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SUMMARY

Necrosis can induce profound inflammation or be
clinically silent. However, themechanismsunderlying
such tissue specificity are unknown. Interleukin-1a
(IL-1a) is a key danger signal released upon necrosis
that exerts effects on both innate and adaptive
immunity and is considered to be constitutively
active. In contrast, we have shown that necrosis-
induced IL-1a activity is tightly controlled in a cell
type-specific manner. Most cell types examined ex-
pressed a cytosolic IL-1 receptor 2 (IL-1R2) whose
binding to pro-IL-1a inhibited its cytokine activity. In
cell types exhibiting a silent necrotic phenotype,
IL-1R2 remained associated with pro-IL-1a. Cell
types possessing inflammatory necrotic phenotypes
either lacked IL-1R2 or had activated caspase-1
before necrosis, which degraded and dissociated
IL-1R2 from pro-IL-1a. Full IL-1a activity required
cleavage by calpain after necrosis, which increased
its affinity for IL-1 receptor 1. Thus, we report a cell
type-dependent process that fundamentally governs
IL-1a activity postnecrosis and the mechanism
allowing conditional release of this blockade.

INTRODUCTION

Understandingwhy the immune system responds to necrosis and

how this is controlled is critical in unraveling multiple human

diseases. The ‘‘danger’’ model proposes that immunity responds

to nonphysiological cell death, damage, or stress (Matzinger,

1994). Accordingly, necrotic death releases damage-associated

molecular patterns (DAMPs), which are sensed as danger and

act as universal signals to activate immunity (Chen and Nuñez,

2010; Kono and Rock, 2008; Rock et al., 2010). DAMPs are

retained in healthy cells and during apoptosis (Basu et al., 2000;

Cohenetal., 2010;Scaffidi etal., 2002),whereasnecrosis releases

them into the extracellular milieu. Interleukin-1a (IL-1a) is an

important DAMP that activates immunity postnecrosis (Chen

et al., 2007; Clarke et al., 2010; Cohen et al., 2010; Eigenbrod

et al., 2008;Konoet al., 2010;Raoet al., 2007), drivingpathologies

as diverse as tumorigenesis (Sakurai et al., 2008), atherosclerosis
(Clarke et al., 2010; Kamari et al., 2007), graft rejection (Rao et al.,

2007, 2008), toxic liver insults (Chen et al., 2007), and ischemia-

reperfusion injury (Cohen et al., 2010; Luheshi et al., 2011).

The prototypic IL-1 family is ancient, with homologs identified

back to echinoderms (Beck and Habicht, 1986). IL-1a, one of the

principal ligands, is expressed by most lineages as a signal

peptide-less protein, is not readily secreted (Dinarello, 2009),

and is actively retained during apoptosis (Cohen et al., 2010).

Once released into the extracellular milieu, IL-1a ligation of the

type 1 IL-1 receptor (IL-1R1) leads to multiple proinflammatory

effects (Dinarello, 2009), including cytokine secretion, neutrophil

recruitment, and upregulation of major histocompatibility

complex (MHC) and costimulatory molecules on antigen-

presenting cells. IL-1a also has powerful effects on adaptive

immunity by enhancing expansion and survival of T cells, differ-

entiation of T helper 17 (Th17) cells, and effector T cell prolifera-

tion in the presence of regulatory T cells (Sims and Smith, 2010).

These potent effects mean that activity is tightly controlled at

multiple levels. Mice deficient in IL-1a or IL-1b exhibit no

phenotype. However, mice lacking the IL-1 receptor antagonist

(IL-1RA) have small litters and retarded growth and develop

spontaneous arthritis-like polyarthropathy, arteritis, and cancer

(Dinarello, 2009). Indeed, increased IL-1 activity is a hallmark

of many chronic inflammatory conditions, including rheumatoid

arthritis, gout, diabetes, atherosclerosis, and psoriasis (Dinar-

ello, 1996, 2009; Duewell et al., 2010; Rajamäki et al., 2010).

IL-1 family members are synthesized as inactive precursors

unable to bind their receptor, providing an initial level of control.

IL-1band IL-18areactivatedbycaspase-1,which requires inflam-

masome formation. In contrast, IL-33 processing by caspase-3

or caspase-1 results in inactivation (Cayrol andGirard, 2009; Lüthi

et al., 2009). Pro-IL-1a (p33) is processed tomature IL-1a (p17) by

calpain (Kobayashi et al., 1990), but the biological consequences

of cleavage are unknown given that p33 is reported to be fully

active. This finding is credited to two papers, but one only

discusses p33 activity (March et al., 1985), whereas activity within

the second study may be compromised by p33 degradation

(Mosley et al., 1987). Interestingly, calpain is activated upon loss

of plasma membrane integrity (Wang, 2000), suggesting that

calpain cleavageof IL-1a could be a control point for activity post-

necrosis. Although a recent study reports increased IL-1a activity

after granzyme B cleavage (Afonina et al., 2011), differential

efficacy of p33 and p17 IL-1a is still controversial (Gross et al.,

2012), and no mechanism to explain this has been reported.
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Figure 1. Necrosis-Induced Sterile Inflam-

mation Is Cell Type Specific

(A) IL-6 concentrations in conditioned media of

macrophages (Macs), Jurkat cells, or VSMCs

incubated with lysates from their respective

necrotic cells or with IL-1a.

(B and C) Immunoblots of IL-1a content and pro-

cessing in whole cell (WC) or necrotic lysates (NL)

(B) or in necrotic cell lysates pretreated with

protease inhibitors as indicated (C).

(D and E) IL-6 and MCP-1 concentrations in

conditioned media of VSMCs incubated with

necrotic VSMC lysates made in the presence of

protease inhibitors (D), or with IL-1a alone, or with

calpeptin or EGTA (E).

Data represent mean ± SD; *p % 0.007 versus

control, n = 3; **p % 0.03 (MCP-1), p % 0.002 (IL-

6), n R 4. NS, not significant. See also Figure S1.

