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Abstract

In this work, we present a method to extract features
from heart sound signals in order to enhance segmentation
performance. The approach is data-driven, since the way
features are extracted from the recorded signals is adapted
to the data itself. The proposed method is based on the
extraction of delay vectors, which are modeled with Gaus-
sian mixture model priors, and an information-theoretic
dimensionality reduction step which aims to maximize dis-
crimination between delay vectors in different segments of
the heart sound signal.

We test our approach with heart sounds from the pub-
licly available PhysioNet dataset showing an average F1

score of 92.6% in detecting S1 and S2 sounds.

1. Introduction

Auscultation is one of the fundamental steps of the phys-
ical examination of a patient and the first line of screen-
ing of cardiovascular disease. Based on the clinical signs
extracted from it, a clinician decides if additional ex-
ams are needed, typically an echocardiogram, which is
more reliable, but also more expensive and requiring spe-
cific expertise to apply. The cost-effectiveness of auscul-
tation contrasts with the worrying revelations of impor-
tant studies quantifying that only around 20% of medi-
cal interns can actually perform cardiac auscultation effec-
tively [1]. This observation fueled recent research efforts
in automatizing part or the entire process of analysis of the
phonocardiogram (PCG) signal.

A key step usually implemented to extract information
from a heart sound signal consists in dividing each heart
cycle into its fundamental components. Namely, a normal
heart cycle is usually divided into first heart sound (de-
noted by S1), systole, second heart sound (denoted by S2)
and diastole. Further sound components of interest are rep-
resented by murmurs, clicks, splitting of the first and/or
second heart sounds and further third (S3) and fourth (S4)
heart sounds.

Different approaches have been presented in the liter-
ature in order to perform PCG segmentation (see [2] for
a general overview). In general, such methods are per-
formed via a two-steps approach, that first extract features
from the PCG signal and then assigns features to the differ-
ent states corresponding to the different sound segments or
components. In particular, features can be extracted in the
time domain (e.g., Shannon energy [3]), in the frequency
domain (e.g., Mel-frequency cepstral coefficients [4]) or
other transform domains (wavelet transform, etc.).

Then, features corresponding to different time instants
can be assigned to the different segments of the signal us-
ing various kinds of classifiers, as, for example, support
vector machines (SVM) [5], artificial neural networks
(ANN) [6], and, more recently, deep neural networks [7].

Another popular approach is based on the explict mod-
eling of the sequential nature of states in the heart
sound signal. In particular, algorithms based on hidden
Markov models (HMM) and hidden semi-Markov models
(HSMM) are designed in order to segment heart sound sig-
nals. The use of HMM for heart sounds dates back to the
work of Gill et al. [8]. On the other hand, HSMMs are
a generalization of HMM which allow to model explicitly
sojourn time distributions, i.e., the distribution of the time
spent by the signal in a given state of the corresponding
hidden Markov chain. HSMMs have been recently coupled
with the use of logistic regression distribution to model
emission probability distributions, thus obtaining state-of-
the-art segmentation performance [9].

However, PCG segmentation still represents a challeng-
ing problem to solve when considering its application in
real-world, noisy environments. In this work, we propose
a technique to extract features from the heart sound signal,
which is adapted to the data via training, and which aims
to increase separability between segments corresponding
to different signal states. The method provides a princi-
pled framework based on dynamical system analysis (de-
lay vectors method [10]) and information-theoretic tools
to enhance segmentation performance. In particular, the
proposed algorithm is based on the following steps:
1. extract delay vectors from a heart sound signal;
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2. model the delay vectors with state-dependent, multi-
variate Gaussian mixture model (GMM) priors;
3. reduce the delay vector state space by using
information-theoretic linear discriminant methods.

The proposed feature extraction technique can be cou-
pled with different kinds of classifiers. In particular, it can
be applied to HMMs or HSMMs, due to the amenability
in computing the statistical quantities required for optimal
estimation of the hidden state sequence.

2. Methods

2.1. Delay vectors

We denote with x(t), t = 0, 1, . . . , T the samples of the
observed heart sound signal, and with s(t), t = 0, 1, . . . , T
the corresponding labels, i.e., s(t) ∈ {1, . . . , I}, where
the values 1, . . . , I correspond to different states of the
PCG signal. In particular, the PCG states considered in
this work are: S1, systole, S2 and diastole.

In dynamical system analysis, delay vectors are used
to study the evolution of nonlinear systems, and they are
shown to contain the full information about the system
dynamics under mild assumptions [10]. Delay vectors
are extracted from the observed signal as follows: given
a time lag τ ∈ N and a vector dimension n ∈ N, the
delay vector associated to time t is defined as x(t) =
[x(t), x(t− τ), . . . , x(t− (n−1)τ)]T, where (·)T denotes
the transpose operator.

