1.1 highlights the highly interconnected and varied functions of protein 

homeostasis components in the cell. Some proteins, such as β-secretase, have a clearly 

defined impact on the AD aggregation risk and a well understood mechanism of 

action. These proteins were taken forwards in this work to investigate the role played 

by aggregation modulators in determining intrinsic AD risk. For other proteins, such 

as Hsp90, known to inhibit both Aβ aggregation and tau clearance, it is currently 

difficult to discern their net impact on AD-specific aggregation risk. For this reason, 

these proteins have been excluded from consideration in this study, however as new 

research sheds light on the rich homeostasis network regulating Aβ, tau, and other 

relevant metastable proteins, we anticipate the genes under consideration could 

increase in number. Proteins with a well understood and significant influence on the 

aggregation risk of Aβ and tau are summarised in Table 2.1.  



Table 2.1: Aggregation modulators of Aβ and tau 

Molecular chaperones and post translational modifiers with a known net influence on 

the aggregation of Aβ and tau are listed, alongside their currently understood role in 

the homeostasis of these two key metastable proteins.  

Gene name Known function

Promote aggregation

Cdc37 Suppression of Cdc37 destabilises tau, leading to its clearance, whereas Cdc37 
overexpression stabilises tau.

GSK3A Both GSK3β and GSK3α induce tau hyperphosphorylation. Also, GSK3α, but 
not GSK3β, has been shown to regulate APP cleavage resulting in the 
increased production of Aβ. Therapeutic use of lithium, a GSK-3 inhibitor, 
blocks the production of Aβ  by interfering with APP cleavage at the γ-secretase 
step.

GSK3B

HS3ST2 HS3ST2 expression is critical for the abnormal phosphorylation of tau in AD.

FKBP5 FKBP5 forms a mature molecular chaperone complex with Hsp90 that prevents 
tau degradation and promote neurotoxic tau aggregation.

BACE1 (β secretase)
BACE1 is the initiating and putatively rate-limiting enzyme in Aβ generation. 
BACE1 inhibition may thus block the production of Aβ and prevent the 
development of Aβ-associated pathologies.

APP APP fragments aggregate to form amyloid plaques in AD.

MAPT Aggregates of tau (the product of MAPT)  form neurofibrillary tangles in AD.
Protect against 
aggregation
HSPA1A (Hsp 72)

Molecular chaperones of the Hsp70 family have been implicated in the 
prevention of abnormal tau aggregation in adult neurons.HSPA1B (Hsp 70)

HSPA1L (Hsp 70)

DNAJA1 DnaJA1 triages all tau species for ubiquitin-dependent clearance mechanisms.

HSPB8 The up-regulation of HSPB8 and BAG3 may enhance the ability of astrocytes to 
clear aggregated proteins released from neurons.BAG3

GRP78 Binds to APP and reduces Aβ secretion, and may stimulate Aβ clearance in 
microglia.

ADAM 10 (α secretase) α-secretase, (the metalloprotease ADAM10), cleaves APP within the Aβ 
domain, thus preventing Aβ generation.

STIP1 May protect from Aβ oligomer toxicity.

CRYAB Binds Aβ oligomers, and  inhibits nucleation-dependent polymerization of 
amyloid fibrils.

HSPB1
HspB1 sequesters toxic Aβ oligomers and converts them into large nontoxic 
aggregates. Furthermore, the presence of HspB1 decreases the amount of 
Aβ42 released by cell lines.

DNAJB6 Interaction of the molecular chaperone DNAJB6 with growing Aβ42 aggregates 
leads to sub-stoichiometric inhibition of amyloid formation.



2.1.2 Assessing aggregation modulator impact on AD vulnerability  

Although aggregation modulators have been studied at the individual level, or in 

small subsets, few researchers have taken a whole network perspective when 

considering their impact on AD-specific aggregation risk. We chose to look at disease 

risk from the perspective of intrinsic tissue vulnerability. This approach allowed for 

the consideration of both genetic and sporadic cases as one dataset, and for the study 

of normal brains before disease onset, thereby avoiding any conflicting signal arising 

from transcriptional changes present during disease progression. By contrast, 

comparing vulnerable from resistant individuals would either have required a 

comparison of those with a genetic predisposition to those without, or an analysis of 

brains after disease incidence. As discussed in section 1.4, specific tissues have an 

elevated intrinsic risk to AD, and will consistently succumb earlier in affected 

individuals.  

2.1.3 Defining relative AD tissue vulnerability  

This progression of AD through the brain was first identified by Braak in 1991 [125] 

using the deposition of tangles in brains studied at consecutive stages of the disease. 

Braak identified that brains of individuals who died whilst exhibiting clinical 

symptoms indicative of the early stages of the disease, exhibited very localised tangle 

deposition, initially in the parahippocampal gyrus. In contrast, the brains of those who 

died during much clinically later disease stages exhibited much more widespread 

tangle deposition, although regions such as the cerebellum were constantly spared 

even in the most severe cases. Braak noted that the pattern of tau spread was broadly 

consistent between brains, allowing the classification of a ‘Braak staging’. Braak I 

corresponds to tissues which succumb in the earliest stages of the disease, and Braak 

6 tissues are the last to be affected. Here, we refer to tissues who are completely 

resistant to AD and therefore without a Braak classification as ‘non-Braak’. This 

classification corresponded symptomatic and histological events during the 

progression of AD, and allowed the identification of the most vulnerable, and the most 

resistant tissues.  



2.1.4 Evaluating the association between subproteome expression and tissue 

vulnerability 

In our approach, the Braak staging is used to test the power of subproteomes of 

interest to predict healthy tissue with intrinsic vulnerability to AD. To achieve this 

goal, a Δ  score was defined. Δ  scores are calculated by finding the expression of a 

given gene, in a given tissue, relative to expression of the corresponding gene in 

tissues completely resistant to AD. More details on the calculation process can be 

found in Methods, section 2.4. This approach allowed quantification of relative 

expression between tissues, and comparison between genes. A gene with a positive Δ 

score would therefore have elevated expression in the tissue of interest relative to 

resistant (non-Braak) tissues, and the inverse is true for a gene with a negative score. 

Data sources used in this study are summarised in Table 2.2, and discussed in further 

detail in Methods. Expression data was predominately sourced from the Allen Brain 

Atlas [205], a data resource unique for it’s comprehensive and highly granular 

microarray analysis of normal human brain tissue. More details on the data used in 

this chapter can be found in Methods, section 2.4.1.  

2.2 Results 

2.2.1 Δ score analysis of Aβ and tau aggregation modulators 

To investigate the possibility of an intrinsic tissue vulnerability to AD, determined in 

part by a protein complement which predisposes the aberrant aggregation of Aβ and 

tau, we employed Δ  score analysis. Expression of aggregation modulators in tissues 

most vulnerable to AD was calculated, relative to expression in tissues completely 

resistant to AD (ΔBI-III). The results, (Figure 2.2), were striking. We found the Δ-Braak 

I-III score for aggregation promoters to be significantly elevated relative to that of 

aggregation protectors. Moreover, the median ΔBI-III score for aggregation promoters 

was positive (0.48), indicating that aggregation promoters are expressed at elevated 

levels in the most AD-vulnerable tissues relative to resistant tissues. Conversely, the 

median ΔBI-III score for protectors was negative (-0.47), and therefore expression of this 



subproteome is on average expressed at a lower  level in vulnerable tissues relative to 

those completely resistant to AD. We therefore find at a level of low granularity, an 

expression signature, which, if reflective of the proteomic environment in the cell, 

predisposes the aberrant aggregation in the tissues which succumb earliest to AD. The 

brains studied here are normal, and of ages decades before that typical of AD onset. 

We therefore suggest that this vulnerability signature is intrinsic to the tissue, and 

independent of any subsequent transcriptional changes which occur in the brain 

during disease progression.  

 



Figure 2.2: In vulnerable tissues in healthy brains, the expression patterns of 

specific molecular chaperones and post-translational modifiers predispose 

the aggregation of Aβ and tau. In vulnerable tissues in healthy brains, the 

expression patterns of specific molecular chaperones and post-translational modifiers 

predispose the aggregation of Aβ and tau. Proteins known to promote Aβ and tau 

aggregation (termed “promoters”) are shown within ellipses, and proteins known to 

protect against it (termed “protectors”) are shown within rectangular boxes (Table S4). 

Proteins whose roles in Aβ and tau aggregation are ambiguous in the literature are 

shown without frames and not considered in further analysis. ΔBI–III scores are colour-

coded according to the legend in the lower left corner. Error bars in the plot represent 

a 95% confidence interval on the mean (X symbol) calculated with 105 bootstrap cycles, 

***P < 0.001 calculated with a two-tailed t test [206]. 

2.2.2 Evaluating the predictive power of aggregation modulator levels 

To investigate the relationship between the levels of expression of protein homeostasis 

components and the tissue vulnerability to AD at a more granular level, we focused 

our analysis on tissues where an accurate alignment was possible between AD-staged 

tissues and the tissue parcellation used in microarray analysis (see Methods, Section 

2.4). By focusing on tissues where we had the most accurate knowledge of the Braak 



stage of the sample, we were able to distill a signal from the data set even when 

studying tissues from individual Braak stages (in contrast to section 2.2.1 where we 

compare Braak tissues I-III, to Braak tissues IV-VI and to non-Braak tissues)  

We found that expression levels of protein homeostasis components that modulate the 

aggregation of Aβ and tau in healthy brains are good predictors of tissue vulnerability 

to AD and recapitulate the staging of the disease (Figure 2.3, full dataset in Appendix 

B1). This result indicates a role for AD-related protein homeostasis components not 

just in determining the region in which the disease will first incept, but also the route 

of spread through the brain. This result suggests that after the initiation of aberrant 

aggregation in a tissue, the disease will only spread to an adjacent tissue if the 

homeostasis of the disease-specific protein is vulnerable to collapse. Tissues with more 

a more robust capacity to control the misfolding of Aβ and tau, appear to be affected at 

correspondingly later stages of the the disease. An alternative hypothesis that cannot 

be excluded at this stage, is that tissues with shared function and neuronal connection 

also have highly similar proteomic composition. If pathogenic spread of AD were to 

occur along neuronal tracts between functionally-related regions of the brain, 

proteomic similarities between these regions could also contribute to the observed 

result. Indeed, AD progression has been shown to reflect to some extent the brain’s 

connectome. It is likely that the relative contributions of connectivity and proteomic 

vulnerability to the route of AD spread will remain unclear until modelling work is 

completed taking both of these factors into consideration.  



 

Figure 2.3: In healthy tissues, a protein homeostasis expression signature 

associated with Aβ and tau aggregation recapitulates the progression of AD 

well before the onset of the disease. In healthy tissues, a protein homeostasis 

expression signature associated with Aβ and tau aggregation recapitulates the 

progression of AD well before the onset of the disease. (A) Tissues are coloured 

according to the mean Δ score for expression in healthy brains of the aggregation 

modulators (protectors and promoters) of Aβ and tau aggregation (left) and to the 

Braak staging (right) The mean Δ score for aggregation modulator is calculated as the 

difference between the mean Δ scores for aggregation promoters and protectors in the 

region under scrutiny. (B) Box plot of the mean Δ scores for aggregation modulators 

[as calculated in (A)] in perfect-match tissues (see Methods) affected at progressive 

Braak stages (x axis). *****P < 0.00001; P values were calculated with Mann-Whitney 

U test with Benjamini-Hochberg multiple hypothesis testing correction [207]. NB, non-

Braak. 



