
1	Introduction
The	cervical	spine	consists	of	seven	vertebrae,	labelled	C1to–C7.	These	vertebrae	support	the	head	and	protect	the	spinal	column	in	the	neck	region.	The	cervical	spine	is	a	highly	flexible	anatomy,	capable	of	flexion,	extension,

lateral	flexion,	and	rotation	[1].	Due	to	this	wide	range	of	motion,	 the	cervical	spine	 is	particularly	vulnerable	to	 injury.	According	to	[2],	43.9-–61.5%	of	 the	spinal	cord	 injuries	occur	 in	the	cervical	region.	Despite	being	a	highly

injurious	anatomy,	unfortunately,	about	20%	of	the	injuries	in	radiological	exams	remain	unnoticed.	And	a	significant	proportion,	67%,	of	the	of	the	patients	with	unnoticed	cervical	injuries	suffer	tragic	extensions	of	their	injuries	later

in	life	[3,4].	Recent	developments	in	the	fields	of	computer	vision	and	artificial	intelligence	have	the	potential	to	reduce	the	number	of	missing	injuries.

Towards	building	a	fully	automatic	cervical	spine	injury	detection	system,	in	this	paper,	we	propose	an	automatic	segmentation	framework	for	cervical	vertebrae	in	X-ray	images.	Segmenting	the	vertebrae	correctly	is	a	crucial

part	for	further	analysis	in	an	injury	detection	system.	Previous	work	in	vertebrae	segmentation	has	largely	been	dominated	by	statistical	shape	model	(SSM)	-based	approaches	[5–12].	These	methods	record	statistical	 information

about	the	shape	and/or	the	appearance	of	the	vertebrae	based	on	a	training	set.	Then	the	mean	shape	is	initialized	either	manually	or	semi-automatically	near	the	actual	vertebra	and	a	search	procedure	is	performed	to	converge	the

shape	on	the	actual	vertebral	boundary.	Recent	literature	utilizes	random	forest	-based	machine	learning	models	in	order	to	achieve	the	shape	convergence	[9–12].

However,	 to	 the	best	 of	 our	 knowledge,	 a	 fully	 automatic	method	 is	 absent	 from	 the	 literature.	 To	 fill	 this	 gap,	 in	 this	work,	we	propose	 a	 fully	 automatic	 framework	 for	 vertebrae	 segmentation.	 Starting	with	 a	 real-life

emergency	room	X-ray	image,	the	framework	first	 locates	the	spine,	then	localizes	the	vertebral	centers	and	finally,	achieves	segmentation.	In	other	words,	the	fully	automatic	framework	can	be	divided	into	three	subtasks:	global

localization,	center	localization	and	vertebrae	segmentation.	Different	specialized	fully	convolutional	neural	networks	(FCN)	are	used	to	solve	each	of	these	tasks.	The	complete	framework	is	shown	in	Fig.	1.
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Abstract

The	cervical	spine	is	a	highly	flexible	anatomy	and	therefore	vulnerable	to	injuries.	Unfortunately,	a	large	number	of	injuries	in	lateral	cervical	X-ray	images	remain	undiagnosed	due	to	human	errors.	Computer-aided

injury	detection	has	the	potential	to	reduce	the	risk	of	misdiagnosis.	Towards	building	an	automatic	injury	detection	system,	in	this	paper,	we	propose	a	deep	learning	-based	fully	automatic	framework	for	segmentation	of

cervical	vertebrae	in	X-ray	images.	The	framework	first	localizes	the	spinal	region	in	the	image	using	a	deep	fully	convolutional	neural	network.	Then	vertebrae	centers	are	localized	using	a	novel	deep	probabilistic	spatial

regression	network.	Finally,	a	novel	shape-aware	deep	segmentation	network	is	used	to	segment	the	vertebrae	in	the	image.	The	framework	can	take	an	X-ray	image	and	produce	a	vertebrae	segmentation	result	without	any

manual	intervention.	Each	block	of	the	fully	automatic	framework	has	been	trained	on	a	set	of	124	X-ray	images	and	tested	on	another	172	images,	all	collected	from	real-life	hospital	emergency	rooms.	A	Dice	similarity

coefficient	of	0.84	and	a	shape	error	of	1.69 mm	have	been	achieved.
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Previous	work	in	spine	localization	includes	generalized	Hough	transform	-based	approaches	[6,13]	and	more	recent	random	forest	-based	approaches	[14–16].	The	state-of-the-art	work	on	cervical	vertebrae	spine	localization

uses	a	sliding	window	technique	to	extract	patches	from	the	images	[16].	A	random	forest	classifier	then	decides	which	patches	belong	to	the	spinal	area.	Finally,	a	rectangular	bounding	box	is	generated	to	localize	the	spinal	region.	In

contrast	to	these	approaches,	we	approach	the	localization	problem	as	a	segmentation	problem	in	a	lower	resolution.	Given	a	set	of	high-resolution	images	and	manually	segmented	vertebrae	ground	truth,	at	a	lower	resolution,	the

ground	truth	becomes	a	single	connected	region.	Then	an	FCN	can	be	trained	to	predict	this	region.	The	proposed	framework	can	produce	localization	map	of	arbitrary	shape	in	a	one-shot	process	and	provides	a	localization	result	that

models	the	cervical	spine	much	better	than	a	rectangular	box	like	[16].

Once	the	spinal	region	has	been	localized,	the	next	task	is	to	determine	the	vertebrael	centers.	Previous	work	in	vertebrale	landmark	localization	involves	patch	-based	regression	techniques	[10,17–19].	Based	on	the	image

patches,	these	methods	use	different	machine	learning	methododels	to	predict	vectors	pointing	towards	vertebrale	landmarks.	Random	regression	forest	[10],	Hough	forest	[17,18]	and	deep	fully	connected	neural	network	[19]	have

been	used	to	learn	the	model.	Contrary	to	these	methods,	we	propose	a	novel	FCN	-based	probabilistic	spatial	regressor	to	localize	vertebrale	centers.	Given	an	image	patch,	our	novel	network	predicts	a	two-dimensional	probability

distribution	for	the	localized	centers	over	the	patch	space.	A	novel	loss	function	has	been	introduced	to	adapt	the	FCN	as	a	spatial	probability	predictor.

Finally,	 a	 novel	 shape-aware	 deep	 segmentation	 FCN	 is	 proposed	 for	 the	 vertebrae	 segmentation	 phase.	 Shape	 is	 an	 important	 characteristic	 of	 the	 vertebra.	 Previous	work	 in	 vertebrae	 segmentation	 has	 largely	 been

dominated	by	statistical	shape	model	(SSM)	-based	approaches	[5–12].	On	the	other	hand,	deep	segmentation	networks	have	been	outperforming	the	state-of-the-art	in	different	medical	image	modalities	[20–22].	However,	combining

shape	information	in	a	deep	segmentation	network	is	not	straightforward.	In	this	paper,	we	provide	a	solution	to	this	problem	by	introducing	a	novel	shape-aware	term	in	a	segmentation	loss	function.

Achievements	The	proposed	global	localization	algorithm	has	been	able	to	outperform	the	previous	state-of-the-art	[16]	by	17.1%	in	terms	of	sensitivity.	The	novel	center	localization	framework	has	produced	an	average	error	of	only	1.81 mm	which	is

near	human	-level.	A	patch	-level	Dice	similarity	coefficient	of	0.94	has	been	achieved	by	the	proposed	shape-aware	segmentation	framework.	Finally,	the	fully	automatic	framework	has	been	able	to	achieve	a	Dice	similarity	coefficient	of	0.84	and	a	shape

error	of	1.69 mm.	All	these	metrics	are	computed	over	a	challenging	dataset	of	172	emergency	room	X-ray	images.

Contributions	We	make	several	contributions	in	this	work.	First,	we	propose	a	deep	segmentation	network	 -based	spine	localization	algorithm	which	outperforms	the	previous	state-of-the-art	by	a	large	margin.	Second,	we	propose	a	novel	spatial

probability	prediction	network	which	achieves	human-level	performance	in	localizing	vertebrale	centers.	Third,	we	introduce	a	shape-aware	segmentation	loss	function	which	augments	the	capability	of	a	deep	segmentation	network	with	shape	information

and	achieves	better	performance	than	simple	FCN	and	other	traditional	shape	model	-based	approaches.	The	final	and	the	most	important	contribution	is	the	fully	automatic	framework	which	combines	the	global	localization,	center	localization	and	vertebrae

segmentation	in	a	single	thread	and	provides	a	segmentation	result	for	a	real-life	emergency	room	X-ray	images	without	any	manual	input.

