
Accepted Manuscript

Raman spectral indicators of catalyst decoupling for transfer of CVD grown 2D
materials

Patrick R. Whelan, Bjarke S. Jessen, Ruizhi Wang, Birong Luo, Adam C. Stoot,
David M.A. Mackenzie, Philipp Braeuninger-Weimer, Alex Jouvray, Lutz Prager, Luca
Camilli, Stephan Hofmann, Peter Bøggild, Timothy J. Booth

PII: S0008-6223(17)30156-2

DOI: 10.1016/j.carbon.2017.02.028

Reference: CARBON 11745

To appear in: Carbon

Received Date: 21 November 2016

Revised Date: 13 January 2017

Accepted Date: 9 February 2017

Please cite this article as: P.R. Whelan, B.S. Jessen, R. Wang, B. Luo, A.C. Stoot, D.M.A. Mackenzie,
P. Braeuninger-Weimer, A. Jouvray, L. Prager, L. Camilli, S. Hofmann, P. Bøggild, T.J. Booth, Raman
spectral indicators of catalyst decoupling for transfer of CVD grown 2D materials, Carbon (2017), doi:
10.1016/j.carbon.2017.02.028.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.carbon.2017.02.028


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

1 
 

Article type: Research Paper 
 

Raman Spectral Indicators of Catalyst Decoupling for Transfer of CVD Grown 2D Materials 
 
Patrick R. Whelana, Bjarke S. Jessena,b, Ruizhi Wangc, Birong Luoa, Adam C. Stoota, David M. A. 
Mackenziea, Philipp Braeuninger-Weimerc, Alex Jouvrayd, Lutz Pragere, Luca Camillia, Stephan 
Hofmannc, Peter Bøggilda,b, and Timothy J. Bootha*  
 
*E-mail: tim.booth@nanotech.dtu.dk 

aDTU Nanotech, Technical University of Denmark, Ørsteds Plads 345C, DK-2800, Denmark 
bCenter for Nanostructured Graphene (CNG), Technical University of Denmark, DK-2800, 
Denmark 
cDepartment of Engineering, University of Cambridge, Cambridge, CB3 0FA, United Kingdom 
dAIXTRON Ltd, Anderson Road, Buckingway Business Park, Swavesey, Cambridge, CB24 4FQ, 
United Kingdom 
eLeibniz-Institut für Oberflächenmodifizierung e.V. Permoserstrasse 15, 04318 Leipzig, Germany 
 
 

Abstract 

Through a combination of monitoring the Raman spectral characteristics of 2D materials grown on 

copper catalyst layers, and wafer scale automated detection of the fraction of transferred material, 

we reproducibly achieve transfers with over 97.5% monolayer hexagonal boron nitride and 99.7% 

monolayer graphene coverage, for up to 300 mm diameter wafers. We find a strong correlation 

between the transfer coverage obtained for graphene and the emergence of a lower wavenumber 2D- 

peak component, with the concurrent disappearance of the higher wavenumber 2D+ peak 

component during oxidation of the catalyst surface. The 2D peak characteristics can therefore act as 

an unambiguous predictor of the success of the transfer. The combined monitoring and transfer 

process presented here is highly scalable and amenable for roll-to-roll processing.  
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1. Introduction 

Transfer of graphene and other 2D materials from catalytic growth substrates is typically performed 

by complete dissolution of the copper catalyst layer[1–4] – however, this can negatively impact the 

properties of the transferred materials due to contamination by residues of the catalyst and etching 

solution.[5,6] Furthermore, the recovery of dissolved catalyst or disposal has consequences for the 

cost and environmental impact of such processes. Transfer of 2D materials has also been achieved 

by a variety of techniques that do not require destruction of the catalyst, including mechanical 

peeling,[7–9] electrochemical delamination by hydrogen evolution,[10–13] interfacial 

oxidation,[14] and a range of intercalation based techniques.[15–18] The common element between 

all of these transfer methods is the requirement to decouple graphene from the catalyst layer without 

the introduction of mechanical damage or contamination. 

