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ABSTRACT	19	

Background	20	

Human	 parainfluenza	 type	 3	 (HPIV3)	 is	 an	 important	 respiratory	 pathogen.	21	

Although	a	number	of	potential	 therapeutic	 candidates	exist,	 there	 is	 currently	22	

no	licensed	therapy	or	vaccine.	Ribavirin	(RBV),	favipiravir	(FVP)	and	zanamivir	23	

(ZNV)	 are	 inhibitors	with	 proven	 activity	 against	 influenza	 and	with	 potential	24	

inhibitory	activity	against	HPIV3	laboratory	adapted	strains	in	vitro.	25	

Objectives	26	

To	evaluate	RBV,	 FVP	and	ZNV	as	 inhibitors	of	minimally	passaged	UK	 clinical	27	

strains	of	HPIV3	as	well	as	a	laboratory	adapted	strain	MK9	in	vitro.	28	

Study	Design	29	

The	inhibitory	action	of	RBV,	FVP	and	ZNV	was	evaluated	against	nine	minimally	30	

passaged	 clinical	 strains	 and	 a	 laboratory	 adapted	 strain	 MK9	 using	 plaque	31	

reduction	and	growth	curve	inhibition	in	a	cell	culture	model.	32	

Results		33	

Clinical	 isolates	 were	 found	 to	 be	 at	 least	 as	 susceptible	 as	 the	 laboratory	34	

adapted	 strains	 to	 RBV	 and	 FVP	 and	 significantly	 more	 susceptible	 to	 ZNV.	35	

However	 the	 inhibitory	concentrations	achieved	by	ZNV	against	clinical	strains	36	

remain	prohibitively	high	in	vivo.	37	

Conclusions:	38	

RBV,	FVP	and	ZNV	were	 found	 to	be	 effective	 inhibitors	of	HPIV3	 in	vitro.	 The	39	

lack	 of	 efficacy	 of	 RBV	 in	 vivo	 may	 be	 due	 to	 inability	 to	 reach	 required	40	

therapeutic	levels.	FVP,	on	the	other	hand,	is	a	good	potential	therapeutic	agent	41	

against	HPIV3.	Further	studies	using	wild	type	clinical	strains,	as	well	as	better	42	
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formulation	 and	 delivery	 mechanisms	 may	 improve	 the	 utility	 of	 these	 three	43	

inhibitors.		44	

	45	

Keywords:	parainfluenza;	ribavirin;	favipiravir;	zanamivir;	clinical;	therapy	 	46	
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BACKGROUND	47	

	48	

Human	 parainfluenza	 viruses	 (HPIV)	 are	 a	 prominent	 cause	 of	 both	 upper	49	

(URTI)	 and	 lower	 (LRTI)	 respiratory	 tract	 infection	with	 a	 broad	 spectrum	 of	50	

presentation	 (1–4).	 HPIV3	 is	 recognised	 as	 a	 cause	 of	 serious	 morbidity	 and	51	

mortality	in	the	immunocompromised,	in	particular	among	haematopoietic	stem	52	

cell	transplant	(HSCT)	patients(3,	5,	6).		Immunity	to	HPIV3	is	incomplete	and	re-53	

infections	occur	throughout	 life.	Currently	there	 is	no	vaccine	and	no	approved	54	

treatment	 for	 HPIV3,	 indicating	 a	 clear	 and	 urgent	 need	 for	 a	 potential	55	

therapeutic	candidate.		56	

	57	

Ribavirin	is	a	nucleoside	analogue	with	broad	anti-viral	activity	 in	vitro(7,	8).	It	58	

has	 been	 successfully	 used	 for	 treatment	 of	 hepatitis	 C	 and	 is	 licensed	 for	59	

treatment	 of	 respiratory	 syncytial	 virus	 (RSV),	 another	 member	 of	 the	60	

Paramyxoviridae,	 in	 young	 children.	 Although	 originally	 seen	 as	 a	 promising	61	

therapeutic	 candidate	 for	 treatment	 of	 HPIV3	 in	 HSCT	 (9,	 10)	 a	 recent	 meta	62	

analysis	 has	 shown	 that	 ribavirin	 had	 little	 or	 no	 effect	 on	 morbidity	 and	63	

mortality	in	patients	with	proven	lower	respiratory	tract	infection	(LRTI)	caused	64	

by	HPIV3(6).	This	lack	of	therapeutic	efficacy	in	patients	necessitates	a	detailed	65	

evaluation	of	its	inhibitory	effect	on	clinical	strains.		66	

	67	

Favipiravir	(T-705),	a	nucleoside	analogue	like	ribavirin,	is	a	selective	and	potent	68	

inhibitor	of	RNA	dependent	RNA	polymerase	activity	and	has	been	shown	to	be	69	

anti-viral	 by	 inducing	 lethal	mutagenesis(11–13).	 	 In	vitro	 it	 has	demonstrated	70	

activity	against	a	broad	range	of	RNA	viruses	including	Paramyxoviridae(12,	14,	71	
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15)	including	laboratory	adapted	strains	of	HPIV3.		72	

	73	

Zanamivir	 is	a	neuraminidase	inhibitor	commonly	prescribed	for	the	treatment	74	

of	 influenza.	The	structure	of	 the	HPIV3	haemagluttinin	neuraminidase	binding	75	

pocket	 shows	 sufficient	homology	with	 that	 of	 the	 influenza	neuraminidase,	 to	76	

suggest	 a	 potential	 high	 affinity	 for	 zanamivir(16).	 In	 vitro	 studies	 on	 tissue	77	

culture	 adapted	 strains	 have	 generally	 concluded	 that	 zanamivir	 has	 the	78	

potential	 to	 act	 as	 an	 inhibitor	 of	HPIV3	 albeit	 at	 therapeutically	 unachievable	79	

