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Abstract

Fluoropyrimidines, including 5-fluororacil (5FU) and its pro-drug Capecitabine, are the com-

mon treatment for colorectal, breast, neck and head cancers—either as monotherapy or in

combination therapy. Adverse reactions (ADRs) to the treatment are common and often

result in treatment discontinuation or dose reduction. Factors contributing to ADRs, includ-

ing genetic variation, are poorly characterized. We performed exome array analysis to iden-

tify genetic variants that contribute to adverse reactions. Our final dataset consisted of 504

European ancestry individuals undergoing fluoropyrimidine-based therapy for gastrointesti-

nal cancer. A subset of 254 of these were treated with Capecitabine. All individuals were

genotyped on the Illumina HumanExome Array. Firstly, we performed SNP and gene-level

analyses of protein-altering variants on the array to identify novel associations the following

ADRs, which were grouped into four phenotypes based on symptoms of diarrhea, mucositis,

and neutropenia and hand-and-foot syndrome. Secondly, we performed detailed analyses

of the HLA region on the same phenotypes after imputing the HLA alleles and amino acids.

No protein-altering variants, or sets of protein-altering variants collapsed into genes, were

associated with the main outcomes after Bonferroni correction. We found evidence that the

HLA region was enriched for associations with Hand-and-Foot syndrome (p = 0.023), but no

specific SNPs or HLA alleles were significant after Bonferroni correction. Larger studies will

be required to characterize the genetic contribution to ADRs to 5FU. Future studies that

focus on the HLA region are likely to be fruitful.
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Introduction

Fluoropyrimidines, including 5-fluororacil (5FU) and its pro-drug Capecitabine, are the com-

mon treatment for colorectal, breast, neck and head cancers—either as monotherapy or in

combination therapy. Adverse reactions (ADRs) to the treatment are common and dose

reduction or treatment discontinuation due to toxicity are often necessary.[1] Severe toxicity

can have a rapid onset and may result in mortality in a small proportion (0.5–2%) of patients.

[2, 3] Common symptoms of toxicity include diarrhea, mucositis, and neutropenia; as well as a

distinctive dermatological toxic reaction known as hand-and-foot syndrome (HFS).[4] Some

degree of HFS is common (50–60%) in patients treated with the fluoropyrimidine pro-drug

Capecitabine, but severe reactions are more rare, occurring in 10–17% of individuals.[4]

Factors contributing to ADRs to 5FU are not well characterized. Inter-individual genetic

variation is likely to contribute significantly. Variants in the dihydropyrimidine dehydroge-

nase (DPYD) gene, which encodes the primary enzyme required to metabolise fluororacil, con-

tribute to risk of toxicity.[5, 6] However, these variants are rare, explaining only a proportion

of risk, and therefore other contributing factors are likely to exist. Indeed, other associated var-

iants have been identified using a candidate gene approach—including variants in TYMS and

MTHFR.[7–9] However, the clinical relevance of these variants remains uncertain.[10] A

genome-wide study of toxicity has been reported, but none of the identified associations have

since been validated. [11] Genetic associations specifically with HFS have also been reported,

[8, 12, 13] but large well-powered genetic studies of HFS are largely absent from the literature.

Many of the associations to date have been identified using a candidate gene approach,

which has been shown to have poor reproducibility.[14] Indeed, the candidate gene approach

has in general been superseded by agnostic whole-genome or whole-exome approaches, which

survey the entirety of the genome or exome for associations. In this analysis, we use exome

array technology to perform two analyses. First, we carry out a comprehensive assessment of

the influence of protein altering variation at the SNP and gene level on ADRs to 5FU. Sec-

ondly, given the importance of the Human Leukocyte Antigen (HLA) in immune response

and its prior association with drug responses,[15] we perform detailed assessment of the influ-

ence of genetic variation in the HLA on 5FU ADRs.