Here we show that the degree of decoupling of graphene from a copper catalyst layer can be 

measured, and the subsequent coverage of transferred graphene on a target substrate accurately 

predicted by monitoring the evolution of the graphene 2D peak characteristics during the 

decoupling process. We use a water-based catalyst oxidation at elevated temperature and 

subsequent mechanical peeling as a model transfer system to demonstrate the utility of this 

technique. Automated large-scale optical microscopic mapping of the transferred materials enables 

us to measure the precise resulting coverage and extent of mechanical damage and other possible 

inhomogeneities - including second and third layer growths and polymer residues. This allows us to 

directly correlate the extent of the graphene transferred with the Raman 2D peak spectral 

characteristics. 
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2. Experimental Section 

2.1. 2D materials growth 

Graphene was synthesized by chemical vapor depositiong (CVD) in a cold wall system (Aixtron 

Black Magic Pro 4”) on either a 1.5 µm film of sputtered Cu supported by an oxidized Si wafer or 

on electropolished Cu foil (25 µm thick, polished in 20 % phosphoric acid). 300 mm graphene 

wafers were synthesized using an Aixtron BM300T cold wall CVD system on commercially 

available Cu/SiO2/Si wafers. The CVD growth of graphene on Cu, which follows published 

recipes,[19–21] consists of an initial annealing phase in a H2/Ar atmosphere and a growth phase in 

which a CH4 precursor is introduced in the chamber. Finally, the sample was cooled down to room 

temperature with an Ar flow. The graphene domain size is on the order of 10-20 µm analyzed from 

scanning electron microscopy (SEM) images of incomplete growth.  

Growth of hexagonal boron nitride (hBN) was performed on electropolished Cu foil. A commercial 

tube furnace (MTIx) was used to bring the sample to 900°C before adding a flow of 3 sccm argon-

bubbled borazine, 15 sccm hydrogen and 300 sccm argon over the sample for 15 minutes at 60 torr. 

Only the argon flow was maintained during cool-down to room temperature. 

2.2 Transfer of 2D materials 

The model transfer method, adapted from that presented by Yang et al.[7], is outlined in Fig. 1a-f. 

Cu was oxidized beneath the graphene layer by immersing samples in deionized water. The 

graphene/Cu sample was washed in isopropyl alcohol (IPA) and dried under a nitrogen flow. 

Polyvinyl alcohol (PVA) solution (5 g PVA and 1 g glycerol per 100 mL DI water) was drop coated 

onto the sample and dried on a hotplate at 80°C. Glycerol was added as plasticizer[22] to the PVA 

solution to soften the polymer. Thermal release tape (TRT) was used to support mechanical peeling 

of PVA/graphene from the Cu substrate and the TRT/PVA/graphene stack was subsequently 

pressed onto the target substrate at 130°C to release the TRT support. The PVA/graphene was left 
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on the target substrate for 5 minutes at 130°C before placement in water at 40°C for 3 h to dissolve 

the PVA. We also performed additional transfers using a roll-to-roll silica-coated polymer film[23], 

250 mm wide, used as a flexible single-layer gas barrier in applications as a substitute for TRT. 

Finally, the graphene/target substrate was rinsed with IPA and dried under a nitrogen flow. The 

exact same steps were followed for transfer of hBN from Cu onto SiO2. The target substrate is 

silicon with 90 nm SiO2 unless stated otherwise. 

2.3 Characterization 

Raman measurements were conducted using a Thermo DXRxi Raman Spectrometer with a 455 nm 

laser. Raman spectra of Cu/graphene samples during water oxidation were acquired by removing 

the sample from water for measurements at specific time steps before re-immersion. The Raman 

spectra presented from Cu/graphene samples are the average of at least 16 Raman spectra acquired 

from the same region on the sample. Raman peak intensities and positions were found by fitting 

individual Raman peaks of the average spectrum to Lorentzian functions with error bars 

representing the standard error on the fit. The hBN peak position on SiO2 was determined by fitting 

to a single Lorentzian function. 

Optical images were acquired with either a Nikon Eclipse LN200 or a Nikon Eclipse LV150N. To 

determine the coverage of graphene, we start by calculating the wavelength-dependent contrast of 

graphene.[24] Using the red, green, and blue (RGB) spectral response functions of the CCD sensor, 

we can obtain the numerical RGB profile for every pixel corresponding to silicon oxide, single layer 

graphene, and bilayer graphene.[14] Pixels which do not fall into any of these three categories are 

labelled as ’other’ (three or more layers of graphene and other sources of contrast such as polymer 

residues), and the coverage values presented in this paper thus represent a lower bound, as pixels 

containing both graphene and residues will only count towards the coverage of residues. The 

graphene coverage values presented here are the average of coverage data from at least 5 images of 
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1440 by 1070 pixels at a resolution of 0.241 µm/pixel with error bars representing the standard error 

on the mean. The coverage of a material is determined by dividing the total number of pixels 

corresponding to that material (in practice single layer or single and bilayer graphene) by the 

number of pixels with SiO2, single and bilayer graphene contrast. Similarly, a coverage map of hBN 

can be made by calculating the relative wavelength-dependent contrast.[25] 

Transmission electron microscopy (TEM) was performed with a Tecnai T20 G2 TEM operated at 

200 kV. Lamellas for TEM analysis were prepared by focused ion beam (FIB) liftouts onto TEM 

grids in a Helios NanoLAB 600 SEM equipped with an ion beam gun and an Oxford Omniprobe 

micro manipulator. A thin layer of Pt was deposited on the area of the extracted Cu/graphene 

sample as a protection layer from ion beam damage while trimming the lamella down to a thickness 

below 100 nm. 

