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A new test of the risk-reward heuristic
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Abstract

Risk and reward are negatively correlated in a wide variety of environments, and in many cases this trade off approximates
a fair bet. Pleskac and Hertwig (2014) recently proposed that people have internalized this relationship and use it as the basis
for probability estimation and subsequent choice under conditions of uncertainty. Specifically, they showed that risky options
with high-value outcomes are inferred to have lower probability than options offering a less valuable reward. We report two
experiments that test a simple corollary of this idea. In both studies, participants estimated the magnitude of prizes offered by
lotteries with known win-probabilities. The relationship between estimates and probabilities followed the power relationship
predicted by the risk-reward heuristic, albeit with a tendency to overestimate outcome magnitude. In addition, people’s
estimates predicted their willingness to take the gamble. Our results provide further evidence that people have internalized the
ecological relationship between risk and reward in financial lotteries, and we suggest that this relationship exerts a wide-ranging
influence on decision-making.
Keywords: risk, reward, judgment, choice.

1 Introduction
In a recent paper, Pleskac and Hertwig (2014) examined the
relationship between probability and payoff in a range of
natural environments, including roulette, horse-race betting,
life insurance, dairy farming, and academic publishing. In
all cases, there was a consistent negative association between
probability and reward. For example, journals with a higher
impact factor have a lower acceptance rate, and bull semen
samples that are expected to produce greater increases in
farm profitability are less likely to successfully fertilize the
female.
Pleskac and Hertwig argued that this negative relation-

ship arises because real-world lotteries tend towards a fair
bet, such that a gamble which costs L to play and offers a
prize of G will have win-probability P = L/G.1 This can
happen for a number of reasons. For example, in a mar-
ket for gambles, sellers wish to offer low rewards with low
probabilities, whereas buyers seek high rewards with high
probabilities, driving the offered gambles towards an equi-
librium in which the expected returns are equal to the stake.
This is exemplified by roulette, where the payouts perfectly
track the probabilities such that the expected net return (in
the European version) is always a loss of 2.7% of the stake
– a value very close to the fair-bet payout, with just a small
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1Pleskac and Hertwig use a slightly different notation in whichG refers
to the winnings over and above the return of the stake, in which case
P = L/(L + G); for the lottery-type scenarios considered in the current
paper, we prefer to use L to denote the cost of a ticket and G as the prize.

shift in the house’s favour to keep the casino in business.
Pleskac and Hertwig (2014) further argued that people

have extracted this environmental contingency and use it as
the basis for judgment and choice. Specifically, they posited
the risk-reward heuristic: when the probability of winning is
unknown, infer that it is equal to L/G. They tested this in two
studies. First, they offered lab participants the opportunity
to play a lottery for real money; participants were told that
the lottery cost $2 to play and that the prize was $2.50, $4,
$10, or $20 (varied between-participants). Participants were
confronted with an envelope and a bingo basket containing
100 balls and told that the envelope contained a number from
1–100 that determined their probability of winning. After
finding out the number in the envelope, they would draw a
ball and, if its number was equal to or less than the number in
the envelope, they would win. Prior to opening the envelope,
participants had to estimate the number of winning balls and
decide whether to play. Study 2 was similar but conducted
on-line using a hypothetical gamble and a wider range of
prizes.

The results of both studies are replotted in Figure 1. In
both cases, the estimated probability of winning clearly de-
creases as the size of the prize increases. The bottom panels
show the results on a log-log plot and demonstrate that the
judgments follow the functional form predicted by the risk-
reward heuristic, but that there is a regressive effect: people
overestimated small probabilities and underestimated large
probabilities (e.g., Erev, Wallsten & Budescu, 1994). In
other words, the data potentially support an error-prone ap-
plication of the heuristic, which nonetheless strongly anchors
participants’ probability estimates.

These estimates also predicted choice behaviour. At the
aggregate level, participants in the high-outcome conditions
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Figure 1: Results of Studies 1 and 2 from Pleskac & Hertwig (2014). The top panels show the distribution of estimated
probability values for each prize condition. The grey dashed line indicates the predictions of the risk-reward heuristic. The
bottom panels show the mean of the log-transformed estimates against the log-transformed prize values; the black dashed
line shows the best-fitting linear function and the grey dashed line shows the predictions of the risk-reward heuristic. Error
bars indicate 95% confidence intervals.

