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Gravitational waves (GWs) cause the apparent position of distant stars to oscillate with a char-
acteristic pattern on the sky. Astrometric measurements (e.g. those made by Gaia) provide a new
way to search for GWs. The main difficulty facing such a search is the large size of the data set;
Gaia observes more than one billion stars. In this letter the problem of searching for GWs from
individually resolvable supermassive black hole binaries using astrometry is addressed for the first
time; it is demonstrated how the data set can be compressed by a factor of more than 106, with
a loss of sensitivity of less than 1%. This technique was successfully used to recover artificially
injected GW signals from mock Gaia data and to assess the GW sensitivity of Gaia. Throughout
the letter the complementarity of Gaia and pulsar timing searches for GWs is highlighted.

Introduction – The first detection of gravitational
waves (GWs) from merging black holes has recently been
achieved by LIGO [1]. LIGO can detect binaries with
total masses . 160M� [2]; however, more massive su-
permassive black hole binaries radiate at lower frequen-
cies, inaccessible to ground-based instruments. Observ-
ing GWs from these massive systems would shed light on
the black hole mass function and the coalescence process
of the host galaxies and is a target for current and fu-
ture searches. The planned space-based detector LISA
will detect merging binary black holes in the mass range
(105–107)M� out to redshifts z.20 [3]. Pulsar timing ar-
rays (PTAs) use the precise timing of millisecond pulsars
to search for GWs with frequencies 10−9 . f/Hz . 10−7.
Such GWs may be generated in the early inspiral of a
binary in the mass range (107–1010)M�. A GW pass-
ing over the Earth–pulsar system induces a Doppler shift
which affects the pulse arrival times at the Earth. By
making a number of time-of-arrival measurements over
a timespan T PTAs achieve sensitivity to GWs with fre-
quencies 1/T .f [4]. Current PTAs include NanoGrav
[5], Epta [6], Ppta [7], and the combined Ipta [8].

It is also possible to detect GWs using astrometry [9–
11]. The passage of a GW over the Earth–star system
changes the apparent position of the star. By making
repeated astrometric measurements of many objects and
recording their changing positions it is possible to turn
an astrometric data set into a nHz GW observatory. The
ESA mission Gaia [12] is providing an all-sky astromet-
ric map of >109 stars. Gaia will operate for 5–10 years,
making ∼80 observations (in 5 years) per source, deliver-
ing proper motion accuracy of 20µas yr−1 at magnitude
15, degrading to 300µas yr−1 at magnitude 20.7.

The sensitivity bandwidth of Gaia is set by the mea-
surement timings (similar to PTAs); Gaia is sensitive to
1/T .f . Gaia and PTAs can search for monochromatic

GWs from resolvable circular binaries, stochastic back-
grounds of GWs from the superposition of many bina-
ries (or from cosmic string networks [13] or early uni-
verse perturbations [14]), or GW bursts with memory
[15, 16]. The astrometric analysis of a nearly monochro-
matic GW is considered here; for example, from a super-
massive black hole binary in the early inspiral stage of
its evolution.

The astrometric response to GWs – Astrometric
measurements of distant objects may be used to detect
GWs; the term “star” is used to refer to any such object.
It is assumed that the necessary corrections for Gaia’s
orbital motion have been made, and the term “Earth” is
used to refer to an idealised stationary observer.

The possibility of detecting GWs via astrometry was
first suggested in [9]; the astrometric deflection of a dis-
tant star was derived in [10] (also see [11]) and is sum-
marised here. The Earth and star are assumed to be at
rest in flat space. The coordinate components of the pho-
ton’s four-momentum are not directly observable; instead
an observer on Earth measures the tetrad components of
the photon’s four-momentum and from these is able to
deduce the star’s astrometric position (the unit vector
~n), and the frequency of the starlight.

A plane monochromatic GW from the direc-
tion of the unit vector1 ~q has metric perturbation
hµν =<{Hµν exp(ikρx

ρ)}, where Hµν are small complex
constants satisfying the usual transverse-traceless gauge
conditions, and the wavevector, kµ=(ω,−ω~q), is null.
The observed photons follow null geodesics from the star

1 When working with astrometry it is natural to define the sky
position of the GW source, ~q; this differs from the usual PTA
convention where the GW propagation direction, ~Ω=−~q, is used.
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to the Earth; integrating the geodesic equations gives the
change in the coordinate components of the photon four-
momentum. The GW also changes the observer’s tetrad:
an orthonormal set of vectors parallel transported along
the Earth’s worldline. Combining these gives the change
in the tetrad components of the four-momentum, and
hence the measured frequency and astrometric position.