2	Data
A	total	of	296	lateral	cervical	spine	X-ray	images	were	collected	from	Royal	Devon	and	Exeter	Hospital	in	association	with	the	University	of	Exeter.	The	age	of	the	patients	varied	from	17	to	96.	Different	radiographic	systems

(Philips,	Agfa,	Kodak,	GE)	were	used	to	produce	the	scans.	Image	resolution	varied	from	0.1	to	0.194 mm	per	pixel.	Image	size	varied	from	1000	to	5000	pixels	with	different	zoom,	crop,	spine	position	and	patient	position.	The	images

include	examples	of	vertebrae	with	fractures,	degenerative	changes	and	bone	implants.	The	data	is	anonymized	and	standard	research	protocols	have	been	followed.	The	size,	shape,	orientation	of	the	spine,	image	intensity,	contrast,

noise	level	all	varied	greatly	in	the	dataset.	For	this	work,	5	vertebrae	C3-–C7	are	considered.	C1	and	C2	have	an	ambiguous	appearance	due	to	their	overlap	in	lateral	cervical	radiographs,	and	our	clinical	experts	were	not	able	to

provide	ground	 truth	 segmentations	 for	 these	 vertebral	 bodies.	For	 this	 reason,	 they	are	 excluded	 in	 this	 study,	 similar	 to	 other	 cervical	 spine	 image	analysis	 research	 [5,11,16,23].	Each	 vertebra	 from	 the	 images	was	manually

annotated	for	the	vertebral	body	boundaries	and	centers	by	expert	radiographers.	A	few	examples	with	the	corresponding	manual	annotations	are	shown	in	Fig.	2.

Fig.	1	Fully	automatic	cervical	vertebrae	segmentation	framework.
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The	images	were	received	in	two	sets.	The	first	set	contained	138	images.	A	random	90%	or	124	images	from	this	set	is	used	as	training	dataset	in	this	work.	The	remaining	10%	or	14	images	from	this	set	was	used	for	testing

the	algorithms.	The	second	set	of	158	images	were	received	later	into	the	study	and	added	to	the	test	dataset	bringing	the	total	number	of	test	images	to	172.

3	Global	LocalizationGlobal	localization
The	first	subtask	for	our	fully	automatic	framework	is	to	locate	the	spinal	region	in	an	arbitrary	X-ray	image.	We	approached	this	problem	as	a	segmentation	problem	at	a	lower	resolution.	In	the	lower	resolution,	the	cervical

vertebrae	become	a	single	connected	spinal	region.	A	deep	fully	convolutional	network	(FCN)	is	trained	to	predict	this	region.

3.1	Data
Based	on	the	manual	annotation	of	the	vertebrael	boundaries,	a	binary	ground	truth	can	be	created	for	each	image	in	our	dataset.	To	create	the	training	and	test	dataset	for	the	global	localization	algorithm,	these	images	are

converted	into	square	images	by	padding	an	appropriate	number	of	zeros	in	the	smaller	dimension	and	the	square	images	are	resized	to	a	lower	resolution	using	bicubic	interpolation.	This	resolution	can	vary	based	on	the	available

memory	and	size	of	the	training	networks.	For	our	case,	we	chose	this	resolution	to	be	100 × 100	pixel.	The	binary	vertebrae	ground	truth	images	forms	a	single	connected	region	in	this	resolution.	However,	our	network	predicts	a

segmentation	mask	of	even	smaller	resolution,	25 × 25	pixel.	The	100 × 100	pixel	localization	ground	truths	areis	converted	to	a	25 × 25	pixel	mask	using	a	max-pooling	operation	with	a	mask	size	of	4 × 4	and	stride	4.	Max-pooling	was

used	over	interpolation	-based	methods	to	keep	the	localization	mask	sharp.	Fig.	3	shows	some	of	the	localization	ground	truth	overlayed	on	the	image	after	transforming	back	to	the	original	resolution.

3.2	Network
A	fully	convolutional	network	(FCN)	is	designed	for	the	global	localization	task	which	takes	an	input	image	of	resolution	100 × 100	and	predicts	a	localization	mask	of	the	resolution	25 × 25.	Our	network	has	six	convolutional

layers	 and	 two	max-pooling	 layers.	Batch	normalization	 and	 rectified	 linear	 unit	 (ReLU)	 layers	 are	 used	 after	 each	 convolution	 layers.	 The	network	 diagram	 is	 shown	 in	Fig.	 4.	 The	 total	 number	 of	 parameters	 in	 the	 network	 is

1,152,450.

3.3	Training
In	order	to	train	any	network	with	a	large	number	parameters,	124	images	are	not	enough.	In	order	tTo	increase	the	number	of	training	data,	we	have	augmented	the	images	by	rotating	each	image	from	5°	to	355°	with	a	step

of	5°.	This	results	in	a	training	set	of	8,9288928	images.	It	also	made	the	framework	rotation	invariant.	Our	choice	for	data	augmentation	was	only	limited	to	rigid	transformations	since	non-rigid	transformation	will	affect	the	natural

appearance	of	the	spine	in	the	image.

Given	a	dataset	of	training	image	(x)-segmentation	label	(y)	pairs,	 training	a	deep	segmentation	network	means	finding	a	set	of	parameters	 that	minimizes	a	 loss	 function,	Lt.	The	simplest	 form	of	 the	 loss	 function	 for

segmentation	problem	is	the	pixel-wise	log	loss	or	the	cross-entropy	loss.

where	N	is	the	number	of	training	examples	and	{x(n),	y(n)}	represents	n-th	example	in	the	training	set	with	corresponding	manual	segmentation.	The	pixel-wise	segmentation	loss	per	image	can	be	defined	as:

Fig.	2	X-Ray	images	and	corresponding	manual	annotations.	of	vertebral	Ccenters:	blue	plus	(+)	Vvertebrae	l	 (vertebral)boundary	curves	(green).	(For	interpretation	of	the	references	to	color	in	this	figure	legend,	the	reader	is	referred	to	the	web	version	of	this	article.)
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where	aj(xi)	is	the	output	of	the	penultimate	activation	layer	of	the	network	for	the	pixel	xi,	Ωp	represents	the	pixel	space	and	P	are	the	corresponding	class	probabilities.

The	network	is	trained	on	a	system	with	a	NVIDIA	Quadro	M4000	GPU	for	30	epochs	with	a	batch-size	of	10	images.	The	training	took	approximately	18	hours.	The	weight	optimization	is	performed	by	the	RMSprop	version	of

the	stochastic	gradient	descent	algorithm	throughout	this	work	[24].

3.4	Inference	and	MetricsInference	and	metrics
At	test	timeDuring	inference,	a	test	image	is	padded	with	zeros	to	form	a	square,	resized	to	100 × 100	pixels	and	fed	forward	through	the	network	to	produce	the	localization	map.	The	average	time	for	the	network	to	produce	a

localization	map	is	less	than	0.1 sec.	This	map	is	compared	with	the	corresponding	localization	ground	truth.	Pixel	-level	accuracy,	Dice	similarity	coefficient	(DSC),	sensitivity	and	specificity	are	computed.	These	metrics	demonstrate

the	performance	of	the	trained	networks	at	the	lower	resolution	at	which	the	network	generates	the	prediction.	From	a	practical	point	of	view,	the	performance	of	the	localization	should	also	be	computed	at	the	original	resolution	with

the	manually	segmented	vertebrae	ground	truth.	In	order	to	achieve	this,	the	predicted	localization	map	is	transformed	(resized	and	unpadded)	back	to	the	original	image	resolution,	and	sensitivity	and	specificity	are	computed	by

comparing	them	with	the	manually	segmented	vertebrae	ground	truth.

