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An iterated marching method is presented for reconstruction of rough perfectly reflecting 1-dimensional
surfaces from scattered data arising from a scalar wave at grazing incidence. This is based on coupled inte-
gral equations adapted from an earlier approach using the parabolic equation, relating the scattered field
at a plane to the unknown surface. Taking the flat surface as an initial guess, these are solved here using
at most three iterations. The method is applied to scattered field data generated from the full Helmholtz
equations. This approach improves stability and self-consistency. The reconstructed surface profiles are
found to be in good agreement with the exact forms. The sensitivity with respect to random noise is also
investigated, and the algorithm is found to exhibit a type of self-regularization. © 2018 Optical Society of

America
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1. INTRODUCTION

Wave scattering from rough surfaces is a key feature in a wide
variety of applications [1–5], and a major area of interest is the
inverse problem of reconstructing surface profiles from scattered
data [6–19]. Work has also been successfully conducted in the
context of sea surface profile retrieval at grazing angles [20]
and other regimes [21–23], by use of Doppler or backscattered
multiple frequency radar measurements. Typical quantities of
interest in that situation include sea state, wave spectra, mean
height and statistical parameters. For scalar wave fields with
arbitrary incident angles the scattered field obeys the Helmholtz
boundary integral equation [1, 24]. However, when the incident
angle is small and most energy is forward-scattered, the propa-
gating wave fields are well described by the parabolic equation
[25]. Applying this to the governing Green’s function allows the
Helmholtz integral equations to be replaced by the parabolic
integral equation method [26, 27].

In previous work [11, 12, 14, 15] numerical techniques were
derived allowing surface reconstruction in the grazing angle
regime. These direct (non-iterative) methods cast the problem
as coupled Volterra equations relating the scattered data to the
surface fields. This yields a fast ‘marching’ method, whereby
the surface is reconstructed sequentially from a single estimated
value at the leading edge of the computational domain. How-
ever instability and high sensitivity to the initial ad hoc ‘guess’
occur in certain cases, and ill-posedness with respect to noise

was not explored. This is partly because that algorithm involved
ratios of small values, at locations where the incident field ampli-
tude is low and from which only limited information is carried
into the scattered field. Furthermore reconstruction was based
on scattered data generated via the parabolic integral equations,
which neglects wide-angle includuing backscatter.

In this paper, we develop a new approach to the inverse prob-
lem for scattering at grazing incidence on a one-dimensional
random rough surface. The approach is related to that of [14]
but re-derives equations to provide a more straightforward al-
gorithm, coupled with an iterative improvement using a small
number of steps (typically two or three). This circumvents the
need for an ad hoc initial guess and addresses aspects of the
ill-posedness. (Fully iterative approaches are of course used
throughout the inverse problems literature, and authors such
as [10, 13] have successfully applied iterative schemes to rough
surface scattering. The current method is strictly speaking a
multi-step rather than iterative approach.) The error of the re-
covered surface is measured with respect to the mesh, surface
type, and the location of scattered data measurements.

To provide scattered field data, a randomly rough surface
h(x) is generated and the scattered field is obtained along a
plane at a given distance from the mean surface. This scattered
data is then used in the inversion algorithm to recapture the
surface. The main procedures for both direct and inverse prob-
lems are based on integral equation formulations. In the direct
problem, the scattered field is obtained from the Helmholtz equa-
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tion. In the inverse method, the surface derivative ∂Ψ/∂z of the
(reduced) field Ψ is related to the surface and to the scattered
field using the parabolic integral equations. It follows that the
surface height can be obtained from another integral equation
by substituting ∂Ψ/∂z. Successive improvement is employed
here to improve the stability of the method and generate more
accurate results. The solution is implemented numerically and
several results are presented in which random rough surfaces
having different statistical characteristics are recaptured.

2. MATHEMATICAL FORMULATION

The details of the Helmholtz (e.g. [1, 24]) and parabolic integral
equation methods are given elsewhere [26, 27] but for conve-
nience we review them here. Let coordinate axes be x and z,
where x is the horizontal, 0 ≤ x ≤ L, and z is the vertical.
Consider a 2-dimensional time harmonic scalar wave E(x, z),
resulting from scattering by a rough surface h(x) of a field inci-
dent at low grazing angle. We assume the Dirichlet boundary
condition. The governing equation for the scattered field is the
Helmholtz equation,

∇2E(x, z) + k2E(x, z) = f (x, z), (1)

where k is the wavenumber and f is the source term. Denote the
incident and scattered components to be Ei and Es, and the total
field E = Ei + Es. The Kirchoff-Helmholtz equation gives rise to
a pair of coupled integral equations