The frequency perturbation is described by the red-
shift, 1 + z≡Ωemit/Ωobs, where

z =
ninj

2(1− ~q · ~n)
[hij(E)−hij(S)] ; (1)

this is the foundation of PTA efforts to detect GWs
[17, 18]. The redshift depends (anti)symmetrically on
the metric perturbations at the “emission” and “absorp-
tion” events at the star (S) and Earth (E) respectively
(i.e. z depends only on the difference [hij(S)−hij(E)]).
This symmetry arises from the endpoints of the integral
along the null geodesic from the star to the Earth. The
redshift can be integrated to give the timing residual sig-
nal searched for by PTAs.

The astrometric perturbation also depends on the
Earth and star metric perturbations, although not sym-
metrically because the perturbation to the spatial vectors
in the observer’s tetrad depends only on the metric at the
Earth. The expression for the astrometric deflection is
lengthy, however it simplifies in the limit where the star
is many gravitational wavelengths away from Earth [10];

δni =
ni − qi

2(1− ~q · ~n)
hjk(E)n̂nk − 1

2
hij(E)nj . (2)

In this limit the astrometric deflection depends only on
the “Earth term”. The “star term” (or “pulsar term”) is
also sometimes dropped in PTA searches for individually
resolvable sources because each pulsar is at a different
(generally poorly constrained) distance from Earth, so
the “pulsar terms” have different frequencies and phases
and may be treated as an effective noise source. Recent
searches have tended to include the “pulsar terms” (see,
e.g. searches for individual binaries from the three PTAs
[19–21], as well as [22–25]) which has the benefit of in-
creasing the observed signal-to-noise at the expense of
fitting for the distance to each pulsar.

Gaia’s GW sensitivity comes from the large number of
stars it observes. Stars are typically separated by many
gravitational wavelengths, therefore each “star term” will
be different (as well as being suppressed by the distance
to the star) whereas the “Earth term” is dominant and
common to all stars. It is this common “Earth term” that
Gaia aims to detect. Including the “star term” marginally
increases the signal-to-noise ratio for the closest few stars
but makes a negligible difference for the majority (e.g.
a GW with wavelength λ = 1016 m deflecting a typi-
cal star at d= 10 kpc gives a “star term” suppressed by
λ/d≈ 10−5). Fig. 1 shows the “Earth term” astrometric
deflection pattern for a field of distant stars.

FIG. 1. Orthographic projection of the Northern hemisphere
with 103 stars. A GW from the North pole (black dot) causes
stars to oscillate at the GW frequency. The black (red) lines
show movement tracks for a linearly plus (cross) polarised
GW. For clarity, the GW has an unphysically large strain
amplitude of A= 0.1. The four-fold rotational symmetry of
the transverse–traceless GWs is clearly imprinted on the sky.

Data analysis – This section describes how to search
for a monochromatic GW in an astrometric data set. The
likely astrophysical source of such a GW is a circular
supermassive black hole binary with total mass in the
range (107–1010)M�. Such systems spend most of their
lifetime in the relatively weak gravitational field where
they can be safely assumed to be non-evolving over the
observation period2. Points on the sky are denoted as
~n, and vectors tangent to the sky are denoted as h. For
small vectors |h|�1, e.g. the GW astrometric deflection,
the sum ~n ′=~n+h gives a nearby point on the sphere.

The GW metric perturbation may be written as

hij
(
Ψ
)

=
(
A+H

+
ij (~q)e

iφ+ +A×H
×
ij (~q)e

iφ×
)
e2πift , (3)

where H+
ij , H

×
ij are the usual GW basis tensors, and

Ψ is a 7-dimensional parameter vector: two amplitudes
A+, A×, two phases φ+, φ×, the GW frequency f , and
two angles describing the direction ~q to the GW source.