Immunity

IL-1R2 Controls IL-1a Activity Postnecrosis
We report that necrosis-induced IL-1a-dependent responses

are highly cell type dependent and correlate with calpain

cleavage of IL-1a during necrosis. Contrary to current under-

standing, p33 requires calpain processing for full biological

activity, which increases its affinity for IL-1R1. Cell type depen-

dency occurs due to expression of an intracellular form of IL-

1R2 that binds IL-1a, preventing calpain cleavage and cytokine

activity. After inflammasome activation, caspase-1 specifically

cleaves IL-1R2, which abrogates IL-1a binding, allows calpain

cleavage, and completely restores IL-1a-dependent responses.

Regulated secretion of IL-1a also requires IL-1R2 cleavage.

Thus, we report an important cell type-dependent mechanism

that fundamentally governs IL-1a activity postnecrosis and the

mechanism allowing conditional release of this blockade.

RESULTS

Necrosis-Induced Sterile Inflammation Is Cell Type
Specific and Correlates with Calpain Cleavage
of pro-IL-1a
We have recently shown that IL-1a released during vascular

smooth muscle cell (VSMC) necrosis is a powerful DAMP that

induces local vessel inflammation (Clarke et al., 2010). To deter-

mine which other cell types could drive IL-1a-dependent sterile
286 Immunity 38, 285–295, February 21, 2013 ª2013 Elsevier Inc.
inflammation, we analyzed IL-6 release

from VSMCs, Jurkat cells, and primary

macrophages treated with lysates from

these cell types undergoing necrosis.

Only necrotic VSMCs induced significant

IL-6 release from viable VSMCs, previ-

ously shown to be IL-1a dependent

(Clarke et al., 2010), and only VSMCs re-

sponded to IL-1a (Figure 1A). Little IL-1a

activity was found in membrane fractions

of necrotic macrophages or Jurkat cells

(Figure S1A available online) or in lysates

from cells undergoing hypoxia-induced

necrosis (Figure S1B). Although compa-

rable amounts of IL-1a were found in all

three cell types, only VSMCs processed
p33 to p17 IL-1a (Figure 1B). Calpain cleaves p33 to p17

(Kobayashi et al., 1990); however, the relevance of cleavage

to IL-1a activity is unknown. Several reports indicate that pro-

cessing is not required for secretion (Brough et al., 2003;

Prudovsky et al., 2003), and cytokine activity is supposedly inde-

pendent of cleavage (March et al., 1985; Mosley et al., 1987).

VSMCs rapidly cleaved p33 to p17 during necrosis, which

was prevented by the calpain inhibitors calpeptin and EGTA

but not the proteasomal inhibitor lactacystin (Figure 1C).

Necrotic VSMC lysates prepared with calpain inhibition

produced significantly reduced responses (Figure 1D), whereas

calpeptin or EGTA treatment did not inhibit cytokine production

in response to IL-1a (Figure 1E). However, prolonged incubation

at 37�C in the presence of calpeptin resulted in some processing

of p33 to p17 (Figure S1C), which could contribute to the

apparent IL-1a activity seen with calpeptin-treated VSMCs

(Figure 1D). Nevertheless, taken together this suggests that,

contrary to the accepted literature, p33 is not fully active until

cleaved.

Calpain-Cleaved p33 and Recombinant p17 Are More
Active than p33 IL-1a
To directly compare p17 and p33 activity, we purified HIS-

tagged recombinant proteins. Although we could express and
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Figure 2. Calpain-Cleaved p33 and Recom-

binant p17 Is More Active than p33 IL-1a

(A) Cytokine concentrations in conditioned media

of VSMCs treated with p33 or calpain-cleaved

p33, ± IL-1a neutralizing antibody (a pAb).

(B) VSMCs were also treated with calpain sham

reactions (no p33) or commercial recombinant

p17 IL-1a (cr17) ± calpain sham.

(C) IL-2 concentration in conditioned media of

murine EL4 cells treated with p33 ± calpain.

(D) Immunoblot of in vitro cleavage of p33 by

calpain.

(E) Coomassie stain of purified soluble p17- and

p33-GST fusion proteins.

(F and G) IL-2 (F) or IL-6 (G) concentrations in

conditioned media of EL4 or VSMCs, respectively,

treated with 1 nM p17- or p33-GST ± a pAb.

(H) IL-2 concentrations in conditioned media of

EL4 cells incubated with p33-GST ± calpain, and ±

a pAb.

(I) GR1+ cells recruited intraperitoneally in wild-

type or Il1r1�/� mice injected with saline or

29 fmol/g p17 or p33.

Data represent mean ± SD or mean ± SEM (I);

*p % 0.0003, n = 4 (A), n = 3 (B, C) protein prepa-

rations and cleavage reactions; **p% 0.007, n = 4.

NS, not significant.

Immunity

IL-1R2 Controls IL-1a Activity Postnecrosis
purify p17 in E. coli, p33 was very insoluble and prone to

aggregation (not shown)—a finding reported by others

(Tokunaga et al., 2010). After denaturation in urea, p33 could

be purified and renatured to a soluble protein after sequential

dialysis, but this made comparison between p17 and p33

impossible because of the inability to control for refolding effi-

ciency between different proteins. To circumvent this, we

cleaved p33 in vitro with calpain, which increased cytokine

release compared to uncleaved p33 (Figure 2A). Importantly,

a neutralizing antibody to IL-1a reduced responses to control

(Figure 2A), whereas a ‘‘calpain sham’’ reaction without p33

neither promoted nor inhibited cytokine release (Figure 2B),
Immunity 38, 285–295,
indicating that the increased activity is

due to processing of p33 to p17. These

data were also reproduced cross-species

with the classic IL-1-sensitive murine

cell line EL4 (Figure 2C), suggesting

a conserved requirement for calpain

processing of IL-1a. Although calpain

cleavage of IL-1a increased activity,

these differences represent an underesti-

mate because of the nonstoichiometric

conversion of p33 to p17 during in vitro

cleavage (Figure 2D).