X-ray photoelectron spectroscopy (XPS) was performed using a commercial Thermo Scientific K-

Alpha with a monochromized Al Kα source. 

3. Results 

CVD-grown graphene on copper samples are immersed in water for fixed durations from 0 to 150 

minutes (Fig. 1a) before a PVA based mechanical peeling process is applied to transfer the 

graphene to SiO2 substrates (Fig. 1b-f). Raman spectra acquired during water oxidation show a 

redshift in the G peak from 1585 to 1579 cm-1, along with a characteristic splitting of the 2D peak 

into 2D+ and 2D- components at 2706 cm-1 and 2685 cm-1, respectively (Fig. 1g,h). The 2D+ peak 

intensity decreases with extended oxidation in water, with the 2D- peak intensity simultaneously 

increasing. A similar shift in the 2D peak position after Cu oxidation in ambient air[26] and in 

water[27] has previously been reported. Six Raman peaks appear in the range from 200 cm-1 to 800 

cm-1 after the sample has been immersed in water (Supplementary Fig. S1) with the intensity 

increasing after longer oxidation time. All the six peaks can be identified as Cu2O and CuO 
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peaks,[28–30] indicating that oxidation of the Cu surface is taking place under the graphene. 

Gigapixel optical microscopic mapping of the transferred graphene layers (Fig. 1i-k) shows distinct 

regions which  can be assigned, based on pixel contrast to either SiO2, single layer graphene (SLG), 

bilayer graphene (BLG) or ‘other’ corresponding to both three or more layers of graphene and other 

sources of contrast. ‘SiO2’ areas represent regions where graphene was not transferred, where 

graphene was damaged/folded during transfer, or missing graphene regions in the original growth. 

Bilayer and ‘other’ contrasts are obtained from multilayer regions resulting from the growth (Fig. 

1k), and from folded and rolled up monolayer regions caused by mechanical damage that occurs to 

the graphene during transfer (Fig. 1i, j). 
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Fig. 1. (a) Graphene on a copper catalyst layer is oxidized in deionized water at elevated 
temperature. (b) PVA is applied by spin coating and a thermal release tape applied as a support. (c) 
The graphene and PVA are mechanically peeled from the substrate, and (d) adhered to a target 
substrate. (e) Elevated temperature is used to remove the thermal release tape support layer, and (f) 
DI water is used to remove the PVA. (g) Raman G and (h) 2D peaks acquired from Cu/graphene 
samples for different oxidation times in 40°C water. Intensities are normalized to the G peak 
intensity. A small redshift in G peak with oxidation time is accompanied by the suppression of the 
2D+ peak at 2706 cm-1 and increase in intensity of the 2D- peak at 2685 cm-1. (i-k) White light 
optical microscopy (left) and coverage images (right) of graphene transferred to SiO2 after 
immersion for 15, 60, and 120 minutes, respectively, in 40°C water. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

8 
 

The coverage of graphene obtained by this technique increases with increasing oxidation time in 

water from 0% to nearly 100% (Fig. 2a). More importantly, the characteristics of the Raman 2D 

peak are strongly correlated with the coverage of graphene obtained by transfer. We define the ratio 

Θ	=	
I(2D-)

I(2D-)+I(2D+)
 

where I(2D+) and I(2D-) denote the maximum intensities of the peaks at 2706 cm-1 and 2685 cm-1 

respectively. Θ is a useful indicator of the expected coverage obtained in our experiments where 

oxidation proceeds at 40°C (Fig. 2b) Moreover, Θ is a better indicator of the coverage than the 

oxidation time, as the obtained coverage saturates for times over 120 minutes in this case when the 

sample is fully oxidized and Θ approaches 1. We note that in cases where the oxidation of copper is 

performed at room temperature the graphene coverage does not approach 100% until Θ reaches 1, 

i.e. until the complete disappearance of the 2D+ peak (Supplementary Fig. S2, Discussion). 

Optical images of graphene on Cu foil before and after immersion in water illustrate how the Cu 

oxidation is initiated along lines on the Cu surface (Fig. 2c-d). A more homogeneous oxidation of 

the surface first occurs after prolonged oxidation time (Fig. 2e).  