50%	maximum	effective	concentrations	(EC50)	values(17).	To	date	the	potential	80	

of	 zanamivir	 as	 a	 therapeutic	 candidate	 for	 HPIV3	 has	 yet	 to	 be	 evaluated	81	

systematically	for	clinical	strains.		82	

	83	

Overall,	ribavirin,	favipiravir	and	zanamivir	have	been	evaluated	in	vitro	against	84	

tissue	 culture	 adapted	 strains	 of	 HPIV3	 and	 found	 to	 be	 effective	 to	 varying	85	

degrees.		86	

	87	

OBJECTIVES	88	

	89	

In	this	study	we	present	an	infectivity	based	in	vitro	model	for	the	evaluation	of	90	

potential	 therapeutic	 candidates	 for	 HPIV3	 based	 on	 a	 tissue	 culture	 adapted	91	

reference	 strain	 and	 a	 panel	 of	 minimally	 passaged	 clinical	 strains.	 This	92	

represents	 a	 significant	 departure	 from	 previous	 in	 vitro	 models	 that	 have	93	

focused	on	significantly	laboratory	adapted	strains.			 	94	
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STUDY	DESIGN		95	

	96	

For	 further	 details	 including	 molecular	 and	 plaque	 assay	 methods	 please	 see	97	

supplementary	methods.	98	

	99	

Cells,	virus	and	inhibitors.	100	

The	 PLC/PRF/5	 human	 Alexander	 hepatoma	 cell	 line	 and	 the	 culture	 adapted	101	

HPIV3	strain	 (MK9)	were	obtained	 from	Public	Health	England	(PHE)	cultures.	102	

Clinical	 strains	were	 sourced	 from	HPIV3	 positive	 respiratory	 patient	 samples	103	

collected	 between	 2011	 and	 2015	 by	 the	 PHE	 diagnostic	 laboratory	104	

Addenbrooke’s	 Hospital,	 Cambridge.	 Samples	 were	 anonymised	 and	 data	105	

pertaining	to	patient	demographics	was	collected	where	possible.			106	

Ribavirin	(RBV)	and	zanamivir	(ZNV)	were	obtained	from	Sigma	and	favipiravir	107	

(FVP)	from	Atomax.		108	

	109	

Cell	viability	assay	110	

Cells	 in	 96	 well	 plates	 were	 either	 mock	 inoculated	 or	 inoculated	 with	 serial	111	

dilutions	 of	 each	 inhibitor	 (ribavirin,	 favipiravir	 or	 zanamivir)	 starting	 with	 a	112	

concentration	of	1mM	in	eight	biological	repeats.	Plates	were	then	incubated	at	113	

33°C	for	7	days	and	assayed	with	CellTiter-Blue®	Cell	Viability	Assay	(Promega)	114	

as	per	the	manufacturer’s	instructions.		115	

	116	

Culture	of	HPIV3	clinical	strains	117	

Cell	 monolayers	 were	 inoculated	 with	 clinical	 samples	 and	 incubated	 for	 96	118	

hours.	 Viral	 growth	 was	 evaluated	 by	 quantifying	 viral	 copy	 number	 in	 the	119	
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supernatant	 samples	 by	 qPCR	 on	 day	 zero	 and	 day	 four	 (see	 supplementary	120	

material).	 All	 samples	 demonstrating	 an	 increase	 of	 103	 or	more	 in	 viral	 RNA	121	

were	passaged	again	to	prepare	working	stocks. 122	

Subsequently	 an	 aliquot	 from	 each	 stock	 was	 tested	 on	 the	 diagnostic	123	

respiratory	 panel	 (PHE	 laboratory,	 Addenbrookes).	 Samples	 shown	 to	 be	 co-124	

infected	with	other	respiratory	viruses	were	rejected.	Nine	strains	with	diverse	125	

plaque	phenotype	collected	between	2011	and	2015	were	subsequently	selected	126	

for	susceptibility	work.		127	

	128	

Plaque	reduction	assay		129	

Cell	 monolayers	 were	 either	 mock	 inoculated	 or	 inoculated	 with	 the	 MK9	130	

reference	strain	stock	dilutions	required	to	produce	20-100	plaques	in	each	well.	131	

Inhibitors	 at	 required	 concentrations,	 or	 an	equivalent	 volume	of	diluent	were	132	

added	 to	 the	overlay	and	 the	monolayers	were	 incubated	 for	7	days,	 fixed	and	133	

immunostained	and	plaque	area	was	measured.		134	

	135	

Growth	inhibition	136	

Cell	 monolayers	 were	 either	 mock	 inoculated	 or	 inoculated	 with	 laboratory	137	

strain	(MK9)	virus	stock	 in	 triplicate.	The	 inoculum	was	then	removed	and	the	138	

monolayers	 were	 washed,	 covered	 with	 maintenance	 medium	 containing	 the	139	

inhibitors	 at	 required	 concentrations,	 or	 the	 equivalent	 volume	of	 diluent,	 and	140	

incubated	 for	 24	 hours.	 Following	 the	 incubation	 period	 both	 the	 supernatant	141	

and	the	cells	were	harvested.	Subsequently	the	concentration	of	released	virus	in	142	

the	supernatant	was	determined	by	plaque	titration.	Viral	RNA	levels	in	infected	143	

cells	was	determined	by	qPCR	and	normalised	to	the	total	RNA	in	the	sample.		144	
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	145	

Growth	inhibition	(clinical	strains)	146	

Growth	 kinetic	 inhibition	 experiments	 were	 carried	 out	 on	 clinical	 strains	 as	147	

above.	Two	concentrations	of	each	inhibitor,	corresponding	to	the	50%	maximal	148	

effective	 concentration	 (EC50)	 and	90%	maximal	 effective	 concentration	 (EC90)	149	

values,	 as	 interpolated	 from	 the	 dose	 response	 curve	 of	 infectious	 particle	150	

reduction	 in	 the	 supernatant	 using	 reference	 strain	MK9,	were	 used.	 The	 EC50	151	

value	for	zanamivir	was	inferred	from	the	dose	response	curve	of	the	reduction	152	

of	 viral	 copy	 number	 by	 qPCR	 and	 the	 higher	 concentration	was	 taken	 as	 the	153	

maximum	concentration	assayed,	1mM.			154	

	155	

Binding	inhibition	with	zanamivir		156	

Cell	monolayers	were	inoculated	with	laboratory	strain	(MK9)	in	triplicate	with	157	

the	 required	 viral	 dilutions	 in	 maintenance	 medium	 with	 or	 without	 various	158	

concentrations	 of	 zanamivir.	 The	 inoculum	 was	 then	 removed,	 the	 cells	 were	159	

washed,	covered	with	agarose	overlay	and	incubated,	fixed	and	immunostained.		160	