(where the mean probability estimates were above what
would be expected for a fair bet) weremorewilling to play the
lottery thanwere those in the low-outcome conditions (where
estimated probabilities were smaller than expected from a
fair bet). At the individual level, regression analysis showed
that both outcome value and estimated probability predicted
the decision to play. However, the risk-reward heuristic is
agnostic about the decision rule or process by which prob-
ability estimates shape choice. For example, the estimates
may provide the basis for the calculation (and maximiza-
tion) of expected value or expected utility (Savage, 1954),

the computations of Prospect Theory (Kahneman & Tver-
sky, 1979), or a process heuristic like elimination by aspects
(Tversky, 1969).

We report two experiments that test a simple extension
of the risk-reward heuristic: namely, that people use prob-
abilities to infer rewards. Specifically, we test whether a
person offered the chance to pay L to play a lottery that of-
fers P chance of winning G will infer that G = L/P, and
whether this inference predicts their decision about whether
or not to play. This would be a logical consequence of the
relation proposed by Pleskac and Hertwig (2014), but hu-
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man estimates and choices routinely show asymmetries and
task dependencies which mean this may not be observed in
practice (e.g., Holyoak &Mah, 1982; Lichentstein & Slovic,
1971). The numerous differences in the ways that proba-
bilities and monetary values are experienced, represented,
and processed means that the principles by which people
estimate rewards from probabilities need not be the same
as those by which they estimate probabilities from rewards.
Correspondingly, our experiments provide a straightforward
but important test of the idea that people are sensitive to the
ecological risk-reward trade-off. We note from the outset that
gambles with explicit probabilities but uncertain outcomes
are less common than those for which outcomes are explicit
but probabilities are unknown (decisions under ambiguity).
However, we believe that the impact of probability values
on inferences about outcome magnitude nonetheless have
implications for many risky choices, as we discuss below.

2 Method
Both experiments were modelled closely on Pleskac and
Hertwig’s (2014) Study 2. Participants were told about a
hypothetical lottery which costs $2 to play and which offers a
prize with a probability that was varied between participants.
Participants had to estimate the prize and then state whether
they would choose to play. Our Study 2 was a replication and
extension of Study 1, using a larger sample, a wider range of
probabilities, more stringent checks for attentiveness, and a
clearer statement of the choice that participants were asked to
consider. Given the similarity between the two experiments,
we report them together.

2.1 Participants
Like Pleskac and Hertwig’s (2014) Study 2, both experi-
ments were conducted on-line using participants from Ama-
zon’s Mechanical Turk. Eligible participants were those
aged 18 or over who completed the task and whose ip ad-
dress had not previously occurred earlier in the data file,
and who indicated that they had not previously attempted
the task (see e.g., Matthews & Dylman, 2014). Study 1
recruited 205 eligible participants, of whom 7 failed an at-
tention check leaving a final sample of 198 (114 male) aged
20–61 (M = 35.9, SD = 10.7). Study 2 recruited 411 el-
igible participants of whom 40 failed one or both attention
checks, leaving a final sample of 371 (226 male) aged 18–79
(M = 34.0, SD = 10.3).

2.2 Design and Procedure
In Study 1, participants provided informed consent and were
told that they would be asked to consider a simple financial
decision which, although hypothetical, they should consider

carefully and answer as honestly and accurately as they can.
They then read the following instructions, which are closely
modelled on those used by Pleskac and Hertwig (2014):

Imagine you have been asked to play the following
lottery. The lottery offers the opportunity to win a
monetary prize but it costs you $2 to play. If you
choose to play you would pay the $2 and, without
looking, draw a ball from a basket. In the basket
there are 100 balls. The balls are either black or
red. If the ball is red you will win the prize; other-
wise, if the ball is black you will receive nothing.
Thus, the number of red balls in the basket deter-
mines the probability that you will win. Given that
the number of red balls in the basket is [5, 15, 25,
35, 45], how much do you estimate the prize to
be?"

After entering their judgment, participants progressed to
a page which asked: “Given the opportunity, would you pay
$2 to play the gamble for your estimated prize money?” and
selected "yes" or "no".

There followed an attention check question, which asked
the colour of the winning balls (Red, Blue, Green, Yellow,
or "I don’t know"), followed by a question probing past-
participation and demographic information.

Study 2 was very similar, except for 3 changes. First, a
wider range of probabilities was used (2, 4, 8, 16, 32, and
64 winning balls). Second, the choice task was modified so
as to remind participants of the probability of winning and
of their estimate of the prize, as follows: “Suppose that your
estimate of the prize money is correct. That is, there are
100 balls in the basket, of which [2, 4, 8, 16, 32, 64] are
red. If you draw a red ball, you win $[participant’s estimate
of prize]. Would you pay $2 to play this lottery?” Third,
an additional attention-check was added, which asked how
many winning balls are in the basket.