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

9 
 

  

Graphene grown on thin-film catalyst layers of up to 300 mm diameter display a homogeneous 

monolayer characteristic which is maintained after transfer by this technique, with over 99.7% of 

the mapped areas showing monolayer graphene contrast (Fig. 3a). The remaining 0.3% consists in 

the majority of holes, resulting either from untransferred graphene or holes in the as-grown 

graphene layer. The quality of the graphene as determined from distributions of the Raman 

I(D)/I(G) peak intensity ratios and the 2D peak full width at half maximum (FWHM), Γ2D, at 100 

individual random points on the sample surface reveal very low defect density with the mean 

I(D)/I(G) < 0.058 ± 0.025 and Γ2D of 36.5 ± 1.7 cm-1, which is consistent with previously reported 

values for graphene transfers (Fig. 3b-d).[19,31,32]  

Fig. 2.  (a) Graphene coverage on SiO2 after transfer as function of the oxidation time in DI water at 
40°C. (b) Graphene coverage on SiO2 after transfer as a function of Θ. (c) Optical image of 
Cu/graphene before immersion in water. (d,e) Optical images of Cu/graphene after immersion in 
water for 30 and 150 minutes, respectively. 
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Fig. 3. Graphene transferred from thin film Cu 
on a 12 inch Si wafer. (a) White light optical 
microscopy (left) and coverage image (right) 
of graphene transferred to SiO2. Inset shows a 
photograph of graphene being transferred from 
a 12-inch wafer using PVA. (b) A 
representative Raman spectrum from the 
sample shown in (a). (c,d) Histograms of 
I(D)/I(G) peak ratios and Γ2D. 
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Cross-sectional samples of the graphene on catalyst structure after water oxidation were prepared 

by FIB and studied via TEM. Water oxidized samples show a uniform 4.3 ± 0.8Å layered structure 

(Fig. 4a,b) which corresponds well to the cubic Cu2O lattice parameter of 4.26 Å,[33] but with a 

relatively large variation across the interface reflected in the spread of this measurement. In 

addition, we observe voids up to 100 nm in diameter in the catalyst layer (Fig. 4c) in samples 

oxidized for > 10 hours.  

 

 

 

 

 

 

 

 

 

 

We note that the choice of polymer plays a role in the transferred material coverage, with PVA 

transfers providing the highest coverage here. We also tested poly(methyl methacrylate), 

polypropylene carbonate, polyvinyl butyral, cellulose acetate butyrate, and polyvinylpyrrolidone as 

support layers for the transfer with otherwise identical transfer procedures, but none resulted in 

coverages as high as those obtained for PVA-based transfers (Supplementary Fig. S3).  

Fig. 4.  (a) TEM image of Cu/graphene 
interface after water oxidation showing a 
layered structure. (b) Line profile for the line 
across the interface in (a). (c) TEM image of 
Cu/graphene interface after water oxidation 
with arrows highlighting voids in the catalyst 
layer. 
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Additionally, we successfully transferred large areas of single layer CVD-grown hBN from 

commercially available Cu foil. XPS was used to confirm the expected stoichiometry of hBN on Cu 

before oxidation (Supplementary Fig. S4). It has previously been shown that ambient oxygen can 

intercalate and oxidize the interface between hBN and Cu.[34] A sample was oxidized in water at 

40°C for 24 hours and the hBN was subsequently transferred using PVA. Optical and coverage 

images of hBN transferred to SiO2 are shown in Fig. 5a. The hBN to SiO2 coverage of the sample is 

97.5%. The hBN Raman peak at 1369 cm-1 is in good agreement with the expected value for single 

layer hBN (Fig. 5b).[25,35] Transfers of hBN were carried out after different immersion times in 

water at 40°C. There was a clear difference in the hBN coverage on SiO2 after transfer for 90 

minutes and 120 minutes of immersion (Supplementary Fig. S5). 

 

 

Fig. 5.  (a) White light optical microscopy 
(left) and coverage map (right) of hBN on 
SiO2. (b) Raman spectrum of single layer hBN 
on SiO2. Points indicate the raw data, while a 
Lorentzian fit is shown as a solid line. 
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4. Discussion 

Cu2O and CuO are formed naturally when Cu is exposed to dissolved oxygen according to the 

reactions[17]  

2Cu+O2+ 2H2O → 2Cu(OH)2  and  3Cu(OH)2 → CuO+Cu2O+3H2O+½O2. 