At a physiological level, our interest in this study lies in understanding the relative 

levels of protein molecules in cells. However, research at present is limited in this field 

due to the lack of granular, high throughput proteomics data on normal human brain 

tissue [208]. Consequently, we have used mRNA expression data as a proxy for 

proteomic data in this study [205]. A natural progression from the central dogma, 

scientific opinion has generally held that there exists a direct correspondence between 

the level of mRNA transcripts and their protein product. However, some studies have 

indicated that in certain circumstances the correlation between mRNA and protein 

levels can be limited by factors including variance in half life and post-transcriptomic 

machinery. It was therefore imperative that we took steps to check the correlation 

between the expression data used in this study, and proteomic analysis of comparable 

brain tissues. For this control, we looked at protein levels from two perspectives; 

analysis with broad proteome coverage in two brain regions (Figure 2.4 a-b) , and a 

select number of proteins crucial to AD in a number of precise brain regions (Figure 

2.4 c-d). Figures 2.4 a and b are based on immunohistochemistry studies of normal 

brain tissue, and demonstrate a statistically significant relationship between mRNA 

expression levels used in this study, and measured protein levels, in both the 

hippocampus and the cerebral cortex [208]. In a second study, immunoblotting was 

used to quantify the levels of tau in six different brain tissues; cerebellum, entorhinal 

cortex, occipital cortex, superior temporal gyrus, frontal cortex and hippocampus, 

relative to measured actin levels in each tissue [209]. We provide the Δ expression 

score for each region (relative to expression in non-AD tissues), for tau, to allow a 

comparison between protein levels as measured in this study and mRNA levels as 

used in this thesis. We see a good correspondence between levels in different tissues, 

with consistently depressed levels of tau in the cerebellum - a region of the brain 

known to be highly resistant to AD (Figures 2.4 c-d). We quantified this relationship 

by calculating the correlation coefficent between relative MAPT mRNA levels and 

relative tau protein levels as 0.9 (p = 0.01).  



Figure 2.4: Analysis of the average correlation between mRNA and protein 

levels. (a) Correlation between mRNA and protein levels for two representative 

regions of the brain [208]. (b) Correlation between mRNA and protein level, averaged 

data; error bars are smaller than the data point symbols. (c) Measured levels of total 

tau protein [209], normalised to actin levels. The expression score for each region is 

relative to non-Braak tissues. C: cerebellum; EC: entorhinal cortex; OC: occipital 

cortex; STG: superior temporal gyrus; FC: frontal cortex and H: hippocampus. (d) 

Relative mRNA levels for the MAPT gene, for corresponding brain regions. The 

correlation coefficient between relative MAPT mRNA levels and relative tau protein 

levels is 0.9 (p = 0.01). Boxes represent the first and third quartiles of the distribution, 

whiskers the 1.5 inter-quartile range, and notches are standard errors on the median 

calculated with 104 bootstrap cycles. *****p<0.00001, calculated with a Mann-

Whitney U test with Benjamini-Hochberg multiple hypothesis testing correction [207]. 



2.2.3 Testing the specificity of AD-aggregation modulators 

Because of the generic role of many of the aggregation modulators studied in this 

analysis, such as the members of the Hsp70 family, we wanted to verify that the 

signal we observe in Figure 2.2 and 2.3 is present only for AD-specific aggregation. We 

therefore constructed lists of aggregation modulators associated with the protein 

homeostasis of TDP43 and SOD1, and a second gene set for the molecular chaperones 

and post translational modifiers known to influence α-synuclein aggregation. As can 

be seen in Figure 2.5a, the relatively high expression of aggregation promoters 

associated with ALS and PD in tissues most vulnerable to AD is less marked and not 

statically significant, the same is true of depressed relative aggregation protector 

expression. This result is observed despite a shared core of aggregation modulators 

between these diseases (Figure 2.5b), indicating that a small subset of disease-specific 

molecular chaperones have significantly different expression levels across brain tissue, 

and play an important role in determining disease specific vulnerability. Tissues 

defined as ‘most vulnerable’ for each alternative neurodegenerative disease are listed 

in Table 2.2.  



 

Figure 2.5: ΔBI–III Scores for neurodegenerative disease–specific aggregation 

modulator sets. (a) Comparison of the distributions of mean ΔBI–III scores for 

aggregation modulators of Aβ and tau (AD), α-synuclein (PD), and TDP43 and SOD1 

(ALS). The only statistically significant differences (**p < 0.01), calculated with 

respect to ΔBI–III scores for the proteome using the Mann-Whitney U test with 

Benjamini-Hochberg multiple hypothesis testing correction [207], are found for AD-

specific aggregation modulators. (b) Size of aggregation modulator sets described in 

panel a. The aggregation modulators common to the different diseases are shown in 

red, those distinct are shown in blue. 



Table 2.2:  Vulnerable tissues for alternative neurodegenerative diseases 
The name and Allen Brain Atlas code for tissues which succumb at the initial stages of 
FTD and PD are included 

Region Allen Brain Atlas code

FTD

Frontal pole FP-s, Fpi, FPm

Medial orbital gyrus  MOrG

Superior frontal gyrus SFG-m, SFG-l 

Middle frontal gyrus MFG-s, MFG-i

Precentral gyrus PrG-prc, PrG-sl, PrG-il, PrG-cs

Hippocampus DG, CA1, CA2, CA3, CA4, IG, S

Amygdala ATZ, AAA, BLA, BMA, CeA, COMA, IA, LA, NLOT, 
PLA 

Cingulate gyrus, frontal part CgGf-s, CgGf-i

Supramarginal gyrus SMG-s, SMG-i

PD

Substantia nigra pars compacta SNC



2.3 Conclusions 

Although protein aggregation is the hallmark of neurodegenerative diseases, no 

conclusive evidence has been found to pinpoint the origins of disease toxicity to either 

the presence of insoluble aggregates, or intermediates in the aggregation process [21]. 

Through a series of studies aimed at investigating this perplexing situation, it is 

becoming increasingly clear that a defective protein homeostasis system is related to 

the pathogenic process of neurodegenerative diseases. This was initially evidenced by 

the appearance of of protein deposits in effected tissues. Building on these 

observations, we have adopted the strategy of trying to understand the factors which 

influence vulnerability to neuronal atrophy. We have thus collated the network of 

aggregation modulators related to the primary aggregators in AD, Aβ and tau. This 

network includes protein machinery important in peptide cleavage, post translational 

modification, oligomer sequestration, and misfolded protein clearance. By considering 

only aggregation modulators with a clear and additive influence on the aggregation 

process and toxicity potential of Aβ and tau, we were able to investigate a potential 

role for this subproteome in tissue vulnerability to AD. We have found that relative 

expression levels of aggregation modulators in normal brain tissue predispose AD-

specific aggregation to extents relative vulnerability during disease progression. The 

contribution of other subproteomes to an environment vulnerable to AD-specific 

aggregation cannot be excluded (in fact, it could be expected). It is not know at this 

stage how the proteomic environment interacts with the connectivity of brain regions 

to determine vulnerability to disease spread one AD inception has occurred. These 

findings may inspire novel therapeutic approaches for AD, which, rather than trying 

to prevent a wide range of possible triggering events, could be based on the 

pharmacological enhancement of our natural defence mechanisms that maintain our 

proteome in a soluble state in the specific tissues where protein aggregation may take 

place more readily [29, 210, 211]. In summary, our results illustrate how the origins of 

variable tissue vulnerability to AD may lie within the proteome through the 

identification in vulnerable tissues of an intrinsic expression signature associated with 

protein aggregation, observed decades before the typical age of disease onset. 



2.4 Methods 

2.4.1 Data sources 

The primary data source for this chapter is the Allen Brain Atlas [205]. The Allen 

Brain Atlas provided data from six healthy human brains from individuals aged 24 to 

57 years. Samples were taken from more than 500 regions for each hemisphere, and 

more than 19,700 genes were studied with multiple probes. Microarray data were 

downloaded from the Allen Brain Atlas [205]. Data were downloaded from the Allen 

Brain Atlas on 19 December 2014.  

2.4.2 Braak Staging 

At progressive clinical stages of AD, conserved patterns of NFT deposition in neural 

tissues were observed, with increasingly large areas of the brain affected with 

advancing stages. In the Braak staging of AD [125], tissues were classified according 

to when, in the progression of AD, NFTs appear in constituent neurons. This method 

way employed because NFT formation is a pathological hallmark of AD and correlates 

well with cell atrophy [98]. In Braak stages I and II, NFT involvement is confined 

primarily to the transentorhinal region of the brain. In stages III and IV, limbic 

regions are also affected, with all regions of the hippocampus exhibiting AD pathology. 

In stages V and VI, there is extensive neocortical involvement. Even at late stages of 

AD, some regions of the brain, notably the cerebellum, remain unaffected; we 

classified these regions as “non-Braak.” In the original paper describing the Braak 

staging [125], disease stages were discussed sequentially, with the regions affected 

noted at each stage, in addition to the severity of the pathology in these regions. 

2.4.3 Mapping with the Allen Brain Atlas 

To assign the brain regions from the Allen Brain Atlas to the correct Braak stage, a 

rubric was developed. First, regions mentioned in the original paper [125], which we 

refer to as “Braak staging” regions, were assigned to the earliest Braak stage that they 

are associated with. Next, these regions were matched to the regions characterised in 



the Allen Brain Atlas. When a region in the Allen Brain Atlas was larger than a Braak 

staging region, the whole of the Allen Brain Atlas region was allocated to the 

corresponding Braak stage. For instance, although only two isocortical layers were 

affected in Braak stage III, all isocortical tissues were assigned to Braak stage III 

because isocortical expression data were not distinguished by the layer they came 

from in the Allen Brain Atlas parcellation. For this reason, when investigating the 

relationship between Braak staging and expression signature, “perfect-match” regions 

provide the most accurate data. Perfect-match tissues have a high correspondence 

between their Braak and Allen Brain Atlas perimeters. Assignments from Braak to 

Allen Brain Atlas regions are listed in Table 2.3. Trends can be seen for perfect match 

and all tissues for both aggregation protectors are promoters comparing between Δ 

scores for Braak I-III and Braak IV-VI tissues, in Figure 2.6 a-b.  

Of the two main types of tissue in the brain, white matter consists mostly of glial cells 

and myelinated axons, whereas grey matter has a more diverse composition, including 

neuronal cell bodies, dendrites, myelinated and unmyelinated axons, glial cells, 

synapses, and capillaries. Thus, because NFTs are not found in AD in the axon hillock 

or initial axon segment, one would not expect to see them in white matter in AD [212]. 

However, the volume of white matter does shrink in some regions during the 

progression of AD, where affected neurons have their cell bodies in grey matter and 

their axons in white matter. This fact implies that NFT appearance, and thus Braak 

staging, may not be ideal for describing vulnerability to AD in white matter tissues. 

However, the effect of this caveat on our study is limited because only 2 of the more 

than 500 regions studied in the Allen Brain Atlas include white matter and is 

accounted for in Figure 2.6c. 



 

Figure 2.6: Distributions of ΔB scores for tissues affected at different Braak 

stages. (a) Boxplots of the ΔB scores for Aβ and tau aggregation modulators, and the 

co-aggregators in plaques and tangles calculated for ‘perfect match’ tissues (see table 

2.3) progressively affected by AD (x-axis). (b) Same data as for panel a, but for all 

tissues, in this case the disease progression is less accurately mapped onto many the 

Allen Brain Atlas tissues. c) A comparison of ΔB score distributions with white matter 

data included and excluded from analysis. For each boxplot, the significance of the 

difference with the ΔB distribution for non-Braak (NB) tissues was calculated with a 

Mann-Whitney U test and Benjamini-Hochberg multiple hypothesis testing correction 

[207] *p < 0.05, ***p < 0.001, *****p<0.00001. 