Ei(r) =
∫ L

0
Gh(r; r′)

∂E
∂n

(r′)ds′, (2)

where r = (x, h(x)) and r′ = (x′, h(x′)) lie on the surface, and

Es(r) = −
∫ L

0
Gh(r; r′)

∂E
∂n

(r′)ds′ (3)

where r′ = (x′, h(x′)) still lie on the surface, but r = (x, z) can
be any point in the domain. Gh(r; r′) corresponds to the Green’s
function of the Helmholtz equation which is given by

Gh(r; r′) =
1
4i

H(1)
0 (k|r− r′|), (4)

where H(1)
0 is the zeroth order Hankel function of the first kind.

If the incident angle is small enough so that cos α ∼= 1− 1
2 sin2 α,

then forward propagation dominates and the wave has a slowly
varying part ψ, defined by

ψ(x, z) = E(x, z) exp(−ikx).

Within this approximation the parabolic wave equation is imme-
diately obtained [25] for the slowly varying component,

∂ψ

∂x
=

i
2k

∂2ψ

∂z2 . (5)

which holds for any superposition of plane waves travelling at
small angles to the horizontal. Denote the incident and scattered
components to be ψi and ψs, so that ψ = ψi + ψs.
If we assume the Dirichlet boundary condition, this corresponds
to a tranverse electric (TE) field impinging on a perfectly con-
ducting corrugated surface, or acoustic scattering from a pres-
sure release surface. The parabolic equation can then be substi-
tuted into the Kirchhoff-Helmholtz equation, which also results
in a pair of coupled integrals.

ψi(r) = −
∫ x

0

∂ψ(r′)
∂z

Gp(r; r′)dx′ (6)

where r = (x, h(x)) and r′ = (x′, h(x′)) lie on the surface, and

ψs(r) =
∫ x

0

∂ψ(r′)
∂z

Gp(r; r′)dx′ (7)

where r′ = (x′, h(x′)) still lie on the surface, but r = (x, z) can
be any point in the domain. Gp(r; r′) corresponds to the Green’s
function of the parabolic wave equation which is given by

Gp(r, r′) =

 1
2

[
i

2πk(x−x′)

]1/2
exp

[
ik(z−z′)2

2(x−x′)

]
, x’<x

0, otherwise
. (8)

The surface derivatives ∂E/∂n and ∂ψ/∂n along the surface h(x)
are consideredf as functions of x, and will be denoted by E′ and
ψ′ respectively. We will denote the constant α = 1/2(i/2πk)1/2.

The incident field or the source condition is taken to be a
Gaussian beam travelling horizontally,

ψi(x, z) =
w

(w2 + 2ix/k)1/2 exp
[
− (z− z0)

2

w2 + 2ix/k

]
, (9)

where w is the initial width. Thus the source is centered at
r = (0, z0), which is assumed to be well separated from the
rough surface so that the incident field amplitude on the surface
near x = 0 is negligibly small. As x increases this rises to a peak
and then decays as 1/

√
x.

3. GENERATION OF SCATTERED DATA

In order to generate scattered data measurements, a random
statistically stationary rough surface h(x) is first chosen with a
given autocorrelation function ρ(η) where η is spatial separa-
tion. In practice this may be simulated by summation of Fourier
modes with independent random phases chosen uniformly in
[0, 2π) and a filter function depending on ρ. (Far more computa-
tionally efficient methods are available but these are not needed
here.)

For the surface reconstructions we will compare results using
data generated both by the full Helmholtz equation, and by the
parabolic equation approximation (which excludes backscatter).
This is done in order to examine the extent to which the results
depend on the PE model assumptions underlying the inversion
algorithm.

The integration domain [0, L] is discretized uniformly by N
points with xl for l = 0, 1, · · · , N, where x0 = 0 and xN =
L. Denote the space of each subinterval δ = xl+1 − xl . The
procedures for the parabolic case are similar to those given in
[14, 26] will not be repeated in full detail here.