Methods

Patients and clinical data

Patient data was derived from two populations. The first was based on a series of 430 patients

recruited from oncology clinics, and treated with 5FU or Capecitabine, forming part of a

regional cancer network in South East London, UK; and described in detail previously. [8]

Ethical approval was obtained from St Thomas’ Hospital Research Ethics Committee (07/

H0802/143) and written consent was provided by all patients. For inclusion in the study,

patients had to fulfil the following criteria: (1) World Health Organisation performance status

<2; (2) life expectancy greater than or equal to 3 months; (3) any previous chemotherapy

completed greater than or equal to 6 months ago; and (4) adequate haematological and cardiac

status. Although the study was retrospective, clinical outcome data were obtained from stan-

dardised oncology outcome records completed at each clinic visit. Pre-treatment evaluation

included a complete physical examination and recording of the following information: (1)

baseline patient demographics (age, sex and ethnicity) and medical history; (2) diagnosis of

tumour and staging (tumour, node, metastasis system); (3) current chemotherapy regimen

(drug, dosing regimen) and (4) baseline blood analyses. Patients were assessed for treatment

tolerance and had full blood count, renal function and liver function monitored before each
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chemotherapy cycle. All chemotherapy related toxicity in the first four cycles of treatment was

recorded according to the National Cancer Institute Common Toxicity Criteria version 3.

Patient outcome data were not disclosed to investigators undertaking the genetic analysis.

The second population consisted of 359 patients who, in addition to treatment with Capeci-

tabine or 5-FU, had received oxaliplatin-based chemotherapy for the treatment of colorectal

tumours. They were recruited from oncology outpatient clinics at Guy’s and St. Thomas’ NHS

Hospital Trust, with the majority of patients (>98%) receiving treatment for colorectal carci-

noma. Individuals were excluded from this analysis if this was not their first-line Capecitabine

or 5FU treatment or if they had undergone previous 35 or 42 day Capecitabine cycles.

Phenotype classification

Association was tested for two measured toxicity outcomes. Diarrhoea, mucositis and neutro-

penia (DMN) in the first four cycles of treatment were dichotomised as either mild to moder-

ate (grade 0–2) or severe (grade 3–4) in all patients. In Capecitabine patients only, the primary

ADR of interest was HFS. No grade 4 HFS was reported in the Capecitabine cohort, so two

analyses were performed: for HFS (grade 0–1 v. grade 2–3) and for severe HFS (grade 0–2 v.

grade 3). In addition we evaluated associations with Diarrhoea and Mucositis (DM), dichoto-

mised as either mild to moderate (grade 0–2) or severe (grade 3–4) in the Capecitabine

subgroup.

Genotyping and quality control

All individuals were genotyped using the Illumina HumanExome v1.1 chip, which includes

247,870 protein-altering variants identified from whole-exome sequencing of>12,000 individ-

uals. The array also features 2,459 HLA tags, 4,761 GWAS trait-associated SNPs, as well as

ancestry-informative markers, identity-by-descent estimation markers and random synony-

mous SNPs to enable construction of principal components of ancestry. Comprehensive

details about the exome array are available at http://genome.sph.umich.edu/wiki/Exome_

Chip_Design.

Quality control (QC) of the cohort of 5FU patients was carried out on a larger dataset of

2,448 individuals, following validated procedures.[16] Manual inspection of SNP cluster plots

was carried out in Genome Studio to preserve rare variants within the data. Initial call rate,

gender mismatch, and visual cluster checks were also made. The SNPs were then called using

zCall.[17] The above steps were applied separately to two batches (N = 1,798 and N = 650) and

then merged together for further QC. SNPs were retained provided they had a call rate of 0.99

and HWE p-value >1x10-6. Individuals were retained provided their SNP call rate was>0.97,

and any first degree relatives were removed after examining cryptic relatedness. After perform-

ing a sanity check to confirm associations of DPYD variants in the dataset as expected, we

removed any individual who had any copies of four DPYD variants (c.1905+1G>A,

c.2846A>T, c.1601G>A and c.1679T>G) known to be associated with ADRs.[8]