Table 2.3: A correspondence between Allen Brain Atlas and Braak Stage 

tissues 

Tissue from Braak et al., 
1991 Allen Brain Atlas region Allen Brain Atlas code Braak 

stage 

CA1 CA1 CA1 I

Transentorhinal and 
entorhinal cortices Parahippocampal gyrus PHG-l, PHG-cos I
Anterodorsal mucleus of the 
thalamus Anterior group of nuclei DTA I

Magnocellular nuclei of the 
basal forebrain

Basal forebrain - includes 
septal nuclei, and nuclei within 
the substantia innominata

SptN, SI I

Layers III and V in basal 
portions of frontal, temporal, 
and occipital asscoaition 
areas

Frontal, temporal, and occipital 
association areas.

AOrG, fro, FP-s, FP-I, Gre, trIFG, 
opIFG,orIFG, IRoG, LOrG, MOrG, MFG-
s, MFG-i, PCLa-s, PCLa-i, PTG, POrG,  
SFG-m, SFG-l, SRoG, LiG-pest, LiG-str, 
Cun-pest, Cun-str, IOG, OP, SOG-s, 
SOG-i, OTG-s, OTG-i, FuG-l, FUG-its, 
FuG-cos, HG, ITG-mts, ITG-l, ITG-its, 
MTG-s, MTG-i, PLP, PLT, STG-i, STG-l, 
TP-s, TP-i, TP-m, TG

II

Subiculim Subiculum S II

CA2 CA2 CA2 III

CA3 CA3 CA3 III

CA4 CA4 CA4 III

Fascia dentata Dentate gyrus DG III

Cingulate gyrus Cingulate gyrus CgGp-s, CgGp-i, CgGf-s, CgGf-I, CgGr-i, 
CgGr-s, SCG III

Amygdala Amygdala ATZ, BLA, BMA, CeA, COMA, LA III

Reuniens nucleus of thalmus Medial group of nuclei DTM IV

Hypothamic tuberomamillary 
nucleus Tuberomamillary nucleus TM IV

Primary sensory areas of 
isocortex layer III

Primary sensory and motor 
cortices + any other isocortical 
regions that haven't been 
accounted for

 PrG-sl, PrG-il, PrG-prc, PrG-cs, PoG-il, 
PoG-sl, PoG-cs, PoG-pcs,  SMG-s, SMG-
i, AnG-i, AnG-s , PCLp-l, PCLp-cs, Pcu-i, 
Pcu-s, SPL-s, SPL-i, 

IV

Basal portions of the putamen Putamen Pu IV

Accumbens nucleus Nucleus accumbens Acb IV

Basal portions of the 
claustrum Claustrum Cl IV
Substantia nigra pars 
compacta

Substantia nigra pars 
compacta SNC V

Lateral tuberal nucleus of the 
hypothalamus Lateral tuberal nucleus LTu V
Antero-basal portions of the
insula Insula LIG, SIG V
Reticular nucleus of the 
thalamus

Reticular nucleus of the 
thalamus R, ZI, FF VI



All tissues assigned in the Braak staging of AD (Braak et al. 1991), and the 

corresponding regions in the Allen Brain Atlas (Hawrylycz et al. 2012) are listed. 

Codes are given to allow the identification of the specific regions in the Allen Brain 

Atlas database. Tissues which are not listed in this table, and therefore not noted as 

succumbing to AD in Braak’s 1991 paper, are considered non-Braak in this study. 

Italics are used to denote ‘perfect match’ tissues.  

2.4.4 Quantifying differential expression - the Δ score 

Below we describe the Δ score methodology for analysis in this chapter, and chapter 3. 

Chapter 4 uses a number of different Δ score metrics, to study relative expression at a 

cellular and subcellular level, and to measure relative expression in the context of 

other types of neurodegenerative disease. More details of these other delta score 

calculation methodologies are provided in the methods section of chapter 4.  

Because the expression of a given gene in the Allen Brain Atlas is measured by 

multiple probes [205], we first normalised the expression reading Ep,r for each probe p 

in each region r in the Allen Brain Atlas as 

            (1) 

where μp and σp are the average and SD of Ep,r across all regions, respectively. 



To quantify the variability of gene expression between tissues, we defined a Δ  score 

(Figure 2.6) for a given probe p over a brain region R (which is typically made up of 

several Allen Brain Atlas regions) as 
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where  

 

        

       (3) 

 

is the average of      for the non-Braak regions, that is, those NNB regions that 

do not map onto any Braak staging regions [125], and 

 

       

      (4) 

represents the average of  over the set of Allen Brain Atlas regions mapped 

onto brain region R under scrutiny (for example, a Braak stage). Then, Δ  scores for 

different probes measuring the same gene were averaged to give a gene Δ score 

        

       (5) 

where the average is over the Np(g) probes p(g) used to measure a gene g. 



 

Figure 2.6: The Δ calculation 

process in more detail. Multiple 

probes are used to measure the 

expression of each gene. For each 

probe p, expression is measured for each 

region r, in the brain. Expression values 

for a probe are normalised across all 

tissues, by subtracting mean expression, 

and dividing by the standard deviation 

of expression. A probe Δ score is found 

by subtracting mean normalised 

expression in non-Braak regions (NB), 

from mean expression in a regional 

subset of interest. Finally, a Δ score for 

each gene is calculated by averaging Δ 

scores for the probes used to measure its 

expression. 

2.4.5 Calculation of the relative expression for aggregation regulators 

We undertook an unbiased literature search to identify all molecular chaperones and 

post-translational modifiers reported to affect the aggregation of Aβ or tau (Table 2.1). 

These aggregation regulators were sorted into three groups: (i) proteins that protect 

against aggregation (protectors), (ii) proteins that promote aggregation (promoters), 

and (iii) proteins whose cumulative role on aggregation was ambiguous in the current 

literature. We evaluated relative expression for proteins in groups 1 and 2 by 

calculating the Δ score distribution at consecutive Braak stages. 



2.4.6 Evaluation of statistical significance 

To assess the differences in the distributions of Δ scores between various data sets, we 

used the nonparametric Wilcoxon/Mann-Whitney U test [213], or a two-tailed t test 

[206], as specified in the figure captions. Because of the high number of data and 

hypotheses tested in this study, we adjusted the P values to reduce the false discovery 

rate (FDR). Specifically, for Figures 2.3-2.6 we used the Benjamini-Hochberg multiple 

hypothesis testing correction to control the FDR [207] because this method allows the 

cost paid for the control of multiplicity to be kept relatively low. More generally, from 

the analysis of the relationship between FDR, sensitivity, and study sample size [214, 

215], it is known that microarray studies can be susceptible to large FDR, which, 

besides measurement variability, is primarily determined by the proportion of truly 

differentially expressed genes, the magnitude of the true differences, and sample size. 

Because our work relies on 3700 microarray studies (up to 900 samples from six 

brains), the FDR rate analysis was performed on a relatively large sample size, 

allowing for rather sensitive detection of truly differentially expressed genes. We 

further increased the statistical significance of the results and avoided a high false-

negative rate by calculating the significance of the difference of Δ  score distributions 

for groups of genes. In comparison to calculating the significance of the differences of 

Δ scores of individual genes, this approach greatly reduced the number of hypotheses 

in our study. These tests were performed using the SciPy and rpy2 modules for 

Python. 

2.4.7 Shading of cortical and subcortical brain structures on three-dimensional 

representation 

Figure 2.3 was created using a set of three-dimensional meshes of a human brain, 

which were constructed from 12 volumes acquired using magnetic resonance imaging 

[216-218]. Images were colored using the computer graphics software Blender. 



3 The metastable subproteome 

In the previous chapter, we have shown that tissues vulnerable to AD can be 

characterised by expression of the proteins which co-aggregate to form plaques and 

tangles, and the aggregation modulators of Aβ and tau. Together, the expression levels 

of these subproteomes provide a rationalisation of the specific proteins which 

aggregate during AD [153]. To build on this discovery, we wanted to understand if 

there were other subproteomes, whose expression level placed a burden on the protein 

homeostasis system, creating an environment vulnerable to disease-specific 

aggregation.  

3.1 Introduction 

3.1.1 A broader view on protein homeostasis  

In this chapter, we build on the observation that vulnerability to disease-specific 

aggregation in neurodegenerative diseases such as AD could exist at a number of 

levels (Figure 3.1). We thus predicted that elevated levels of the primary aggregators 

in AD - Aβ and tau - would exist in the tissues which first succumb to AD. A number of 

proteins are found to co-aggregate in plaques and tangles alongside Aβ and tau 

respectively. We therefore selected AD co-aggregators as a secondary point of 

interrogation for investigating the molecular signature of AD vulnerability. 

Considering the protein aggregation process from a broader perspective, it is also 

possible that protein supersaturation plays a role in neuronal predisposition to 

aberrant aggregation. Supersaturated proteins (Section 1.2.2) are expressed beyond 

their solubility limit in tissues and have been found to be enriched in the deposits 

found in neurodegenerative disease brains, including plaques and tangles [40]. In 

addition to directly aggregating in disease, it is possible that high levels of 

supersaturated proteins put pressure of the protein homeostasis system of neurons, 

thereby enabling the unchecked misfolding of primary aggregators. Work by Morimoto 

et al. has experimentally demonstrated this process using a model of 

neurodegenerative disease in C. elegans and the over-expression of a protein known to 

be aggregation-prone [46].   



 

Figure 3.1: Levels of proteomic 

interrogation for investigation of 

vulnerability to disease-specific 

protein homeostasis loss.  

3.1.2 Elucidation of a supersaturated subproteome specific to AD 

Supersaturated levels were first calculated and later refined by Ciryam et al. 

[40]Expression levels were taken from experimental measurements across a number 

of tissues. We therefore sought to identify a subproteome of supersaturated proteins 

enriched in the peptides directly responsible to vulnerability to aberrant aggregation 

in AD. During AD progression in the brain, a robust down regulation of particular 

proteins has been observed. Strikingly, at the pathway level a correlation has been 

found between supersaturation level and extent of down regulation in AD [41]. It has 

been suggested that this relationship exists due to a protective response by diseased 

neurons to reduce the concentration of their most aggregation-prone proteins. A subset 

of the proteome is also down-regulated with age. Although a number of proteins are 

shared between down-regulated subsets, this is a distinct and robust process. The 

observation that proteins downregulated in age are enriched in supersaturated 

proteins has lead to the suggestion that this transcriptomic trend is also an innate 

cytoprotective mechanism to preserve protein solubility as molecular chaperone 

capacity declines. To identify the subset of supersaturated proteins most critical to 

AD-specific aggregation risk, we therefore found the intersection of supersaturated 

proteins, proteins which down-regulate in age, and proteins which down-regulate in 

AD. We will refer to the proteins in this intersection as the metastable subproteome .  



3.2 Results 

3.2.1 Relative expression of primary aggregators and co-aggregators in AD-vulnerable 
tissues 

To determine if the brain tissues most vulnerable to neurodegenerative disease had an 

expression signature for the subproteomes identified in section 3.1, we utilised data 

from the Allen Brain Atlas, and the Δ score method to quantify differential expression. 

The Allen Brain Atlas is an online repository of microarray data for six normal human 

brains of ages 24-56. Data has a high level of granularity, over 500 measurements are 

taken for each individual, with 93% of known genes represented by at least two 

probes. The Δ  score quantifies the expression of any given gene, in any given region, 

relative to expression in tissues completely resistant to the neurodegenerative disease 

under study (see section 2.4 for further details). The progression of AD through the 

brain was determined using Braak staging [125], which was developed through 

histopathological examination of the tangle profile in the brain during subsequent 

stages of AD, tangle deposition has since been shown to correlate with neuronal 

atrophy. 