3 Results
3.1 Prize estimates
As one would expect for judgments of financial value, par-
ticipants’ estimates were positively skewed; we therefore
applied a logarithmic transformation (log10(x + 1)), after
which the data were approximately normal within each con-
dition. The top panels of Figure 2 show the data for each
condition. As can be seen in the figure, participants’ esti-
mates of the prize decreased as the probability of winning
increased. The sensitivity of prize estimates to probability
was confirmed by a one-way ANOVA for both Experiment
1, F (4, 193) = 13.00, p < .001, η2 = .212, and for Ex-
periment 2, F (5, 365) = 22.22, p < .001, η2 = .233. The
pattern is clearer in the middle panels of Figure 2, which
show the data on a log-log plot along with the best fitting line
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Figure 2: Results of Studies 1 and 2. The top panels show the distribution of estimated prize values for each probability
condition. The grey dashed line indicates the predictions of the risk-reward heuristic. The middle panels show the mean of
the log-transformed estimates against the log-transformed probabilities; the black dashed line shows the best-fitting linear
function and the grey dashed line shows the predictions of the risk-reward heuristic. The bottom panels show the proportion
of participants in each condition who chose to play the gamble. Error bars indicate 95% confidence intervals.
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and the linear function predicted by the risk-reward heuris-
tic. The data match the functional form of the risk-reward
heuristic, although in both studies participants consistently
overestimated the size of the reward relative to that expected
from a fair bet; in Study 2, this tendency becomes more
pronounced as the probability of winning increases, echoing
the regressive effect reported by Pleskac and Hertwig (2014)
(see also Matthews & Stewart, 2009). The complementary
regressive effects found here (where participants estimated
rewards from stated probabilities) and in Pleskac and Her-
twig (where people estimated probabilities from stated re-
wards) is reminiscent of work by Erev et al (1994), who
showed that noise in the construction of subjective confi-
dence leads to two complementary regressive tendencies:
apparent overconfidence when one plots percentage-correct
against subjective confidence categories but apparent un-
derconfidence when one plots mean subjective probabilities
against objective probability categories.2

3.2 Choice task
The proportion of participants who chose to play the lottery
is plotted in the bottom panels of Figure 2. To test the effects
of probability and estimated prize money on the willingness
to play, we fit a series of logistic regression models and used
likelihood ratio tests to compare them. The Null model in-
cluded only an intercept; the Probability model included an
intercept and the number of winning balls, coded as a cate-
gorical predictor (rather than positing a particular functional
form for the effect); the Prize model included the intercept
and the log-transformed estimates of the prize money; and
the Full model included an intercept and both predictors.
For Study 1, the willingness to gamble was positively

related to participants’ estimates of the prize money: the
Prize model was superior to the Null model, χ2(1) = 14.98,
p < .001, Bprize = 0.843, CI95% = [0.407, 1.310], and the
Full model was better than the Probability model, χ2(1) =
18.23, p < .001, Bprize = 1.076, CI95% = [0.565, 1.633].
In contrast, the Probability model was no improvement over
the Null model, χ2(4) = 1.69, p = .793, and the Full
model was no better than the Prize model, χ2(4) = 4.93,
p = .294. In short, choices were predicted by partici-
pants’ estimates of the prize money but not by the proba-
bility of winning. As an additional exploration, we re-ran
the analyses using the logarithm of the number of win-
ning balls, log10(n), as a continuous predictor, in place
of the categorical condition predictor. The pattern of the
results was unchanged: there was a strong effect of the
estimated prize, Bprize = 1.071, CI95% = [0.562, 1.626],
p < .001, but little effect of the number of winning balls,
Bnwin = 0.846,CI95% = [−0.074, 1.804], p = .076.
For Study 2, the willingness to gamble was again pos-

itively related to the estimated prize money: the Prize

2We thank a Reviewer for pointing out this connection

model was superior to the Null model χ2(1) = 15.59,
p < .001, Bprize = 0.603, CI95% = [0.296, 0.928], and the
Full model was better than the Probability model χ2(1) =
41.11, p < .001, Bprize = 1.295, CI95% = [0.859, 1.769].
However, unlike Study 1 there was also an effect of the
win-probability: the Probability model was superior to
the Null model, χ2(5) = 12.65, p < .027, and the Full
model was better than the Prize model, χ2(5) = 38.17,
p < .001. Again, using the log-transformed number of
winning balls as a continuous predictor revealed the same
pattern: Bprize = 1.299, CI95% = [0.868, 1.768], p < .001,
Bnwin = 1.568, CI95% = [1.030, 2.138], p < .001.