	161	

Pre-incubation	with	zanamivir	162	

High	viral	 titres	were	pre-incubated	with	different	concentrations	of	zanamivir	163	

or	with	 equivalent	 volume	of	 diluent	 (PBS)	 for	 1	 hour	 at	 37°C.	 	Mock	 controls	164	

with	 UV	 inactivated	 virus	 with	 zanamivir,	 and	 zanamivir	 on	 its	 own	 were	165	

included.	 Post	 incubation,	 the	 remaining	 infectivity	 in	 the	 sample	 was	166	

determined	by	plaque	assay.	Each	sample	was	diluted	at	least	by	a	factor	of	104,	167	

ensuring	that	any	residual	inhibitor	effect	was	negligible.		168	

	169	
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Binding	inhibition	and	pre-incubation	with	zanamivir	(clinical	strains)	170	

Binding	 inhibition	 and	 pre-incubation	 with	 zanamivir	 was	 carried	 out	 on	 five	171	

clinical	strains	that	were	shown	to	be	significantly	more	susceptible	to	EC50	ZNV	172	

by	 growth	 inhibition	 (see	 above).	 For	binding	 inhibition	 two	 concentrations	of	173	

the	 inhibitor	 were	 used.	 The	 lower	 concentration	 corresponded	 to	 the	 EC50	174	

interpolated	from	the	dose	response	curve	of	binding	inhibition	using	laboratory	175	

strain	MK9	and	the	higher	was	the	maximum	concentration	used	1mM.	For	pre-176	

incubation	with	ZNV	only	the	maximum	concentration	of	1mM	was	used.		177	

	 	178	
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	179	

RESULTS	180	

	181	

Isolation	and	cell	culture	growth	of	HPIV3	clinical	isolates	182	

Residual	clinical	samples	were	collected	between	2011	and	2015	from	the	PHE	183	

diagnostic	 laboratory,	 Addenbrooke’s	 hospital,	 Cambridge.	 43	 out	 of	 407	184	

samples	 were	 successfully	 grown	 at	 passage	 1.	 Of	 these	 3	 samples	 were	185	

identified	 as	 co-infected	with	 another	 respiratory	 pathogen	 and	were	 rejected	186	

for	subsequent	studies.	The	other	40	samples	underwent	an	additional	passage	187	

to	 produce	working	 viral	 stocks.	 	 Nine	 clinical	 strains	 collected	 from	 different	188	

years	from	diverse	patient	demographics	and	plaque	phenotype	were	chosen	for	189	

further	susceptibility	testing	(table	1).		190	

	191	

Plaque	area	measurements,	ranging	from	0.3mm2	to	1.47mm2,	reflect	the	diverse	192	

plaque	 phenotype	 of	 the	 strains	 chosen	 (table1)	 The	 significant	 difference	193	

between	 the	 plaque	 area	 of	 clinical	 strains	 and	 strain	 MK9	 likely	 reflects	 the	194	

culture	adaptation	of	the	laboratory	strain.	195	

	196	

The	toxicity	of	all	inhibitors	was	examined	in	PLC/PRF5	cells	and	no	significant	197	

reduction	 in	 cell	 viability	was	observed	within	 the	 range	of	 the	 concentrations	198	

used	for	the	experiments	(data	not	shown).		199	

	200	

Impact	of	zanamivir,	ribavirin	and	favipiravir	on	culture	adapted	HPIV3	201	

	202	
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Figure	 1:	 Laboratory	 adapted	 HPIV3	 strain	 MK9	 is	 sensitive	 to	 ribavirin	203	

and	 favipiravir	but	not	 zanamivir	as	measured	by	plaque	area	 reduction.	204	

Figure	shows	mean	plaque	area	reduction	as	a	percentage	of	the	plaque	area	of	205	

untreated	 control	 +/-	 SEM	 for	 ribavirin	 (B),	 favipiravir	 (C)	 and	 zanamivir	 (D).	206	

Experimental	design	is	shown	in	(A).	All	plaque	areas	were	measured	using	Fiji.	207	

Curves	were	fitted	using	GraphPad	Prism	version	6.00	with	R2	>0.9.	Dashed	lines	208	

represent	the	95%	confidence	intervals.	 	Each	point	represents	three	biological	209	

repeats.		210	

	211	

To	 determine	 more	 accurately	 the	 effective	 concentration	 of	 each	 inhibitor	212	

against	the	lab	adapted	HPIV3	strain	MK9,	the	EC50	was	determined	using	plaque	213	

reduction	 assay	where	 the	 inhibitor	was	 present	 in	 the	 overlay.	 Ribavirin	 and	214	

favipiravir,	 but	 not	 zanamivir	 were	 shown	 to	 be	 effective	 inhibitors	 of	 HPIV3	215	

strain	MK9	by	 this	method	with	an	EC50	of	53.37μM	for	ribavirin	and	137.8μM	216	

for	 favipiravir	 (figure	 1B	 and	C).	 This	 is	 consistent	with	 the	mode	 of	 action	 of	217	

zanamivir	 as	 a	 neuraminidase	 inhibitor	 affecting	 viral	 attachment	 and	218	

release(18,	19).		219	

	220	

	221	

Figure	2:	Growth	of	HPIV3	laboratory	strain	MK9	is	effectively	inhibited	at	222	

24	 hours	 in	 the	 presence	 of	 ribavirin	 and	 favipiravir	 but	 not	 zanamivir.	223	