Our analysis revealed the presence of elevated expression levels of proteins that 

coaggregate in plaques and tangles in the tissues in which AD is first evident, as 

measured by the average ΔBI–III score (the Δ score for Braak regions I to III) (Figure 

3.2 and Appendix B2). We tested the statistical significance of these results by 

calculating the ΔBI–III scores of 106 random sets of genes of equal size and comparing 

them to that of Aβ and tau aggregation modulators (Figure 3.3). We find that within 

the resultant distribution, the mean Δ  score for co-aggregators in each case is at the 

upper tail of the distribution.  



 

Figure 3.2: Tissue-specific transcriptional analysis of a subset of aggregation-

prone proteins specific to AD. 

Box plot of ΔBI–III (the Δ score for Braak regions I to III) for the whole proteome and 

the proteins that coaggregate with Aβ and tau in plaques and tangles. Aβ and tau are 

shown as square points in their respective distribution. ***P < 0.001; the statistical 

significance of the difference between the distributions of the coaggregators and that 

of the proteome was calculated using Mann-Whitney U test with Benjamini-Hochberg 

multiple hypothesis testing correction [207]. 



 

Figure 3.3: Analysis of ΔBI–III scores of random sets of genes. (a,b) Probability 

distribution functions (PDFs) of the ΔBI–III scores for 106 random gene sets of size 

equal to those corresponding to proteins that co-aggregate with Aβ in plaques (plaque 

co-aggregators) (a), and of that of proteins that co-aggregate with tau in tangles 

(tangle co-aggregators) (b); arrows indicate the mean ΔBI-III scores of plaque and 

tangle co-aggregators. (c,d) Probability distribution functions of the mean ΔBI–III 

scores for 106 random gene sets of size equal to that of Aβ and tau aggregation 

promoters (c), and protectors (d); arrows indicate the mean ΔBI-III scores of the 

aggregation modulators of Aβ and tau. 

To test the ability of co-aggregator expression levels to differentiate tissues of 

increasing resistance to AD, we plotted the Δ scores for these subproteomes for tissues 

in Braak stages I-VI (Figure 3.4). For plaque co-aggregators, we find consistently 

elevated expression relative to non-AD tissues, and we find that tangle co-aggregator 

relative expression is not predictive of differential vulnerability between tissues 

known to succumb to the disease. This result indicates that whilst elevated co-

aggregator expression (particularly with respect to plaques) is necessary for AD to 

develop in a given tissue, it is not sufficient to determine the primary site of disease 

onset, nor relative vulnerabilities between tissues.  



 

Figure 3.4: Distributions of ΔB scores for tissues affected at different Braak 

stages. Boxplots of the ΔB scores for the co-aggregators in plaques and tangles 

calculated for tissues progressively affected by AD (x-axis) For each boxplot, the 

significance of the difference with the prior ΔB distribution was calculated with a 

Mann-Whitney U test and Benjamini-Hochberg multiple hypothesis testing correction 

*p < 0.05, ***p < 0.001, *****p<0.00001 [207]. 

3.2.2 Investigating the metastable subproteome specific to AD 

Having found an association between AD co-aggregators and tissue 

vulnerability to aberrant aggregation in disease, we next sought to identify a 

disease specific sub-proteome. We predicted that at high levels, this sub-

proteome would create an environment conductive to AD-specific aggregation. 

We identified this metastable subproteome by finding the intersection between 

highly supersaturated proteins, proteins down-regulated in ageing, and proteins 

down-regulated in disease (Figure 3.5a). Using Δ  score analysis, we find that 

this metastable subproteome has significantly elevated expression in the tissues 

most vulnerable to AD (Braak stage I-III tissues), (Figure 3.5b). In the previous 

chapter, we found that whilst co-aggregators found in plaques and tangles in 

AD brains also had significantly elevated expression in early AD tissues, they 

could not predict differential vulnerability between tissues. We assessed this 



differential expression sensitivity by measuring the correlation for each gene in 

the subset between tissue AD vulnerability, and relative expression, as assessed 

using Δ score analysis. We find a significant correlation between tissue disease 

vulnerability to disease, and gene expression, for the metastable subproteome. 

The co-aggregators found in plaques and tangles show some correlation, but not 

at a level of significance. The co-aggregators found in Lewy bodies show no 

correlation, as expected (Figure 3.5c). 

Figure 3.5: Expression of metastable subproteome specific to AD is 

elevated in AD-vulnerable tissues. (a) We defined an AD-specific metastable 

subproteome at risk of aggregation as the intersection of classes of proteins 

downregulated with age, downregulated in AD, and supersaturated. (b) Bar 

plot the Δ score for AD-vulnerable tissues averaged across all genes for all the 

possible intersections (x-axis) illustrated in panel a. (c) Distribution of the Δ 

score of genes comprising the metastable subproteome (MS, red) and the whole 

proteome (grey). ***** p < 0.00001, in c the statistical significance of the 

difference with ΔBI-III averaged across the MS (first column) was estimated with 

a one-tailed t-test and in d the significance of the difference was estimated with 

a Mann Whitney U-test [207]. 



To check that the process by which the metastable subproteome was calculated 

was enriching for proteins relevant to AD vulnerability, we calculated the mean 

Δ score for all possible intersections illustrated in Figure 3.5a. The results are 

presented in Figure 3.6, and show that the metastable has the highest mean Δ 

score for tissues most vulnerable to AD.  

 Figure 3.6: Mean Δ Braak I-III score for MS-component subproteome 

intersections. The mean Δ score for subproteomes comprised of proteins in different 

possible intersections of supersaturated proteins, and proteins downregulated in 

ageing and disease. These intersections are illustrated in figure 3.5a. *p < 0.05 and 

*****p<0.00001, 1 tailed t-test [206]. 

To test the robustness of these conclusions, we considered the overlap between highly 

supersaturated proteins and proteins with high relative expression in Braak I-III 

regions. By taking the intersection of the top 5% of these two subsets, we found a 

subset of proteins that are highly downregulated in AD (Figure 3.7). These results are 

fully consistent with those discussed above, and indicate that by analysing two 

properties that can be measured in health brains (supersaturation and high relative 

expression in early Braak regions), one can make predictions about proteins associated 

with the translational response to AD.To evaluate the extent of residual noise, we 

calculated the correlation between probe Δ  scores. We found a good agreement 

between Δ  scores for two probes measuring the same gene, the Pearson’s correlation 

coefficient for this relationship is 0.7 (Figure 3.7d) 



 

Figure 3.7: Testing Δ score signal robustness.  

 (a) Difference in overlap size between proteins downregulated in disease and 

supersaturated, and proteome members with top and bottom 5% Δ scores  (b) 

Difference in overlap size between proteins downregulated in ageing and 

supersaturated, and proteome members with top and bottom 5% Δ scores  (c) the sizes 

of all intersections related to  (a) and  (b). In  (d) the correlation between Δ scores for 

two probes measuring the same gene was tested, resulting in a coefficient of 

correlation of 0.7.*****p<0.0001, Fisher exact test performed for panels (a) and (b). 



3.2.3 Enrichment analysis of the metastable subproteome 

We next sought to understand the physiological role of the metastable 

subproteome, in the cell. Using enrichment analysis of both subcellular 

localisations and biological processes, we find that the metastable subproteome 

is enriched for pathways known to be important for synaptic function; ion 

transport, mitochondrial energy metabolism, and synaptic transmission 

(Figures 3.8-3.9). It is interesting to note that synapses are the first subcellular 

location to degenerate during AD. 

 

Figure 3.8: The metastable subproteome is enriched for synaptic 

localisation. (a) List of the eight most enriched biological processes. (b) List of 

the eight most enriched subcellular localisations. Enrichment ratios were 

calculated as the ratio between observed and expected values for each category 

(see Methods). All significantly enriched biological processes and subcellular 

localisations are reported in Figure 3.9.  



 

Figure 3.9: All significantly enriched metastable subproteome biological 

processes (a) and subcellular localisations (b). 

Other common subcellular localisations are included for context. 

*p < 0.05, **p < 0.01, ***p < 0.01, ****p < 0.001 and *****p<0.0001 one tailed Fischer 

exact test and Bonferroni multiple hypothesis correction [207]. 



3.2.4 Evaluating the predictive power of metastable subproteome levels with respect to 

AD progression in the brain 

Finally, we sought to asses whether expression levels of the metastable subproteome 

in normals brains decades before disease onset, could predict the progression of AD. 

We find using Δ score analysis, that the most vulnerable tissues to AD (early Braak 

tissues), have significantly elevated relative expression levels of metastable 

subproteome proteins. In addition, we find that relative expression declines in tissues 

with progressively more AD resistance, who succumb at later stages of the disease 

(late Braak tissues), (Figures 3.10 a,b, full dataset in Appendix B3).  

 
Figure 3.10: Metastable subproteome 

expression in normal tissues 

recapitulates AD progression. a) In the 

left panel, regions are coloured by the mean 

Δ score for metastable subproteome 

expression. In the right panel, regions are 

coloured by Braak stages. b) Bar plot with 

the mean Δ scores for the MS in ‘perfect 

match’ regions affected at the different 

Braak stages (x-axis). Perfect match tissues 

have a perfect correspondence between their 

Braak and Allen Brain Atlas perimeters. 

**p < 0.01 and *****p<0.00001 p-values for 

b, calculated with Mann-Whitney U test 

with Benjamini-Hochberg multiple 

hypothesis testing correction [207]. 



3.3 Conclusions 

In this chapter we have identified a number of subproteomes in addition to the 

aggregation modulators discussed in Chapter 2, which underlie tissue vulnerability to 

AD. We have thus broadened our understanding of the molecular origins of 

susceptibility to aberrant aggregation in this disease. Although we have not quantified 

the relative influence of each subproteome on vulnerability, by looking at Δ score 

distributions at the granularity level of individual Braak stages, we have been able to 

compare the ability of these subproteomes to differentiate tissues of varying disease 

susceptibility. We have found that Aβ and tau, the primary aggregators in AD, both 

show elevated expression in the the most highly AD-vulnerable tissues. The small 

number of data points available limits our ability to examine this trend at the level of 

individual Braak stages or to meaningfully evaluate statistical significance. With the 

evolution of experimental techniques, we recommend this analysis is revisited when 

larger data sets are available. Looking beyond these primary aggregators, we 

evaluated the Δ scores for proteins which co-aggregate in smaller proportion with Aβ 

and tau in plaques and tangles respectively. We have found that these sub-proteomes 

do show significantly elevated expression in the most AD-vulnerable tissues, relative 

to those which are completely resistant. However, at an individual Braak stage level, 

Δ score distributions did not reflect the differential vulnerability of tissues to disease. 

This result indicates that whilst high levels of deposit co-aggregators create an 

environment conducive to AD-specific aggregation, they are not the critical factor 

which triggers disease onset in a given tissue. We next turned our attention to the 

aggregation propensity of the proteome as a whole in neurons, making use of a 

biophysical characteristic called supersaturation. We have defined an AD-specific 

metastable subset of proteins, which we found to be enriched for synaptic function. 

Crucially, we have found that the expression of this metastable subproteome in 

healthy tissue predicts the progression of AD through the brain. 