By fusing IL-1a to GST, we purified

small amounts of p17 and p33 as soluble

proteins (�145 mg/l) (Figure 2E). Compar-

ison at equal molarities demonstrated

significant increases in IL-2 release from

EL4 cells (Figure 2F) and IL-6 release

from VSMCs for p17 compared to p33

(Figure 2G). IL-1a neutralization reduced
responses to control indicating IL-1a-dependent stimulation,

excluding effects from copurified bacterial PAMPs (Figures 2F

and 2G). To eliminate whether GST-p33 was ‘‘functionally

dead’’ as a result of a purification artifact or intrinsic instability,

we cleaved it with calpain or incubated it at 37�C for 16 hr,

respectively. Cleavage of GST-p33 significantly restored

activity (Figure 2H), whereas incubation did not result in protein

degradation (not shown), again supporting an inherent lower

activity of p33. Lastly, injection of p17 into the peritoneum

resulted in significantly increased neutrophil recruitment

compared to injection of p33 in wild-type mice, a result that

was not seen in Il1r1�/� mice (Figure 2I).
February 21, 2013 ª2013 Elsevier Inc. 287
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Figure 3. p33 IL-1a Shows Minimal Activity

at Physiological Concentrations because

of Lower Receptor Affinity

(A and B) Concentration-response curves to p17

and p33, minus control, in VSMCs (50 pM to 8 nM)

(A) or EL4 cells (5 pM to 8 nM) (B).

(C and D) IL-2 concentrations in conditionedmedia

from EL4 cells treated with p17 or p33 at 4 nM (C),

and 0.1 nM p17 or 4 nM p33 (D), with increasing

concentrations of IL-1RA.

Data represent mean ± SD; *p % 0.03, n = 3 (A),

n R 4 (B); for difference in IC50 p < 0.0001 (C),

p = 0.52 (D), n = 3. See also Figure S2.

Immunity

IL-1R2 Controls IL-1a Activity Postnecrosis
p33 IL-1a Shows Minimal Activity and Behaves as
a Partial Agonist due to a Lower Receptor Affinity
To understand why p33 is less active than p17, we generated

cytokine concentration-response curves. VSMCs responded to

p17 at 50 pM and saturated at 2 nM (Figure 3A). In contrast,

p33 generated responses only at supraphysiological amounts

and failed to saturate (Figure 3A). At physiological concentra-

tions of 1 nM, p17was�50 timesmore active than p33. EL4 cells

are very sensitive to IL-1a, with responses detectable with fM

amounts. p17 activity was detectable at 5 pM and rapidly satu-

rated at 0.5 nM (Figure 3B). However, p33 gave a linear concen-

tration response, such that 65% of the maximal response was

obtained at 8 nM but did not reach saturation (Figure 3B). At

1 nM p17 was�10 timesmore active than p33. To exclude steric

hindrance of fused GST only on p33, we specifically cleaved off

GST. Comparison of p33 with or without GST revealed identical

efficacies at a range of concentrations (Figure S2). Together, this

suggests that p33 can bind IL-1R1 at higher concentrations and

thus acts as a partial agonist.

To investigate whether p33 binds IL-1R1 but fails to induce

downstream signaling, we conducted competition experiments

with a fixed concentration of p17 (1 nM) and increasing concen-

trations of p33 (up to 8 nM). However, even 8 nM p33 failed to

inhibit cytokine responses (data not shown), suggesting

a stronger affinity of p17 for the receptor. IL-1RA binds IL-1R1

but does not induce signaling (Dinarello, 2009). Therefore the

difference in concentration of IL-1RA required to inhibit 50%

of the cytokine response induced by p17 or p33 (the IC50)

directly relates to the difference in affinity of the two ligands

for IL-1R1. Responses to 4 nM p33 were completely inhibited

by 100 ng/ml IL-1RA (IC50 of 13.7 ± 3.8 ng/ml) (Figure 3C). In

contrast, 1,600 ng/ml IL-1RA failed to inhibit responses to

4 nMp17, but 50% inhibition occurred at 633.3 ± 16.7 ng/ml (Fig-

ure 3C). This indicates that p33 has an affinity for IL-1R1 46.3

times lower than does p17 (p < 0.0001). To exclude p17

responses from another receptor insensitive to IL-1RA blockade,

we repeated with 0.1 nM p17. Under these conditions 100 ng/ml
288 Immunity 38, 285–295, February 21, 2013 ª2013 Elsevier Inc.
IL-1RA completely inhibited cytokine

release and gave an IC50 of 10.3 ±

2.9 ng/ml (Figure 3D). Thus, a 40-fold

difference in concentration gave near

superimposable curves (p = 0.52), corre-

lating well with the value above. Together

these data show that, in contrast to

previous reports, IL-1a is not fully active
until processed by calpain and that cell types unable to cleave

IL-1a induce much smaller IL-1a-dependent responses after

necrosis.

An Intracellular Form of IL-1R2 Protects p33 IL-1a
from Calpain Processing
We hypothesized that cell type-specific cleavage of IL-1a could

occur through modification of enzyme or substrate, excess of

a calpain inhibitor, or a binding partner that protects IL-1a from

processing. Jurkat and macrophage necrotic lysates incubated

at 37�C for extended periods still showed no processing of

endogenous p33 (Figure 4A), whereas recombinant His-p33

spiked into Jurkat lysates also remained uncleaved (Figure 4A),

excluding a modification to the cell-derived cytokine. Similar

results were also found with primary T lymphocytes (Fig-

ure S3A). An excess of calpain inhibitor was excluded, because

high calpain activity was found in all necrotic cell types (Fig-

ure S3B). Addition of purified calpain to Jurkat necrotic lysates

also failed to cleave p33 (Figure 4B), whereas analysis of spec-

trin, an alternative calpain substrate, revealed calpain-depen-

dent processing in both Jurkat and VSMCs necrotic lysates

(Figure 4C).