We tested for any batch effects arising from calling SNPs in two stages by (1) comparing

allele frequencies; (2) testing whether loadings on principal components was correlated with

batch to show that sample spreads and population structure are similar. Principal component

(PCs) were calculated using smartpca (EIGENSTRAT) on autosomal variants pruned for link-

age disequilibrium (LD) and with MAF>0.01.[18] This was first performed in combination

with European, African and East Asian samples from the 1000 Genomes project. We then sub-

set our samples on those that segregated with the European reference samples, and then

repeated the principal components analysis until no individual was more than 6 standard
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deviations from the median on the first 5 principal components. All quality control was per-

formed using PLINK v1.90b3.32.[19]

HLA imputation

The Illumina HumanExome Array contains a set of 2,459 SNPs that tag variation across the

HLA. We used these SNPs to impute SNPs, amino acids, and HLA alleles across the region.

Imputation was performed using SNP2HLA,[20] using the Type 1 Diabetes Genetics Consor-

tium (T1DGC) reference panel of 5,225 unrelated individuals. This resulted in imputed data

relating to 728 HLA amino acids, 180 HLA alleles, and 5788 SNP genotypes.

Statistical analysis

To assess the association of genetic variants with adverse reactions to 5FU, we performed two

separate analyses; gene level and SNP level tests. Gene level tests work on the assumption that

multiple variants impacting on the trait under study might reside in the same gene. These tests

therefore test the aggregate impact of variants within a gene region on the trait, which can

have the benefit of addition study power. [21] Conversely, SNP level tests perform a test of

association of the trait with single genetic variants. We interrogated expression of potentially

implicated genes using the GTEx portal (https://www.gtexportal.org/.

Gene level tests

Gene-level tests of association were performed using the Variant Association Tools (VAT)

package.[22] We used the Combined and Multivariate Collapsing (CMC) and Sequence Ker-

nel Association (SKAT) tests to evaluate associations of variants within RefSeq genes, [21, 23]

imposing default weights, filtering on MAF<0.05 and including the first two ancestry-infor-

mative principal components as covariates in all analyses. Analysis was restricted to protein-

altering variants. We set the significance level to p<5x10-6, corresponding to Bonferroni cor-

rection for the approximate 10,000 genes in each analysis.

SNP level tests

Associations of protein-altering SNP genotypes with each of the four ADRs were performed

using PLINK v1.90b3.32, in each case including two ancestry-informative principal compo-

nents to control for population structure. We assessed whether association statistics had the

expected distribution by calculating genomic inflation factors and generating QQ-plots. We

set the significance threshold to p<8.4x10-7 corresponding to Bonferroni correction for the

59,277 variants tested.

To attempt to prioritise sub-threshold associations at the SNP and gene level, we evaluated

whether any of our top associations showed evidence of interaction with proteins in the DPD

pathway. We used the STRING database to identify proteins with interactions with DPYD,

TYMS, DCA,MTHFR, and DPYS with medium confidence, [24] and investigated whether any

of these interacting proteins overlapped with any of our lead associations.

HLA analysis

To interrogate the influence of HLA alleles on ADRs, we performed several analyses, as

follows:

We first assessed the evidence that variation across the entire HLA region contributed

to risk of each ADR. We calculated the sum of chi-squared association statistics for all geno-

typed SNPs across the region for each outcome, obtaining the observed association. We then
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generated 10,000 permutations of the phenotypes, and calculated permuted association values

for each permutation, again summing chi-squared association statistics across the region. We

calculated a p-value by tabulating the number of permutations at which the permuted sum of

chi-squared association statistics equalled or exceed the observed association and dividing by

the number of permutations.

Based on the 6696 imputed HLA alleles, amino acids and genotypes, we performed associa-

tion analysis across the region for each of the four outcomes (DMN, DM, HFS, severe HFS)

using PLINK v1.90b3.32, including two principal components in all analyses. We set the signif-

icance threshold at p<7.5x10-6, corresponding to a Bonferroni correction for all 6696 imputed

elements.