These reactions occur at imperfections in CVD grown graphene (and hBN) such as wrinkles, grain 

boundaries, atomic defects, and directly exposed Cu areas due to incomplete growth, and 

subsequently spreads underneath the graphene covered areas.[36–39]  

Raman spectrometry samples a small region of the surface of the sample defined by the laser spot 

size (typically less than 1 µm FWHM if a 50x or above objective is used), which can contain both 

oxidized and unoxidized regions. Spatially inhomogeneous decoupling of the graphene from the 

substrate is the most probable source of the simultaneous presence of two 2D peak components. As 

a result, monitoring for the complete disappearance of the 2D+ peak and its substitution with the 2D- 

peak, i.e. when Θ = 1, enables the point of complete decoupling of the graphene from the surface to 

be precisely determined. We note that in some cases, samples can acquire an oxide layer under 

ambient conditions: that is, through contact with atmosphere. In these cases a short duration water 

oxidation does not lead to the degree of coverage that would be expected from the value of Θ 

(Supplementary Fig. S2). It is therefore likely that the oxidation of the copper catalyst layer is a 

necessary but not sufficient criterion for the complete transfer of graphene.  

TEM evidence of catalyst surface pitting for water oxidized samples provides some insight here. In 

order to dissolve the catalyst layer and produce voids over the surface, there must be good exchange 

of electrolyte between the water bath and the pitting region. This implies that there is a layer of 

intercalated water between the catalyst and graphene which mediates this pitting and assists in 

decoupling the graphene from the substrate. In this instance, the graphene acts as an electrode and 
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provides one half of a galvanic cell which enables this pitting to take place, albeit more slowly in 

deionized water. 

Clearly, such galvanic reactions are not required for the successful complete transfer of CVD grown 

2D materials, as demonstrated by our transfer of CVD grown and non-conductive hBN. Here, only 

the oxidation of the catalyst layer and water intercalation can play a role in decoupling the 2D 

material from the catalyst substrate.  

The Raman monitoring technique we present is applicable to any transfer where graphene is 

delaminated from the catalyst surface by overcoming adhesion forces directly, as opposed to by 

dissolution of the catalyst chemically or electrochemically. The monitoring of transfer-readiness of 

multilayer graphene from, e.g. nickel catalysts and other 2D materials is complicated by the Raman 

response of layers within the bulk which are not in direct contact with the substrate and are not 

modified by decoupling, and in this study by the ability to achieve partial transfers of the thickness 

of such multilayers by mechanical exfoliation when peeling, leaving some layers behind on the 

growth substrate.    

Θ is particularly useful for monitoring the progress of the decoupling for graphene, however hBN 

does not display any Raman spectral peaks with a similar characteristic splitting behavior, so the 

readiness for transfer must be inferred using graphene-based calibration of time and temperature of 

intercalation. Other 2D materials may display unambiguous spectral characteristics of decoupling 

from growth catalysts similar to graphene. Monitoring of the copper oxide Raman spectral peaks 

themselves unfortunately does not provide an unambiguous determinant of the degree of decoupling 

achieved, since a complementary spectral component that decreases with increasing decoupling is 

also ideally required. 
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5. Conclusion 

In conclusion, we have systematically studied the relationship between the evolution of the Raman 

spectra of graphene on Cu during water oxidation and the graphene coverage after transfer. Our 

results show that it is possible to determine at which point the graphene is sufficiently decoupled 

from the Cu substrate to be transferred, which in our case led to coverage of up to 99.7%. Changes 

in the Raman 2D peak characteristics (Θ) give a reliable indication of the decoupling time, i.e. the 

time required for the oxidation process to fully decouple the graphene layer. We expect that Raman 

spectroscopy could consequently be used both for detecting the decoupling time before transfer and 

for post-transfer characterization. 

 

 

Acknowledgements 
P.R.W and A.C.S. acknowledge financial support from Innovation Fund Denmark Da-Gate 0603-
005668B. P.R.W., B.L., A.J., L.P. and T.J.B. acknowledge financial support from EU FP7-604000 
‘GLADIATOR’. P.B. and B.S.J. thank the Danish National Research Foundation Centre for 
Nanostructured graphene, DNRF103, and EU Horizon 2020 'Graphene Flagship' 696656. R.W. 
acknowledges EPSRC Doctoral Training Award (EP/M506485/1). L.C. acknowledges funding 
from the People Programme (Marie Curie Actions) of the European Union Horizon2020 (H2020-
MSCA-IF-2014) under grant agreement 658327, 2D Hetero-architecture. 
 
 
Appendix A. Supplementary data 

Supplementary data associated with this article can be found, in the online version, at … 

 
 
 

  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

16 
 

[1] S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. Il Song, Y.-J. Kim, 
K.S. Kim, B. Özyilmaz, J.-H. Ahn, B.H. Hong, S. Iijima, Roll-to-roll production of 30-inch graphene films 
for transparent electrodes, Nat. Nanotechnol. 5 (2010) 574–578. doi:10.1038/nnano.2010.132. 