3.5	Results
The	median,	mean	and	standard	deviation	of	the	metrics	over	172	test	images	are	reported	in	Table	1.	At	the	lower	resolution,	we	have	been	able	to	achieve	an	average	pixel	-level	accuracy	of	99%.	In	the	original	resolution,	the

algorithm	has	been	able	to	produce	an	average	sensitivity	score	of	0.96	when	compared	with	the	vertebrae	ground	truth,	which	indicates	96%	of	the	vertebrael	area	has	been	covered	by	our	predicted	localization	maps.

Table	1	 (Please	make	the	texts	center-aligned.	Also,	please	show	the	cell	borderlines.	Without	the	borders	and	with	left-aligned	text,	the	merged	cells	look	really	confusing	in	the	pdf	document.)Performance	of	global

localization.

alt-text:	Table	1

Resolution 25 × 25 Original

Pixel	Aaccuracy DSC Sensitivity Specificity Sensitivity Specificity

Median 0.99 0.91 0.89 1.00 1.00 0.96

Mean 0.99 0.89 0.86 1.00 0.96 0.96

Std 0.01 0.10 0.13 0.00 0.11 0.01

The	box-plot	of	these	metrics	are	shown	in	Fig.	5.	It	can	be	seen	that	only	a	few	outliers	perform	poorly.	Most	of	these	images	have	clinicalsurgical	implants	and/or	severe	clinical	conditions	in	the	spinal	region.	A	few	of	these

hard	cases	are	shown	in	Fig.	6.	Fig.	6b,	and	c	shows (show)	examples	of	images	with	clinical	conditions	where	the	localization	algorithm	performed	well.	Two	of	the	outlier	results	are	shown	in	Fig.	6e,	and	f.	Compared	with	the	previous

state-of-the-art	in	cervical	vertebra	localization,	which	uses	a	random	forest	-based	algorithm	and	provides	a	rectangular	bounding	box	[16],	our	algorithm	produces	a	17.1%	improvement	in	average	sensitivity	with	a	clear	qualitative

improvement	on	the	same	training	and	test	images.	In	terms	of	the	time	required	for	the	algorithm	to	produce	a	result,	our	algorithm	is	more	than	70	times	faster	than	[16].	Our	algorithm	is	capable	of	producing	a	localization	result	for

any	image	under	a	second	while	the	sliding	window	-based	method	of	[16]	requires	70to–180	seconds	depending	on	the	image	size.

4	Center	LocalizationCenter	localization
The	next	task	for	our	fully	automatic	framework	is	to	localize	the	vertebrae	centers	in	the	already	localized	spinal	region.	Instead	of	the	common	practice	of	regressing	vectors	pointing	towards	the	location	of	the	center,	we

(2)
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design	our	center	localization	framework	to	produce	a	probability	map.	We	will	use	a	novel	fully	convolutional	network	(FCN)	to	learn	the	modelling.	Given	an	image	patch,	the	network	learns	to	predict	a	probability	distribution	over

the	image	space	indicating	where	the	centers	are	most	probable.	In	contrary	to	the	vector	regression	techniques,	our	method	can	predict	multiple	centers	for	a	single	patch.

4.1	Data
Our	data	comes	with	a	large	number	of	vertebrae	with	clinical	conditions.	Thus,	the	geometrical	center	of	the	manually	annotated	shape	is	not	robust	for	each	vertebra	and	varies	based	on	the	extent	of	the	vertebrae	conditions.

So,	our	medical	partners	have	provided	us	with	manually	clicked	center	points.	Each	vertebra	has	one	manually	clicked	center.	However,	because	the	vertebral	center	is	not	attached	to	any	visible	landmark,	human	perception	of	the

center	also	varies	to	some	extent.	This	motivated	us	to	convert	the	manually	clicked	centers	into	probabilistic	distributions.

The	probability	distribution	at	a	vertebral	center	(xc,	yc)	can	be	defined	as	a	2D	anisotropic	Gaussian	distribution	[25].

where

and

where	R	 is	 pixel	 spacing	 (in	 millimeter	 per	 pixel)	 of	 the	 image,	 is	 an	 empirical	 constant	 chosen	 based	 on	 visual	 evaluation	 of	 the	 ground	 truth	 and	 θl,	 θb,	 θr,	 θt,	 wt,	 wb,	 hl,	 hr	 are	 computed	 from	 the	 manually	 annotated

vertebrae	cground	truthorners	and	demonstrated	in	Fig.	7a.

The	process	is	repeated	for	all	the	vertebrale	centers	and	a	single	probabilistic	distribution	defined	over	the	image	space	is	generated.	A	few	images	with	overlayed	probabilistic	center	distributions	are	shown	in	Fig.	8a.

To	generate	athe	training	image	patches	and	corresponding	probability	distributions,	a	grid	of	9	uniformly	spaced	points	were	generated	per	vertebra	and	3	points	were	generated	in	between	two	consecutive	vertebrae.	An

example	of	these	grid	points	is	shown	in	Fig.	7b.	From	each	of	these	grid	points,	patches	were	extracted	with	two	scales	(original	vertebrae	size	+	2 mm	and	4 mm)	and	five	orientations	( to	20°	with	a	step	of	5°	where	0°	is	the

mean	vertebral	axis).	All	these	extracted	patches	are	then	resized	to	64 × 64	pixels,	the	resolution	at	which	the	network	will	be	trained.	A	total	of	66,60066,600	patches	were	generated	from	our	124	training	images.	Fig.	8b	shows	how

these	distributions	look	at	the	patch	-level.

4.2	Network
Here,	our	intention	is	to	predict	a	two-dimensional	probabilistic	distribution	for	an	input	patch	of	64 × 64	pixels.	We	want	our	predicted	distribution	to	have	the	same	spatial	resolution	as	the	input	patch.	The	FCN	architecture

used	for	the	global	localization	framework	predicts	an	output	with	a	lower	spatial	resolution	than	the	input.	Thus,	it	cannot	be	used	here.	DeConvNet	[26]	and	UNet	[20]	are	two	fully	convolutional	neural	networks	that	have	been	used

for	 segmentation	problems	where	 the	 spatial	 resolution	 of	 the	 input	 image	 and	output	 predictions	 are	 similar.	Among	 the	 two	networks,	 our	 initial	 experiments	 showed	better	 performance	with	UNet	 architecture.	Here,	 for	 the

probabilistic	spatial	regressor	-based	center	localization	framework,	we	used	a	modified	version	of	the	UNet	[20]	architecture.	UNet	has	a	downsampling	path	and	an	upsampling	path.	Our	downsampling	path	has	nine	convolutional

layers.	 Each	 convolutional	 layer	 is	 followed	 by	 a	 batch	 normalization	 and	 rectified	 linear	 unit	 (ReLU).	 Three	max-pooling	 layers	 in	 between	 the	 convolutional	 layers	 downsample	 the	 spatial	 dimension	 from	 64 × 64	 to	 8 × 8.	 The
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(Eqn.	(4)..	the	number	(4)	crosses	the	column	margin	the	pdf	document.	Please	ensure	this	stays	inside	column	margin.)
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upsampling	path	forms	a	mirrored	version	of	the	downsampling	path.	Upsampling	is	done	by	deconvolutional	layers.	The	network	shares	information	between	the	downsampling	and	upsampling	path	using	concatenation.	The	network

diagram	is	shown	in	Fig.	9.	The	number	of	filters	in	each	layer	can	be	tracked	from	the	number	of	channels	in	the	data	blocks.	The	total	number	of	parameters	for	the	center	localization	UNet	is	24,238,210.

4.3	Training
The	softmax	layer	at	the	end	of	the	network	creates	a	probabilistic	two-channel	output,	just	like	a	binary	segmentation	problem.	However,	the	ground	truth	here	is	a	probabilistic	map,	not	a	binary	segmentation	map.	Thus	the

standard	segmentation	log	loss	of	Section	3.3	cannot	be	used.	We	formulate	a	novel	loss	function	for	training	the	network	to	predict	a	probabilistic	map.