Experimental	design	 is	shown	in	A.	For	each	 inhibitor	concentration,	 the	 figure	224	

shows	 reduction	 of	 infectious	 units	 in	 the	 supernatant	 as	 a	 percentage	 of	225	

untreated	 control	 quantified	 by	 plaque	 titration	 (panels	 B,	 D	 and	 F)	 and	 the	226	

reduction	 in	viral	copy	number	normalized	to	 the	 total	RNA	 in	 the	sample	as	a	227	
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percentage	 of	 untreated	 control	 by	 qPCR	 (panels	 C,	 E	 and	 G).	 Panels	 I	 and	 H	228	

summarize	the	reduction	in	infectious	particle	number	(I)	and	viral	copy	number	229	

by	 qPCR	 (H)	 for	 all	 inhibitors.	 All	 points	 are	 averages	 of	 three	 biological	230	

replicates	 +/-SEM.	 All	 plaques	 were	 counted	 using	 Fiji.	 All	 curves	 were	 fitted	231	

using	 GraphPad	 Prism	 version	 6	 with	 R2	 >0.9.	 Dashed	 lines	 represent	 95%	232	

confidence	intervals.		233	

	234	

Subsequently	 the	 effect	 of	 each	 inhibitor	 on	 the	 growth	 kinetics	 of	HPIV3	was	235	

evaluated.	 Ribavirin	 (figure	 2B	 and	 C)	 and	 favipiravir	 (figure	 2D	 and	 E)	 were	236	

observed	 to	 be	 effective	 inhibitors	 of	HPIV3	 (figure	2A).	Due	 to	 the	mutagenic	237	

nature	 of	 favipiravir	 an	 EC90	 was	 not	 achieved	 with	 this	 inhibitor	 when	238	

measured	 by	 the	 reduction	 in	 genome	 copy	 number	 in	 cells	 (figure	 2E)).		239	

Zanamivir	 appeared	 to	 be	 the	 least	 effective	 of	 these	 inhibitors,	 achieving	 a	240	

maximum	of	10%	inhibition	of	released	virus	and	approximately	70%	reduction	241	

in	genome	copy	number	in	cells	at	maximum	concentration	assayed	(1mM).		The	242	

EC50	 of	 zanamivir	 (200μM)	 for	 subsequent	work	was	 calculated	 from	 the	dose	243	

response	curve	fitted	to	the	reduction	in	genome	copy	number	(figure	2G).	244	

	245	

Zanamivir	inhibits	HPIV3	at	the	level	of	virus	binding.	246	

	247	

Figure	 3:	 Zanamivir	 inhibits	 HPIV3	 at	 the	 level	 of	 virus	 binding.	248	

Experimental	design	 is	shown	 in	A	(binding	 inhibition)	and	C	(pre-incubation).	249	

The	figure	shows	the	effect	on	laboratory	strain	MK9	when	zanamivir	is	present	250	

during	 inoculation	 (B)	 and	when	 pre-incubated	with	 zanamivir	 (D)	 to	 exclude	251	

the	possibility	of	direct	effects	on	virus	particles.	Panel	D	(pre-incubation)	shows	252	



	 13	

no	 significant	 effect	 on	 viral	 replication.	 In	 both	 cases	 the	 figure	 shows	 the	253	

reduction	of	the	number	of	infectious	units	as	a	percentage	of	untreated	control	254	

by	plaque	titration	+/-	SEM.		All	plaques	were	counted	using	Fiji.	All	curves	were	255	

fitted	using	GraphPad	Prism	version	6.00	with	R2	>0.9.	Dashed	 lines	 represent	256	

95%	confidence	intervals.		257	

	258	

The	ability	of	zanamivir	 to	act	as	a	binding	 inhibitor	of	HPIV3	and	 its	effect	on	259	

the	 viral	 particle	 itself	 was	 assessed	 by	 adding	 the	 inhibitor	 during	 the	260	

inoculation	stage	and	pre-incubating	the	virus	with	it	respectively.	Zanamivir	has	261	

been	 shown	 to	 inhibit	HPIV3	 at	 a	 higher	 concentration	 (EC50	 of	 295μM)	when	262	

added	 during	 the	 inoculation	 stage	 (figure	 3).	 Pre-incubation	 of	 HPIV3	 with	263	

zanamivir	 has	 had	 no	 effect	 on	 the	 reduction	 of	 infectious	 particle	 number,	264	

confirming	that	zanamivir	has	no	direct	anti-viral	activity.			265	

	266	

Clinical	 strains	 of	 HPIV3	 are	 susceptible	 to	 ribavirin,	 favipiravir	 and	267	

zanamivir	268	

	269	

Figure	4:	Clinical	strains	of	HPIV3	are	susceptible	 to	ribavirin,	 favipiravir	270	

and	zanamivir.	Experimental	design	is	shown	in	(A).		For	each	clinical	strain	the	271	

figure	 shows	 the	 reduction	 of	 infectious	 units	 in	 the	 supernatant	 by	 plaque	272	

titration	as	a	percentage	of	the	untreated	control	+/-	SEM.		9	clinical	strains	and	273	

strain	MK9	were	inoculated	at	low	MOI	and	incubated	for	24	hours	in	triplicate	274	

with	 two	 concentrations	 of	 each	 inhibitor	 (EC50	 and	 EC90	 values	 interpolated,	275	

where	possible,	 from	dose	 response	 curves	using	 reference	 strain	MK9	 (figure	276	

2E)).	 For	 zanamivir	 the	 EC50	 value	 was	 interpolated	 from	 the	 dose	 response	277	
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curve	reduction	 in	viral	 copy	number	 (figure	2G)	and	 the	higher	concentration	278	

was	 taken	 to	 be	 the	 maximum	 used	 experimentally	 (1mM)	 as	 EC90	 was	 not	279	

achieved	with	this	inhibitor.		280	

	281	

	282	

Subsequently	 the	 EC50	 of	 all	 three	 inhibitors	 and	 the	 EC90	 of	 ribavirin	 and	283	

favipiravir,	as	well	as	the	highest	concentration	assays	(1mM)	of	zanamivir,	were	284	

assayed	 against	 clinical	 strains	 of	HPIV3.	 All	 clinical	 strains	were	 shown	 to	 be	285	

sensitive	to	the	three	inhibitors	(figure	4)	with	the	majority	of	the	clinical	strains	286	

typically	being	at	least	as	susceptible	to	the	drugs	as	the	reference	strain	(table	287	