[2] Y. Lee, S. Bae, H. Jang, S. Jang, S.-E. Zhu, S.H. Sim, Y. Il Song, B.H. Hong, J.-H. Ahn, Wafer-Scale 
Synthesis and Transfer of graphene films, Nano Lett. 10 (2010) 490–3. doi:10.1021/nl903272n. 

[3] X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R.D. Piner, L. Colomba, R.S. Ruoff, Transfer of 
large-area graphene films for high-performance transparent conductive electrodes, Nano Lett. 9 
(2009) 4359–4363. doi:10.1021/nl902623y. 

[4] X.D. Chen, Z.B. Liu, C.Y. Zheng, F. Xing, X.Q. Yan, Y. Chen, J.G. Tian, High-quality and efficient transfer 
of large-area graphene films onto different substrates, Carbon. 56 (2013) 271–278. 
doi:10.1016/j.carbon.2013.01.011. 

[5] A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, C.W. Magnuson, S. McDonnell, L. Colombo, E.M. Vogel, 
R.S. Ruoff, R.M. Wallace, The effect of chemical residues on the physical and electrical properties of 
chemical vapor deposited graphene transferred to SiO2, Appl. Phys. Lett. 99 (2011) 47–50. 
doi:10.1063/1.3643444. 

[6] G. Lupina, J. Kitzmann, I. Costina, M. Lukosius, C. Wenger, A. Wolff, I. Pasternak, A. Krajewska, W. 
Strupinski, S. Vaziri, O. Mikael, S. Kataria, A. Gahoi, M.C. Lemme, G. Ruhl, G. Zoth, O. Luxenhofer, 
Residual Metallic Contamination of Transferred Chemical Vapor Deposited Graphene, ACS Nano. 9 
(2015) 4776–4785. doi:10.1021/acsnano.5b01261. 

[7] S.Y. Yang, J.G. Oh, D.Y. Jung, H. Choi, C.H. Yu, J. Shin, C.G. Choi, B.J. Cho, S.Y. Choi, Metal-etching-free 
direct delamination and transfer of single-layer graphene with a high degree of freedom, Small. 11 
(2015) 175–181. doi:10.1002/smll.201401196. 

[8] G.J.M. Fechine, I. Martin-Fernandez, G. Yiapanis, R. Bentini, E.S. Kulkarni, R. V. Bof De Oliveira, X. Hu, 
I. Yarovsky, A.H. Castro Neto, B. Özyilmaz, Direct dry transfer of chemical vapor deposition graphene 
to polymeric substrates, Carbon 83 (2015) 224–231. doi:10.1016/j.carbon.2014.11.038. 

[9] S.R. Na, J.W. Suk, L. Tao, D. Akinwande, R.S. Ruoff, R. Huang, K.M. Liechti, Selective mechanical 
transfer of graphene from seed copper foil using rate effects, ACS Nano. 9 (2015) 1325–1335. 
doi:10.1021/nn505178g. 

[10] C.T. Cherian, F. Giustiniano, I. Martin-Fernandez, H. Andersen, J. Balakrishnan, B. Özyilmaz, “Bubble-
free” electrochemical delamination of CVD graphene films, Small. 11 (2015) 189–194. 
doi:10.1002/smll.201402024. 

[11] L. Gao, W. Ren, H. Xu, L. Jin, Z. Wang, T. Ma, L.-P. Ma, Z. Zhang, Q. Fu, L.-M. Peng, X. Bao, H.-M. 
Cheng, Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains 
using platinum, Nat. Commun. 3 (2012) 699. doi:10.1038/ncomms1702. 

[12] L. Liu, X. Liu, Z. Zhan, W. Guo, C. Xu, J. Deng, D. Chakarov, P. Hyldgaard, E. Schröder, A. Yurgens, J. 
Sun, A Mechanism for Highly Efficient Electrochemical Bubbling Delamination of CVD-Grown 
Graphene from Metal Substrates, Adv. Mater. Interfaces. (2015). doi:10.1002/admi.201500492. 

[13] Y. Wang, Y. Zheng, X. Xu, E. Dubuisson, Q. Bao, J. Lu, K.P. Loh, Electrochemical delamination of CVD-
grown graphene film: Toward the recyclable use of copper catalyst, ACS Nano. 5 (2011) 9927–9933. 
doi:10.1021/nn203700w. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

17 
 

[14] F. Pizzocchero, B.S. Jessen, P.R. Whelan, N. Kostesha, S. Lee, J.D. Buron, I. Petrushina, M.B. Larsen, P. 
Greenwood, W.J. Cha, K. Teo, P.U. Jepsen, J. Hone, P. Bøggild, T.J. Booth, Non-destructive 
electrochemical graphene transfer from reusable thin-film catalysts, Carbon. 85 (2015) 397–405. 