The data set, S, consists of N separate astrometric
measurements of M stars. The different stars (and mea-
surements) are indexed by I (and J). The observations

2 For a binary to be considered monochromatic for Gaia anal-
ysis, the timescale, τ , over which the GW frequency, fGW,
evolves must exceed the mission lifetime of ≈ 10 years. This
timescale can be estimated via τ≈fGW/ḟGW using leading order
post-Newtonian expressions (see, e.g. [26]). All binaries satisfy
τ >10 years up to ≈3.5 years before merger, independent of the
component masses. In contrast, these systems cannot always be
considered monochromatic for PTA analysis because the “pulsar
terms” provide snapshots of the fGW at widely separated times
allowing the frequency evolution to be measured (see, e.g. [27]).
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are made at times tJ (for simplicity the tJ are assumed
to be the same for all stars);

S = {~sI,J |I = 1, 2, . . . ,M ; J = 1, 2, . . . , N} . (4)

Each individual measurement is a combination of the
background star position, ~nI(tJ), instrumental noise,
rI,J , and (possibly) a GW;

~sI,J = ~nI(tJ) + rI,J + h
(
Ψ;~nI(tJ), tJ

)
. (5)

The background positions vary due to the star’s proper
motion. For each star the function ~nI(tJ) is modelled as
a quadratic, ~nI(tJ) and subtracted from the data;

sI,J = ~sI,J − ~nI(tJ) . (6)

Thereby the background positions, proper motions, and
accelerations are fit out of the data. This is the astro-
metric equivalent of the pulsar timing model and sets the
low frequency sensitivity [4]. The position model can be
marginalised over (see [28] in the PTA context), however,
here the maximum likelihood parameters are used.

For simplicity the noise in each measurement is as-
sumed to be identical and independent (σ≡σI,J),

E [rI,J · rI′,J′ ] = σ2δII′δJJ ′ . (7)

The likelihood of S given the parameters Ψ, assuming
the star’s motion has been correctly modelled and under
the noise assumptions described, may be written as

P
(
S|Ψ

)
∝exp

(
M∑
I=1

N∑
J=1

–
∣∣sI,J–h (Ψ; ñI(tJ), tJ

)∣∣2
2σ2

)
,

(8)
where |·| denotes the norm of a vector on the sphere. The
posterior probability follows from Bayes’ theorem,

P
(
Ψ|S

)
=

Π
(
Ψ
)
P
(
S|Ψ

)
Zs

, (9)

with prior Π
(
Ψ
)
. Throughout this letter uniform peri-

odic priors for the phase angles φ+, φ×, uniform in log
priors for the amplitudes A+, A×, uniform in log prior
for the frequency in the range f ∼U [1/T,N/2T ], and a
uniform prior on the sphere for ~q are used.

The Bayesian signal evidence normalises the distribu-
tion in Eq. 9 and is given by

Zsignal =

∫
dΨ Π

(
Ψ
)
P
(
S|Ψ

)
. (10)

The noise evidence Znoise, is simply given by the likeli-
hood in Eq. 8 evaluated with no GW signal. The Bayes’
factor B≡Zsignal/Znoise is used as a detection statistic; it
is assumed that any signal with B>Bthreshold =101.5 can
be confidently detected. This is generally a conservative
choice, and corresponds to Jeffrey’s [29] criterion for de-
tection with “very strong” evidence (the threshold choice

is discussed in the supplement to this letter); the precise
detection threshold is problem specific and will depend
on the details of the final Gaia data release.

The MultiNest [30] implementation of nested sam-
pling [31] was used to sample the posterior (Eq. 9) and
evaluate the evidence (Eq. 10).

A mock Gaia data set was constructed with M = 105

stars (approximately a factor of 104 less than the full
Gaia catalog for computational necessity) each measured
N = 75 times evenly spaced over a T = 5 year mis-
sion (the effect of non-uniform sampling is explored be-
low). The simulated noise in each measurement was
σ = 100µas/

√
104, reflecting an estimate of the errors

in each measurement in Gaia’s final data release and the
reduced number of stars (the validity of this scaling and
our ability to achieve the compression is established be-
low). For each star the position model ~nI(tJ) was fitted,
and subtracted according to Eq. 6.

The sensitivity is largely determined by N , M , T and
σ; the values of N , M , T used are pessimistic estimates
for the final Gaia values, while the value of σ is slightly
optimistic. In particular, Gaia errors vary strongly with
magnitude (see Fig. 1 of [32]); a simple estimate of the
appropriate error in each measurement derived by av-
eraging over the full magnitude range, using fits to the
histogram of mean G magnitude [33], yielded a conserva-
tive estimate of 200µas. The data set used here reflects
our current best guess of Gaia’s ultimate sensitivity but
should be updated following future Gaia data releases.