A. Calculation of surface derivative
For any point xn ∈ [x1, xN ], equation Eq. (2) can be divided into
N subintervals and be written as a summation over N terms,

Ei(xn, h(xn)) =
N

∑
l=1

∫ xl

xl−1

Gh(xn, h(xn); x′, h(x′))E′(x′)ds′

Assume that E′ varies very slowly over each subinterval com-
pared to the Green’s function. Then, E′ can be treated as constant
on each subinterval, and these constants can be taken out of the
subintegrals using the mid-point rule,

Ei(xn, h(xn)) =
N

∑
l=1

E′(Xl)
∫ xl

xl−1

Gh(xn, h(xn); x′, h(x′))ds′,
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where Xl is the middle point of each subinterval [xl−1, xl ], i.e.
Xl =

1
2 (xl−1 + xl). Taking n = 1, 2, · · · , N, a linear system of N

equations are obtained. Denote two vectors of size N as follows

E′ = [E′(X1), E′(X2), · · · , E′(XN)],

Ei = [Ei(x1, h(x1)), Ei(x2, h(x2)), · · · , Ei(xN , h(xN))].

They are, thus, related by

A1E′ = Ei (10)

where A1 is a matrix of size N × N given by

A1(n, l) =
∫ xl

xl−1

Gh(xn, h(xn); x′, h(x′))ds′. (11)

To leading order, the surface differential is the same as the line
segment. Therefore, we have

ds2 ≈ dL2 = dx2 + (h(xl−1)
2 − h(xl))

2 = (1 +
dh2

dx2 )dx2

≈ (1 + h′(x)2)dx2. (12)

The integral in the matrix then becomes∫ xl

xl−1

Gh(xn, h(xn); x′, h(x′))ds′

≈ 1
4i

∫ xl

xl−1

H(1)
0 (k|rn − r′|)

√
1 + h′(x′)2dx′.

If l 6= n and l 6= n + 1, we again employ the mid-point rule for

H(1)
0 , namely, assume that H(1)

0 varies slowly in the subinterval
and treat it as constant. Thus, we get

A1(n, l) =
δ

4i
H(1)

0 (k|(xn, h(xn))− (Xl , h(Xl))|)σl , (13)

where σl =
√

1 + h′(Xl)2. On the other hand, If l = n or l =
n + 1, there is a singularity in the integral. The integral can be
approximated by

A(n, n) = A(n, n + 1) =
1
k2

( η0
4i

+
1

2π
η0 +

1
2π

η0[ln(
η0
2
)− 1]

)
,

(14)
where η0 is a constant. The derivation is shown in Appendix 6.

B. Calculation of scattered field data
The scattered field generated by Eq. (3) can be obtained in the
similar way. Note that for equation Eq. (3), r = (x, z) and r′ =
(x′, h(x′)). The discretized form for scattered wave becomes

Es(xn, z) = −
N

∑
r=1

∫ xr

xr−1

Gh(xn, z; x′, h(x′))E′(x′)ds′

Again, we treat the surface derivative E′ as constant on each
subintegral and apply the mid-point rule,

Es(xn, z) = −
N

∑
r=1

E′(Xr)
∫ xr

xr−1

Gh(xn, z; x′, h(x′))ds′.

We denote the vector of scattered field at height z of size N,

Es = [Es(x1, z), Es(x2, z), · · · , Es(xN , z)].

A linear system containing the scattered field vector is then
obtained

Es = A2E′ (15)

where A2 is a matrix of size N × N given by

A2(n, r) =
∫ xr

xr−1

Gh(xn, z; x′, h(x′))ds′. (16)

We assume the scattered data is available at some non-zero
distance z from the surface. Therefore, there is no singularity
in the integral. Apply the equation Eq. (12), the entry of matrix
becomes

A2(n, r) = − δ

4i
H(1)

0 (k|(xn, h(xn))− (Xr, h(Xr))|)σr. (17)

4. INVERSE PROBLEM

In the problem to be treated here the surface h(x) (along with ψ′)
is unknown, and we assume we have complex-valued scattered
field data along a plane parallel to, and at known distance from,
the mean surface plane. The treatment for the surface inverse
problem here is adapted broadly from that of [14] but is intended
to address issues of stability, consistency, and the dependence
on an initial ad hoc guess. The question of consistency arises
from the use of two equations Eq. (6) and Eq. (7) with different
approximations to recover ψ′. This can potentially give rise to
inaccuracy. The problem of stability is related to the equation
used in [14] to recover the surface:

h =
[−α

∫ x
0 (x− x′)1/2ψ′(x′)

ψi(x, 0)
− 1
](w2 + 2ix

k
2z0

)
, (18)

Solution is based on division by the incident field ψi(x, 0) suc-
cessively starting from small values of x, where this field is
nearly zero. Both these potential difficulties in effect result from
the simultaneous recovery of h(x) and ψ′(x). The method here
circumvents this by separating this into two parts where ψ′ is
produced first and then h(x) is reconstructed by Eq. (7).