2).	Although	laboratory	strain	MK9	was	shown	to	be	resistant	to	zanamivir,	5	out	288	

of	 9	 clinical	 strains	 at	 200μM,	 all	 clinical	 strains	 at	 1mM	 were	 shown	 to	 be	289	

sensitive	to	this	inhibitor.		290	

	291	

Clinical	strains	of	HPIV3	are	susceptible	 to	zanamivir	at	 the	 level	of	virus	292	

binding.		293	

	294	

Figure	5	Clinical	 strains	are	 susceptible	 to	 zanamivir	at	 the	 level	of	 virus	295	

binding	296	

Experimental	design	is	shown	in	(A).	For	each	clinical	strain	the	figure	shows	the	297	

reduction	in	infectious	units	by	plaque	titration	as	a	percentage	of	the	untreated	298	

control	+/-	SEM.	The	 lower	concentration	 (EC50 value) was interpolated from the 299	

dose response curve using reference strain MK9 (figure 3B) the higher concentration 300	

was taken to be the maximum used experimentally (1mM).  All plaques were counted 301	

using Fiji.	302	
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	303	

In	 order	 to	 investigate	 further	 the	 effect	 of	 ZNV	 on	HPIV3	 during	 binding,	 the	304	

above	 experiment	 was	 repeated	 with	 the	 five	 clinical	 strains	 that	 were	305	

significantly	susceptible	to	ZNV	at	200μM.	All	the	clinical	strains	were	shown	to	306	

be	 as	 sensitive	 to	 ZNV	 as	 reference	 strain	 MK9	 by	 this	 method	 (figure	 5).	307	

Similarly	 to	 the	 laboratory	 strain,	pre-incubation	with	ZNV	was	shown	 to	have	308	

no	effect	on	the	reduction	in	infectious	particle	number	of	these	clinical	strains	309	

(data	not	shown).		310	

	 	311	
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DISCUSSION	312	

	313	

In	 this	 study	 ribavirin,	 favipiravir	 and	 zanamivir	 have	 been	 evaluated	 as	314	

potential	 inhibitors	 of	 HPIV3	 in	 both	 a	 laboratory	 adapted	 strain	 and	 nine	315	

distinct	minimally	 passaged	 clinical	 strains	 obtained	 between	 the	 years	 2011-316	

2015.	 The	 clinical	 strains	 selected	 for	 this	 study	 originated	 from	 a	 diverse	317	

population	 of	 patients	 and	 can	 therefore	 be	 considered	 representative	 of	 the	318	

population	 covered	 by	 the	 PHE	 diagnostic	 laboratory	 Addenbrookes	 Hospital,	319	

Cambridge.		320	

	321	

Our	results	confirmed	that	ribavirin	is	an	effective	inhibitor	of	HPIV3	in	vitro	322	

both	by	plaque	reduction	and	by	growth	inhibition	assays	(figures	1	and	2).	An	323	

approximately	4-fold	decrease	in	EC50	value	against	laboratory	strain	MK9	324	

between	the	one	obtained	by	plaque	titration	(53.37μM)	(figure	1)	and	by	325	

growth	kinetics	inhibition	(15.14μM)	(figure	2)	was	noted.		This	discrepancy	was	326	

likely	due	to	differences	in	methodology	including	the	stability	of	the	inhibitor	in	327	

the	overlay	(7	days	vs	24	hour	incubation),	the	timing	of	data	collection	and	viral	328	

spread	confined	to	cell	to	cell	fusion	in	plaque	assays.	Clinical	strains	have	been	329	

shown	to	be	at	least	as	susceptible	to	ribavirin	as	the	laboratory	strain	with	a	330	

potential	lower	EC50	for	clinical	strains	(figure	4).			331	

	332	

These	figures	are	compatible	with	ribavirin	bioavailability	studies	that	333	

demonstrate	an	average	level	of	8.19μM,	with	a	potential	correlation	with	334	

haemoglobin	drop	above	4μM(20)	during	hepatitis	C	therapy.	In	the	case	of	RSV	335	

treatment(21,	22),	where	ribavirin	is	delivered	by	aerosol,	plasma	levels	336	
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achieved	are	significantly	less	that	the	EC50	observed	in	this	study	and	range	337	

from	0.76μM	to	6.8μM,	depending	on	length	of	delivery(23)	.	Unfortunately	338	

neither	study	provides	data	on	concentrations	in	the	respiratory	tract.		As	such,	339	

although	ribavirin	remains	an	effective	inhibitor	of	HPIV3	in	vitro,	further	340	

optimization	of	drug	design	or	combination	therapy	is	required	to	yield	a	341	

regimen	capable	of	delivering	therapeutically	useful	concentrations	at	the	site	of	342	

infection.		343	

	344	

Favipiravir	 is	 a	 nucleoside	 analogue	with	 a	 broad	 spectrum	 of	 action,	 and	 has	345	

been	 shown	 to	 be	 effective	 against	 other	RNA	 viruses	 such	 as	 influenza,	 ebola	346	

and	 laboratory	adapted	parainfluenza	strains	 in	vitro(14,	15,	24,	25).	Given	the	347	

similarities	in	the	RNA	dependent	RNA	polymerase,	it	is	a	promising	inhibitor	of	348	

HPIV3.	 Overall	 we	 observed	 that	 favipiravir	 is	 an	 effective	 inhibitor	 of	 HPIV3	349	

both	 by	 plaque	 reduction	 and	 growth	 kinetics	 inhibition	 assay	 in	 the	 current	350	

model	 (figures	1	and	2),	with	8	out	of	9	clinical	strains	 tested	being	at	 least	as	351	

sensitive	to	 favipiravir	as	 the	 laboratory	strain	MK9	(figure	4).	 In	this	study	an	352	

EC50	 of	 approximately	 138μM	 was	 determined	 for	 HPIV3	 by	 both	 plaque	353	

reduction	and	growth	kinetics	inhibition	(figure	2).		354	

	355	

As	favipiravir	is	a	relatively	novel	therapeutic	drug,	very	limited	in	vivo	data	on	356	

plasma	concentrations	achieved	in	humans	is	available(15),	although	a	number	357	

of	 in	vivo	 studies	using	small	rodent	models(14,	26,	27)and	well	as	non-human	358	

primates(28)	 have	 been	 conducted.	 Recently	 released	 data	 from	 the	 JIKI	 trial	359	