A GW from a high mass, non-spinning binary was in-
jected into this data set; black holes with masses m1 =
m2 =5×108M� on a circular orbit of radius 1500 au at a
distance of 20Mpc (orientated with the angular momen-
tum along the line-of-sight) give a circularly polarised
GW with frequency 2πf = 2 × 10−7s−1 and amplitude
A+ = A× = 3 × 10−14. The GW was confidently re-
covered with B=104.2>Bthreshold and the 1–dimensional
marginalised posterior distributions are shown in Fig. 2.

Compressing the GAIA dataset – Searches with
M = 105 stars take days to run; the full Gaia data set
with M > 109 stars is impractically large to search us-
ing the Bayesian techniques described. Here we show
how the data can be greatly compressed with little loss
in sensitivity. The need for compression is even greater
when performing an astrometric search for a stochastic
GW background because the likelihood involves the in-
verse of aM×M correlation matrix [11] (compression for
stochastic searches will be addressed in a future publica-
tion).

A small number M̃(�M) of points on the sky, called
virtual stars, are selected. Each virtual star defines a
Voronoi cell [34] consisting of the points nearest that
virtual star. Each real star is identified with the nearest
virtual star. Virtual stars are indexed by Ĩ=1, 2, . . . , M̃
and the Voronoi cells are denoted VĨ .
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FIG. 2. 1–dimensional marginalised posteriors on Ψ (black lines indicate injected values). The injected GW was circularly
polarised (i.e φ+− φ× = π/2) so the φ× posterior is shifted such that it overlaps with φ+. The Mollweide sky map is shown
with the area of the 68% credible region given.

The astrometric data set is compressed into a smaller
virtual data set (quantities associated with the virtual
data are denoted with a tilde). All astrometric deflections
in a set time interval for stars in a given cell are averaged;

s̃Ĩ,J =
1

|VĨ |
∑
I∈VĨ

sI,J ,
1

σ̃2
Ĩ,J

=
∑
I∈VĨ

1

σ2
I,J

, (11)

where |VĨ | denotes the number of real stars in VĨ . The
virtual data S̃={s̃Ĩ,J |Ĩ=1, . . . , M̃ ; J=1, . . . , N} (c.f.
Eq. 4) may be analysed using the techniques described
above for the original data, S.

This compression would be lossless if (i) the noise was
described by Eq. 7, and (ii) the astrometric deflections
of all stars in a cell were parallel. The deflections vary
smoothly across the sky (see Fig. 1) so as M̃ is increased
condition (ii) becomes satisfied. In fact, for a given M̃
the sensitivity loss can be estimated by considering the
angle between deflections of stars in the same Voronoi
cell (see Fig. 3).

While condition (i) cannot be expected to hold per-
fectly, correlations are not expected to significantly de-
grade the sensitivity. Temporal correlations will be mit-
igated against by the fact that between measurements
the spacecraft rotates into a different orientation and the
starlight strikes a different part of the CCD. Spatial cor-

FIG. 3. The horizon distance is reduced (relative to the
uncompressed data) during compression onto grid n =
1, 2, . . . , 10. Shown in red is loss estimate obtained by con-
sidering the maximum angle between deflections in the same
Voronoi cell.

relations exist, but only at the level of 3% for colocated
stars, dropping to 0% for stars separated by 0.7◦. As the
mission proceeds correlations are expected to reduce [35].
In this first analysis we do not consider correlated errors.

The virtual star locations may be freely specified, e.g.
they could be randomly generated. Here they are taken
to be the midpoints of the faces of certain polyhedra.
The base polyhedron was an icosahedron (the resulting
Voronoi cells are called “grid 1”). Successive polyhedra
were formed by constructing geodesic domes from the
icosahedron — subdividing great circles between vertices
into n = 2, 3, . . . smaller arcs, and constructing n2 tri-
angles on each face. The midpoints of the faces of the
resulting polyhedra give a set of virtual stars and the re-
sulting Voronoi cells are called “grid n”. The nth grid has
M̃ = 20 × n2 virtual stars; grids up to n= 10 were used.
The level of compression can be controlled by varying n.

The mock data described above was compressed onto
each of the grids n = 10, 9, . . . , 1 and the virtual data
sets searched as before. The Bayes’ factor recovered
from smaller grids is reduced because stars in the larger
Voronoi cells have astrometric deflections which are not
parallel and partially cancel each other out in the com-
pression (Eq. 11). This lower Bayes’ factor reduces the
maximum distance at which the source can be detected;
this reduction in horizon distance is shown in Fig. 3.
The compression loss is independent of the number of
real stars. Provided grids with n ≥ 7 are used the sen-
sitivity loss is less than 1%. The n = 7 grid contains
M̃ = 980 virtual stars; therefore the full Gaia data con-
taining M > 109 stars can be compressed onto the n= 7
grid (a compression factor of 109/980≈106) with a sensi-
tivity loss below 1%. The averaging in Eq. 11 gives these
impressive compressions because of the smooth, large an-
gle (approximately quadrupolar) pattern in Fig. 1.