Some general remarks can be made here:
1. The assumption of scattered data along a plane parallel to

the surface is a convenience, which greatly simplifies the algo-
rithm, but is not fundamental to it. On the other hand the graz-
ing illumination of the surface is a key property. Grazing angles
often feature automatically (e.g. [28–31] and above-mentioned
references), but the possibility of using a suitably oriented inci-
dent field is not restricted to those cases.

2. The approach assumes perfectly conducting boundary con-
ditions, but is not inherently restricted to the Dirichlet condition
(TE incidence) or to scalar waves for which it is formulated here.
It is also important to consider the eventual aim to treat to 3-
dimensional configurations. The current approach is in principle
capable of this (as discussed in 6) in part due to developments
in fast boundary integral methods for low grazing angles. Per-
meable boundaries between half-spaces are beyond the scope
of the current study although there is some prospect of treating
rough coatings overlaying perfectly conducting substrates.

A. Recovery of surface derivative
The domain [0, L] is discretized similarly to the direct prob-
lem, whereas, the upper limit of the integration becomes xn
for parabolic equation. For any point xn ∈ [x1, xN ], equation
Eq. (6) can be divided into n subintegrals and be written as a
summation over n subintervals,

ψi(rn) = −
n

∑
l=1

∫ xl

xl−1

Gp(r; r′)ψ′(r′)dx′

= −
n

∑
l=1

∫ xl

xl−1

α
1√

xn − x′
exp

[ ik(zn − z′)2

2(xn − x′)

]
ψ′(r′)dx′

(19)
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where rn = (xn, h(xn)), zn = h(xn) and z′ = h(x′). The initial
goal is to find the discrete ψ′. We may assume that ψ′ and the
exponential term vary slowly over each interval compared to
1/
√

xn − x′. For l < n, the integral has no singularity. Thus
ψ′ and the exponential term can be treated as constant on each
subinterval, then these constants can be taken out of the subinte-
grals.

ψi(xn, h(xn)) ≈

−
n−1

∑
l=1

α exp
[ ik(h(xn)− h(Xl))

2

2(xn − Xl)

]
ψ′(Xl)

∫ xl

xl−1

dx′√
xn − x′

− ψ′(Xn)
∫ xn

xn−1

α exp
[ ik(h(xn)− h(x′))2

2(xn − x′)

] dx′√
xn − x′

(20)

where Xl =
1
2 (xl−1 + xl). The last subintegral with singularity

can be approximated by

2
α

β
[C(Z0) + iS(Z0)] (21)

where Z0 and β are constants defined in Appendix 6 and C and
S are the Fresnel integrals derived similarly to [27], as is also
shown in Appendix 6. The unknown surface h is still contained
implicitly in the formulation Eq. (20). The starting point is to
have an initial guess for h. Then everything turns to be known
in Eq. (20) except the discrete ψ′(Xl). The surface derivative ψ′

can be approximated by a linear system,

BΨ′ = Ψi, (22)

where

B(n, l) =

−α exp
[

ik(h(xn)−h(Xl))
2

2(xn−Xl)

] ∫ xl
xl−1

dx′√
xn−x′

, l < n

2 α
β [C(Z0) + iS(Z0)] , l = n

Ψ′ = [ψ′(X1), ψ′(X2), · · · , ψ′(XN)]

Ψi = [ψi(x1, h(x1)), ψi(x2, h(x2)), · · · , ψi(xN , h(xN))].
(23)

for 1 ≤ l ≤ n ≤ N. The key property is that B is lower triangular
and its inversion is highly efficient computationally.

B. Surface reconstruction
Suppose now that ψs(xn, z) is known at each point xn ∈ [x1, xN ]
along a plane at fixed distance z. The difficulty to find h from
Eq. (7) is that h(x) is inside the exponential term in the Green’s
function Gp. Equation Eq. (7) is again a summation of subinte-
grals,

ψs(xn, z) =
n

∑
r=1

∫ xr

xr−1

G(r, r′)ψ′(r′)dx′

=
n

∑
r=1

∫ xr

xr−1

α
1√

xn − x′
exp

[ ik(z− h(x′))2

2(xn − x′)

]
ψ′(r′)dx′

Under the same assumption as in section A ψ′ and the exponen-
tial term are treated as constants in each subinterval, and the
formula then becomes

ψs(xn, z) =
n

∑
r=1

α exp
[ ik(z− h(Xr))2

2(xn − Xr)

]
ψ′(Xr)

∫ xr

xr−1

1√
xn − x′

dx′,

where Xr =
1
2 (xr−1 + xr). The surface derivative ψ′ generated

by Eq. (22) can be substituted in here. The unknown h can now

be calculated at successive points by

exp
[

ik(z− h(Xn))2

2(xn − Xn)

]
=
[
αψ′(Xn)

∫ xn

xn−1

dx′√
xn − x′

]−1

×
(

ψs −
n−1

∑
r=1

α exp
[ ik(z− h(Xr))2

2(xn − Xr)

]
ψ′(Xr)

∫ xr

xr−1

1√
xn − x′

dx′
)

.