Protection of recombinant p33 by Jurkat necrotic lysates

suggested that an excess of a binding partner must be present,

and therefore that it could be transferred. Indeed, necrotic

lysates made from mixed Jurkat and VSMCs displayed no

p33 cleavage (Figure 4D). Known binding partners of IL-1a

include the type 1 and 2 IL-1 receptors; therefore we treated

Jurkat necrotic lysates with a large excess of IL-1RA, which

resulted in calpain-specific cleavage of p33 (Figure S3C). The

only known receptors for IL-1RA are IL-1R1 and IL-1R2, sug-

gesting that IL-1a may be bound to an intracellular IL-1R.

RT-PCR revealed that VSMCs express only IL-1R1, whereas

Jurkat cells (Figure 4E) and macrophages (data not shown)

express IL-1R2. Immunoblots confirmed IL-1R2 expression in

Jurkat cells (Figure 4F), macrophages, and T cells (Figure S3D),

whereas addition of recombinant IL-1R2 to a cell-free cleavage
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Figure 4. An Intracellular Form of IL-1R2 Protects IL-1a from Calpain Processing

(A and B) Immunoblot for endogenous IL-1a processing in necrotic lysates of primary macrophages (Macs) and Jurkat cells (A), for exogenous His-p33 in necrotic

Jurkat lysates (A), or for Jurkat necrotic lysates treated with increasing amounts of purified calpain (B).

(C and D) Immunoblot of whole cell (WC) and necrotic (NL) Jurkat and VSMC lysates for a-spectrin (C) or IL-1a after mixing of lysates from both cell types (D).

(E and F) RT-PCR (E) or immunoblot (F) for IL-1 receptors in VSMCs and Jurkat cells.

(G and H) Immunoblot for IL-1a cleavage in a cell-free system with purified calpain (G) and in necrotic VSMC lysates (H), ± 250 ng IL-1R2.

(I and J) Coimmunoprecipitation of IL-1R2 with p33-GST (I) and p33 with IL-1R2-HIS (J) in transfected HEK cell lysates.

See also Figure S3.

Immunity

IL-1R2 Controls IL-1a Activity Postnecrosis
reaction (Figure 4G) or necrotic VSMC lysates (Figure 4H) pre-

vented calpain-dependent p33 processing in a dose-depen-

dent manner (Figure S3E). IL-1R2 also antagonized p33 in

a dose-dependent manner (Figure S3F). Importantly, IL-1R2

coimmunoprecipitated with p33-GST and p33 with IL-1R2-
HIS (Figures 4I and 4J), whereas a proximity ligation assay

demonstrated association of endogenous proteins in situ (Fig-

ure S3G), supporting a direct interaction. Finally, IL-1R2 also

protected IL-1a from cleavage by the inflammatory proteases

granzyme B, chymase, and elastase (Figure S3H).
Immunity 38, 285–295, February 21, 2013 ª2013 Elsevier Inc. 289
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Figure 5. Silencing of IL-1R2 Enables IL-1a

Processing and Restores Necrotic Cell-

Induced Inflammation

(A–C) siRNA-mediated silencing reduces IL-1R2

mRNA (A) and protein in whole cell (WC) and

necrotic lysates (NL) (B), which leads to calpain-

dependent IL-1a cleavage upon necrosis (C) that

is inhibited with calpeptin (+C).

(D and E) IL-2 concentrations in conditionedmedia

of EL4 cells incubated with necrotic lysates from

HeLa cells treated with siRNA to IL-1R2 or

scrambled, either alone (D) or with IL-1b treatment

(E), ± a pAb. Data represent mean ± SD;

*p = 0.0007, n = 3 independent silencings and

treatments. NS, not significant.

(F) GR1+ cells recruited intraperitoneally in wild-

type or Il1r1�/� mice injected with saline or 8.3 3

105 control or IL-1R2-silenced necrotic HeLa cells.

Data represent mean ± SEM; **p % 0.006, n R 4.

NS, not significant.

(G) Immunoblot for IL-1R2 and IL-1a in necrotic

lysates of empty vector or soluble IL-1R2-trans-

fected VSMCs.

See also Figure S4.

Immunity

IL-1R2 Controls IL-1a Activity Postnecrosis
IL-1R2 Silencing Enables Calpain Cleavage of p33 IL-1a
and Restores Inflammatory Response to Necrotic Cells
Low transfection efficiency and suspension growth made Jurkat

cells unsuitable for siRNA silencing. Therefore, necrotic HeLa

cells were tested for p33 cleavage (Figure S4A), calpain activity

(data not shown), and IL-1R2 expression (Figures 5A and 5B),

which indicated that they responded similarly. siRNA to IL-1R2

reduced both IL-1R2 mRNA (Figure 5A) and protein (Figure 5B),

which was not seen with scrambled control. After IL-1R2

silencing, necrotic HeLa lysates displayed calpain-dependent

processing of p33 to p17 (Figure 5C) and restoration of IL-

1a-dependent responses (Figure 5D), whereas scrambled

control cells did not. Because IL-1R2 functions as a decoy
290 Immunity 38, 285–295, February 21, 2013 ª2013 Elsevier Inc.
receptor that limits bioavailability of IL-1

(Colotta et al., 1993), we examined

whether IL-1R2 silencing had reversed

‘‘general’’ IL-1 antagonism within

necrotic lysates. By neutralizing all IL-1a

activity within necrotic lysates, we com-

pared responsiveness to IL-1b with or

without scrambled or IL-1R2-silenced

necrotic lysates present (Figure 5E). This

revealed no significant difference in

IL-2 production, implying that IL-1R2

silencing hadn’t simply reduced general

IL-1 antagonism. Sterile peritonitis

induced with scrambled control necrotic

lysates recruited equal numbers of

neutrophils in wild-type and Il1r1�/�

mice, therefore representing IL-1-inde-

pendent responses (Figure 5F). However,

IL-1R2-silenced necrotic lysates re-

cruited 3-fold more cells, which was IL-1

dependent because of loss of response

in Il1r1�/� mice (Figure 5F). Because
previously described forms of IL-1R2 retain a signal peptide

(Liu et al., 1996), they would be expected to be in the exocytic

pathway. Therefore we determined whether cell surface-shed

IL-1R2 (Orlando et al., 1997) protects IL-1a by inhibiting metallo-

proteases with BB-94; p33, however, remained uncleaved (Fig-

ure S4B). Furthermore, immunofluorescence revealed a large

amount of IL-1R2 to be intracellular (Figure S4C) in multiple cell

types (Figure S4D) and endogenous p33 and IL-1R2 to be highly

colocalized (Figure S4E) throughout the cytoplasm (Figure S4F).