Loss	function	for	probabilistic	spatial	regression	To	match	the	two-channel	output	of	the	final	softmax	layer,	the	ground	truth	probability	(GTp)	is	also	converted	to	a	softmax-like	two	channel	distribution,	PGT.

where	iϵΩp	is	the	pixel	space.	Notice	that,	 is	no	longer	a	normalized	probability	distribution	(i.e.	doesn’t	integrate	to	unity),	rather	a	stretched	distribution	where	the	maximum	is	unity	and	minimum	is	zero.	This	ensures	that	the	softmax	layer	is

able	to	produce	a	similar	distribution,	as	it	squashes	the	input	activations	to	the	range	from	0	to	1.

Training	our	UNet	would	then	mean	finding	an	optimized	set	of	parameters	 which	minimizes	a	loss,	L,	between	the	predicted	 and	updated	ground	truth	 over	the	training	dataset.

where	N	 is	 the	 number	 of	 training	 examples	 and	 represents	 n-th	 example	 in	 the	 training	 set	 with	 corresponding	 ground	 truth	 probability	 of	 the	 regression	 target.	 Since	 the	 target	 probabilities	 are	 spatially	 distributed	 over	 the	 pixel

space,	we	can	define	a	pixel-wise	loss	function	per	training	sample	as:

where

where	Ωp	is	the	pixel	space,	 is	set	of	pixels	where	the	ground	truth	probabilities	are	not	zero	and	 .

The	term	 measures	the	distancedifference	between	the	prediction	and	the	ground	truth.	This	pixel-wise	distance	is	weighted	by	wi	to	solve	the	data	imbalance	problem.	As	most	of	the	pixels	in	the	output	probability	space	have

zero	probabilities,	without	this	weighting	term	the	solution	becomes	biased	towards	the	probability	of	the	majority	pixels.	In	our	case,	 < 5%	pixels	have	non-zero	values,	thus	without	the	weighting	term,	the	network	converges	to	predict	a	flat	distribution

of	zeros.

The	network	is	trained	on	a	system	with	a	NVIDIA	Pascal	Titan	X	GPU	for	30	epochs	with	a	batch-size	of	25	image	patches.	The	training	took	approximately	72	hours.

4.4	Inference	and	Post-processingInference	and	post-processing
At	the	test	time,	our	localization	algorithm	provides	an	automatic	region	of	interest.	Using	this	automatic	localization	result,	we	create	a	grid	of	uniformly	distributed	points	and	from	each	point,	multiple	patches	are	generated

with	different	scales	and	rotations.	These	patches	are	passed	through	the	center	localization	network	to	generate	patch	-level	probability	maps.	The	network	takes	about	0.14	second	to	generate	a	patch	-level	prediction.	The	patch	size,

orientation	and	position	of	these	probability	maps	on	the	original	are	known	from	the	patch	creation	process.	These	probability	maps	are	then	put	back	on	the	original	image	(Fig.	10a).	The	process	includes	resizing	the	64 × 64	pixel

patch	to	the	original	patch	resolution	and	projecting	it	back	on	the	original	image	using	the	known	patch	orientation	and	position.	The	probabilities	on	the	original	resolution	are	then	thresholded	to	remove	noise	(Fig.	10b).	The	noise	is
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defined	as	predictions	with	less	than	30%	of	the	maximum	probability.	For	every	remaining	proposal	for	a	possible	vertebral	center,	the	pixel	location	with	the	maximum	probability	is	considered	as	a	potential	center	(Fig.	10b).	Further

post-processing	is	performed	by	removing	multiple	centers	in	close	proximity	by	keeping	the	most	confident	center	in	a	radius	of	10 mm	(Fig.	10c).	The	radius	is	chosen	based	on	the	average	size	of	the	training	vertebrae.	Finally,	we

keep	the	maximum	number	of	possible	centers	to	five	(C3–-C7)	and	delete	less	confident	center	proposals	if	more	than	five	centers	are	detected	(Fig.	10d).

4.5	Experiments	and	MetricsExperiments	and	metrics
The	 center	 localization	 framework	 is	 tested	 on	 our	 172	 test	 images.	 At	 the	 patch	 -level,	 the	 performance	 of	 the	 network	 is	 measured	 aby	 comparing	 the	 predicted	 probability	 maps	 and	 ground	 truth	 maps	 using	 the

Bhattacharyya	coefficient	[27].

After	the	post-processing	step,	the	centers	are	localized	on	the	original	image.	The	predicted	vertebrale	centers	can	be	divided	into	three	sets:	true	positive	(TP),	false	positive	(FP)	and	false	negative	(FN).	The	TP	represents

the	set	of	vertebrae	whose	centers	have	been	correctly	detected.	A	correct	detection	is	considered	if	the	predicted	center	falls	inside	a	vertebral	body	studied	in	this	work	i.e.	C3-–C7.	The	FP	represents	the	set	of	predicted	centers

which	did	not	fall	 inside	any	of	these	vertebrae.	Finally,	the	FN	is	the	set	of	the	studied	vertebrae	whose	centers	have	not	been	detected.	Based	on	the	TP,	FP	and	FN,	we	can	report	two	metrics:	true	positive	rate	(TPR)	and	false

discovery	rate	(FDR)	[28].	We	also	report	the	Euclidean	distance	between	the	correctly	detected	centers	and	corresponding	ground	truth	in	mm	as	the	distance	error.

4.6	Results
The	performance	of	the	center	localization	algorithm	is	measured	independent	of	the	global	localization	results.	For	this	independent	study,	the	uniform	grid	needed	for	the	patch	creation	is	generated	using	the	localization

ground	truth	(Fig.	3)	instead	of	the	prediction	of	the	spine	localization	framework	as	mentioned	in	Section	4.4.	A	Bhattacharyya	coefficient	(BC)	of	zero	represents	the	worst	result	and	one	represents	a	perfect	match	between	ground

truth	and	prediction	probability.	Over	all	the	test	patches,	an	average	BC	of	0.58	has	been	achieved	at	the	patch	-level.	Some	of	the	graphical	results	with	corresponding	BC	are	shown	in	Fig.	10e-–h.	It	can	be	seen	that	even	with	low	BC

(Fig.	10g	and	,h),	the	results	are	similar.	The	histogram	of	the	BC	over	all	the	patches	is	plotted	in	Fig.	11a,	a	BC	of	 > 0.5	was	achieved	for	71%	of	the	test	patches.	A	few	qualitative	results	for	the	center	localization	at	the	patch	-level

are	shown	in	Fig.	11b.

Fig.	3	Global	localization	ground	truth:	vertebrae	are	shown	in	green,	blue	overlay	indicates	the	extra	area	covered	by	the	localization	ground	truth.	(For	interpretation	of	the	references	to	color	in	this	figure	legend,	the	reader	is	referred	to	the	web	version	of	this	article.)

alt-text:	Fig.	3

Fig.	4	Fully	convolutional	network	for	localization	of	spinal	region	(a)	Network	architecture.	(b)	Legends.

alt-text:	Fig.	4



After	 the	post-processing	phase,	 the	 centers	 are	 localized	on	 the	 full	 resolution	 test	 image.	Table	2	 reports	 the	 true	positive	 rate	 (TPR),	 false	discovery	 rate	 (FDR)	and	distance	error	 for	 the	 correctly	detected	 centers	 in

millimeters	(mm).

Table	2	 (Please	center	align	the	texts	with	respect	the	cells	and	show	the	border	lines.	The	table	becomes	really	confusing	without	the	borders.	Keep	the	percentages	as	before,	not	in	the	column	header	as	the

numbers	in	the	last	row	are	not	%.	)Performance	of	the	center	localization	framework.	The	‘Manual’	patch	creation	process	uses	localization	ground	truth	and	the	results	reported	below	are	independent	of	the

accuracy	of	the	global	localization	framework.	Results	from	the	fully	automatic	procedure	which	uses	the	localized	spine	from	the	global	localization	framework	are	reported	in	the	right	under	the	‘Automatic’	patch

creation	process.

alt-text:	Table	2

Test	patch	creation Manual	(%) Automatic	(%)

True	positive	rate	(TPR) 93.73% 90.46%

False	discovery	rate	(FDR) 4.72% 10.89%

Median Mean Std Median Mean Std

Distance	error	(mm) 1.63 1.81 0.95 1.54 1.69 0.92

Among	797	vertebrae	from	our	172	test	images,	747	centers	were	detected	with	an	average	error	of	1.81 mm.	Number	of	false	positive	was	37,	most	of	these	false	positives	belong	to	neighbouring	vertebrae	C2	and	T1.	To

compare	the	performance	of	the	center	localization	algorithm	with	human	performance,	an	expert	radiographer	was	asked	to	click	on	the	vertebrael	centers	on	ten	random	test	images	three	times.	These	manually	predicted	centers	are

compared	with	the	ground	truth	centers	for	those	image.	The	average	error	was	1.92 mm	which	is	higher	than	the	average	error	of	correctly	detected	centers	by	our	algorithm.	The	performance	curve	is	shown	in	Fig.	12.