(24)

The problem is now reduced to that of solving the exponential
equation of h. If taking the direct logarithm, the exponential
term with complex variables may be ambiguous since log z =
ln(|z|) + iarg(z), where arg(z) = Arg(z) + 2kπ, Arg(z) ∈
[−π, π], k ∈ Z. However in the cases treated here h is suffi-
ciently small to simply take Arg(z) in the imaginary part, i.e.

Ln(z) = ln|z|+ iArg(z)

Therefore, the surface height can be reconstructed from

h(Xn) = z−
√

2
ik
(xn − Xn)Ln(Sn)

Sn =

ψs(xn, z)−
n−1
∑

r=1
α exp[ ik(z−h(Xr))2

2(xn−Xr)
]ψ′(Xr)

∫ xr
xr−1

1√
xn−x′

dx′

αψ′(Xn)
∫ xn

xn−1

dx′√
xn−x′

(25)
Note that the results shown here are derived for surface heights
smaller than a wavelength. This still entails multiple scattering,
but larger surface heights give rise to greater phase variations
along the surface, which require careful ’unwrapping’ in order
to resolve ambiguities. It is possible to apply this treatment
successfully to larger surface heights in this way, but this is not
necessary to demonstrate the principles here. In applying this to
increasing surface heights, the key criterion is whether scattering
remains well-described by the parabolic equation. That depends
critically on the horizontal roughness scale, as well as the vertical.
Despite the enormous literature on the parabolic equation the
breakdown of the PE for rough surfaces has not yet been well
categorized.

Successive improvement can be employed to reconstruct the
surface more accurately, using a small number of iterations (typ-
ically three). For finding ψ′, the starting point is to assume
h(x) = 0. Then ψ′ can be obtained without using any scattered
data, which leads to ill-posedness of the problem. In order to
reuse Eq. (6) by scattered data, let h1 = 0 be the initial guess. Af-
ter Ψ′ is obtained from the first part, then a new surface height h2
is constructed by the second part. Then this process is repeated.
A new set of Ψ′ can be found by substituting h2 in the first part.
The new surface height h3 is then generated. This kind of itera-
tion can be repeated several times to get a satisfactory surface
reconstruction. The whole procedure for the inverse problem is
shown in Algorithm 1.

Algorithm 1. Reconstruction of the surface height h(x)

1: Input: ν: number of iterations, ψi(x, z), ψs(xi, z): i =
1, 2, · · · , N

2: Set h = 0 as initial guess
3: for j = 1, · · · , ν do
4: Generate Ψ′ from BΨ′ = Ψi constructed by Eq. (23) using

the iterative h
5: Reconstruct h(Xi) from Eq. (25) using Ψ′ obtained above
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Fig. 1. Scattered field data (real and imaginary components)
generated by Helmholtz equation for a Gaussian autocorrela-
tion functions.

5. RESULTS

All procedures here have been implemented in Python. Through-
out these calculations all functions have been treated as complex-
valued. This is a computational convenience; the resulting sur-
face reconstruction may acquire a small non-physical imaginary
component which we can neglect.

For these numerical experiments the random rough surface
is chosen to have a given autocorrelation function (a.c.f.) ρ(η),
where η = x′ − x. Two such examples are taken here. The first
has a ’sub-fractal’ a.c.f. with the form

ρ(η) =< h(x)h(x + η) >= σ2(1 +
|η|
l
) exp

(
−|η|

l

)
, (26)

where l = 8 is the wavelength and ρ(0) = σ2 is the variance
(so that σ is the rms surface height and is a measure of surface
roughness). This a relatively jagged surface with peaks on a
small scale. The second surface is smoother at small scales,
given by a Gaussian a.c.f.:

ρ(η) = σ2 exp
(
− η2

l2

)
. (27)

Both examples use the wave number k = 1, incident Gaussian
beam centred at z0 = 22.4 at zero grazing angle, and initial
width w = 8. The number of grid points N along the surface
was taken to be about 500 in the tests here. The typical peak-to-
trough of the surfaces was around 0.4. The scattered wave field
was sampled along a plane at the height z = 0.7. The scattered
wave fields generated by Helmholtz equations, e.g. Eq. (10) and
Eq. (15), is shown in Figure 1. The surface is recovered using
scattered field data generated by both full Helmholtz equation
and parabolic equation models, in order partly to measure the
effect on solutions of the model assumptions. First the scattered
data is generated by parabolic equation [27]. The reconstructed
surface h is plotted against the original surface heights shown
in Figures 2 and 3. The reconstructions are significantly im-
proved compared to previous results [14, 15]. Second, we use
Helmholtz equation to generate the scattered field. The surface
reconstructions are shown in Figures 4 and 5.