GAIA’s sensitivity – Here the frequency dependence
of Gaia’s sensitivity is quantified, along with the effect
of nonuniform time sampling (the directional sensitiv-
ity variation is quantified in the supplementary mate-
rial). Multiple mock data sets, similar to those used
above, were constructed. The astrometric position of
each star was measuredN=75 times over a T =5 year pe-
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riod; data sets were constructed assuming both uniform
time sampling (T0), and several realistic Gaia samplings,
constructed using https://gaia.esac.esa.int/gost/
(these are labeled T1, T2, and T3).

Circularly polarised GWs were injected with different
amplitudes and frequencies and the data compressed onto
the n = 10 grid for analysis. For fixed frequencies in
(10−8.5–10−6)Hz, multiple injections were used to find
the minimum amplitude where the Bayes’ factor exceeds
Bthreshold for at least 50% of noise realisations (i.e. a de-
tection probability of > 50%). The resulting sensitivity
curves are shown in Fig. 4 for each Tα; the variability in
the sampling has a small effect on the GW sensitivity.

FIG. 4. The black curves show the strain sensitivity of the
final Gaia data release using different time samplings (T0,
solid; T1, dotted; T2, dashed; T3 dot-dashed). The coloured
lines show 95% PTA upper limits: NanoG rav ([19] red),
Epta ([20] blue) and Ppta ([21] green). These curves show
different quantities and are only intended for approximate
comparison; the NanoGrav curve is a Bayesian upper limit,
the Epta and Ppta curves are frequentist upper limits, while
the Gaia curves show the amplitude necessary to achieve a
(conservative) threshold Bayes’ factor. It should be noted
that these PTA limits are several years old and improve over
time; Gaia’s sensitivity will not improve further.

The strain sensitivity of Gaia is flat above f & 1/T
(where T =5 years is the mission lifetime). This is in con-
trast to the sensitivity of PTAs, which degrade at high
frequencies. This discrepancy comes from the fact that
GWs cause redshifts (Eq. 1) and PTAs measure timing
residuals which are the time-integral of redshifts. In the
frequency domain, integration over time corresponds to
division by frequency; this suppresses the sensitivity of
PTAs for frequencies above f ≈ 1/T . In contrast, astro-
metric deflections are directly proportional to the GW
strain (Eq. 2). This difference in slopes means that it is
at mid to high frequencies, f&10−7.5Hz, where Gaia will
best complement PTA efforts.

Conclusions – GWs cause the apparent astrometric
positions of stars to oscillate with a characteristic pat-
tern on the sky (see Fig. 1 and Eq. 2). Gaia is the ideal
observatory to make the large number of accurate as-

trometric measurements necessary to search for low fre-
quency GWs using this effect. This letter summarises
recent progress towards a practicable GW search algo-
rithm for the fast approaching final Gaia data release. It
has been shown how a large astrometric data set may be
greatly compressed with little loss in sensitivity, and the
GW sensitivity of Gaia to monochromatic GWs has been
quantified and shown to be at a level which is potentially
interesting and complementary to that from current PTA
searches..
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Supplemental Material

Significance of the Bayesian detection – Throughout this letter the Bayes’ factor is used as a detection statistic
with a detection threshold of Bthreshold =101.5. In this section of the supplement the suitability of this threshold and
the impact on the estimates of the GW sensitivity of Gaia are discussed.

The false alarm probability of a candidate signal with a given Bayes’ factor can be established by looking at the
distribution of Bayes’ factors in the absence of a GW signal. Mock astrometric data sets similar to those used in Fig. 4
in the main letter were generated, but without injecting a mock GW signal. For each of the Gaia sampling functions
(T0, T1, T2, and T3) 100 mock data sets were generated and for each data set MultiNest was used to evaluate the
Bayes’ factor; histograms of the results are shown in Fig. S1. None of the 4×100 mock data realisations comes close to
exceeding the detection threshold; therefore, under the noise assumptions used, this threshold corresponds to a false
alarm probability of well below 1%.