(Efficacy	of	favipiravir	against	ebola	trial)	quoted	trough	plasma	levels	of	293μM	360	

on	day	2	and	165μM	on	day	4	of	treatment(25).		This	exceeds	the	EC50	and	EC90	361	
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values	 quoted	 in	 literature(14,	 27)	 and	 observed	 in	 this	 study.	 Although	362	

encouraging,	 this	 should	be	 interpreted	with	 caution,	 as	no	data	on	 favipiravir	363	

concentration	in	respiratory	secretions	and	in	the	lungs	is	currently	available.	364	

	365	

In	 this	 study	 we	 have	 observed	 ZNV	 to	 be	 ineffective	 against	 the	 laboratory	366	

strain	by	two	assays	(figures	1	and	2),	all	of	the	clinical	strains	demonstrated	at	367	

least	a	50%	reduction	in	 infectious	particle	number	 in	the	supernatant	at	1mM	368	

and	2	out	of	9	strains	tested	demonstrated	~	50%	inhibition	at	200μM	(figure	4).	369	

We	have	also	demonstrated	that	zanamivir	acts	as	a	binding	inhibitor	of	HPIV3	370	

at	EC50	of	295μM,	although	an	EC90	was	not	achieved	below	1mM	(figure	3).		No	371	

difference	 was	 observed	 between	 the	 sensitivity	 to	 ZNV	 in	 its	 capacity	 as	 a	372	

binding	 inhibitor	 by	 the	 laboratory	 strain	 MK9	 and	 the	 clinical	 strains	 tested	373	

(figure	5).	374	

	375	

This	is	consistent	with	previous	data	that	indicates	that	the	HN	protein	of	HPIV3	376	

contains	 two	binding	 sites	 and	 is	 responsible	 for	 the	binding,	 fusion	 triggering	377	

and	release	of	 the	new	viral	particle(29).	 	 In	 its	capacity	as	a	binding	 inhibitor,	378	

ZNV	 is	known	to	bind	 to	site	 I	with	a	non-specific	distortion	of	 site	 II(29).	The	379	

fusion	and	release	processes,	on	the	other	hand	have	been	linked	to	binding	site	380	

II	 (29,	 30).	 Moreover	 a	 specific	 mutation	 (N556D)	 at	 binding	 site	 II	 has	 been	381	

linked	to	culture	adaptation	and	has	been	shown	to	confer	a	5-fold	decrease	 in	382	

neuraminidase	 activity	 between	 a	 wild	 type	 strain	 and	 significantly	 culture	383	

adapted	one	(31).	This	has	been	linked	to	a	more	robust	interaction	with	the	cell	384	

receptor(32)	 and	 a	 larger	 plaque	 phenotype	 (table	 1)	 in	 significantly	 culture	385	

adapted	 strains(31).	 It	 is	 of	 note	 that	 the	 reference	 strain	 MK9	 contains	 that	386	
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mutation	 and	 hence	 the	 reduced	 neuraminidase	 activity	 whereas	 the	 clinical	387	

strains	 used	 in	 this	 study	 do	 not.	 	 This	 agrees	 with	 the	 results	 of	 this	 study,	388	

where	 clinical	 strains	 have	 been	 shown	 to	 be	 more	 susceptible	 to	 ZNV	 than	389	

laboratory	strain	MK9	by	growth	inhibition	but	not	at	the	level	of	binding.				390	

	391	

	Although	this	data	is	encouraging,	the	inhibitory	concentrations	achieved	in	this	392	

study	 still	 exceed	 zanamivir	 levels	 in	 nasal	 secretions	 (between	 200μM	 and	393	

300μM)	 achieved	 during	 influenza	 treatment(33).	 Nonetheless	 the	 observed	394	

susceptibility	 of	 clinical	 strains	 to	 zanamivir	 confirms	 the	 importance	 of	395	

conducting	 further	 studies	 in	 this	 area	on	 clinical	 strains	with	minimal	 culture	396	

adaptation.			397	

	398	

In	this	study	we	have	presented	an	in	vitro	infectivity	based	model	for	evaluating	399	

HPIV3	 susceptibility	 to	 potential	 therapeutic	 candidates	 using	 a	 tissue	 culture	400	

adapted	reference	strain	MK9	and	9	diverse	clinical	strains.		A	necessary	limiting	401	

factor	in	methodologies	that	involve	immortalized	cell	culture	is	the	reliance	on	402	

viruses	 that	 are	 able	 to	 grow	 in	 this	 environment.	 A	 markedly	 larger	 plaque	403	

phenotype	is	associated	with	significant	culture	adaptation	as	demonstrated	by	404	

the	 laboratory	 strain(31).	 	Within	 these	 constraints,	 and	as	 all	 clinical	 samples	405	

have	been	minimally	and	equally	passaged	in	cell	culture,	the	diversity	in	plaque	406	

size	is	an	indication	of	diversity	of	phenotype	of	the	clinical	samples	used	in	this	407	

study.		There	is	good	evidence	that	heavily	laboratory	adapted	HPIV3	strains	are	408	

non-representative	 of	 the	 currently	 circulating	 clinical	 strains(30,	 31).	 Despite	409	

recent	advances	in	human	airway	epithelial	(HAE)	culture	systems(31),	these	are	410	

often	 not	 suitable	 when	 large	 volume,	 high	 titre	 stocks	 are	 required	 for	411	
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subsequent	downstream	analysis.	 	We	have	found	ribavirin	and	favipiravir,	but	412	

not	zanamivir	to	be	effective	inhibitors	of	both	the	tissue	culture	adapted	strain	413	

and	 clinical	 strains	 of	 HPIV3.	 	 Overall	 clinical	 strains	 were	 significantly	 more	414	

susceptible	to	zanamivir.	Further	work	on	clinical	circulating	strains,	optimized	415	

methods	 of	 delivery	 and	 targeted	 clinical	 trials	 are	 required	 to	 formulate	416	