It	can	be	seen	that	the	distance	error	is	  < 3	mm	for	almost	90%	of	the	correctly	detected	vertebrale	centers.	The	process	is	repeated	by	changing	the	uniform	grid	creation	process	in	the	beginning.	In	this	case,	the	uniform

grid	for	patch	generation	is	done	using	the	area	predicted	by	our	global	localization	algorithm	(instead	of	the	global	localization	ground	truth),	as	discussed	in	Section	4.4.	The	metrics	are	reported	on	the	right	side	of	Table	2.	It	can	be

seen	the	TPR	dropped	from	93.73%	to	90.46%,	where	the	FDR	is	 increased	from	4.72%	to	10.99%.	This	degradation	 is	because	of	the	 incorrect	global	 localization	results,	as	shown	in	Fig.	6e,	and	 f.	However,	among	 the	correctly

detected	centers,	the	distance	error	drops	from	1.81 mm	to	1.69 mm.	The	reason	behind	this	is	that	much	of	the	bad	quality	image	areas	have	already	been	cut	off	by	the	global	localization	prediction.	So	the	remaining	image	areas	are

of	comparatively	of	good	quality	thus	the	center	localization	performs	better	on	average	on	these	image	areas.	Some	graphical	center	localization	results	in	the	original	resolution	are	shown	in	Fig.	13.

Fig.	5	Box-plot	of	global	localization	metrics.	‘L’	indicates	the	metrics	computed	at	the	lower	resolution	of	25 × 25.	‘S’	indicates	the	metrics	computed	at	the	original	image	resolution	by	comparing	the	prediction	with	the	vertebrae	segmentation	ground	truth	(green	area	in	Fig.	3).

(For	interpretation	of	the	references	to	color	in	this	figure	legend,	the	reader	is	referred	to	the	web	version	of	this	article.)
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Fig.	6	Qualitative	global	localization	results	compared	with	vertebrae	ground	truths:	true	positive	(green),	false	positive	(blue),	false	negative	(red),	true	negative	(no	overlay)	(a)	healthy	subject	(b)	Osteophytes	(c)	Severe	degeneration	(d)	Osteophytes	(e)	Implants	(f)	Severe

degeneration	and	osteophytes.	(For	interpretation	of	the	references	to	color	in	this	figure	legend,	the	reader	is	referred	to	the	web	version	of	this	article.)

alt-text:	Fig.	6

Fig.	7	(a)	Probabilistic	ground	truth	creation:	manually	clicked	vertebral	center	( ),	manually	annotated	vertebral	boundary	( )	and	corner	( )	points	(b)	Grid	points	( )	for	training	patches.

alt-text:	Fig.	7



Fig.	8	(a)	Probabilistic	distribution	for	vertebrale	centers	defined	over	the	image	space.	The	intensity	of	the	green	overlay	represents	the	probability	of	the	manually	clicked	centers.	(b)	Patch	-level	ground	truth	for	center	localization	framework.	(For	interpretation	of	the	references

to	color	in	this	figure	legend,	the	reader	is	referred	to	the	web	version	of	this	article.)

alt-text:	Fig.	8

Fig.	9	UNet	architecture:	(a)	Network	diagram.	(b)	Legends.

alt-text:	Fig.	9

Fig.	10	(a)–-(d):	Center	localization	post-processing.	(a)	Probability	map	on	the	original	image.	(b)	Thresholded	map	and	potential	centers	( ).	(c)	Filtered	centers	by	after	proximity	analysis.	(d)	Five	most	confident	centers.	(e)-–(h):	Bhattacharyya	coefficients	between	the	ground

truth	(middle)	and	predicted	(right)	probability	distributions	with	corresponding	input	image	patch	(left):.	(e)	0.8285.	(f)	0.7153.	(g)	0.3304.	(h)	0.3715.

alt-text:	Fig.	10
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Fig.	11	(a)	Histogram	of	Bhattacharyya	coefficients.	(b)	Patch	-level	center	localization	results:	Gground	truth	(left)	and	Pprediction	(right).

alt-text:	Fig.	11

Fig.	12	Performance	curve	for	center	localization.
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5	Vertebrae	SegmentationVertebrae	segmentation
The	final	and	the	most	important	task	in	our	fully	automatic	segmentation	framework	is	to	segment	the	vertebrae.	We	use	the	same	UNet	architecture	with	a	segmentation	loss	function	for	this	task.	We	also	introduce	a	novel

shape-aware	term	in	segmentation	loss	function	to	predict	the	vertebrale	shape	with	better	accuracy.

5.1	Data
To	train	and	test	our	segmentation	framework	independent	of	the	global	and	center	localization	phase,	the	manually	clicked	center	points	are	used	to	extract	the	vertebrae	image	patch	and	corresponding	segmentation	masks.

These	can	be	replaced	by	the	predicted	centers	making	the	process	 fully	automatic.	From	our	124	training	 images,	we	have	only	586	training	vertebrae.	To	augment	the	training	data	different	patch	sizes	and	rotation	angles	are

considered.	After	data	augmentation,	there	were	26,37026,370	vertebrae	training	patches.	All	the	patches	were	then	resized	to	64 × 64	pixel	patches.	The	corresponding	binary	segmentation	masks	were	created	using	the	manually

annotated	vertebrale	boundary	curves	(green	curves	shown	in	Fig.	2).	The	pixels	inside	the	boundary	curves	are	considered	as	the	foreground	class	and	outside	are	considered	as	the	background	class	[29].	A	few	training	vertebrale

patches	and	corresponding	overlayed	segmentation	masks	are	shown	in	Fig.	14.	Note	the	differences	in	intensity,	texture,	and	contrast,	coupled	with	the	possibility	of	surgical	implants,	making	for	a	challenging	problem	on	real-world

data.	Similarly,	vertebrale	patches	were	also	collected	from	the	test	images,	a	total	of	797	vertebrae	were	extracted.	No	augmentation	was	performed	for	the	test	vertebrae.

5.2	Training

Fig.	13	Qualitative	center	localization	results.	For	each	pair	ground	truth	distribution	is	shown	on	the	left,	prediction	distributions	are	shown	on	the	right.	On	the	prediction	image,	the	ground	truth	center	is	denoted	as	a	blue	cross	( )	and	predicted	centers	are	denoted	as	magenta

plus	( ).	(For	interpretation	of	the	references	to	color	in	this	figure	legend,	the	reader	is	referred	to	the	web	version	of	this	article.)

alt-text:	Fig.	13

Fig.	14	Training	vertebrale	patches	and	corresponding	segmentation	masks	(blue	overlay).	(For	interpretation	of	the	references	to	color	in	this	figure	legend,	the	reader	is	referred	to	the	web	version	of	this	article.)

alt-text:	Fig.	14



The	same	24,238,210	parameter	version	of	UNet	is	used	for	vertebrae	segmentation.	The	network	takes	a	single	channel	vertebral	patch	of	spatial	dimension	64 × 64	and	predicts	a	binary	mask	of	the	same	size.

Since	the	global	localization	network	addressed	in	Section	3.3	also	deals	with	a	binary	segmentation	problem,	the	same	loss	function	described	in	Eqs.	(1),	2	and–(3)	can	be	used	for	training	the	segmentation	network.	However,

this	loss,	Lt,	does	notn’t	constrain	the	predicted	masks	to	conform	to	possible	vertebra	l	shapes (vertebral	shapes).	Since	vertebrael	shapes	are	known	from	the	provided	manual	segmentation	curves,	we	add	a	novel	shape-aware	term	in

the	loss	function	to	force	the	network	to	learn	to	penalize	predicted	areas	outside	the	curve.