Taken together, these results suggest a model for AD vulnerability at the molecular 

level. Here, the differential vulnerabilities of tissues to protein homeostasis loss are 

controlled by the availability of specific protein homeostasis components which control 



primary aggregators, and the levels of disease-specific supersaturated proteins, which 

put pressure on the protein homeostasis system, enabling the  escape and aggregation 

of misfolding primary aggregators. We also note that it is quite possible that we see an 

elevated Δ score signal for the MS specifically (see Figure 3.6) because the protein 

homeostasis networks that it interacts with are shared with those of the proteins 

which aggregate to form plaques and tangles in AD. This possibility would indicate the 

presence of disease-specific metastable subproteomes for other neurodegenerative 

diseases.   

We will explore the possibility of a molecular signature for vulnerability in other 

neurodegenerative diseases associated with protein misfolding in the next chapter. We 

will also look at levels of analysis beyond the tissues level, analysing relative 

expression from a cellular and subcellular perspective.  

3.4 Methods 

3.4.1 Data sources 

The primary data source for this chapter is the Allen Brain Atlas [205]. Details of the 

Allen Brain Atlas data and download date are given in Methods section 2.4.1. UniProt 

data [219] for subcellular localisation and biological process gene ontology 

assignments for most proteins were downloaded from www.uniprot.org/downloads on 

21 May 2015. Protein IDs were converted between UniProt and Entrez ID (used by the 

Allen Brain Atlas) using the UniProt ID mapping service. With this procedure, 

expression data were assigned to about 90% of the human reference proteome. 

3.4.2 Braak Staging 

At progressive clinical stages of AD, conserved patterns of NFT deposition in neural 

tissues were observed, with increasingly large areas of the brain affected with 

advancing stages. In the Braak staging of AD [125], tissues were classified according 

to when, in the progression of AD, NFTs appear in constituent neurons because NFT 

formation is a pathological hallmark of AD and correlates well with cell atrophy. More 

http://www.uniprot.org/downloads


details of the use of Braak staging to map the progression of AD through brain tissue 

can be found in Methods section 2.4.2. 

3.4.3 Mapping with the Allen Brain Atlas 

To assign the brain regions from the Allen Brain Atlas to the correct Braak stage, a 

rubric was developed. More details on the mapping process can be found in Methods 

section 2.4.3. A summary of the final Allen Brain Atlas tissues allocated to each Braak 

stage can be found in Table 2.3. ‘Perfect match’ tissues denote tissues where the tissue 

studied in the Allen Brain Atlas analysis [205], was an exact correspondence to or 

smaller than the tissue allocated to a given Braak stage [125]. We include in Figure 

3.11 an evaluation of the Δ  score distribution for metastable subproteome proteins, 

considering all tissues, and the subset of prefect match tissues. We see an agreement 

in the trend in each case, with metastable subproteome expression most elevated 

relative to non-Braak tissues in tissues belonging to Braak stages I-III. Expression 

relative to non-Braak tissues is also elevated in tissues which succumb at a later stage 

in disease progression (Braak IV-VI tissues), but has a significantly lower median Δ 

score relative to Braak I-III tissues. The presence of a consistent trend across all brain 

tissues studied is therefore shown to exist both in the wider data subset and in perfect 

match tissues.  

For technical reasons discussed in detail in Methods section 2.4, it was also important 

to ensure that the trend observed for metastable subproteome Δ scores was consistent 

when white matter tissues were excluded. The results of this control can be found in 

Figure 3.11c, and indeed there is significant and decreasing trend in relative 

expression as one examines consecutively less AD-vulnerable tissues.  



 

Figure 3.11: Distributions of ΔB scores for tissues affected at different Braak 

stages. (a) Boxplots of the ΔB scores for metastable subproteome calculated for 

‘perfect match’ tissues (see table 2.3) progressively affected by AD (x-axis). (b) Same 

data as for panel a, but for all tissues, in this case the disease progression is less 

accurately mapped onto many the Allen Brain Atlas tissues. c) A comparison of ΔB 

score distributions with white matter data included and excluded from analysis. For 

each boxplot, the significance of the difference with the ΔB distribution for non- Braak 

(NB) tissues was calculated with a Mann-Whitney U test and Benjamini-Hochberg 

multiple hypothesis testing correction [207] *p < 0.05, ***p < 0.001, *****p<0.00001. 

3.4.4 Quantifying differential expression - the Δ score 

The Δ score used in analysis in this chapter quantifies expression of any given gene, in 

any given tissue, relative to expression in tissues resistant to AD. More detail on the Δ 

score calculation methodology can be found by referring to section 2.4.4 and Figure 

2.6.  



3.4.5 Evaluation of statistical significance 

To assess the differences in the distributions of Δ scores between various data sets, we 

used the nonparametric Wilcoxon/Mann-Whitney U test, or a two-tailed t test, as 

specified in the figure captions. Because of the high number of data and hypotheses 

tested in this study, we adjusted the P values to reduce the false discovery rate (FDR). 

Specifically, for Figures 3.2, 3.4, and 3.9-3.11 we used the Benjamini-Hochberg 

multiple hypothesis testing correction to control the FDR because this method allows 

the cost paid for the control of multiplicity to be kept relatively low. More generally, 

from the analysis of the relationship between FDR, sensitivity, and study sample size, 

it is known that microarray studies can be susceptible to large FDR, which, besides 

measurement variability, is primarily determined by the proportion of truly 

differentially expressed genes, the magnitude of the true differences, and sample size. 

Because our work relies on 3700 microarray studies (up to 900 samples from six 

brains), the FDR rate analysis was performed on a relatively large sample size, 

allowing for rather sensitive detection of truly differentially expressed genes. We 

further increased the statistical significance of the results and avoided a high false-

negative rate by calculating the significance of the difference of Δ  score distributions 

for groups of genes. In comparison to calculating the significance of the differences of 

Δ scores of individual genes, this approach greatly reduced the number of hypotheses 

in our study. These tests were performed using the SciPy and rpy2 modules for 

Python. In additional to traditional statistical tests such as the t-test and Mann 

Whitney U-test, we tested the statistical significance of results in Figure 3.3 by 

calculating the ΔBI–III scores of 106 random sets of genes of equal size and comparing 

them to that of Aβ and tau aggregation modulators (Figure 3.4). This allowed the 

verification of the accuracy of other statistical tests used in the paper, and to confirm 

that calculated p-values were not being distorted by the high number of data points 

used in the analysis. 



3.4.6 Shading of cortical and subcortical brain structures on three-dimensional 

representation 

Figure 3.10 was created using a set of three-dimensional meshes of a human brain, 

which were constructed from 12 volumes acquired using magnetic resonance imaging. 

Images were coloured using the computer graphics software Blender. 

3.4.7 Enrichment analysis 

To evaluate enrichment, we created an ‘enrichment ratio’. This measure describes the 

ratio between observed and expected proteins in the metastable subproteome, for an 

assigned property under study 

where 𝑀𝑆x is the number of metastable subproteome members assigned to subcellular 

localisation or biological process x, 𝑀𝑆 is the total number of proteins in the 

metastable subproteome, 𝑃x is the number of human proteome members assigned to 

subcellular localisation or biological process x, and 𝑃 is total the number of proteins in 

the human proteome as a whole. 

We evaluated the significance of our results using a one tailed Fisher exact test and 

Bonferroni multiple hypothesis correction. The background dataset was downloaded 

from uniprot.org, with all reviewed human proteins included (http://www.uniprot.org/

downloads). 

This dataset included subcellular localisation and biological process gene ontology 

assignments for each protein. Protein IDs were converted between UniProt and Entrez 

ID using the UniProt ID mapping service. 



The gene ontology (GO) project provides a controlled vocabulary describing the 

biological processes a protein is involved in. Data available from the UniProt website 

lists selected terms derived from the GO project. 

3.4.8 Defining a supersaturated subset 

The supersaturation scores used in this study were taken from the latest publication 

by Ciraym et al. [41]. Supersaturation scores allow the evaluation of a protein’s 

expression beyond its limit of solubility. Accordingly, these scores have two 

components - a score quantifying a protein’s solubility, and the expression of the gene 

corresponding to the protein, in human tissue. The solubility score was calculated 

computationally, using the protein’s polypeptide sequence as input. A high score 

indicated high insolubility. The supersaturated subset of proteins used in this study, 

are collated by extracting those genes within the top 5% of supersaturation scores [41].  

3.4.9 Defining downregulated gene sets 

Proteins downregulated during age and AD were calculated by Ciryam et al [41]. 

These subproteomes represent all found to be genes significantly downregulated. 

Corrections are made to exclude the influence of a co-correlation between 

transcriptional changes which occur during ageing and disease [41].  



4 Looking beyond - further subproteomes in AD and other protein misfolding 
diseases 

In Chapters 2 and 3, we found evidence of a transcriptional environment in tissues 

most vulnerable to AD conducive to the aggregation of Aβ and tau. We next sought to 

investigate the robustness of our hypothesis - that neuronal vulnerability to 

neurodegenerative disease is associated with an innate proteomic signature which 

predisposes disease-specific aberrant aggregation. In Chapter 2, we initially tested 

this hypothesis by looking for an AD transcriptional vulnerability signature associated 

to the protein homeostasis networks known to influence the aberrant aggregation of 

Aβ and tau. In Chapter 3, we tested this hypothesis further by analysis other 

subproteomes which we predict would influence the onset of AD-specific protein 

homeostasis loss. In this Chapter, instead of analysing new types of subproteome, we 

compare expression at different biological scales - cellular and subcellular. In addition, 

we expand our work to evaluate the presence of innate vulnerability to disease-specific 

aggregation in other neurodegenerative diseases. The combination of approaches used 

to investigate the vulnerability hypothesis throughout this thesis are summarised in 

Figure 4.1.  



 

Figure 4.1: Levels of interrogation for investigation of vulnerability to 

disease-specific protein homeostasis loss. A number of neurodegenerative 

diseases associated with aberrant aggregation are studied in this Chapter. One can 

investigate a molecular signature associated to aberrant aggregation by comparing 

vulnerable and resistant tissue types, cell types, or subcellular localisations. The 

disease associated molecular signature can be studied from the perspective of cellular 

protein homeostasis, and of disease co-aggregators. In addition, one can interrogate 

the homeostatic regulation of the proteins most enriched in the deposits, which form 

the pathological hallmark of the neurodegenerative disease under study.  

4.1 Introduction 

4.1.1 Neurons are the most vulnerable cell type to neurodegenerative diseases 

Although neurons are typically the primary cell of focus in neurodegenerative disease 

research, there are a diverse array of other cell types in neural tissue, making up 

significant proportion of the total cellular population. For example, the human brain 

has been found to contain almost 50% glial cells [220]. Neurons receive the lion’s share 

of scientific attention for two reasons; their loss has the most direct impact on the 

manifestation of clinical symptoms, and they are the most vulnerable cell type to 

atrophy during neurodegenerative diseases progression. However, other cell types are 

affected by and implicated in neurodegenerative diseases pathogenesis - these cells 



and their respective roles in neurodegenerative diseases will be introduced in the 

subsequent paragraphs.  

Astrocytes in the brain form syncytium, into which neuronal networks embed 

themselves [221]. These glial cells perform a number of critical support functions; 

maintaining chemical homeostasis [222, 223], enabling neurogenesis, determining the 

microscopic architecture of grey matter [224-226] and protecting the brain against 

pathogenic insult. During AD, astrocytes respond via activation, triggering both 

morphological and molecular cell changes, and escalating the immunoinflammatory 

cascade characteristic to neurodegenerative diseases [227]. Astrocytes achieve this 

through the release of cytokines, pro-inflammatory factors, and neurotoxic reactive 

oxygen species [228]. In PD, activated astrocytes have been found in diseased tissue 

[229, 230]. The role of neuroinflammation in PD pathology remains under 

investigation, however this response is widely considered to be a downstream response 

to to the death of dopaminergic neurons [231]. It is likely that this inflammatory 

response results in further cell death - astrocytes are implicated in motor neurone 

death in ALS, and indeed, astrocytes derived from both familial and sporadic 

postmortem tissue are toxic to motor neurons [232].  