treatment	for	this	important	pathogen.			417	

	418	

	 	419	
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sample	 patient	

Lab	
ID	

Date 
collected source 

Plaque	area	
mm2	+/-	
SEM	

sex	 age	 location	 In/out	
patient	

14	 Nov-14	 URT	
swab	

0.30+/-
0.04	 F	 1	year	 Basildon	

hospital	 in	

16	 May-14	 URT	
swab	

0.33+/-
0.03	 M	 50	

years	
Addenbrooke’s	

hospital	 in	

65	 Jun-11	 URT	
swab	

1.47+/-
0.11	 F	 54	

years	
Addenbrooke’s	

hospital	 in	

82	 Jul-11	 URT	
swab	

1.46+/-
0.16	 M	 2	

months	
Harlow	
hospital	 in	

113	 Jul-12	 URT	
swab	

0.94+/-
0.05	 M	 42	

years	
Addenbrooke’s	

hospital	 in	

129	 Feb-13	 Tracheal	
aspirate	

0.92+/-
0.04	 F	 4	years	 Frimley	Park	

hospital	 in/ICU	

153	 Apr-13	 NPA	 0.83+/-
0.03	 F	 12	

years	
Frimley	Park	
hospital	 in	

180	 May-13	 NPA	 0.57+/-
0.02	 F	 3	

months	
Addenbrooke’s	

hospital	 out	

362	 Mar-15	 URT	
swab	

0.59+/-
0.06	 F	 80	

years	
Essex	nursing	

home	 out	

LS	
MK9	 n/a	 n/a	 3.96+/-

0.45	 n/a	 n/a	 n/a	 n/a	

	555	

	556	

	557	

Table	1:		Clinical	strains	selected	for	susceptibility	testing.	Clinical	strains	558	

were	collected	between	2011	and	2015,	all	originated	from	the	upper	559	

airway	of	patients	with	4/9	from	Addenbrooke’s	Hospital,	Cambridge.	560	

Plaque	area	for	the	clinical	strains	averaged	at	0.82mm2	+/-	0.03	(SEM)	561	

with	a	range	between	0.3	mm2	and	1.47mm2,	with	strains	from	2011	(65	562	

and	82),	demonstrating	a	comparatively	large	plaque	phenotype.		Strain	563	

MK9	is	a	laboratory	adapted	strain	obtained	from	PHE	cell	culture	564	

collections.		565	



	 29	

		 		

average	percentage	of	
untreated	control	(PFUs/ml)	

+/-	SEM	

number	of	clinical	strains	with	
significant	deviation	from	the	
laboratory	strain	(FDR	1%)	

drug	 concentration	 lab	strain	 clinical	strains	 less	
sensitive	

more	
sensitive	

no	
difference	

ribavirin	 RBVIC50	
47.94+/-
5.97	 21.5+/-2.08	 0	(0%)	 8	(89%)	 1	(11%)	

RBVIC90	 9.12+/-0.76	 5.15+/-0.78	 1	(11%)	 4	(44.5%)	 4	(44.5%)	

favipiravir	
FVP	IC50	

47.95+/-
1.37	 39.77+/-3.69	 1	(11%)	 4	(44.5%)	 4	(44.5%)	

FVP	IC90	
13.56+/-
0.23	 14.03+/-1.73	 1	(11%)	 3	(33%)	 5	(56%)	

zanamivir	
ZNV	200μM	

98.63+/-
4.11	 75.86+/-3.21	 0	(0%)	 5	(55.5%)	 4	(44.5%)	

ZNV	1mM	
90.41+/-
4.75	 25.94+/-3.72	 0	(0%)	 9	(100%)	 0	(0%)	

	569	

Table	2:	Clinical	strain	susceptibility	to	favipiravir,	ribavirin	and	zanamivir	570	

Average	EC50	and	EC90	values	for	each	clinical	strain	and	for	the	laboratory	strain	571	

MK9	(PHE	cultures)	determined	by	plaque	titration	of	supernatant	after	24	hour	572	

incubation	(figure	4)	are	summarized.	A	summary	of	how	many	clinical	strains	573	

were	 more,	 less	 or	 equally	 susceptible	 to	 each	 inhibitor	 is	 included	 for	 each	574	

inhibitory	concentration.	All	plaques	were	counted	using	Fiji.			575	

	576	

	577	

	578	

	579	

	580	
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SUPPLEMENTARY	METHODS	1	

	2	

Cells		3	

HPIV3	 has	 been	 cultured	 previously	 in	 numerous	 cell	 lines	 including,	 among	4	

others:	CV-1,	293T,	Hep2,	MDCK	and	Vero(1,	2).	In	this	case	the	PLC/PRF/5	cell	5	

line	was	chosen	as	 it	was	previously	used	 for	 tissue	culture	based	diagnosis	of	6	

respiratory	 viruses	 in	 the	 laboratory	 that	 has	 supplied	 the	 clinical	 samples	 for	7	

this	 study.	 More	 importantly,	 it	 was	 judged,	 that	 as	 this	 line	 was	 suitable	 for	8	

diagnostics,	it	would	be	suitable	for	isolation	of	clinical	strains.		9	

The	cell	 line	was	maintained	in	Dulbecco	Modified	Eagle	Medium	(DMEM)	high	10	

glucose	 medium	 supplemented	 with	 10%	 fetal	 bovine	 serum	 (FBS),	 penicillin	11	

(100	SI	units/ml),	streptomycin	(100μg/ml)	and	2mM	L-glutamine	at	37°C	in	5%	12	

CO2.		13	

	14	

Culture	of	HPIV3	clinical	strains	15	

Cell	 monolayers	 were	 set	 up	 at	 70%	 confluence	 in	 T25	 flasks	 and	 each	16	

monolayer	 was	 inoculated	 with	 20μl	 clinical	 sample	 in	 200μl	 maintenance	17	

medium	 (high	 glucose	 DMEM	with	 1%	 fetal	 bovine	 serum	 (FBS)	 and	 2mM	 L-18	

glutamine)	 supplemented	 with	 penicillin	 100U/ml,	 streptomycin	 100μg/ml,	19	

gentamicin	50μg/ml,	 ceftazidime	50μg/ml,	vancomycin	50μg/ml	and	 fungizone	20	

(amphotericin	B)	5μg/ml	to	minimize	bacterial	and	fungal	out	growth.	Infections	21	

were	carried	out	at	37°C	for	2	hours.	The	inoculum	was	then	removed,	the	cells	22	

washed	twice	in	PBS,	covered	with	maintenance	medium	as	above	and	incubated	23	

for	4	days	at	33°C	in	5%	CO2.		Supernatant	samples	of	50μl	were	collected	on	day	24	

zero	and	day	four.	Viral	growth	was	evaluated	by	quantifying	viral	copy	number	25	



in	the	supernatant	samples	by	qPCR	(see	protocol	below).	 26	

Subsequently	an	aliquot	from	each	stock	was	tested	on	the	diagnostic	respiratory	27	

panel	(PHE	laboratory,	Addenbrookes)	including	the	following	common	viruses:	28	

influenza	A	and	B,	RSV,	enterovirus,	rhinovirus,	HMPV,	adenovirus	and	HPIV1,	2,	29	