[15] L. Koefoed, M. Kongsfelt, S. Ulstrup, A.G. Čabo, A. Cassidy, P.R. Whelan, M. Bianchi, M. Dendzik, F. 
Pizzocchero, B. Jørgensen, P. Bøggild, L. Hornekær, P. Hofmann, S.U. Pedersen, K. Daasbjerg, Facile 
electrochemical transfer of large-area single crystal epitaxial graphene from Ir(1 1 1), J. Phys. D. 
Appl. Phys. 48 (2015) 115306. 

[16] P. Gupta, P.D. Dongare, S. Grover, S. Dubey, H. Mamgain, A. Bhattacharya, M.M. Deshmukh, A facile 
process for soak-and-peel delamination of CVD graphene from substrates using water., Sci. Rep. 4 
(2014) 3882. doi:10.1038/srep03882. 

[17] B.N. Chandrashekar, B. Deng, A.S. Smitha, Y. Chen, C. Tan, H. Zhang, H. Peng, Z. Liu, Roll-to-Roll 
Green Transfer of CVD Graphene onto Plastic for a Transparent and Flexible Triboelectric 
Nanogenerator, Adv. Mater. 27 (2015) 5210–5216. doi:10.1002/adma.201502560. 

[18] R. Wang, P.R. Whelan, P. Braeuninger-Weimer, S. Tappertzhofen, J.A. Alexander-Webber, Z.A. Van-
Veldhoven, P.R. Kidambi, B.S. Jessen, T.J. Booth, P. Bøggild, S. Hofmann, Catalyst Interface 
Engineering for Improved 2D Film Lift-Off and Transfer, ACS Appl. Mater. Interfaces. 8 (2016) 33072-
33082. doi:10.1021/acsami.6b11685. 

[19] L. Tao, J. Lee, M. Holt, H. Chou, S.J. McDonnell, D.A. Ferrer, M.G. Babenco, R.M. Wallace, S.K. 
Banerjee, R.S. Ruoff, D. Akinwande, Uniform wafer-scale chemical vapor deposition of graphene on 
evaporated Cu (111) film with quality comparable to exfoliated monolayer, J. Phys. Chem. C. 116 
(2012) 24068–24074. doi:10.1021/jp3068848. 

[20] S. Chen, H. Ji, H. Chou, Q. Li, H. Li, J.W. Suk, R. Piner, L. Liao, W. Cai, R.S. Ruoff, Millimeter-size single-
crystal graphene by suppressing evaporative loss of Cu during low pressure chemical vapor 
deposition, Adv. Mater. 25 (2013) 2062–2065. doi:10.1002/adma.201204000. 

[21] V. Miseikis, D. Convertino, N. Mishra, M. Gemmi, T. Mashoff, S. Heun, N. Haghighian, F. Bisio, M. 
Canepa, V. Piazza, C. Coletti, Rapid CVD growth of millimetre-sized single crystal graphene using a 
cold-wall reactor, 2D Mater. 2 (2015) 14006. doi:10.1088/2053-1583/2/1/014006. 

[22] L. Lim, L.S.C. Wan, The effect of plasticizers on the properties of polyvinyl alcohol films, Drug Dev. 
Ind. Pharm. 20 (1994) 1007–1020. doi:10.3109/03639049409038347. 

[23] L. Prager, U. Helmstedt, H. Herrnberger, O. Kahle, F. Kita, M. Münch, A. Pender, A. Prager, J.W. 
Gerlach, M. Stasiak, Photochemical approach to high-barrier films for the encapsulation of flexible 
laminary electronic devices, Thin Solid Films. 570 (2014) 87–95. doi:10.1016/j.tsf.2014.09.014. 

[24] P. Blake, E.W. Hill, A.H. Castro Neto, K.S. Novoselov, D. Jiang, R. Yang, T.J. Booth, A.K. Geim, Making 
graphene visible, Appl. Phys. Lett. 91 (2007) 63124. doi:10.1063/1.2768624. 

[25] R. V. Gorbachev, I. Riaz, R.R. Nair, R. Jalil, L. Britnell, B.D. Belle, E.W. Hill, K.S. Novoselov, K. 
Watanabe, T. Taniguchi, A.K. Geim, P. Blake, Hunting for monolayer boron nitride: Optical and 
raman signatures, Small. 7 (2011) 465–468. doi:10.1002/smll.201001628. 