Results

After quality control procedures, our dataset consisted of 504 individuals of European ancestry

(Table 1) for which information was available on 74,224 SNPs, 59,277 of which were protein-

altering variants and 2,283 of which resided in the HLA region.

Gene level tests

We performed CMC and SKAT tests to evaluate whether genetic variation in tested genes con-

tributed to ADRs. No genes in any of the four analyses (DMN, DM, HFS, severe HFS) reached

our predetermined significant threshold (p<5x10-6). The ten most associated genes in each of

the analyses are presented in Tables A-D in S1 File. The strongest association was for the phe-

notype of DMN with Unc-51 Like Kinase 4 (ULK4) using a SKAT test (p = 1.2x10-5). The

strongest association with HFS phenotypes was for Phosphatidylinositol Transfer Protein,

Membrane-Associated 3 (PITPNM3), which is expressed in both the transverse and sigmoid

colon. [25], with severe HFS (CMC, p = 1.7x10-4; SKAT, p = 1.2x10-4).

SNP level tests

Genome-wide association results for genotyped variants are presented in Fig 1. No SNP

reached our significance threshold in this analysis. Genomic inflation was well controlled for

all analyses (λ� 1.01; Figure A in S1 File), suggesting no confounding due to population struc-

ture or technical artefact. The strongest associations were for exm462045, in IQ Motif Con-

taining GTPase Activating Protein 2 (IQGAP2), with DM (p = 1.0x10-4); and for exm709846,

in Transmembrane Protein 67 (TMEM67), with severe HFS (p = 3.4x10-5). Both are expressed

in both the transverse and sigmoid colon. [25] The top associations for each of the four out-

comes are presented in Tables 2 and 3.

As IQGAP2 has been implicated in colonic inflammation in mice, [26] we explored whether

its expression was different in patients with Crohn’s Disease compared to controls, using

Table 1. Cohort characteristics.

Affected Unaffected

N % male Age (sd) N % male Age (sd)

DMN 133 58.4 65.0 (11.0) 369 60.7 62.1 (12.1)

DM 50 57.1 66.0 (11.8) 199 60.7 63.3 (11.0)

HFS 36 47.2 64.4 (12.8) 218 62.4 63.8 (10.9)

Severe HFS 13 69.2 64.2 (11.4) 241 60.0 63.8 (11.2)

DM, HFS, Severe HFS considered in Capecitabine subgroup only.

https://doi.org/10.1371/journal.pone.0188911.t001
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Fig 1. Manhattan plots of −log10(p-value) for association of genomewide protein-altering variants with DMN, DM, HFS and severe HFS by

genomic position. HFS, Hand-and-Foot syndrome; DMN, Diarrhoea, mucositis and neutropenia; DM, Diarrhoea and mucositis.

https://doi.org/10.1371/journal.pone.0188911.g001

Table 2. Top protein-altering SNP associations from genome-wide association analysis for ADRs.