3	and	4.		30	

	31	

Statistical	analysis	32	

All	statistical	analysis	was	carried	out	in	GraphPad	Prism	version	6.00	for	Mac	OS	33	

X,	 GraphPad	 Software,	 La	 Jolla	 California	 USA,	 www.graphpad.com.	 Linear	34	

regressions	 from	 the	 standard	 curve	 for	 qPCR	 were	 fitted	 using	 the	 linear	35	

regression	model.	 Dose	 response	 curves	 for	 drug	 inhibition	 assays	were	 fitted	36	

using	 the	 4	 parameter	 logistic	 (4PL)	 fit.	 Curves	with	R2	>	 0.9	 and	 a	 p<0.05	 for	37	

replicates	test	for	lack	of	fit	were	accepted	as	adequate	models.	 38	

	39	

qPCR	40	

Total	 RNA	 from	 samples	 was	 extracted	 using	 the	 GenElute	 Mammalian	 Total	41	

RNA	Miniprep	kit	(Sigma)	according	to	the	manufacturer’s	guidelines.	This	was	42	

amplified	on	the	ViiA7	Real	Time	PCR	system	(Applied	Biosystems)	using	a	qPCR	43	

protocol	 obtained	 and	modified	 from	 the	 standard	 operating	 procedure	 (SOP)	44	

for	HPIV3	typing	used	by	the	PHE	diagnostic	laboratory,	Addenbrookes	Hospital,	45	

Cambridge.	 	 The	 primers	 and	 the	 taqman	 probe	 used	 were:	 forward	 5'-46	

GCTCCTTTYATCTGTATCCTCAGAGATCC-3',	 reverse	 5'-47	

TGATCTTCCCGTCACATACTGTTGCATG-3',	 probe	 5'-FAM-48	

ATAGTTGCCTGGTGCGAA-TAMRA-3'.	 The	 cycling	 conditions	 used	were:	 hold	 at	49	

50°C	 for	 30min,	 hold	 at	 95°C	 for	 2	min,	 followed	by	 45	 cycles	while	 acquiring	50	



fluorescence	data	through	95°C	for	15s	and	60°C	for	60s.	An	amplicon	from	the	51	

diagnostic	 assay	positive	 control	was	obtained	and	cloned	by	TA	cloning	using	52	

the	 PureYield™	 Plasmid	 Midiprep	 System	 (Promega).	 The	 sequence	 of	 the	53	

amplicon	aligned	to	138bp	of	the	nucleocapsid	gene	of	HPIV3	(nucleotides	981-54	

1118).	 	 Ten	 fold	 serial	 dilutions	 of	 the	 plasmid	 were	 subsequently	 used	 to	55	

establish	a	standard	curve.	Linear	regression	of	 the	standard	curve	 for	genome	56	

copy	number	quantification	was	fitted	using	GraphPad	Prism	version	6.00. 57	

Plaque	assay		58	

Monolayers	at	80-90%	confluence	 (approximately	0.96	–	1.08	x	106	cells/well)	59	

were	 set	 up	 in	 6	 well	 plates	 and	 infected	 with	 serial	 dilutions	 of	 virus	 stock	60	

(500μl/well).	Infections	were	carried	out	in	maintenance	medium	(high	glucose	61	

DMEM	 supplemented	 with	 1%	 fetal	 bovine	 serum	 (FBS),	 penicillin	 (100	 SI	62	

units/ml),	streptomycin	(100μg/ml)	and	2mM	L-glutamine)	at	37°C	for	2	hours.		63	

The	inoculum	was	then	removed	and	the	monolayers	washed	twice	in	PBS.	A	1%	64	

agarose	 overlay	 with	 50%	 maintenance	 medium	 was	 applied	 to	 the	 infected	65	

monolayer.	 The	 plates	 were	 then	 incubated	 inverted	 at	 33°C	 in	 5%	 CO2	 for	 7	66	

days.	 Subsequently	 they	were	 fixed	with	2%	 formaldehyde	 in	PBS,	 the	agarose	67	

plugs	were	removed	and	the	monolayers	were	washed	three	times	in	PBS	prior	68	

to	immunostaining.		Each	titration	was	performed	in	triplicate.	69	

The	 infected	cells	were	stained	with	a	mixture	of	 three	rabbit	polyclonal	anti-F	70	

HPIV3	 antibodies	 at	 1:5000	 dilution	 in	 PBS	 containing	 5%	 FBS	 at	 room	71	

temperature	 for	 1	 hour	 (500μl/well).	 The	 antibodies	 were	 raised	 against	 the	72	

following	 epitopes	 NQESNENTDPRTERF	 (amino	 acids	 96-110),	73	

NRVDQNDKPYVLTNK	 (amino	 acids	 525-539),	 and	 KEWIRRSNQKLDSIG	 (amino	74	



acids	471-485)	of	 the	F	protein.	 	The	 cells	were	 then	washed	 three	 times	with	75	

PBS,	 leaving	each	wash	on	for	5	min,	and	subsequently	 incubated	with	an	anti-76	

rabbit	HRP	conjugated	secondary	antibody	at	1:1000	in	PBS	containing	5%	FBS	77	

at	room	temperature	for	1	hour	(500μl/well).	The	cells	were	washed	5	times	in	78	

PBS	 and	 reacted	with	 True	 Blue	 Peroxidase	 substrate	 (SeraCare)	 (500μl/well)	79	

for	 20min	 at	 room	 temperature.	 The	 plaques	 were	 scanned	 and	 subsequently	80	

identified	and	measured	using	the	Fiji	analyze	particles	module(3).	81	
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