The approximations work well for both cases, and the solu-
tion recaptures most of the detailed features of original surface.
This validates the performance of the approach. The surface re-
construction appears more accurate in the case of the smoother

0 50 100 150 200 250 300

x

0.3

0.2

0.1

0.0

0.1

0.2

0.3

z
=

h(
x)

Reconstructed Surface
original surface
reconstruction

0 50 100 150 200 250 300

x

0.2

0.1
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z
=

h(
x)

Reconstructed Surface
original surface
reconstruction

Fig. 2. Plots of sub fractal surface h from inverse problem with
parabolic scattered data, for first iteration (upper) and third
iteration (lower).

Gaussian autocorrelation function. This is unsurprising: At the
moderate spatial resolutions used here the more jagged surface
features are harder to approximate. However, by taking several
iterations, both types of surface fit well to the origin surfaces
as the approximation of ψ′ improves. As might be expected,
surface reconstructions based on the purely forward-scattered
data from the parabolic equation converge more readily. By
comparison, the initial (left-most) region of the reconstructed
surface exhibits oscillatory behaviour when using the Helmholtz
scattered data. However, the reconstruction tends to stabilize as
it progresses to the right.

We also briefly consider the sensitivity of solutions to random
white noise added to the scattered data, and give some illustra-
tive results. The applied noise levels ranged from around 1% to
5% of the averaged scattered field amplitude. More specifically,
independent random complex values εr + iεi were added to each
data point, drawn uniformly from an interval [−Σ, Σ] for a range
of values of Σ. Crucially, this noise was added throughout the
spatial domain, including initial regions where the original data
was near zero; this has a greatly disproportionate effect on the
results locally. The resulting reconstruction shows some oscilla-
tions. However these oscillations are qualitatively similar to the
noise itself and effectively can be filtered out after reconstruction
if we assume the surface is smooth on the smallest scale size of
the grid. Comparison between actual and filtered reconstructed
surfaces for 1% and 3% noise added to two scattered data are
shown in Figure 6 and 7. These are at the third iteration and the
filtration is done by a simple five point moving average. Note
that the initial region oscillation in Helmholtz scattered data case
is still caused by the approximation of parabolic equation. This
appears to be a type of self-regularization and a property of the
underlying marching method for solving the coupled integral
equations, rather than of the iterative element of the algorithm.

The error of the reconstructed surface can be directly visu-
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Fig. 3. Plots of Gaussian type surface h from inverse problem
with parabolic scattered data, for first iteration (upper) and
third iteration (lower).
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Fig. 4. Plots of sub fractal surface h from inverse problem with
Helmholtz scattered data, for first iteration (upper) and third
iteration (lower).
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Fig. 5. Plots of Gaussian type surface h from inverse problem
with Helmholtz scattered data, for first iteration (upper) and
third iteration (lower).

0 50 100 150 200 250 300

x

0.2

0.1

0.0

0.1

0.2

z
=

h(
x)

Reconstructed Surface
original surface
reconstruction

0 50 100 150 200 250 300

x

0.2

0.1

0.0

0.1

0.2

z
=

h(
x)

Reconstructed Surface
original surface
reconstruction

Fig. 6. Comparison of actual surface reconstruction (upper)
with filtered reconstruction (lower) at third iteration for noise
levels of around 1% added to Helmholtz scattered data.
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Fig. 7. Comparison of actual surface (upper) with filtered
reconstruction (lower) at third iteration for noise levels of
around 3% added to parabolic scattered data.

alized in the plots. To be more accurate, we perform an error
analysis by using L2 norm of the residual,

e = (
N

∑
i=1

(hi − Hi)
2)1/2,

where hi and Hi are approximated and original surfaces. We
first plot the average distance error

( j
∑

i=1
(hi − Hi)

2
)1/2

Xj
,

which is shown in Figure 8 with logarithm size. It appears
that the error is raised at the initial region due to the highly
oscillatory part of the reconstruction, then drops quickly as the
solution is stabilized. We also choose some controlling param-
eters, which are surface type, number of nodes, and height of
scattered data generated, to characterize the average node error
which is defined as ( N

∑
i=1

(hi − Hi)
2
)1/2

N
.