Then, delay vectors corresponding to a given state i are
modeled via a multivariate GMM, i.e., we assume that the
probability density function (pdf) of the vector x(t) condi-
tioned on s(t) = i is given by

bi(x(t)) = p(x(t)|s(t) = i) =

K(i)∑
k=1

p
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(i)
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where K(i) is the number of Gaussian components in the
GMM emission distribution associated to state i and p(i)k

is the probability of the k-th component in state i, so that
0 ≤ p
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Note that the statistical description of a delay vector x(t)
conditioned on state i does not depend on the time instant
t. For this reason, we can drop the time index and simply
write bi(x) = p(x|s = i). Moreover, the marginal dis-
tribution of a delay vector x is obtained by averaging the
conditional distributions as

p(x) =

I∑
i=1

πi
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where πi denotes the prior probability of being in state i.

Finally, we assume that the parameters πi, p
(i)
k ,µ

(i)
k ,Σ

(i)
k ,

i = 1, . . . , I , that define the statistical description of the
delay vectors, are estimated from annotated data in the
training phase. Then, the distributions p(x) and p(x|s = i)
are used in the next step of the proposed feature extraction
process, that is, dimensionality reduction.

2.2. Information-theoretic dimensionality
reduction

Dimensionality reduction consists in finding a linear
transformation which aims to: i) reduce the dimension of
the delay vectors in order to decrease computational com-
plexity and ii) enhance discrimination between delay vec-
tors belonging to different states.

In particular, when m ∈ N features are extracted from
each delay vector, on denoting by Φ ∈ Rm×n the linear
transformation applied to the delay vectors, we quantify
the level of discrimination between transformed delay vec-
tors in different states by using Shannon’s mutual informa-
tion (MI) [11], i.e, we write

I(Φx; s) = h(Φx)−
I∑

i=1

πih(Φx|s = i), (3)

where h(x) = −
∫
p(x) log p(x)dx is Shannon’s differen-

tial entropy. Then, the desired Φ is obtained as the solution
of the optimization problem

maximize
Φ

I(Φx; s), subject to tr(ΦΦT) ≤ m, (4)

where tr(·) is the trace operator and the constraint in (4)
is imposed in order to guarantee stability with respect to
measurement noise. The solution of (4) can be approxi-
mated by using a gradient descent algorithm that leverages
the expression of the gradient of the mutual information
I(Φx; s) with respect to Φ. In particular, a method to ef-
ficiently compute such gradient is reported in [11] and it
is shown to require the computation of a minimum mean-
squared error (MMSE) matrix via Monte Carlo integration.
However, we note that, since mutual information is not a
concave function with respect to Φ, gradient descent is not
guaranteed to converge to the global optimum. Moreover,
Monte Carlo integration can lead to numerical instability
for high-dimensional delay vectors x(t).

For this reason, we propose also the use of an alternative
method which is based on the following approximation of
Shannon’s mutual information:

IG(Φx; s) = hG(Φx)−
I∑

i=1

πihG(Φx|s = i), (5)

where hG(x) is the differential entropy of a Gaussian vec-
tor having the same mean and covariance matrix as the



vector x. Such approximation goes under the name of
information discriminant analysis (IDA) [12]. It is also
possible to show that IG(Φx; s) is a concave function of
Φ and its gradient with respect to Φ can be expressed in
closed form. In this way, convergence to a global optimum
can be guaranteed when using gradient descent [12].

2.3. Proposed features with HSMMs

The proposed method for feature extraction can be eas-
ily incorporated in algorithms for heart sound segmenta-
tion which are based on HSMMs. In particular, we re-
call that a HSMM is completely defined by a set of initial
state probabilities, sojourn time distributions and emission
probability distributions. Then, on denoting by y(t) =
Φx(t), t = 0, 1, . . . , T the sequence of observed, trans-
formed delay vectors, these represent the observed emis-
sions in the HSMM. Moreover, the corresponding emis-
sion pdfs can be easily computed from (1) as

bi(y) = p(y|s = i) =

K(i)∑
k=1

p
(i)
k N (Φµ

(i)
k ,ΦΣ

(i)
k ΦT). (6)

Finally, the state sequence that maximizes the log-
likelihood associated with the sequence of observed fea-
ture vectors y(t) can be efficiently computed via the use
of the Viterbi algorithm [13].

3. Experimental methodology

In this section, we present an application example of the
proposed feature extraction framework for PCG segmen-
tation. In particular, we consider 792 heart sounds record-
ings of 135 patients from the publicly available PhysioNet
dataset.1 Among those, 406 sounds are collected from
patients with cardiac pathologies (most commonly mitral
valve prolapse), as assessed by echocardiography. The re-
maining 386 sounds are collected from healthy patients.
Sound recordings have variable durations in the range from
1s to 35.5s. They are collected from several spots over the
chest and they are corrupted by different sources of noise.
The annotations provided with the dataset are computed
via the analysis of synchronous electrocardiogram (ECG)
recordings, based on the agreement between five different
automatic R-peak and end-T-wave detectors.

Experiments are conducted as follows: the considered
792 heart sound signals are splitted randomly so that half
of the sounds are used for training and half of the sounds
are used for testing. Random splits are forced to ensure
that sounds belonging to the same patient cannot appear in
both the training and testing sets.