Microglia, another glial cell type, are the primary immune effector cells in the brain. 

As with astrocytes, these cells have a crucial role in the maintenance of brain 

homeostasis and protection against infection [233]. In AD, a direct association has 

been found between plaque formation and microglial neuroinflammatory response. In 

AD brains, phenotypically activated microglia have been observed intimately 

associated with amyloid plaques, with extensions reaching into the deposit core [234, 

235]. Microglia have been demonstrated to recognise and mount an immunological 

response to the Aβ peptide, and migrate towards aggregated Aβ species [233]. 

Unfortunately, despite their reactivity to amyloid aggregated species, microglia appear 

unable to clear them [233], consequently potentially resulting in more harm than help. 

In parallel to their role in AD, activated microglia have been found in close spatial 

association to areas of atrophy in PD [236-238]. Indeed it has been suggested that a 

chronic inflammation effected by microglia is a fundamental factor contributing to the 



loss of highly PD-vulnerable dopamine-producing neurons [239, 240]. 

Neuroinflammation is also thought exacerbate motor neurone damage in ALS [241, 

242]. Inflammatory cytokines released by microglia may result in glutamate 

excitotoxicity, resulting in neuronal excitotoxic death [243-245].  

In the following of this chapter, we also investigate brain-derived endothelial cells. 

These cells are critical to the architecture of the blood brain barrier (BBB), forming an 

endothelial lining of neural vasculature. Endothelial cells have both metabolic and 

mechanical roles, working in concert with neuronal, glial, and smooth muscle cells to 

ensure optimal neural tissue function and homeostasis [246, 247]. Endothelial cells 

are primarily responsible for regulation of cerebral blood flow, and and chemical 

exchange across the blood-brain barrier. The ability of endothelial cells to fulfil their 

role is thought to be limited by the progression of AD pathogenesis: markers of 

endothelial dysfunction have been found to be elevated in the plasma of those with 

late-onset AD [248]. Endothelial cells also appear to participate in the inflammatory 

response broadly associated to neurodegenerative disease, and in AD brains express 

elevated levels of inflammatory cell adhesion molecules such as monocyte 

chemoattractant protein 1 (MCP-1) [249]. The overall impact of neurodegenerative 

diseases such as AD remains unclear, as despite evidence that dysfunction endothelial 

cells may also be proliferating in affected tissues: genome-wide expression profiling of 

AD tissue has identified the up-regulation of genes which promote angiogenesis [250].  

Many of the impacts of neurodegenerative diseases on brain cells are likely to 

contribute to the atrophy of neurons observed in affected tissues - in particular 

immune activation and the loss of support functions carried out by cells such as 

astrocytes. Neurons are the primary site for the manifestation of many of the 

characteristic hallmarks of neurodegenerative diseases - for example tangle deposition 

in AD. Tangles develop intra-neuronally, progressing from early-stage inclusions, to 

mature neurofibrillary tangles (NFT), and finally observed as ghost tangles (the 

proteinaceous remnant of a dead neuron) [251]. Accordingly, neuron loss correlates 

with NFT deposition [76], and in turn the clinical manifestation of AD is considered to 

reflect the extent of neuron loss in the brain [252]. Lewy bodies, the histopathological 



hallmark of PD, accumulate primarily in vulnerable subcortical neurons [253]. α-

synuclein is the primary protein found in Lewy bodies. Aggregated αsynuclein species 

are thought to contribute to the pathogenic progression of PD [253]. Consequently, PD 

is characterised pathological by cell death in affected tissues - up to 70% of 

dopaminergic neurons of the SNPC have died by the end of life [254]. In parallel with 

AD and PD, ALS is characterised by the deposition of an aberrantly-aggregated 

proteins - primarily TDP43. Pathological TDP-43 is found mislocalised outside the 

nucleus, and typically aggregates in a neuron’s cytoplasm or neurites [255].  

In summary, it appears that neurons in particular have a vulnerability to the protein 

homeostasis failure characteristic of neurodegenerative diseases including AD, PD, 

and ALS. This observation leads one to consider the possibility that a predisposition to 

disease-specific protein aggregation is innate to neural cells, and that other cell types 

have proteomic environments with a greater robustness against this protein 

homeostasis loss.  

4.1.2 Excitatory neurons are more vulnerable to AD than inhibitory neurons 

Research published in early 2017 has provided insight into particular neuronal 

subclasses that appear to have elevated AD vulnerability. Investigators found that in 

the entorhinal cortex of transgenic mice over-expressing tau, excitatory but not 

inhibitory neurons were vulnerable to tau pathology [256]. The factors underlying this 

differential in vulnerability are currently unknown.  

4.1.3 Synapses are the most vulnerable subcellular compartments to AD 

In addition to a comparison of cell types, one can also consider vulnerability to 

neurodegenerative diseases at a subcellular level. In AD, there exists evidence that 

synapse loss occurs at an earlier stage in disease progression than whole-neuron loss 

[257]. Evidence of synaptic impairment has been found even at pre-symptomatic 

stages of the disease [258], suggested to be due to the presence of toxic oligomeric 

species of Aβ [72, 114, 258-262]. More extensive synaptic loss is found at later stages of 



disease, with over 25% of synapses rendered dysfunctional in affected tissues at the 

onset of disease symptoms [263]. Furthermore, post mortem analysis of AD affected 

tissue indicates that synaptic loss correlates most robustly with aggregate deposition 

[263]. In AD patients, soluble Aβ levels show a significant correlation with the extent 

of synaptic loss [264].  

Whilst there are a number of possible causes of elevated synaptic vulnerability in 

neurodegenerative diseases, for instance exocytotic impairment or perturbed 

intracellular trafficking [265], we take the view here that synapses may simply be the 

most fertile environment for the aggregation of disease-specific proteins. The 

subsequent presence of toxic aggregation intermediates would explain their particular 

vulnerability, even at the earliest stages of disease.  

4.1.4 Commonalities and crucial differences between neurodegenerative diseases 

The presence of aberrant aggregation hallmarking a number of neurodegenerative 

diseases strongly suggests a shared general pathogenic mechanism, involving a loss in 

protein homeostasis. In many neurodegenerative diseases, such as AD and PD, 

particular cell types and subcellular localisations show elevated vulnerability. 

However, at a tissue level, the site of disease inception and the spatio-temporal spread 

is characteristic to each condition, in addition to the primary proteins which form 

deposits. This indicates that there are proteomic factors which determine vulnerability 

to protein homeostasis loss in general, and different factors which influence the 

aberrant aggregation of particular protein subsets. If both of these factors coincide in a 

proteomic environment, it is likely that in that locality the disease with manifest.  

4.2 Results 

4.2.1 Elevated expression of supersaturated proteins characterises most vulnerable 

tissues in neurodegenerative diseases 

Our first line of investigation aimed to establish the molecular factors responsible for 

creating an environment primed for the protein homeostasis dysfunction seen in 

protein misfolding diseases. We reasoned that these factors would place a generic 



burden on the protein homeostasis system of neurons, and would exist at significantly 

elevated levels in the tissues which first succumb to neurodegenerative diseases-.  

We therefore decided to investigate the role played by highly supersaturated proteins, 

in defining these tissues most vulnerable to aberrant aggregation. We have found that 

relative to the proteome, supersaturated proteins are significantly over-expressed in 

the tissues most vulnerable to AD, ALS, FTD, and PD (Figure 4.2). The agreement 

between regional vulnerability to neurodegenerative disease associated with aberrant 

aggregation, and tissue expression level of the most supersaturated proteins, is shown 

in Figure 4.2b. 



 

Figure 4.2: Supersaturated proteins are more highly expressed in 

vulnerable tissues in healthy brains relative to resistant tissues.  a) Box 

plot of  scores for supersaturated proteins. For each disease, Δ scores represent 

expression in vulnerable tissues, relative to expression in resistant tissues. 

***** p < 0.00001;  the statistical significance of the difference between the 

distributions of the protein set under study and that of the proteome was 

calculated with the Mann-Whitney U test with Benjamini-Hochberg multiple 

hypothesis testing correction [207]. b) Red regions on the brain image on the 

left indicate high relative expression of superstaurated proteins, blue indicates 

low levels. Red regions for the brain image on the right indicate the tissues 

most vulnerable to neurodegenerative disease onset 



4.2.2 Neurons have the highest relative supersaturation burden relative to other brain 
cell types  

The role of supersaturated proteins in defining vulnerability transcends tissues - the 

resilience of brain cell types to neurodegenerative disease can also be predicted in this 

way. To address this point, we used single-cell human mRNA sequencing data [266]. 

We thus found that neurons have significantly elevated levels of highly 

supersaturated proteins (Figure 4.3). 

 

Figure 4.3: Relative expression of supersaturated proteins in different brain 

cell types. Expression analysis completed on human single cell RNAseq data. p-value 

calculated describes significance of expression in neurons, relative to that in other 

brain cell types plotted, calculated with the Mann-Whitney U test with Benjamini-

Hochberg multiple hypothesis testing correction [207] *****p < 0.0005. 

4.2.3 Neurons have an expression signature that predisposes  them more to 

aggregation of Aβ and tau relative to other cell types 

We next investigated whether Δ score analysis is capable of identifying neurons as the 

cell type most vulnerable to pathological aggregation in AD, from the perspective of 

AD-specific subproteomes. By calculating the relative expression of Aβ and tau for 

neurons, astrocytes, microglia, and endothelial cells, we found that their relative 

expression was elevated significantly in neurons (Figure 4.4). Simultaneously, we 

found that the relative expression of their aggregation protectors was the lowest and 



that of their promoters was the highest. These results indicate that neurons also 

exhibit a cellular environment most conducive to Aβ and tau aggregation in 

comparison with the different brain cell types that we analyzed in this work. 

 

Figure 4.4: Expression of different components of Aβ and tau homeostasis in 

specific brain cell types. For different brain cell types, including neurons, 

astrocytes, microglia, and endothelial cells, we calculated the relative mRNA 

expression levels, as measured by the !  score (see Methods), of genes corresponding 

to Aβ and tau, and the corresponding aggregation protectors and promoters. For each 

gene set in neurons, the significance of the difference with the expression distribution 

for all other brain cell types in combination was calculated using Mann-Whitney U 

test with Benjamini-Hochberg multiple hypothesis testing correction [207] ***P < 

0.001 and *****P < 0.00001. 



Differential vulnerability can also be predicted by the metastable subproteome 

at the cellular level, again by utilising human single cell RNAseq data (Figure 

4.5). 

 

Figure 4.5: Relative expression of the metastable subproteome in a number 

of brain cell types. The significance level indicates relative expression of the MS for 

neurons is significantly higher when compared to relative MS expression in other cell 

types. For the metastable subproteome gene set in neurons, the significance of the 

difference with the expression distribution for all other brain cell types in combination 

was calculated using Mann-Whitney U test with Benjamini-Hochberg multiple 

hypothesis testing correction [207] ***P < 0.001 and *****P < 0.00001. 