Table 1 gives the error with respect to different numbers of nodes
and surface type. As the number of nodes increases, it is appar-
ent that the average error per node drops. Errors for different
locations of scattered data measurements are shown in Table
2. It is clear that the scattered data at height 0.7 gives the best
reconstruction. In all of tests, the errors for both surface types
are similar, although as mentioned above the reconstruction for
Gaussian surface is slightly better at this resolution.
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Fig. 8. Logarithmic plot of error as a function of distance

6. CONCLUSIONS

The inverse problem of reconstructing an unknown rough sur-
face from forward scattered data at low grazing angles is ex-
amined. The rough surface is recaptured via solution of a pair
of coupled parabolic (Volterra) integral equations relating the
surface height h and the surface derivative of wave field ψ′ to
the scattered field at a fixed distance into the medium. The solu-
tions are then iterated a small number of times, typically three
(so this may be regarded as a three-step method). Results are
obtained based on wide-angle scattered data obtained from the
full Helmholtz equation and (for comparison) forward-scattered
data from the parabolic approximation. The method here is
based partly on a previous non-iterative (single-step) method
[14], but substantially adapted to address issues of stability and
consistency. One drawback of the original approach was that it
required an initial guess of surface values in a region in which
surface illumination/insonification may be low, which worsens
the ill-posedness of the problem. The present method overcomes
these issues via the introduction of a small number of iterations,
and by recasting the equations to decouple the recovery of un-
known surface height and surface field.

Close agreement is found between reconstructed and original
surfaces. Each iterative step is highly efficient computationally
as it requires only the inversion of a lower triangular system.
The approach is equivalent to ‘marching’ the solution along
the direction of propagation. This appears to leads to a type
of spatial self-regularization, in which errors near the leading
edge become suppressed as the marching scheme proceeds. This
aspect merits further analytical investigation.

We have also examined the effect of adding random mea-
surement noise. This gives rise to surface reconstructions which
closely follow the exact form, plus an additional rapidly-varying
component. This perturbation is amenable to filtering, and after
this is carried out the resulting surface reconstructions agree
well with the original forms.

For perfectly conducting surfaces the principles of this ap-
proach appear well-suited to other regimes in which forward
scattering dominates. Work is currently underway in the exten-
sion to the Neumann boundary condition (TM incidence) and
on ducting due to a refractive index profile. The latter leads
to increased multiple scattering and is possible only where the
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Parabolic scattered data Helmholtz scattered data

Number of nodes Sub-fractal surface Gaussian surface Sub-fractal surface Gaussian surface

300 9.86E-04 1.30E-03 4.92E-03 5.00E-03

500 4.23E-04 4.54E-04 1.33E-03 1.49E-03

800 2.32E-04 1.99E-04 1.22E-03 1.09E-03

Table 1. L2 error per node for different numbers of nodes

Parabolic scattered data Helmholtz scattered data

Height of

scattered data
Sub-fractal Gaussian Sub-fractal Gaussian

0.5 1.88E-03 2.24E-03 2.60E-03 3.21E-03

0.7 4.85E-04 5.42E-04 1.33E-03 1.46E-03

1.0 2.33E-04 3.06E-04 3.15E-03 3.37E-03

Table 2. L2 error per node for different heights scattered data measured

Green’s function is available (see e.g. [32]). In the 3-dimensional
case, the presence of significant cross-polarization in the scat-
tered data [5, 28] and the greatly increased computational cost
present considerable extra challenges, but initial studies sug-
gest that the approach remains feasible. The parabolic equa-
tions which provide the crucial computational advantages in
2-dimensions can be replaced in 3-dimensions by the use of
operator splitting (see e.g. [31].

On the other hand, even in 2-dimensions, impedance surfaces
and transmission problems give rise to higher data requirements,
and greater level of ill-posedness which we have not resolved
with this approach. With the possible exception of a thin coating
on a flat perfect reflector, such situations call for alternative
inverse scattering techniques.
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APPENDIX A: CALCULATION OF EQUATION (13) WITH
SINGULARITY

Here, we give an approximation for the integral

A(n, n) =
∫ xn

xn−1

1
4i

H(1)
0

(
k|(xn, h(xn))− (x′, h(x′))|

)√
1 + h′(x′)2)dx′.