rsID CHR BP GENE RA RA Freq OR P-value

DM

exm462045 5 75923294 IQGAP2 A 0.047 4.61 0.00010

exm1084826 14 20872881 TEP1 A 0.20 2.67 0.00014

exm543802 6 38750888 DNAH8 G 0.14 2.77 0.00039

exm1087032 14 21991626 SALL2 C 0.32 2.27 0.00050

exm1476224 19 44117052 SRRM5/ZNF428 A 0.061 3.72 0.00061

exm792722 9 136131651 ABO A 0.082 3.64 0.00071

exm402548 4 69078113 FTLP10/TMPRSS11BNL A 0.22 2.68 0.00075

exm402563 4 69094507 TMPRSS11BNL A 0.22 2.68 0.00075

exm402583 4 69095197 TMPRSS11BNL A 0.22 2.68 0.00075

exm212608 2 96861159 STARD7 G 0.16 2.61 0.00083

DMN

exm1322587 17 39884065 HAP1 A 0.41 0.51 5.5x10-5

exm1084826 14 20872881 TEP1 A 0.20 1.90 0.00017

exm224289 2 121747433 GLI2 A 0.027 4.56 0.00025

exm303483 3 41759288 ULK4 G 0.030 3.97 0.00027

exm1024776 12 85432040 LRRIQ1 A 0.12 0.36 0.00059

exm813014 10 18266989 SLC39A12 G 0.34 0.56 0.00073

exm6576 1 3328659 PRDM16 A 0.13 1.93 0.0011

exm901458 11 43876698 HSD17B12 A 0.29 1.66 0.0014

exm444913 5 13737444 DNAH5 A 0.12 1.96 0.0015

exm598969 7 1595068 TMEM184A A 0.26 1.68 0.0015

CHR, chromosome, BP, base position; RA, reference alleles; RA Freq, Frequency of reference allele; OR, odds ratio; DMN, Diarrhoea, mucositis and neutropenia; DM,

Diarrhoea and mucositis.

https://doi.org/10.1371/journal.pone.0188911.t002
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RNA-seq data derived from the colon in 76 cases and 28 controls. IQGAP2 showed signifi-

cantly decreased expression (log(Fold Change) = -0.25; p = 2.9x10-4), highlighting that this

gene is likely to be important in colonic inflammation.

HLA analysis

Using a permutation-based approach, we found evidence that variation across the entire HLA

region contributes to the risk of HFS (p = 0.023). Conversely, there was no evidence of associa-

tion with severe HFS (p = 0.070), DMN (p = 0.20) or DM (p = 0.44).

When performing association analysis of SNPs, amino acids, and HLA-alleles across the

HLA region, the most significant associations were with HFS in the Class I region (Fig 2). The

strongest association was with rs3093960 (OR(95% CI) = 4.5(2.1–9.5); p = 9.5x10-5) in the

Class I region. However, no associations met the Bonferroni-correction threshold of

p<7.5x10-6.

Discussion

ADRs to fluoropyrimidine-based chemotherapy are a major clinical problem and often neces-

sitate dose reduction or treatment discontinuation. Currently, dosing is based on surface area

alone and does not capture inter-individual differences based on genetics or other factors.

Indeed, grade 3–4 toxicity has been reported in 10–30% of individuals,[2] emphasising that

current dosing strategies are unsatisfactory. Previous candidate gene studies have highlighted

the importance of DPYD variants, [5] [6] while other studies have pointed to associations in

Table 3. Top protein-altering SNP associations from genome-wide association analysis for ADRs.

rsID CHR BP GENE RA RA Freq OR P-value

HFS

exm1183401 15 83428192 FSD2 A 0.18 3.24 9.1x10-5

exm1199144 16 825255 MSLN A 0.041 6.00 0.00031

exm967406 11 124767067 ROBO4 G 0.22 2.94 0.00037

exm1514136 19 58117083 ZNF530 G 0.15 3.17 0.00047

exm1418230 19 8176640 FBN3 A 0.22 2.70 0.00057

exm386871 4 6607046 MAN2B2 G 0.014 9.60 0.00057

exm106093 1 155172725 THBS3 G 0.11 3.17 0.00087

exm1324855 17 40722029 MLX G 0.29 2.44 0.00092

exm1540403 20 36993333 LBP G 0.015 15.39 0.00096

exm427090 4 146653620 C4ORF51 A 0.12 3.01 0.00097

Severe HFS

exm709846 8 94772165 TMEM67 A 0.020 17.0 3.4x10-5

exm1284676 17 6386883 PITPNM3 A 0.016 51.8 0.00012

exm1540403 20 36993333 LBP G 0.015 55.2 0.00024

exm1176020 15 74425505 ISLR2 A 0.019 14.4 0.00029

exm108413 1 156146640 SEMA4A A 0.039 10.4 0.00032

exm106714 1 155290231 FDPS G 0.027 10.2 0.00035

exm1476980 19 44471209 ZNF221 T 0.14 4.36 0.00046

exm400335 4 56325365 CLOCK C 0.066 7.00 0.00050

exm1034106 12 108954862 SART3 G 0.17 5.43 0.00069

exm1121827 14 92460176 TRIP11 G 0.0030 91.5 0.00075

CHR, chromosome, BP, base position; RA, reference alleles; RA Freq, Frequency of reference allele; OR, odds ratio; HFS, Hand-and-Foot syndrome.