4.2.4 Excitatory neurons have an expression signature that predisposes the 

aggregation of Aβ and tau, relative to inhibitory neurons 

Having found a molecular signature which aligns to elevated relative neural 

vulnerability to both AD and neurodegenerative diseases more generally, we next 

sought to investigate whether differential vulnerability between neurons mirrored 

previous results. To achieve this goal, we analysed differential expression from single 

cell mRNA data [267]. We categorised excitatory and inhibitory neurons in the data 



set under study using a protocol established by the authors of the Allen Brain Atlas 

(for further details see Methods). We find that in both early and late stage AD tissues, 

levels of Aβ and tau aggregation promoters, the metastable subproteome, and plaque 

and tangle co-aggregators, are elevated in excitatory neurons relative to inhibitory 

neurons (Figure 4.6).  

Figure 4.6: Differential expression of AD-specific aggregation modulators in 

excitatory and inhibitory neurons. Single cell expression data [267] were used to 

define neurons into excitatory and inhibitory subsets. Expression of gene sets specific 

to AD were assessed for cells derived from tissues affected in Braak stages III-IV 

(early Braak), and Braak stages V-VI (late Braak). The significance of the difference in 

normalised expression distributions from excitatory and inhibitory neurons was 

calculated using Mann-Whitney U test with Benjamini-Hochberg multiple hypothesis 

testing correction [207] ***P < 0.001 and *****P < 0.00001. 



4.2.5 The synaptic proteome is enriched in both supersaturated proteins and in the 

metastable proteome 

Next, we decided to investigate relative vulnerability at the subcellular level, 

using proteomics data describing protein levels in the synaptosome [268]. 

Focusing on the AD risk, we show how metastable proteins are prevalent in the 

synaptic environment (Figure 4.7a-c), and are enriched with respect to the most 

concentrated synaptic proteins (Figure 4.7a-b). We find that the metastable 

subproteome consistently has the most elevated enrichment for all metrics 

tested, relative to the other intersections possible between the subproteomes 

from which it is composed (Figure 4.7a-b). Synpatosomic enrichment of the 

highly supersaturated protein subset, the metastable subproteome, is 

significantly enriched in the synaptosomes relative to whole neurons (Figure 

4.7e). This result suggests a relative elevated innate vulnerability to AD for the 

synapse as a subcellular localisation. Considering neurodegenerative diseases 

in a more general sense, we sought to investigate the enrichment of 

supersaturated proteins in the most and least prevalent sets of proteins in 

synaptosomes [268]. We found an enrichment of supersaturated proteins in 

synaptosomes (Figure 4.7c-d). These observations help rationalise why synapses 

are the first subcellular regions to degenerate during many neurodegenerative 

diseases. 



 

Figure 4.7: The synaptic environment is highly vulnerable to protein 

aggregation. a) Enrichment of the MS (left), and “intersectional” proteins 

(right), with respect to the most abundant synaptosomal proteins. Intersectional 

proteins are defined as those that are supersaturated, downregulated in AD, 

and downregulated in ageing, but not part of the metastable subproteome. b) 

Concentration, SEM number, protein percentage, and mean protein number for 

the metastable subproteome (red), intersectional proteins (blue), and all 

proteins measured in a synaptic buton (grey) (c) Enrichment of supersaturated 

proteins with respect to the most (left) and least (right) abundant synaptosomal 

proteins. (d) Concentration, SEM number, protein percentage, and mean 

protein number for supersaturated proteins (red), and all proteins measured in 

a synaptic buton (grey) are highlighted in red.  e) Expression of the metastable 

subproteome, relative to expression of the proteome, in brain cell types, and 

synaptosomes. The significance of the result for neurons is evaluated relative to 



other cell types, and for synaptosomes is evaluated relative to neurons. *p < 

0.05, **p < 0.01, ***p < 0.01 and *****p<0.0001 Mann-Whitney U test [207]. 

4.2.6 Robustness testing of results 

The data used in this study provided a number of opportunities to test the robustness 

of our hypothesis, using other neurodegenerative diseases to formulate predictions. In 

the first instance, we analysed the relative expression of proteins known to be 

vulnerable to misfolding and accumulation in PD in the tissues most vulnerable to the 

disease.  

We found that genes corresponding to proteins that coaggregate within Lewy bodies 

[269] in PD (see Methods) [269] have elevated expression in the SNPC region] [270] 

that is highly vulnerable to this condition (Figure 4.8), a result that provides further 

support for the suggestion that the paradigm of tissue vulnerability that has been 

primarily investigated for AD her can applied to other neurodegenerative disorders. 

 

Figure 4.8 ΔSNPC scores corresponding to 

aggregation-prone protein sets characteristic of 

PD. Distributions of the ΔSNPC scores corresponding 

to the whole proteome (All), and for proteins that co-

aggregate in Lewy bodies. Δ scores are calculated for 

the SNPC region. Boxes represent the first and third 

quartiles of the distribution, whiskers the 1.5 inter-

quartile range, and notches are standard errors on the 

median calculated with 104 bootstrap cycles. 

*****p<0.00001, calculated with a Mann-Whitney U 

test [207]. 

Because the key hypothesis in this work centralises on the concept of protein 

solubility, it is crucial for results to be meaningful that there is a strong 



correspondence between mRNA levels analysed in this study and protein levels in the 

neurons within the respective samples.  

Although a relatively weak correlation exists between mRNA and protein levels [208, 

271], in this work, we considered average values across groups of genes, and hence, we 

expect stronger correlations to be present. To validate this type of approach, we 

verified that the patterns of gene expression analyzed here are consistent with the 

corresponding patterns of protein expression using two independent data sets (Figure 

2.4) [209, 272], and in addition, we performed a control using proteome-level data, 

which were available for mouse tissues [273]. We found that the ranking of the tissue-

specific risk using protein data is consistent with that using mRNA data (Figure 4.9). 

 



Figure 4.9: Proteome-based ΔB scores calculated using mice data for tissues 

affected at different Braak stages. Boxplots of relative levels of Aβ and tau 

aggregation modulators, calculated from mass spectrometry-based proteomics, for a 

subset of mouse tissues (36). Boxes represent the first and third quartiles of the 

distribution, whiskers the 1.5 inter-quartile range; notches are standard errors on the 

median calculated with 104 bootstrap cycles. For each boxplot, the significance of the 

difference with the Δ distribution for non-Braak (NB) tissues was calculated with a 

Mann-Whitney U test and Benjamini-Hochberg multiple hypothesis testing correction 

[207] **p < 0.01, *****p<0.00001. 

4.2.7 Investigation of alternative hypotheses 

Whilst this thesis provides evidence for the role played by disease-specific protein 

homeostasis in neurodegenerative disease pathogenesis, the possibility of other 

disease mechanisms cannot be discounted.  

We therefore further investigated other possible causes of tissue vulnerability to AD, 

particularly the immune response (Figure 4.10) [274, 275]. Our analysis of ΔBI–III 

scores of biochemical pathways listed in the Kyoto Encyclopedia of Genes and 

Genomes (KEGG) database [276] revealed that genes associated with inflammatory 

responses are expressed at elevated relative levels in healthy brains, whereas genes 



involved in autoimmune responses are expressed at lower relative levels in AD-

vulnerable tissues (Figure 4.10). Because no other immune pathway shows significant 

variation in expression (Figure 4.10), these results support previous suggestions of a 

role for inflammation in the pathogenesis of AD [274, 275]. Relative elevated 

expression of KEGG pathway proteins involved in the circadian cycle and heparin 

sulphate synthesis are also seen in early AD tissues (Figure 4.10). It is interesting to 

note that both of these processes have been implicated in AD pathogenesis (see section 

1.4). Thus, the vulnerability of specific tissues in AD may result from the sum of a 

number of factors, including the expression levels of disease-specific, aggregation-

prone proteins and their corresponding protein homeostasis complements, as well as 

the immune system. 



 

Figure 4.10: Distributions of ΔBI–III scores for selected KEGG pathways. 

Box plots of the ΔBI–III score distributions for each pathway category (x axis) in the 

context of the whole proteome. “All pathways” is the distribution of the ΔBI–III scores of 

all proteins in the human proteome with at least one KEGG pathway assigned. Boxes 

represent the first and third quartiles of the distribution, whiskers represent the 1.5 

interquartile range, and notches are the standard errors on the median calculated 

with 104 bootstrap cycles. Significance values (**P < 0.01 and *****P < 0.00001) report 

the statistical significance of the difference with the first box plot (All pathways) 

calculated using Mann-Whitney U test with Benjamini-Hochberg multiple hypothesis 

testing correction [207] 



4.3 Conclusions 

In this chapter, we have investigated neurodegenerative disease vulnerability from 

perspectives beyond that of tissue-specific expression signatures relevant to AD. This 

approach had a two-fold objective. Firstly, to find evidence of relative vulnerability at 

smaller biological scales, and from the perspective of other diseases associated with 

protein homeostasis loss and other mechanisms suggested to be involved in disease 

progression. Secondly, to confirm the robustness  of the robustness of  results obtained 

in cChapters 2 and3. 

Considering neurodegenerative diseases beyond AD, we have found that significantly 

elevated levels of supersaturated proteins were found in tissues most vulnerable to 

PD, ALS, and FTD. This result suggests a vulnerability to protein homeostasis loss 

underscores the inception of a number of neurodegenerative disease associated with 

aberrant protein deposition.  

Moving from tissue-level analysis to cellular-level, we then compared expression 

signatures in neurons to those in other cell types, including astrocytes, microglia, and 

endothelial cells. We found significantly elevated levels of supersaturated proteins in 

neurons relative to other cell types. This higher burden on neuronal protein 

homeostasis, due to high concentrations of aggregation-prone proteins, could explain 

the notable vulnerability of neurones in many neurodegenerative diseases. 

Furthermore, when investigating AD-specific subsets, we find evidence of elevated 

relative vulnerability of neurons to AD-specific aggregation.  

Neurons can be classified into a number of specialised groups. One of the broadest of 

these classifications is excitatory v. inhibitory. In accordance with experimental 

results revealing that excitatory neurons are most vulnerable to taupoathy, we find 

here that relative expression indicates a predisposition for AD-specific aggregation in 

these neurons relative to inhibitory neurons.  

Moving to the subcellular level, we find evidence of enrichment of both supersaturated 

and metastable subproteome proteins in synaptosomes, relative to neurons as a whole. 



This result aligns well with those discussed in chapter 3.2.3, where it was found that 

the metastable subproteome is enriched for proteins of synaptic function and 

subcellular localisation. Based on the results thus far in this chapter and the two 

previous, we suggest that an innate predisposition to aberrant aggregation in 

neurodegenerative disease exists in normal brains at the proteomic level.  

Robustness checks confirmed that an expression level signature for disease-specific 

vulnerability was also present for PD, and that proteomic results reflected those found 

for the more widely available expression-level data.  

Although this thesis has focused on the role of protein homeostasis in tissue 

vulnerability to neurodegenerative diseases, it is likely that other pathogenic 

mechanisms also contribute to disease inception and progression. From results in this 

chapter, and in literature, these mechanisms are likely to include inflammation and 

the presence of heparin sulphates.  



4.4 Methods 

4.4.1 Data sources 

A full list of data sources for the results presented in this chapter is provided in table 
4.1.  

Table 4.1: Data sources for figures in chapter 4 
4.4.2 Allen Brain Atlas data analysis 

Methods regarding Braak staging are outlined in section (2.4.2), the mapping of Braak 

stages to Allen Brain Atlas regions are described in section (2.4.3). The equations 

detailing the process of Δ score calculation are given in section (2.4.4). A description of 

statistical techniques, which are consistent between chapters, are given in section 

2.4.5. A description of the shading method used for cortical and subcortical brain 

structures on a three-dimensional representation, in figure 4.2, is given in section 

2.4.6.  