5.3	Shape-aware	Loss	TermShape-aware	loss	term
For	training	the	deep	segmentation	network,	we	introduce	a	novel	shape	-based	loss	term,	Ls.	This	term	encourages	the	network	to	produce	a	prediction	masks	similar	to	the	training	vertebral	shapes.	This	term	can	be	defined

as:

where	 is	 the	curve	surrounding	 the	predicted	 regions	and	CGT	 is	ground	 truth	curve.	The	 function,	D(.),	 computes	 the	average	point	 to	curve	Euclidean	distance	between	 the	predicted	 shape,	 and	 the	 ground	 truth	 shape,

CGT.	 is	generated	by	locating	the	boundary	pixels	of	the	predicted	mask.	The	redefined	pixel	space,	 contains	the	set	of	pixels	where	the	prediction	mask	doesn’t	match	the	ground	truth	mask.	These	terms	can	also	be	explained

using	the	toy	example	shown	in	Fig.	15.	Given	a	ground	truth	mask	(Fig.	15a)	and	a	prediction	mask	(Fig.	15b),	Ei	 is	computed	by	measuring	the	average	distance	between	the	ground	truth	(green)	curve	and	prediction	(red)	curve

(Fig.	 15c).	Fig.	 15d	 shows	 the	 redefined	 pixel	 space,	 .	 This	 term	 is	 an	 additional	 penalty	 proportional	 to	 the	 Euclidean	 distance	 between	 predicted	 and	 ground	 truth	 curve	 to	 the	 pixels	 that	 do	 not	match	 the	 ground	 truth

segmentation	mask.	 In	 the	 case	when	 the	 predicted	mask	 is	 a	 cluster	 of	 small	 regions,	 especially	 during	 the	 first	 few	 epochs	 in	 training,	Ei	 becomes	 large	 because	 of	 the	 increase	 in	 the	 boundary	 perimeters	 from	 the	 disjoint

predictions.

Finally,	the	loss	function	of	Eq.	(1)	can	be	extended	as:

The	contribution	of	each	term	in	the	total	loss	can	be	controlled	by	introducing	a	weight	parameter	in	Eq.	(17).	However,	in	our	case,	the	best	performance	was	achieved	when	both	terms	contributed	equally.

5.4	Experiments	and	MetricsExperiments	and	metrics
We	have	two	versions	of	the	deep	segmentation	network:	UNet	and	UNet-S.	‘-S’	signifies	the	use	of	the	updated	shape-aware	loss	function	of	Eq.	(17).	Both	segmentation	networks	are	trained	on	a	system	with	a	NVIDIA	Pascal

Titan	X	GPU	for	30	epochs	with	a	batch-size	of	25	image	patches.	Each	network	took	approximately	28	hours	to	train.	In	order	to	compare	with	the	deep	segmentation	network	-based	prediction	results,	three	active	shape	model	(ASM)	-

based	shape	prediction	frameworks	have	been	implemented.	A	simple	maximum	gradient	-based	image	search	-based	ASM	(ASM-G)	[30],	a	Mahalanobis	distance	-based	ASM	(ASM-M)	[5]	and	a	random	forest	-based	ASM	(ASM-RF)	[11].

(I	have	modified	the	equation	to	take	E_i	out	of	the	second	summation	and	replace	M	with	2.	After	that	the	lower	limit	(j=1)	and	upper	limit	(2)	of	the	second	summation	are	not	aligning	with	the	summation	in	the	pdf	document.	Please	make	sure	they	align	correctly	in	the	final
document.)
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Fig.	15	Shape-aware	loss:	(a)	Ground	truth	mask.	(b)	Prediction	mask.	(c)	Ground	truth	shape,	CGT	(green)	and	predicted	shape,	 (red).	(d)	Refined	pixel	space,	 :	False	positive	(purple)	and	false	negative	(red).	(For	interpretation	of	the	references	to	color	in	this	figure	legend,

the	reader	is	referred	to	the	web	version	of	this	article.)

alt-text:	Fig.	15
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The	latter	two	have	been	used	in	cervical	vertebrae	segmentation	in	different	datasets.

At	test	time,	797	vertebrae	from	172	test	images	are	extracted	based	on	the	manually	clicked	vertebral	centers.	These	patches	are	sent	through	each	of	the	networks	in	a	forward	pass	to	get	the	prediction	masks.	It	takes	about

0.13	second	to	produce	a	patch	-level	prediction.	These	prediction	masks	are	compared	with	the	ground	truth	segmentation	mask	to	compute	pixel-wise	accuracy	(pA)	and	Dice	similarity	coefficients	(DSC).	For	the	ASM	-based	shape

predictors,	the	predicted	shape	is	converted	to	a	prediction	map	to	measure	these	metrics.	These	metrics	are	well	suited	to	capture	the	number	of	correctly	segmented	pixels,	but	they	fail	to	capture	the	differences	in	shape.	In	order	to

compare	the	shape	of	the	predicted	mask	appropriately	with	the	ground	truth	vertebrale	boundary,	the	predicted	masks	of	the	deep	segmentation	networks	are	converted	into	shapes	by	locating	the	boundary	pixels.	These	shapes	are

then	compared	manually	annotated	vertebral	boundary	curves	by	measuring	average	point	to	curve	Euclidean	distance	between	them,	similar	to	Eq.	(16).	A	 final	metric,	called	 fit	 failure	 [10],	 is	also	computed	which	measures	the

percentage	of	vertebrae	having	an	average	point	to	ground	truth	curve	error	of	greater	than	1 mm.

5.5	Results
Table	3	reports	the	average	median,	mean	and	standard	deviation	(std)	of	the	metrics	over	the	test	dataset	of	797	vertebrae	for	all	the	methods.	Deep	segmentation	network	-based	methods	clearly	outperform	the	ASM	based

methods.	Even	 the	worst	performing	version	of	our	 framework,	UNet,	achieves	a	2.9%	 increase	 in	 terms	of	 the	pixel-wise	accuracy	and	an	 increase	of	5.5%	 for	 the	Dice	 similarity	 coefficient.	Among	 the	 two	versions	of	 the	deep

networks,	 the	 use	 of	 the	 novel	 loss	 function	 improves	 the	 performance	 by	 0.31%	 in	 terms	 of	 pixel-wise	 accuracy.	 In	 terms	 of	 the	Dice	 similarity	 coefficient,	 the	 improvement	 is	 in	 the	 range	 of	 0.6%.	 The	 differences	 are	 small

quantitatively,	but	the	improvements	are	statistically	significant	according	to	a	paired	tt-test	at	a	5%	significance	-level.	Corresponding	p-values	between	the	two	versions	of	the	network	are	reported	in	Table	3.	Also,	one	would	expect	a	larger

pixel-wise	accuracy	and	Dice	similarity	when	there	are	many	true	positive	pixels	in	the	center	of	the	segmentation	result.	Corresponding	p-values	between	the	two	versions	of	the	network	are	reported	in	Table	3.	A	bold	font	indicates

the	best	performing	metrics.	Interestingly,	among	the	ASM	-based	methods,	the	simplest	version,	ASM-G,	performs	better	than	the	alternatives.	Recent	methods	 [5,11],	have	failed	to	perform	robustly	on	our	challenging	dataset	of

the	test	vertebrae.

Table	3	 (p-values	should	be	in	merged	cells	for	UNet	and	UNet-S.	Merged	cells	become	confusing	without	cell	borders.	Please	add	borders	if	possible.	The	table	should	be	equivalent	to	the	table	in	the	attached

image.										Also	if	possible,	please	center-align	the	texts	both	vertically	and	horizontally.)Average	quantitative	metrics	for	vertebrae	segmentation.

alt-text:	Table	3

Pixel-wise	accuracy	(%) Dice	similarity	coefficient

Median Mean Std p-value Median Mean Std p-value

ASM-RF 95.09 90.77 8.98 0.881 0.774 0.220

ASM-M 95.09 93.48 4.92 0.900 0.877 0.073

ASM-G 95.34 93.75 4.48 0.906 0.883 0.066

UNet 97.71 96.69 3.04 0.952 0.938 0.048

UNet-S 97.92 97.01 2.79 0.957 0.944 0.044

Although	statistically	significant,	the	stability	of	the	small	improvement	between	UNet	and	UNet-S	may	be	subjected	to	the	fixed	set	of	data	used	for	the	training	and	testing.	In	order	to	test	the	stability	of	the	performance,	two

new	sets	of	UNet	and	UNet-S	were	trained	with	randomly	scrambled	datasets.	In	both	cases,	UNet-S	outperformed	the	UNet	with	statistical	significance.	The	Dice	similarity	coefficients	for	these	re-scrambled	datasets	are	reported	in

Table	4.