Although the considered PCG signals are collected at
1 kHz sampling rate, in order to speed up computation, we

1https://physionet.org/physiotools/hss/.

further downsample the signals at 50 Hz, as done in [9].
More precisely, in our experiment, the samples x(t) are
collected from the homomorphic envelope of the PCG sig-
nals sampled at 50 Hz. Then, delay vectors are extracted
from both training and testing data by choosing τ = 2 and
n = 32, so that each delay vector spans approximately
1.24s of the recorded PCG signal. In this sense, we have
observed experimentally that the best segmentation perfor-
mance is achieved when allowing the delay vectors to span
a large portion of the PCG signal, approximately an entire
heart beat. In fact, delay vectors containing larger portions
of the PCG signal seem to capture more information about
the dynamic evolution of the signal, thus providing more
robust segmentation results.

Annotated training data are used to determine the de-
lay vector distributions bi(x). In particular, we choose the
number of Gaussian components in each state-dependent
GMM as K(i) = 10, i = 1, . . . , I and the parameters
p
(i)
k ,µ

(i)
k and Σ

(i)
k are estimated for each state i by using

the expectation maximization (EM) algorithm [13].
Then, we fix m = 7 and we compute the matrix Φ ∈

R7×32 by following the steps described in Section 2.2, that
is by maximization of Shannon’s mutual information or by
using the IDA approach. Such Φ is applied to the delay
vectors extracted from the sounds in the testing set, and the
emission probability distributions are obtained as in (6).

Sojourn time distributions are assumed to be Gaussian,
with means and covariances that depend on the heart rate
and that are estimated via the method used in [9].

Performance of the proposed segmentation method is
measured in terms of the following metrics. First, we con-
sider the positive predictive value per sample (Ps), which
accounts for the general capacity of the algorithm in dis-
criminating sounds belonging to S1, systole, S2 and di-
astole intervals. We also report further four standard per-
formance metrics concerning the detection of the principal
heart sounds S1 and S2: precision (P ), recall (R), accu-
racy (A) and F1 score. In this case, true/false positives and
true/false negatives are determined based on the compar-
ison of the centers of the S1 and S2 sounds in the state
sequence returned by the segmentation algorithm and the
state sequence associated to the ground truth annotation.
For example, a true positive happens when, given the cen-
ter of an S1 (S2) sound in the output sequence, the closest
sound center in the annotation state sequence is also asso-
ciated to an S1 (S2) sound.

3.1. Results

The aforementioned performance metrics are computed
on a patient basis, and then averaged over the testing set.
Then, the means of these values over 100 different random
training/testing splits are reported in Table 1. In particu-
lar, we report the results obtained when using delay vec-

https://physionet.org/physiotools/hss/


Table 1. Performance obtained with the proposed fea-
ture extraction framework without dimensionality reduc-
tion (NDR), with MI maximization and with IDA, com-
pared with the corresponding results obtained by the algo-
rithm in [9]. Mean and standard deviation (%).

NDR MI IDA [9]
Ps 80.6± 1.7 83.7± 1.7 85.5± 1.3 86.6± 1.2
P 89.6± 2.0 91.5± 1.9 92.7± 1.5 93.9± 1.3
R 89.6± 2.0 91.7± 1.8 92.8± 1.4 94.4± 1.2
A 90.9± 1.6 92.6± 1.5 93.7± 1.1 94.6± 1.1
F1 89.4± 2.0 91.4± 1.9 92.6± 1.5 94.1± 1.2

tors without linear dimensionality reduction, when maxi-
mizing Shannon’s MI with the method presented in [11],
and the results obtained with the IDA approach [12]. For
comparison, we report also the corresponding values of the
performance metrics obtained with the state-of-the-art al-
gorithm presented in [9]. Such algorithm couples HSMMs
with the use of logistic regression to model emissions as-
sociated to four different features extracted from the PCG
signal (homomorphic envelope, Hilbert envelope, power
spectral density and discrete wavelet transform).

We note that MI maximization and the IDA approach
play an important role in enhancing discrimination be-
tween delay vectors of different signal states, thus lead-
ing to better segmentation performance. Moreover, the
IDA approximation is shown to guarantee more reliable
segmentation, possibly due to its numerical stability when
compared with MI maximization. Finally, we observe that
the proposed framework can guarantee competitive results
compared with current state-of-the-art approaches, as the
one proposed in [9].

4. Conclusion

In this work, we have proposed a novel method to extract
features from the PCG signal to enhance segmentation per-
formance. The method, which is based on the extraction of
delay vectors and on information-theoretic linear dimen-
sionality reduction, is shown to produce promising results.

The proposed framework, which combines GMM distri-
butions to model emission vectors and mutual information
maximization, opens the way also for further advances in
PCG segmentation. In particular, future work along this
line of research includes the addition of side information
signals (e.g., ECG) in the model in order to improve seg-
mentation performance, as well as the study of more gen-
eral nonlinear dimensionality reduction methods.
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