[26] X. Yin, Y. Li, F. Ke, C. Lin, H. Zhao, L. Gan, Z. Luo, R. Zhao, T.F. Heinz, Z. Hu, Evolution of the Raman 
spectrum of graphene grown on copper upon oxidation of the substrate, Nano Res. 7 (2014) 1613–
1622. doi:10.1007/s12274-014-0521-0. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

18 
 

[27] R. Wu, L. Gan, X. Ou, Q. Zhang, Z. Luo, Detaching graphene from copper substrate by oxidation-
assisted water intercalation, Carbon N. Y. 98 (2015) 138–143. doi:10.1016/j.carbon.2015.11.002. 

[28] J.C. Hamilton, J.C. Farmer, R.J. Anderson, In Situ Raman Spectroscopy of Anodic Films Formed on 
Copper and Silver in Sodium Hydroxide Solution, J. Electrochem. Soc. 133 (1986) 739. 
doi:10.1149/1.2108666. 

[29] C.A. Melendres, S. Xu, B. Tani, A laser Raman spectroscopic study of anodic corrosion films on silver 
and copper, J. Electrochem. Soc. 162 (1984) 343–349. 

[30] P. Williams, S. Porto, Symmetry-forbidden resonant Raman scattering in Cu2O, Phys. Rev. B. 8 (1973) 
1782. doi:10.1017/CBO9781107415324.004. 

[31] L. Banszerus, M. Schmitz, S. Engels, J. Dauber, M. Oellers, F. Haupt, K. Watanabe, T. Taniguchi, B. 
Beschoten, C. Stampfer, Ultrahigh-mobility graphene devices from chemical vapor deposition on 
reusable copper, Sci. Adv. 1 (2015) 1–6. doi:10.1126/sciadv.1500222. 

[32] J. Choi, H. Kim, J. Park, M.W. Iqbal, M.Z. Iqbal, J. Eom, J. Jung, Enhanced performance of graphene by 
using gold film for transfer and masking process, Curr. Appl. Phys. 14 (2014) 1045–1050. 
doi:10.1016/j.cap.2014.05.002. 

[33] R. Restori, D. Schwarzenbach, Charge Density in Cuprite , Cu2O, Acta Crystallogr. Sect. B Struct. 
Crystallogr. Cryst. Chem. B42 (1986) 201–208. doi:10.1107/S0108768186098336. 

[34] P.R. Kidambi, R. Blume, J. Kling, J.B. Wagner, C. Baehtz, R.S. Weatherup, R. Schloegl, B.C. Bayer, S. 
Hofmann, In situ observations during chemical vapor deposition of hexagonal boron nitride on 
polycrystalline copper, Chem. Mater. 26 (2014) 6380–6392. doi:10.1021/cm502603n. 

[35] R. Arenal, A.C. Ferrari, S. Reich, L. Wirtz, J.Y. Mevellec, S. Lefrant, A. Rubio, A. Loiseau, Raman 
spectroscopy of single-wall boron nitride nanotubes, Nano Lett. 6 (2006) 1812–1816. 
doi:10.1021/nl0602544. 

[36] R. Blume, P.R. Kidambi, B.C. Bayer, R.S. Weatherup, Z.-J. Wang, G. Weinberg, M.-G. Willinger, M. 
Greiner, S. Hofmann, A. Knop-Gericke, R. Schlögl, The influence of intercalated oxygen on the 
properties of graphene on polycrystalline Cu under various environmental conditions., Phys. Chem. 
Chem. Phys. 16 (2014) 25989–6003. doi:10.1039/c4cp04025b. 

[37] A.-Y. Lu, S.-Y. Wei, C.-Y. Wu, Y. Hernandez, T.-Y. Chen, T.-H. Liu, C.-W. Pao, F.-R. Chen, L.-J. Li, Z.-Y. 
Juang, Decoupling of CVD graphene by controlled oxidation of recrystallized Cu, RSC Adv. 2 (2012) 
3008. doi:10.1039/c2ra01281b. 

[38] B. Luo, P.R. Whelan, A. Shivayogimath, D.M.A. Mackenzie, P. Bøggild, T.J. Booth, Copper Oxidation 
through Nucleation Sites of Chemical Vapor Deposited Graphene, Chem. Mater. 28 (2016) 3789–
3795. doi:10.1021/acs.chemmater.6b00752. 

[39] Y.H. Zhang, B. Wang, H.R. Zhang, Z.Y. Chen, Y.Q. Zhang, B. Wang, Y.P. Sui, X.L. Li, X.M. Xie, G.H. Yu, Z. 
Jin, X.Y. Liu, The distribution of wrinkles and their effects on the oxidation resistance of chemical 
vapor deposition graphene, Carbon. 70 (2014) 81–86. doi:10.1016/j.carbon.2013.12.075. 

 

 