Table	4	 (p-values	should	be	in	merged	cells	for	UNet	and	UNet-S.	The	table	should	be	equivalent	to	the	table	in	the	attached	image.										Also	if	possible,	please	center-align	the	texts	both	vertically	and

horizontally.)Dice	similarity	coefficients	for	re-scrambled	datasets.

alt-text:	Table	4

Re-scrambled	Dataset	1 Re-scrambled	Dataset	2
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Mean Std p-value Mean Std p-value

UNet 0.9371 0.0412 0.9433 0.0712

UNet-S 0.9411 0.0366 0.945 0.0692

The	average	point	to	curve	error	for	the	methods	are	reported	in	Table	5.	This	measure	is	important	as	it	captures	the	differences	in	the	segmentation	boundary	which	defines	the	shape.	The	deep	segmentation	framework,

UNet,	produced	a	35%	improvement	over	the	ASM	-based	methods	in	terms	of	the	mean	values.	The	introduction	of	the	novel	loss	term	in	the	training	further	reduced	the	average	error	by	11%	achieving	the	best	error	of	0.55 mm.	The

most	significant	improvement	can	be	seen	in	the	fit	failure	which	denotes	the	percentage	of	the	test	vertebrae	having	an	average	error	of	higher	than	1 mm.	The	novel	shape-aware	network,	UNet-S,	has	achieved	a	drop	of	around	76%

from	the	ASM-RF	method.	The	cumulative	distribution	of	the	point	to	curve	error	 is	also	plotted	in	the	performance	curve	of	Fig.	16.	 It	can	be	seen	that	deep	segmentation	networks	provide	a	 large	 improvement	among	the	deep

networks,	shape-aware	UNet	performs	better.

Table	5	 (p-values	should	be	in	merged	cells	for	UNet	and	UNet-S.	Merged	cells	become	confusing	without	cell	borders.	Please	add	borders	if	possible.	The	table	should	be	equivalent	to	the	table	in	the	attached

image.										Also	if	possible,	please	center-align	the	texts	both	vertically	and	horizontally.)Average	quantitative	metric	for	shape	prediction.

alt-text:	Table	5

Average	point	to	curve	error	in	mm Fit	failure(%)

Median Mean Std pp-value

ASM-RF 1.51 1.74 0.95 74.40

ASM-M 0.87 1.02 0.56 39.52

ASM-G 0.77 0.95 0.54 31.49

UNet 0.43 0.62 0.81 0.0062 9.41

UNet-S 0.44 0.55 0.40 7.40

The	box	plots	of	the	quantitative	metrics	are	shown	in	Fig.	17.	It	can	be	seen	that	even	the	worst	outlier	for	the	shape-aware	network,	UNet-S,	has	a	pixel-wise	accuracy	higher	than	70%,	signifying	the	regularizing	capability	of

the	novel	term.	Most	of	the	outliers	are	caused	by	bone	implants,	fractured	vertebrae	or	abnormal	arteifacts	in	the	images.	A	few	examples	for	qualitative	assessment	are	shown	in	Fig.	18.	Fig.	18a	shows	an	easy	example	where	all	the

		<	10	−	03 		<	.013

Fig.	16	Performance	curve:	Ccumulative	distribution	of	point	to	curve	errors.

alt-text:	Fig.	16



methods	perform	well.	Examples	with	surgical	bone	implants	are	shown	in	Fig.	18b	and	c.	Fig.	18d	and	e	show	shows	vertebrae	with	abrupt	contrast	change.	Vertebrae	with	fracture	and	osteophytes	are	shown	in	Fig.	18f	and	g.	Fig.	18g

also	shows	how	UNet-S	has	been	able	to	capture	the	pattern	of	the	vertebrael	fractures	pattern.	Fig.	18h	and	i	shows	vertebrae	with	image	arteifacts.	A	complete	failure	case	is	shown	in	Fig.	18	j.	The	shape-aware	network,	UNet-S,	has

produced	better	segmentation	results	than	its	counterpart,	UNet.	Qualitatively	we	conclude	that	the	novel	shape-aware	term	provides	equivalent	or	improved	results	in	nearly	all	cases.

Fig.	17	Box	plots	of	the	quantitative	metrics:	pixel-level	accuracy	(left),	Dice	similarity	coefficients	(middle)	and	point	to	manual	segmentation	curve	error	(right).

alt-text:	Fig.	17



Analysis	on	harder	cases	Although	the	difference	in	performance	between	the	UNet	and	UNet-S	is	stable	and	statistically	significant,	the	improvement	is	subtle	over	the	whole	dataset	of	the	test	vertebrae.	This	is	because	the	majority	of	the

vertebrae	are	healthy	and	easier	to	segment.	Therefore	adding	the	shape-aware	term	does	not	improve	the	results	by	a	large	margin.	However,	on	more	challenging	vertebrae	a	larger	difference	is	observed.	To	show	the	usefulness	of	adding	the	shape-aware

term	in	UNet-S,	a	selection	of	52	vertebrae	with	severe	clinical	conditions	are	chosen.	The	average	metrics	for	this	subset	of	test	vertebrae	between	UNet	and	UNet-S	are	reported	in	Table	6.	An	improvement	of	1.2%	and	0.02	have	been	achieved	in	terms	of

the	pixel-wise	accuracy	and	the	Dice	similarity	coefficient,	respectively.	The	difference	over	the	whole	dataset	were	only	0.31%	and	0.006.	The	metric,	point	to	curve	error	produces	the	most	dramatic	change.	The	novel	shape-aware	network,	UNet-S,	reduced

the	error	by	25%	for	this	subset	of	vertebrae	with	severe	clinical	conditions.	Fig.	19	shows	a	few	examples	of	these	images.

Table	6	Comparison	of	UNet	and	UNet-S	for	vertebrae	with	clinical	conditions.

alt-text:	Table	6

Average	quantitative	metrics

Fig.	18	Qualitative	segmentation	results:	true	positive	(green),	false	positive	(blue)	and	false	negative	(red).	(For	interpretation	of	the	references	to	color	in	this	figure	legend,	the	reader	is	referred	to	the	web	version	of	this	article.)

alt-text:	Fig.	18



Pixel-wise	accuracy	(%) Dice	coefficient Point	to	curve	error

UNet 94.01 0.91 0.84

UNet-S 95.21 0.93 0.63

6	Fully	Automatic	Segmentation	FrameworkFully	automatic	segmentation	framework
Now,	 having	 the	 three	 subtasks	 i.e.	 global	 localization,	 center	 localization	 and	 vertebrae	 segmentation	 frameworks	 in	 place,	 a	 single	 fully	 automatic	 vertebrae	 segmentation	 framework	 can	 be	 formulated.	 Given	 a	 high

resolution	test	image,	the	image	can	be	zero-padded	to	form	a	square	image	and	resized	to	100 × 100	pixel.	This	image	can	be	fed	into	the	global	localization	FCN	to	predict	the	spinal	region.	The	global	localization	algorithm	localizes

the	spinal	region	at	a	lower	resolution	of	25 × 25	pixel,	which	can	then	be	transformed	back,	i.e.	resizing	and	unpadding,	to	the	original	image.	The	process	is	summarized	in	Fig.	20-1.

Fig.	19	Comparison	of	performance	for	vertebrae	with	severe	clinical	condition.

alt-text:	Fig.	19

Annotations:

A1. 	will	it	be	possible	to	replace	the	embedded	text	in	this	figure	with	normal	text	as	provided	in	the	original	pdf	version	of	this	image?	if	not	possible	to	put	text	accordingly	please	leave	the	figure	as	it	is.	