(28)
We first notice that

H(1)
0 (η) ∼ 1 +

2i
π
[ln(

η

2
) + γ] + O(η2), (29)

for small η, where γ is the the Euler–Mascheroni constant. If
changing of variable by

η = k
√
(x′ − xn)2 + (h(x′)− h(xn))2, (30)

then

dx′ =
1
k2

ηdη

(x′ − xn) + h′(x′)(h(x′)− h(xn))
.

Thus, the integral Eq. (28) with new variable Eq. (30) and ap-
proximation Eq. (29) becomes∫ 0

η0

1
4i

H(1)
0 (kη)

√
1 + h′(x′)2)η

k2[(x′ − xn) + h′(x′)(h(x′)− h(xn))]
dη

∼
∫ 0

η0

1
4i
[1 +

2i
π
(ln(

η

2
) + γ)]W(x′, xn)dη,

(31)

where η0 = k
√
(xn−1 − xn)2 + (h(xn−1)− h(xn))2, and

W(x′, xn) =

√
1 + h′(x′)2)

(x′ − xn) + h′(x′)(h(x′)− h(xn))
, (32)

Define ∆x = x′ − xn and ∆h = h(x′)− h(xn). Expanding h we
have

h(xn) = h(x′) + h′(x′)(xn − x′),

then h(x′)∆x = ∆h. As a result,

W2 =
1 + h′(x′)2

(1 + h′(x′)2)η2 − ∆h2 − h′∆x2 + 2h′∆x∆h
.

but −∆h2 − h′∆x2 + 2h′∆x∆h = −h′2∆x2 − h′∆x2 +
2h′∆xh′∆x = 0. Therefore, we get W2 = 1/η2, and in
fact W = −1/η. Substitute this into the integral Eq. (31),

A(n, n) =
1
k2

∫ η0

0

1
4i

+
1

2π
ln(

η

2
) +

1
2π

γdη

=
1
k2 (

η0
4i

+
1

2π
γη0) +

1
k2

∫ η0

0

1
2π

ln(
η

2
)dη.

(33)

The last integral has no singularity∫ η0

0

1
2π

ln(
η

2
)dη = ηln(

η

2
)− η|η0

0 = η0ln(
η0
2
)− η0,

since

lim
η→0

ηln(
η

2
) = lim

η→0

ln( η
2 )

1
η

= lim
η→0

1
η

− 1
η2

= lim
η→0

(−η) = 0

Finally, we have

A(n, n) =
1
k2 {

η0
4i

+
1

2π
γη0 +

1
2π

η0[ln(
η0
2
)− 1]}. (34)

For another integral

A(n, n + 1) =∫ xn+1

xn

1
4i

H(1)
0

(
k|(xn, h(xn))− (x′, h(x′))|

)√
1 + h′(x′)2)dx′,

(35)

it can be obtained by symmetry. Therefore,

A(n, n + 1) =
1
k2 {

η0
4i

+
1

2π
γη1 +

1
2π

η1[ln(
η1
2
)− 1]}, (36)

where η1 = k
√
(xn+1 − xn)2 + (h(xn+1)− h(xn))2.

APPENDIX B: APPROXIMATION OF THE LAST SUBINTE-
GRAL IN EQUATION (20)

We approximate the subintegral with singularity∫ xn

xn−1

α exp
[ ik(h(xn)− h(x′))2

2(xn − x′)

] dx′√
xn − x′

(37)

Change of variable via

ζ =
√

xn − x′, dx′ = −2ζdζ.

Apply the Taylor expansion on h with h(x′) = h(xn) =
h′(xn)(x′ − xn), then we have

(h(xn)− h(x′))2

xn − x′
=

h′(xn)2(xn − x′)2

(xn − x′)
= h′(xn)

2ζ2

The integral with new variable becomes∫ 0

ζ0

α exp[
ik
2

h′(xn)
2ζ2]

1
ζ
(−2ζ)dζ

=
∫ ζ0

0
2α exp[

ik
2

h′(xn)
2ζ2]dζ,

where ζ0 =
√

δ and δ is the spatial step-size xn − xn−1. For
convenience we can write the above integral as

2α
∫ ζ0

0
exp[iβ2ζ2]dζ

where β =
√

k
2 |h′(xn)| and then by using a change of variable

Z = βζ, we can write the integral

2
α

β

∫ Z0

0
exp[iZ2]dZ = 2

α

β
[C(Z0) + iS(Z0)]

where Z0 = βζ0 and C, S are the cosine and sin Fresnel
integrals.
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