In addition, subcellular fractionation (Figure S4G) and protease K

protection assays (Figure S4H) revealed a native pool of IL-1R2

in the cytosol without internal membrane disruption, as evi-

denced by a lack of calreticulin in cytosolic fractions. Finally,
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Figure 6. Caspase-1 Cleavage of IL-1R2

Restores Necrotic Cell-Induced IL-1a-

Dependent Inflammation

(A) Immunoblot for IL-1a in necrotic lysates from

LPS- and ATP-treated macrophages ± calpeptin

(during lysis) or ± caspase inhibitor Z-VAD (during

LPS and ATP treatment).

(B) IL-2 concentrations in conditioned media of

EL4 cells incubated with necrotic lysates from

control or LPS- and ATP-treated macrophages ±

a and/or b pAb, or ± Z-VAD (during LPS and ATP

treatment). Data represent mean ± SEM;

*p < 0.00004, **p % 0.02, n R 3.

(C and D) Immunoblot for IL-1R2 cleavage after

incubation with active caspase-1 ± Z-YVAD (C) or

a panel of active caspases (D).

(E) Edman degradation of cleaved IL-1R2 detected

two sequences (italic underlined) corresponding to

processing at two tetrapeptide sites (large bold).

(F) Immunoblot for cleaved IL-1R2 after mutation

of both caspase-1 sites.

(G) IL-2 concentrations in conditioned media of

EL4 cells incubated with IL-1a, and IL-1R2 ±

caspase-1 cleavage. Data represent mean ± SD;

*p = 0.009, n = 3.

(H) IL-1a concentration in conditioned media of

activated THP-1 cells transfected with caspase

site mutant IL-1R2, or as indicated. Data repre-

sentative of mean ± SD from n = 2.

See also Figure S5.

Immunity

IL-1R2 Controls IL-1a Activity Postnecrosis
expression of exogenous soluble IL-1R2 in VSMCs prevented

p33 cleavage (Figure 5G). Together these results demonstrate

that a cytosolic complex of p33 and IL-1R2 exists in many cell

types. During necrosis this prevents calpain cleavage of p33 to

the fully active p17 form, which reduces IL-1a-dependent

responses.

Caspase-1 Specifically Cleaves IL-1R2, which Restores
IL-1a-Dependent Inflammation Postnecrosis
Macrophages are suggested to be the sensors of necrotic-

derived DAMPs, which then release IL-1a to drive sterile inflam-

mation (Chen et al., 2007; Kono et al., 2010). However, our

current data indicate that macrophage IL-1a is bound to IL-

1R2, and therefore is nonfunctional. Because recent work

demonstrates that IL-1a secretion requires inflammasome acti-

vation (Fettelschoss et al., 2011), we investigated whether this

could overcome IL-1R2 blockade. Necrotic lysates made from

LPS and ATP-stimulated macrophages displayed processing

of p33, which could be prevented by the caspase inhibitor

Z-VAD-fmk or calpeptin (Figure 6A). Furthermore, after LPS

and ATP treatment, macrophage necrotic lysates induced IL-2

release from EL4 cells, which was blocked with Z-VAD-fmk or
Immunity 38, 285–295,
IL-1a- and IL-1b-neutralizing antibodies

(Figure 6B). IL-1R2 contains many pre-

dicted caspase sites (Figure S5A) and

cell-free cleavage resulted in caspase-1-

specific processing (Figure 6C). IL-1R2

could be cleaved by inflammatory

caspase-1 and caspase-5, but not by

caspase-4 or the apoptotic caspase-3
(Figure 6D). To confirm the cleavage site, we mutated the P1

position Asp to Ala, resulting in a nonconsensus sequence for

caspases. Individual mutation of all sites that could give the

correct sized products did not prevent IL-1R2 processing (data

not shown). However, Edman degradation of the C-terminal

IL-1R2 fragment sequenced two products at equal abundance

corresponding to cleavage at two separate Asp residues 12

amino acids apart (Figure 6E), and subsequent mutation of

both these sites prevented cleavage (Figure 6F). The crystal

structure of IL-1R2 complexed to IL-1 (Wang et al., 2010) re-

vealed that cleavage at these sites would remove the D1

domain vital for binding. Indeed, antagonistic activity toward

IL-1a was lost upon processing (Figure 6G), whereas sham

cleavage reactions neither promoted nor inhibited IL-2 release

(Figure S5B), confirming that cleaved IL-1R2 cannot bind IL-

1a. Finally, caspase-1 cleavage of IL-1R2 appears to be a pre-

requisite for physiological IL-1a secretion, as indicated by the

fact that expression of the noncleavable IL-1R2 mutant reduced

IL-1a release (Figure 6H). Therefore, after exposure to stimuli

that activate inflammasomes, intracellular IL-1R2 is cleaved by

caspase-1, causing it to dissociate from IL-1a. Subsequently,

during necrosis calpain can now cleave IL-1a to the fully active
February 21, 2013 ª2013 Elsevier Inc. 291
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form, which allows the generation of robust IL-1a-dependent

responses.

DISCUSSION

Although an immune response to necrosis may resolve the orig-

inal pathology and initiate repair, recruited leukocytes can

damage the surrounding tissue. This sterile inflammatory

response can also lead to unwanted activation of adaptive

immunity. Many human diseases are driven by activation

of these pathways, including ischemia-reperfusion injury,

Alzheimer’s disease, atherosclerosis, and toxic insults to liver

and lung (Chen and Nuñez, 2010; Kono and Rock, 2008; Stewart

et al., 2010). Therefore, tight regulation of both release and

activity of DAMPs is critical for host defense.