Figure Data source Reference

4.1 Allen Brain Atlas M. J. Hawrylycz et al., An anatomically comprehensive atlas of the adult human 
brain transcriptome. Nature 489, 391-399 (2012).

4.3 RNAseq data from 
purified cell types of 
the human brain 

S. Darmanis et al., A survey of human brain transcriptome diversity at the 
single cell level. Proceedings of the National Academy of Sciences 112, 7285 
(2015).

4.4 RNAseq data from 
purified cell types of 
the human brain 

S. Darmanis et al., A survey of human brain transcriptome diversity at the 
single cell level. Proceedings of the National Academy of Sciences 112, 7285 
(2015).

4.5 RNAseq data from 
purified cell types of 
the human brain 

S. Darmanis et al., A survey of human brain transcriptome diversity at the 
single cell level. Proceedings of the National Academy of Sciences 112, 7285 
(2015).

4.6 RNA-seq dataset 
from adult human 
brain

Science. 2016 June 24; 352(6293): 1586–1590. doi:10.1126/science.aaf1204

4.7 Composition of 
isolated synaptic 
boutons

Wilhelm, Benjamin G., Sunit Mandad, Sven Truckenbrodt, Katharina Kröhnert, 
Christina Schäfer, Burkhard Rammner, Seong Joo Koo et al. "Composition of 
isolated synaptic boutons reveals the amounts of vesicle trafficking proteins." 
Science 344, no. 6187 (2014): 1023-1028.

4.8 Allen Brain Atlas M. J. Hawrylycz et al., An anatomically comprehensive atlas of the adult human 
brain transcriptome. Nature 489, 391-399 (2012).

4.9 Proteomic analysis 
of the mouse brain

K. Sharma et al., Cell type-and brain region-resolved mouse brain proteome. 
Nature neuroscience 18, 1819 (2015).

4.10 Allen Brain Atlas M. J. Hawrylycz et al., An anatomically comprehensive atlas of the adult human 
brain transcriptome. Nature 489, 391-399 (2012).



4.4.3 Key subproteome construction 

In this chapter, both the metastable subproteome, and a subproteome of highly 

supersaturated proteins are used in analysis. Details of how these subproteomes are 

defined are given in sections 3.4.8 and 3.4.9.  

4.4.4 Categorisation of neurons as excitatory or inhibitory  

The cell categorisation method used in this chapter was taken from the one used in 

the Allen Brain Atlas to sort excitatory and inhibitory neurons from their expression 

signatures [277]. Cells were classified as either excitatory or inhibitory neurons or 

non-neuronal based on gene expression. Cells were classified as excitatory if the 

maximum expression of excitatory genes (Slc17a6, Slc17a7) was greater than the 

maximum expression of inhibitory (Gad1, Gad2, Slc32a1) or non-neuronal (Olig1, 

Gja1, Xdh, Ctss, Myl9) genes. Cells were classified as inhibitory if the maximum 

expression of inhibitory (Gad1, Gad2, Slc32a1) genes was greater than the maximum 

expression of excitatory (Slc17a6, Slc17a7) or non-neuronal (Olig1, Gja1, Xdh, Ctss, 

Myl9) genes. All remaining cells were classified as non-neuronal. 

Prior to subsequent analysis, expression data were normalised. For each data set 

(excitatory or inhibitory), for each expression reading, the relative expression was 

calculated for each gene within each cell type (excitatory or inhibitory) as 

!  

where Eg,c is the expression for each gene g in a given cell type c, μg,c is the mean 

expression of that gene in a given cell type c, and σg,c is the SD of expression of that 

gene in a given cell type c. 

Tissue samples were limited in the dataset used for this figure, and therefore we 

limited tissue stage categorisations to early Braak (BA21, BA22, BA10, BA41), and 

late Braak (BA17). 



4.4.5 Defining a vulnerability landscape in the brain 

Regions which are described as the most common location for initial onset of four 

prevalent neurodegenerative diseases associated with aberrant aggregation, were 

collected and together define the most vulnerable tissues. Table 4.2 lists these regions 

for each disease (AD, ALS, FTD, and PD).  

Table 4.2 Coding of regional vulnerability to four key neurodegenerative 
diseases 

Disease Allen Brain Atlas Code Brain Regions

AD PHG-l, PHG-cos, CA1, DTA, SptN, SI, AOrG, fro, FP-s, 
FP-I, Gre, trIFG, opIFG,orIFG, IRoG, LOrG, MOrG, 
MFG-s, MFG-i, PCLa-s, PCLa-i, PTG, POrG,  SFG-m, 
SFG-l, SRoG, LiG-pest, LiG-str, Cun-pest, Cun-str, IOG, 
OP, SOG-s, SOG-i, OTG-s, OTG-i, FuG-l, FUG-its, 
FuG-cos, HG, ITG-mts, ITG-l, ITG-its, MTG-s, MTG-i, 
PLP, PLT, STG-i, STG-l, TP-s, TP-i, TP-m, TG, S, CA2, 
CA3, CA4, DG, CgGp-s, CgGp-i, CgGf-s, CgGf-I, CgGr-
i, CgGr-s, SCG, ATZ, BLA, BMA, CeA, COMA, LA

Parahippocampal gyrus, CA1, 
Anterior group of nuclei, Basal 
forebrain - includes septal 
nuclei, and nuclei within the 
substantia innominata, Frontal, 
temporal, and occipital 
association areas, Subiculum, 
CA2, CA3, CA4, Dentate gyrus, 
Cingulate gyrus, Amygdala

PD SNC Substantia nigra pars compacta 

FTD FP-s, Fpi, FPm, MOrG, SFG-m, SFG-l, MFG-s, MFG-i, 
PrG-prc, PrG-sl, PrG-il, PrG-cs, SFG-m, SFG-l, MFG-s, 
MFG-i , DG, CA1, CA2, CA3, CA4,  IG, S, ATZ, AAA, 
BLA, BMA, CeA, COMA, IA, LA, NLOT, PLA, CgGf-s, 
CgGf-i, SMG-s, SMG-i

Frontal pole, Medial orbital 
frontal gyrus, Superior frontal 
gyrus, Precentral gyrus, Dentate 
gyrus, hippocampus, Amygdala, 
Frontal cingulate gyrus, 
Supramarginal gyrus

ALS PrG-prc, PrG-sl, PrG-il, PrG-cs,  SFG-m, SFG-l, MFG-s, 
MFG-i , ACu, Amb, Arc, AP, CGS, CGMe, 8Co, CT, Cu, 
EL, EF, ECu, Gr, 12, IO, DIO, MIO, PrIO, BIO, IS, In, 
IFH, IPo, LPCu, MPCu, CMRt, GiRt, LMRt, PCRt, 
DPGi, LPGi, Gi, GiV, Gia, LMRt, EO, LRt, LRtPC, 
LRtS5, PCRt, Ro, Pa5, Pe5, PnB, Pr, Ramb, Sol, SolC, 
SolD, SolDL, SolG, SolI, SolIM, SolM, SolPaC, SolV, 
SolV, Sp5, Sp5C, Sp5Cg, SP5Cm, SP5Cz, Sp5I, Sp5O, 
Sge, SSp, 8Ve, ac, cc, hbc, hc, pc, smc, ar, arf, alv, 
amtg, agb, al, ap, bx, cgb, comb, cor, cbu, cbu-sc, cbu-
ic, ec, emlgp, emlth, exc, fx, afx, bfx, fi, pfx, ilf, ithp, ic, 
imlgp, imlth, lls, lef, mp, mtg, mtt, mfb, mls, or-lp, milf, 
off , orpt, perf, ppf, ponb, rthp, sst, saf, szt, sm, st, scf, 
sthf, sprs, slf, thf, uf, 12, Amb, 5, 7

Agranular motor neocortex - 
Broadmann areas 4,6
Medulla oblongata at the level of 
N. XII - bulbar somatomotor 
neurons of N. XII 



4.4.6 Relative expression for cell types 

Data were obtained from a previous mRNA sequencing study of human brain tissue 

[266]. To evaluate the vulnerability of different brain cell types (figures 4.3-4.5), the 

relative expression was calculated for each gene within each cell type as 

!  

where Eg,c is the expression for each gene g in a given cell type c, μg,c is the mean 

expression of that gene in a given cell type c, and σg,c is the SD of expression of that 

gene in a given cell type c. 



5 Conclusions 

In this thesis we have investigated the molecular origins of neurodegenerative 

diseases by an approach based on the analysis of the vulnerability of different cellular 

environments to protein aggregation. We have thus identified specific gene signatures 

in biological environments most vulnerable to neurodegenerative diseases which 

predispose to protein homeostasis loss.  

For AD, the main focus of this work, we have shown that subproteomes related to AD-

specific aggregation are found at elevated relative expression in vulnerable tissues, 

cell types, neuron types, and sub-neuronal localisations in normal brains. Quite 

generally, regions of the brain where a neurodegenerative disease first incepts appear 

to suffer from both elevated levels of a set of proteins known to be at high risk of 

aggregation (supersaturated proteins), and an expression signature which predisposes 

the protein homeostasis loss specific to the disease in question. In the case of AD, 

tissues that succumb early in disease progression have been found to have elevated 

expression of the primary aggregators found in plaques and tangles (Aβ and tau 

respectively), in addition to elevated relative expression of co-aggregators. 

Furthermore, levels of the proteins which regulate the aggregation of  Aβ and tau are 

sufficient to predict the progression of AD through the brain, as is the metastable 

subproteome, an AD-specific supersaturated subset of proteins. 

This analytical perspective has currently a number of limitations. Primarily, the 

analysis that we have reported is restricted by the available data, which are mostly at 

a transcriptional level. A relative lack of proteomic data limits at the moment our 

ability to directly interrogate the proteomic environment, which is clearly the one most 

directly implicated in protein aggregation. However, a homeostasis-associated 

vulnerability signature has been found in this work also at the proteomic level, at 

least for the limited data currently available at this level [273], indicating that our 

expression-level results may reflect the proteomic signature of the environment under 

study.  



Data with greater breath and granularity, particularly at the tissue and the single-cell 

levels, would open up a number of new scientific opportunities. It would allow the 

evaluation of the relative weight which a number of factors, both within this study and 

external to it, have on tissue vulnerability. It would allow one to predict whether 

predisposition to Aβ or tau aggregation is more spatially related cell atrophy. It would 

allow one to untangle the relative roles of tissue vulnerability and connectivity in 

disease spread. Furthermore, these data would create an opportunity for models to be 

developed, where minimum solutions reveal the specific genes that correlate best with 

disease progression.  

We should mention that the regulation of protein homeostasis is likely to involve 

many other cellular factors in addition to those considered here, including lipids, 

sugars, metabolites and nucleic acids. Although the impact of these factors on protein 

homeostasis is currently too limited to enable their systematic studies, we anticipate 

that advances in high-throughput experimental techniques will in the future enable 

the compilation of detailed lists of these cellular components, which in turn will make 

it possible to identify their specific roles in the avoidance of the toxic consequences of 

protein aggregation.  

This unbiased approach could reveal new targets for the understanding and treatment 

of neurodegenerative diseases. With burgeoning scientific capabilities, we are just 

beginning to investigate the microenvironments within neuronal synapses, which may 

eventually lead to a mechanistic explanation of why these subcellular species are so 

vulnerable and why tau becomes so aggregation prone.  

In summary, this work adds to a body of evidence that characterises protein 

homeostasis as an important component in the pathogenesis of neurodegenerative 

diseases. In a field where the factors influencing disease inception and progression 

still remain under debate, this work should help to add clarity, and promote new, 

helpful investigative avenues.   
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