In Fig. 4 of the main letter the detection threshold is used to estimate Gaia’s GW sensitivity as a function of
frequency; i.e. the critical GW strain amplitude, hGaia(f), at which the detection probability exceeds 50%. In fact the
strain sensitivity depends only weakly on the threshold Bayes’ factor; it can be shown analytically that in the limit
of large signal strength hGaia(f)∝

√
log(Bthreshold) (see [4] for a discussion in the context of estimating the sensitivity

of PTAs) and the applicability of this scaling has been checked numerically in this case.
The results in Fig. S1 were derived with the idealised, stationary Gaussian noise described by Eq. 7 in the main letter.

The noise properties of the final Gaia data release will be more complicated, and in particular may contain systematic
effects affecting the distribution of Bayes’ factors in Fig. S1. Therefore, Fig. S1 cannot be used to accurately assess
the false alarm probability of a candidate signal in real Gaia data. However, the results in Fig. S1 do further motivate
our conservative choice of threshold (corresponding to Jeffrey’s criterion for “very strong” evidence) by showing it is
likely to yield a very low false alarm probability. Additionally, the estimates of Gaia’s GW strain sensitivity in Fig. 4
of the main letter depend only weakly on the exact choice of the threshold. The results in Fig. 4 of the main letter
are a robust estimate of Gaia’s ultimate strain sensitivity but should be updated as more information on the noise
properties of the final Gaia data release become available.

FIG. S1. Histograms of the Bayes’ factor for mock data realisations not containing GW signals. The vertical line indicates the
detection threshold Bthreshold = 101.5. The four different histograms, each containing 100 samples, show the distributions for
the different Gaia samplings used in the main letter; changing the assumed sampling does not have a significant effect on the
distribution of the Bayes’ factor. No noise realisation exceeds the detection threshold.
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GAIA’s directional sensitivity – In the main letter the frequency dependence of Gaia’s GW sensitivity was
established using multiple mock injections and recovery (see Fig. 4 of main letter). In this section of the supplement
to the letter similar techniques are used to assess how this sensitivity varies with direction; i.e. the antenna pattern
response to GWs.

The distribution of stars on the sky is not uniform (as was assumed for simplicity in the main letter), therefore
astrometric measurements are not uniformly sensitive to GWs from all directions. In this supplement the directional
dependence of Gaia’s GW sensitivity is quantified.

For the purpose of this discussion, and without loss of generality, let the GW source lie on the positive z–axis
(~q={0, 0, 1}) and a star lie at angular distance γ from the GW source, in the x–z plane (~n={sin γ, 0, cos γ}). Using
the general plane wave metric perturbation (Eq. 4 of the main letter),

hij
(
Ψ
)

=
(
A+H

+
ij (~q)e

iφ+ +A×H
×
ij (~q)e

iφ×
)
e2πift ,

the magnitude of the astrometric deflection vector (Eq. 3 of the main letter),

δni =
ni − qi

2(1− ~q · ~n)
hjk(E)n̂nk − 1

2
hij(E)nj .

is given by

|δ~n| = 1

2

√
A2

+ +A2
× sin γ .

The largest astrometric deflections occur for stars which lie orthogonal to the GW source direction (i.e. γ = π/2).
Therefore, it is expected that Gaia’s peak sensitivity will occur orthogonal to regions of high stellar density (i.e. at
the galactic poles).

Mock data sets, similar to those used in the main letter to quantify Gaia’s frequency sensitivity, were constructed, but
now using the M=1.1× 109 real stars in the first Gaia data release (https://www.cosmos.esa.int/web/gaia/dr1).
The astrometric positions were sampled N=75 times uniformly over a T =5 year mission. Into these mock data sets
were injected circularly polarised GWs from 500 sky locations approximately uniformly spaced on the sky. Each mock
data set was compressed onto the n=5 Voronoi grid to be efficiently searched. The variation in horizon distance (the
maximum distance at which the source can be detected) with the source’s sky location is plotted in Fig. S2. The
results in the figure verify the expectation that peak sensitivity occurs at the galactic poles.

FIG. S2. The variation in Gaia’s sensitivity over the sky, F (θ, φ). A sample of 60,000 stars drawn randomly from the Gaia
catalogue are shown as white dots. The sensitivity varies by ∼ 30% across the sky with minima at (and antipodal to) the
galactic centre, and maxima at the galactic poles.

https://www.cosmos.esa.int/web/gaia/dr1
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