The current understanding is that p33 is fully active and there-

fore requires only cell lysis to signal after necrosis. In contrast,

we find that activity is kept under tight control at multiple levels

in a cell type-dependent and conditional manner. Blocking

calpain processing of endogenous p33 during necrosis signifi-

cantly decreases activity, and comparison of recombinant

proteins demonstrates up to �50-fold increased activity of p17

compared to p33. This difference occurs at the receptor, with

a �50-fold greater affinity of p17 for IL-1R1. IL-1a cleavage

and activity after necrosis is cell type dependent because of

expression of a cytosolic IL-1R2, which binds and protects

IL-1a from cleavage and prevents IL-1a activity. IL-1R2 also pro-

tected IL-1a from granzyme B, chymase, and elastase cleavage,

suggesting that the primary control over IL-1a activity postnec-

rosis is by IL-1R2 binding. Lastly, active caspase-1 specifically

cleaves IL-1R2, causing dissociation from IL-1a, calpain pro-

cessing, and complete restoration of IL-1a activity after necrosis

or during regulated secretion.

DAMPs need to be retained on apoptosis, released on

necrosis, and able to activate the immune system. IL-1a is

near universally expressed (Dinarello, 2009), lacks a signal

peptide, is rarely extracellular under normal physiology, and

also associates with chromatin during apoptosis, resulting in

retention (Cohen et al., 2010). Other identified DAMPS include

heat shock proteins, uric acid, HMGB1, ATP, and dsDNA

(Kono and Rock, 2008). These DAMPs utilize specific cognate

receptors, such as RAGE, or pattern recognition receptors,

such as TLRs, which have a limited expression pattern that

restricts cell types able to respond. In contrast, IL-1R1 is widely

expressed throughout many lineages (Dinarello, 2009), enabling

IL-1a to act as a ‘‘universal’’ DAMP. Although this may provide

more efficient detection of necrosis, it could predispose the

immune system to overreact, perhaps explaining the extensive

control over IL-1a activity via release, IL-1R2 binding, and

calpain cleavage. This cell type and conditional dependency

for IL-1a activity after necrosis perhaps suggests an immune

advantage in allowing only some cell types to utilize IL-1a as a

DAMP.Previous studies concluded that IL-1a is only a secondary

signaling molecule released by macrophages during sterile

inflammation (Chen et al., 2007; Kono et al., 2010). However,

this finding might have occurred due to the use of necrotic cell

types that express IL-1R2 and therefore cannot cleave and utilize

IL-1a (Y.Z., M.H., and M.C.H.C.; data not shown). Indeed,

whereas control necrotic lysates induce an equivalent peritonitis
292 Immunity 38, 285–295, February 21, 2013 ª2013 Elsevier Inc.
in both wild-type and Il1r1�/�mice (representing the net effect of

all other DAMPS, independent of IL-1), necrotic cells without

IL-1R2 induced a 3-fold greater response, which was all IL-1

dependent. This key observation implies that without IL-1R2

expression, the single most powerful DAMP within necrotic

cells is IL-1a.

Our studies also identify multiple mechanisms that could give

a tissue- and cell type-dependent response to necrosis. Given

that p33 has some activity, dependent on its concentration

and sensitivity of the responding cells, extensive necrosis in an

IL-1R1-rich tissue (e.g., liver) could activate immunity regardless

of IL-1a cleavage. Conversely, minimal necrosis in an IL-1R1-low

tissue (e.g., kidney) that cannot cleave p33 may not respond

to IL-1a at all. If necrosis occurs with a stimulus that activates

caspase-1 (e.g., infection), IL-1R2 blockade is abrogated and

cleaved fully active p17 can signal to any IL-1R1-expressing

cell. Necrosis of cells that can cleave IL-1a within IL-1R1-dense

tissues would give extensive immune activation (e.g., vascular

tissue). Where the amount of IL-1R2, IL-1R1, and necrosis

preclude IL-1a activity, the response to necrosis could be

deferred to other DAMPs and specialist immune cells, perhaps

giving more control over reactions. Additionally, activation of

IL-1a during necrosis could act as a ‘‘tipping point’’ that drives

an inflammatory response toward adaptive immunity. Indeed,

this is the case in graft-versus-host disease, where injured

endothelial cell-derived IL-1a induces intimal T cell recruitment

and IL-17 production, driving human artery allograft rejection

(Rao et al., 2007, 2008).

Necrosis is induced bymany stimuli including physical trauma,

chemical stress, and bacterial toxins and is characterized by

loss of plasma membrane integrity (Kono and Rock, 2008).

Calpains are activated by Ca2+ entry after loss of membrane

integrity (Wang, 2000), and in VSMCs p33 cleavage occurs

immediately upon necrosis. Granzyme B is proposed to activate

IL-1a extracellularly (Afonina et al., 2011); but given its ineffi-

ciency to process IL-1a relative to calpain (Afonina et al.,

2011), cleavage within the necrotic body by calpain pro-

bably predominates when IL-1R2 is absent. IL-1a and IL-1b

arose from ancient gene duplications (Dinarello, 2009) but have

diverged molecularly. IL-1a is a DAMP that is activated by

a protease intrinsically linked to necrosis, whereas IL-1b is acti-

vated in response to PAMPs by a protease family intrinsically

linked to apoptosis and inflammation. However, these current

data indicate that in many cells IL-1a function requires both

calpain and caspase-1. Secretion of IL-1a from macrophages

(Fettelschoss et al., 2011) or dendritic cells (DCs) (Gross et al.,

2012) requires inflammasome activation, but given that IL-1a is

not a caspase substrate, this has been puzzling (Keller et al.,

2008). We suggest that IL-1R2 is the likely target of caspase-1

during physiological IL-1a release. Indeed, expression of an

uncleavable IL-1R2 mutant reduces IL-1a release, whereas

Casp1�/� mice have long been known to be deficient in IL-1a

secretion (Kuida et al., 1995; Li et al., 1995).