https://doi.org/10.1371/journal.pone.0188911.t003
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TYMS, MTHFR, and DCA, which are yet to be fully validated. [8] Attempts to identify novel

associations by survey of genome-wide data has so far been relateively small in scale (N = 221).

[11] Here, we performed analyses using the exome array to identify genetic associations with

ADRs in 430 patients undergoing fluoropyrimidine-based chemotherapy for gastrointestinal

cancer.

In a comprehensive survey of protein-altering variants, we were unable to identify any

novel associations with ADRs. Although none of the variants or genes studied reached the

required significance level, several have functions which could plausibly implicate them in

ADRs. Telomere-associated protein 1 (TEP1) was one of the strongest hits for DMN and DM.

This gene plays an important role in cell survival, interacts with the BLM DNA helicase, which

unwinds DNA, and may therefore have a role in DNA repair. Another interesting candidate is

Semaphorin 4A (SEMA4A), which showed a suggestive association with severe HFS in our

analysis. Semaphorins have been implicated in immune and inflammatory responses across

many immune-mediated diseases, and SEMA4A in particular is important in stimulating

immune response by activating T and B cells.[27] Such mechanisms may play a role in patho-

genesis of HFS.

In addition, we performed a detailed analysis of the HLA region. Although we did not iden-

tify any specific novel associations, our permutation-based analysis across the whole HLA sug-

gested that genetic variation across the region contributes to risk of HFS. Given the critical

importance of the HLA system in immune and inflammatory response, it is very plausible

that variation within the region would contribute to risk of ADRs to 5FU. Our results suggest

that further detailed analysis of the region in a large, well–powered dataset are warranted.

Fig 2. Associations of SNP variants, amino acids, and HLA alleles with HFS, severe HFS, DMN and DM across the MHC region. HFS, Hand-and-

Foot syndrome; DMN, Diarrhoea, neutropenia and mucositis; DM, Diarrhoea and mucositis.

https://doi.org/10.1371/journal.pone.0188911.g002
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Our study has limitations. Patients were derived from two cohorts, which we grouped

together to improve power. We combined patients who had undergone treatment with 5FU or

Capecitabine into a single analysis for the outcome of DMN, although Capecitabine is a pro-

drug for 5FU so one might expect ADRs to be consistent between the two. For HFS, severe

HFS and DM, we considered only the Capecitabine subgroup. Although we aimed to survey

all genome-wide protein altering variants, due to our sample size many rare variants were

monomorphic in our dataset. Of the original 247,870 protein-altering variants, only 59,278

were present in the dataset. Therefore, larger samples will be required to provide a comprehen-

sive survey of all known protein-altering variants. Other variants, in TYMS, DCA and MTHFR,

have been reported to be associated with ADRs. These variants were not available on the

exome array, meaning we were unable to investigate them in this analysis.

Our results emphasise that larger studies will be required to characterize the genetic contri-

bution to ADRs. For affected/unaffected ratios equivalent to those in this study, 740 individu-

als would be required to achieve 80% power to identify variants with OR = 3 and MAF = 0.05.

[28]. Additionally, more versatile statistical methods, such as machine learning, might have the

potential to identify associations within datasets of this type. A collaborative effort that builds

on the analysis presented herein is therefore the strategy most likely to bear fruit in the search

for genetic variants contributing to ADRs to fluoropyrimidine-based therapy.
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