3.3 Potentially spurious responses
A total of 15 participants (10 in Study 1, 5 in Study 2)
estimated the prize as $0; a further 6 (1 in Study 1, 5 in Study
2) gave very large estimates (> $1000). Our preference is to
take all responses at face value (it is not unusual for lotteries
to offer very large prizes, or for them to be rigged such that
the player cannot win anything), but such responses might
arguably be typos or indicate failure to understand the task.
Re-running all analyses without these responses made very
little difference to the plots or to the inferential tests, except
that for Study 2 the improvement of the Probability model
over the Null model was no longer significant, χ2(5) =
10.44, p = .064; however, the Full model was still superior
to the Prize model, χ2(5) = 41.90, p < .001, indicating
that the probability of winning predicted the decision to play,
over and above the person’s estimate of the potential reward.
When the log-transformed number of winning balls was used
as a continuous predictor, the conclusions were the same: for
Study 1, Bprize = 1.031, CI95% = [0.454, 1.647], p < .001,
Bnwin = 0.755, CI95% = [−0.190, 1.736], p = .123; for
Study 2, Bprize = 1.696, CI95% = [1.194, 2.237], p < .001,
Bnwin = 1.761, CI95% = [1.185, 2.373], p < .001.

4 Discussion
Just as people judge that higher rewards will be associated
with lower probability of success (Pleskac&Hertwig, 2014),
so they judge that higher probabilities will be associated with
lower rewards (our Studies 1 and 2). In both cases, the rela-
tionship is approximately linear on a log-log plot, consistent
with the functional form predicted by the risk-reward heuris-
tic. To this extent, both sets of studies support that heuristic
as an account of inference about the components of a risky
prospect.

However, like Pleskac and Hertwig’s data, our results
are inconsistent with a strong (error-free) application of the
heuristic. In particular, our participants tended to overesti-
mate the probability of winning relative to what would be
expected from a fair bet. This is surprising when one con-
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siders that many financial lotteries are actually designed to
favour the house (for example, had our participants internal-
ized the risk-reward structure of casino bets, state lotteries,
or bookmakers’ odds, they would have estimated prizes that
were smaller than the risk-reward heuristic would predict).
This could be taken as an example of an optimism bias (see,
e.g., Krizan & Windschitl, 2007). However, like the regres-
sive effect in Pleskac & Hertwig’s data (and apparent in our
Study 2), the optimism shown by our participants may be
due to noisy responding: estimates of monetary reward are
bounded at zero, so positive errors will tend to be larger than
negative ones. More generally, the fact that probabilities are
doubly-bounded (at zero and one) whereas rewards are only
lower-bounded may mean that the precise consequences of
applying the risk-reward heuristic will be different for the
two types of estimation task. In any case, our data sup-
port the idea that the risk-reward heuristic anchors, but does
not completely determine, people’s estimates of probabilities
and outcomes.
These estimates influenced choice: in both studies, partic-

ipants who expected larger rewards were more likely to take
the gamble. Notably, our studies, like those of Pleskac and
Hertwig (2014), always required participants to make their
estimates prior to making their choices (because the primary
interest is in whether people apply the risk-reward heuristic
when estimating probabilities and outcomes); it remains to
be seen whether the same relationship holds when choices
precede estimation.
Researchers often focus on decisions under ambiguity,

where the probability of an outcome is not precisely known.
Indeed, Pleskac and Hertwig (2014) suggested that the risk-
reward heuristic may contribute to the widespread aversion
to ambiguous options, and provided some evidence for this
possibility. Prima facie, there are fewer situations in which
precise probabilities are given for uncertain outcomes. Al-
though there are such scenarios (e.g., when a doctor states
that a treatment has a 50% chance of being successful with-
out defining "success"), a more important observation is that
most real decisions take place in complex, information-rich
environments that add considerable noise to the representa-
tion of outcomes and probabilities. It is easy to mis-read,
mis-hear, or imperfectly process one or more components of
an option, and in many situations the elements of competing
options are not simultaneously presented but require retrieval
from memory. In such situations, people use prior knowl-
edge and schemas to inform their perceptions and memories
(e.g., Ghosh & Gilboa, 2014; Vincent, 2015), such that
inferences about outcomes from probabilities, just like in-
ferences about probabilities from outcomes, will shape the
mental representation of the decision.
Thus, even when precise information about probabilities

and outcomes is ostensibly available, in practice people are
likely to rely on prior beliefs and schemas to infer ele-
ments of the decision problem, and these inferences will

shape the choice that is made. In other words, we contend
that the risk-reward heuristic is likely to be an important,
computationally-rational strategy in a wide variety of set-
tings.
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