An important finding of this work is that IL-1R2 binds p33 in

the cytosol. Although the previously described splice variant of

IL-1R2 (Liu et al., 1996) loses the transmembrane domain, it still

codes for a signal peptide and should be secreted. Despite this,

our data show that a large pool of IL-R2 exists in the cytosol. One

explanation for this is that the IL-1R2 signal peptide is short
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(13 amino acids) and is predicted to be relatively weak (Signal P;

Y-max = 0.316) compared to other secreted proteins (e.g., IL-8;

Y-max = 0.790), and many proteins with signal peptides can

be found in the cytosol (Davis et al., 2006). Indeed, multiple

factors determine how much of a signal peptide-containing

protein ends up nontargeted, including the signal peptide and

flanking amino acid sequences and cell type and growth

condition effects (Levine et al., 2005). Clearly further work is

needed to elucidate the specific form of IL-1R2 that binds p33,

the mechanisms that generate it, and how this is controlled.

Cell type-specific effects of IL-1R2 expression may occur in

a number of diseases. Induction of antitumor immunity in vivo

is dependent upon the mode of cell death, whereby necrosis

is more immunogenic than apoptosis (Melcher et al., 1998)

and local IL-1 activity (Ghiringhelli et al., 2009; Michaud

et al., 2011). Necrosis can induce maturation of DCs and expres-

sion of costimulatory molecules and can stimulate T cells

(Basu et al., 2000; Sauter et al., 2000)—all processes critical

for antitumor immunity and all known activities of IL-1. Indeed,

differences are reported between the necrotic cell type and

ability to induce DC maturation (Sauter et al., 2000), perhaps

reflecting IL-1R2 expression and thus ability of necrotic cell-

derived IL-1a to modulate antigen-presenting cell function.

Intriguingly, IL-1R2 is upregulated in some tumors including

pancreatic ductal adenocarcinoma (Rückert et al., 2010) and

ovarian cancer, where it provides a powerful distinction between

primary and recurrent tumors (Laios et al., 2008). Finally, athero-

sclerosis is highly dependent on IL-1 (Chamberlain et al., 2009;

Chi et al., 2004; Duewell et al., 2010), although recent work casts

doubt on IL-1b’s role (Menu et al., 2011), suggesting that IL-1a

could be the major ligand affecting atherosclerotic plaques.

Indeed, necrotic VSMC-released IL-1a is a potent inducer of

local vessel inflammation in vivo (Clarke et al., 2010), and given

that VSMCs express high amounts of IL-1a and IL-1R1 but little

IL-1R2, their death is highly inflammatory.

In summary, in addition to acting as a decoy receptor, IL-1R2

also plays a hitherto unreported role that fundamentally controls

IL-1a activity postnecrosis. Cells expressing intracellular IL-1R2

release little active IL-1a after necrosis without prior activation of

caspase-1, which processes IL-1R2. In contrast, necrotic cells

devoid of IL-1R2 are inherently powerful inducers of sterile

inflammation able to fully activate IL-1a upon calpain cleavage.

Thus, changes in intracellular IL-1R2 expression may underlie

and modulate many chronic inflammatory diseases or other

pathologies involving cellular necrosis.

EXPERIMENTAL PROCEDURES

All materials are from Sigma-Aldrich unless otherwise stated.

Cell Culture

VSMCs,EL4,HEK, andHeLacellswerecultured inDMEMandJurkat andTHP-1

cells in RPMI 1640, all supplemented with penicillin, streptomycin, L-glutamine,

and 10% FCS. Human monocyte-derived macrophages were differentiated as

described previously (Brown et al., 2000). Cells were treated as indicated with

Calpeptin (30 mM), Lactacystin (10 mM; both Biomol), IL-1a pAb (1 mg/ml),

IL-1a and IL-1b (all PeproTech), IL-1RA (Amgen), IL-1R2 (250 ng; R&D),

Z-YVAD, Z-VAD-fmk (both 10 mm; Bachem), LPS (1 mg/ml), EGTA (5 mM), and

BB-94 (1 mg/ml; Tocris). Cells in serum-free (SF) DMEMwere disrupted by freeze

thaw in liquid N2, clarified, and stored at �80�C. Cells were also made necrotic

by incubationwith 7-BIO (25mM;Enzo) or digitonin (0.1%) (data not shown) or by
overnight hypoxic exposure. To activate inflammasomes, cellswere treatedwith

LPS (1 mg/ml; 4 hr), followed by ATP (5 mM) or Nigericin (20 mM) for 30 min.

Calpain activity was determined with Calpain-Glo (Promega). VSMCs, HEK,

and THP-1 cells were transfected with pcDNA3 (Invitrogen) with nucleofection

(Amaxa) or FugeneHD (Promega).
Protein Expression and Purification

Human p33 (1-271) or p17 (119-271) was cloned into pET15b (Novagen) or

pGEX-4T-3 (GE). Human IL-1R2 (1-296) was cloned into pGEX-4T-3. For His

purification, IPTG-induced cultures were lysed in BugBuster (Novagen) with

benzonase, lysozyme, and protease inhibitors (10 min, RT). Urea (6 M) was

added and incubated (10 min) before clarification and purification on a Ni2+

column. Columns were washed (40 mM imidazole) and eluted (250 mM imid-

azole). Concentrated protein (Vivaspin) was dialyzed against decreasing urea

(4 M, 2 M, 0 M) in 10 mM Tris (pH 8.0), 50 mM NaCl. For GST purification,

IPTG-induced cultures were lysed in 50 mM Na2HPO4 (pH 7.5), 150 mM

NaCl, 1 mM DTT, 1 mM EDTA, with benzonase, lysozyme, and protease inhib-

itors (30 min, RT), clarified, applied to glutathione agarose (QIAGEN), washed,

eluted (50 mM reduced glutathione), concentrated, and dialyzed against

10 mM Tris (pH 8.0), 50 mM NaCl. GST tag was removed with biotinylated

thrombin (Novagen). Protein concentration was determined (660 nm; Thermo

Scientific), checked by Coomassie staining, and if necessary adjusted and

rechecked. Proteins were stored in 10% glycerol (�80�C).
Protease Cleavage

His- or GST-p33 was incubated in 10 mM Tris (pH 7.5), 150 mM NaCl, 1 mM

DTT, 2 mM CaCl2, with calpain (Calbiochem) ± calpeptin or IL-1R2 (RT).

IL-1R2 was incubated with active caspase-1, caspase-3, caspase-4, or

caspase-5 (Promokine) in 50 mMHEPES (pH 7.2), 50 mMNaCl, 0.1%CHAPS,

10 mM EDTA, 5% glycerol, and 10 mM DTT (37�C). Jurkat lysates were

also incubated with granzyme B (100 nM; Cambridge Bioscience), chymase,

or elastase (100 nM; both Enzo).
Cytokine Release Assay

VSMCs were plated, adhered overnight, and incubated in SF DMEM (�24 hr).

Fresh SF DMEM and treatments were added and incubated (6 hr). EL4 cells

were washed and plated in SF DMEM with treatments and incubated (24 hr).

17.5 3 103 necrotic VSMCs or macrophages or 5.25 3 104 necrotic Jurkat

or HeLa cells were used per 500 ml. Supernatants were clarified and cytokines

assayed by ELISA (PeproTech) or Cytomix (eBioscience).
Immunoblotting, Edman Degradation, and Co-IP

Whole cell or necrotic lysates from 1 3 105 VSMCs or macrophages, or 3 3 105

Jurkat, HeLa, or T cells were loaded per lane. Antibodies used were IL-1a

(PeproTech), His (GE), a-spectrin (Millipore), b-actin (Sigma), calreticulin (Cell

Signaling), HDAC1 (Santa Cruz), and IL-1R2 (R&D). Caspase-1-cleaved IL-1R2

was separated, electroblotted to PVDF, and stained and bands were excised

for Edman degradation (ABI Procise 494HT). For co-IP, transfected HEK cells

were incubated on ice (50 mM Tris [pH 8], 150 mM NaCl, 1% Triton X-100,

protease inhibitors), freeze thawed, clarified, and incubated with 2 mg of anti-His

or anti-GST (GE) (16 hr, 4�C). Immunocomplexeswere precipitatedwithmagnetic

protein-G beads (Dynal) and beads washed before elution with Laemmli buffer.
RT-PCR

RNA was extracted with TRI reagent, DNase treated (Ambion), and reverse

transcribed (Promega) before PCR with the following primers: IL-1R1, AGGA

GACGGAGGACTTGTGT and GCGTCATAGGTCTTTCCATC; total IL-1R2,

CATTACAAGCGGGAGTTCAG and TAGTGCAGACGTAGGTGCCA; soluble

IL-1R2, TGGCACCTACGTCTGCACTA and TGTCTCCAAAAGGAAGAGCGA;

GAPDH, TGTTGCCATCAATGACCCCTT and CTCCACGACTGACTCAGCG.
siRNA Silencing

IL-1R2 silencing was performed with SMARTpool siRNA and controls

(Dharmacon). In brief, HeLa cells were transfected with 20 nM of siRNA via

HiPerFect (QIAGEN), retransfected after 48 hr, and harvested 48 hr later.
Immunity 38, 285–295, February 21, 2013 ª2013 Elsevier Inc. 293
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Immunofluorescence

For IL-1R2, cells were fixed in 2% formaldehyde and permeabilized with 0.5%

NP-40. For IL-1R2 and p33, cells were fixed in 2% formaldehyde, washed,

and fixed with methanol. All were blocked in 1% BSA, incubated with IL-1R2

mAb (R&D) and anti-N-terminal IL-1a (Aviva Systems Biology), washed,

incubated with Alexa Fluor antibodies (Molecular Probes), washed, and

imaged on a BX51 (Olympus) or a TCS SP2 AOBS (Leica) microscope. PLA

assays with the primary antibodies as above were conducted according

to the manufacturer (Olink). For flow cytometry, cells were fixed in 2%

formaldehyde, washed, blocked in 1% BSA and 0.05% sodium azide, stained

with anti-IL-1R2, washed, stained with secondary antibodies, washed, and

analyzed on a C6 flow cytometer (Accuri). Intracellular staining steps had

0.5% saponin present.

Animal Protocols

Experiments were conducted under UK Home Office licensing. Mice were in-

jected intraperitoneally with saline, 0.29 fmol/g body weight of p17 or p33, or

8.33 104 necrotic HeLa cells. After 6 hr, the peritoneal cavity was lavaged with

5 ml of PBS. GR-1+ cells were counted by FACS after anti-GR-1-FITC staining

(Biolegend).

Statistics

Parametric tests were employed for analysis of continuous ELISA and

peritonitis data, conducted with a one-way, two-tailed ANOVA (Excel).
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P.T., and Eklund, K.K. (2010). Cholesterol crystals activate the NLRP3 inflam-

masome in humanmacrophages: a novel link between cholesterol metabolism

and inflammation. PLoS ONE 5, e11765.

Rao, D.A., Tracey, K.J., and Pober, J.S. (2007). IL-1alpha and IL-1beta are

endogenous mediators linking cell injury to the adaptive alloimmune response.

J. Immunol. 179, 6536–6546.

Rao, D.A., Eid, R.E., Qin, L., Yi, T., Kirkiles-Smith, N.C., Tellides, G., and

Pober, J.S. (2008). Interleukin (IL)-1 promotes allogeneic T cell intimal infiltra-

tion and IL-17 production in a model of human artery rejection. J. Exp. Med.

205, 3145–3158.

Rock, K.L., Latz, E., Ontiveros, F., and Kono, H. (2010). The sterile inflamma-

tory response. Annu. Rev. Immunol. 28, 321–342.

Rückert, F., Dawelbait, G., Winter, C., Hartmann, A., Denz, A., Ammerpohl, O.,

Schroeder, M., Schackert, H.K., Sipos, B., Klöppel, G., et al. (2010).
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