Fig.	20	1.	Global	localization	Fframework	(a)	Full	resolution	X-ray	image.	(b)	100 × 100	pixel	input	image.	(c)	Global	Localization	FCN.	(d)	Network	prediction	at	25 × 25	pixel.	(e)	Localized	spine	in	the	original	resolution.	2.	Center	localization	framework	(a)

Grid	points	on	localized	spinal	region.	(b)	Generated	image	patches.	(c)	Center	localization	network.	(d)	Patch-level	probabilities.	(e)	Probabilistic	center	maps	on	original	image	space.	(f)	Localized	centers	after	post-processing.	3.	Vertebrae	segmentation

A1



Based	on	the	global	localization	result,	a	uniformly	spaced	grid	of	points	can	be	generated.	From	these	points,	image	patches	can	be	extracted	with	multiple	scales	and	orientations.	All	the	patches	are	then	resized	to	64 × 64

pixel	and	passed	through	the	novel	probabilistic	spatial	regressor	network.	Each	patch	generates	a	probability	map	of	localized	centers.	These	patch	-level	probabilities	are	then	put	back	on	the	original	image	space.	And	centers	are

localized	using	the	post-processing	steps	of	Section	4.4.	Fig.	20-–2	depicts	the	center	localization	process.

The	 localized	 spinal	 region	map	 from	 the	 global	 localization	 step	 and	 the	 localized	 centers	 from	 center	 localization	 step	 are	 used	 to	 determine	 the	 orientations	 and	 scales	 of	 each	 vertebra	 in	 the	 image.	 Based	 on	 this

information,	for	each	center	proposal,	multiple	patches	are	extracted	and	resized	to	64 × 64	pixel.	These	patches	are	then	passed	through	the	one	of	the	vertebrae	segmentation	networks,	UNet	or	UNet-S.	The	patch	-level	predictions

are	then	put	back	on	the	original	image	space	to	create	the	final	segmentation	results.	The	process	of	the	vertebrae	segmentation	is	shown	in	Fig.	20-3.

Since	none	of	the	subtasks	requires	manual	intervention	and	the	input	information	required	by	the	latter	subtasks	is	provided	by	the	result	of	the	previous	subtasks,	a	complete	framework	can	be	designed	by	cascading	the

subtasks	sequentially.	The	complete	framework	is	fully	automatic	and	does	notn’t	require	any	human	input	to	generate	vertebrae	segmentation	of	an	X-ray	image.	To	our	knowledge,	the	proposed	framework	is	the	first	in	the	literature

that	presents	a	fully	automatic	cervical	spine	segmentation	method.	The	flowchart	for	the	complete	framework	has	been	shown	in	Fig.	1.	The	runtime	for	the	framework	varies	from	11	seconds	to	one	minute	with	an	average	time	of

24	seconds	using	unoptimized	Matlab	implementation	on	a	system	without	GPUs.	Most	of	this	time	is	taken	by	the	post-processing	steps	of	the	center	localization	and	vertebrae	segmentation	subtasks	where	the	patch-level	predictions

are	transformed	back	to	the	original	image	space.

6.1	Results
The	Dice	similarity	coefficient	(DSC)	and	shape	error	for	the	final	segmentation	results	are	summarized	in	Table	7.	The	predicted	shape	is	computed	by	locating	the	boundary	pixels	of	the	predicted	final	segmentation	map.	The

predicted	shapes	are	compared	with	the	manually	annotated	shapes,	 illustrated	by	green	curves	in	Fig.	2.	The	average	error	 in	millimeter	(mm)	is	reported	as	the	shape	error.	Both	UNet	and	UNet-S	have	been	tested	as	the	final

segmentation	module.	Both	perform	similarly	in	terms	of	the	reported	metrics.	The	mean	Dice	similarity	coefficient	is	exactly	the	same	at	0.84.	The	performance	is	lower	than	the	Dice	similarity	coefficient	of	0.944	reported	in	Table	3

because	of	the	full	automation	and	the	accumulated	errors	from	the	global	localization	and	center	localization	phase.	Since	most	of	the	difficult	vertebrae	samples	do	not	get	into	the	segmentation	phase	and	difference	in	performance	is

not	noticeable	in	terms	of	DSC.	However,	as	the	major	difference	between	the	networks	is	a	shape-aware	term,	shape	error	have	achieved	a	0.35%	relative	improvement	even	after	full	automation.	The	histogram	plots	of	these	two

metrics	are	shown	in	Fig.	21.

Table	7	Performance	of	fully	automatic	framework.

alt-text:	Table	7

Dice	similarity	coefficients Shape	error	in	mm

Mean Std Mean Std

UNet 0.840 0.136 1.695 2.614

UNet-S 0.840 0.135 1.689 2.555

framework	(a)	Localized	spinal	region	and	centers.	(b)	Extracted	vertebrael	patches.	(c)	Segmentation	network	(UNet/UNet-S).	(d)	Patch-level	segmentation	results.	(e)	Segmented	vertebrae	on	the	original	image.

alt-text:	Fig.	20

Fig.	21	Histogram	plot	of	Dice	similarity	coefficients	(topleft)	and	shape	error	(bottomright)	for	the	fully	automatic	framework	with	UNet	and	UNet-S.



Some	qualitative	results	are	shown	in	Fig.	22.	It	can	be	seen	that	even	with	severe	clinical	conditions	(rows	3,	and	4)	and	image	arteifacts	(row	5)	the	fully	automatic	algorithm	has	been	able	to	produce	accurate	segmentation

results.	However,	the	algorithm	does	notn’t	guarantee	acceptable	segmentation	everywhere.	Some	less	accurate	results	on	difficult	cases	are	shown	in	Fig.	23.	Row	1	of	Fig.	23	shows	a	case	where	the	center	localization	framework

failed	to	detect	a	vertebrael	center	with	osteophytes	(C5)	and	detected	a	false	center	from	vertebrae	C2.	Thus	the	final	segmentation	results	have	a	false	positive	in	vertebrae	C2	and	a	false	negative	for	C5.	The	second	row	shows	a

case	where	both	global	 localization	and	center	 localization	failed	due	to	surgical	 implants	 in	the	 lower	vertebrae	(C6-	and	C7).	A	test	case	with	severe	osteoporosis	and	bone	 loss	 is	shown	in	row	3.	Even	with	such	severe	clinical

condition	the	global	localization	and	center	localization	algorithm	were	able	to	produce	correct	results	for	C3	and	C4,	however,	the	segmentation	framework	still	suffered	to	segment	those	correctly.	Another	severe	condition	with	bone

loss,	osteoporosis	and	vertebrae	fusion	is	shown	in	row	4	of	Fig.	23.	Even	with	such	severe	conditions,	global	localization	and	center	localization	have	been	able	to	correctly	detect	four	vertebrale	centers,	but	unfortunately,	a	false	center

has	also	been	detected	in	the	extended	part	of	the	C2.	Interestingly,	the	segmentation	framework	also	segmented	a	vertebrae-like	structure	in	the	extension	where	the	top	and	bottom	border	followed	the	bone	structure.	However,	the

segmentation	results	for	the	actual	vertebrae	are	incorrect	because	of	the	severity	of	the	condition.	Finally,	 in	the	last	row,	we	have	shown	a	complete	failure	due	to	the	presence	of	 large	surgical	 implants.	The	global	 localization

algorithm	failed	completely	thus	the	following	subtasks	were	not	able	to	perform	either.

alt-text:	Fig.	21



Fig.	22	Fully	automatic	framework	results.	True	positive	(green),	false	positive	(blue)	and	false	negative	(red).	Ground	truth	center	( )	and	predicted	centers	( ).	(a)	Original	image.	(b)	Global	localization.	(c)	Center	localization.	(d)	Vertebrae	segmentation.	(For	interpretation	of	the

references	to	color	in	this	figure	legend,	the	reader	is	referred	to	the	web	version	of	this	article.)

alt-text:	Fig.	22



7	Conclusion
The	cervical	spine	is	one	of	the	most	important	yet	vulnerable	anatomies	of	the	human	body.	Despite	advances	in	imaging	technologies,	a	large	number	of	cervical	injuries	remain	unnoticed	in	the	emergency	room.	Towards

building	a	fully	automatic	injury	detection	system,	in	this	paper,	using	the	recent	advances	in	deep	learning	technologies,	we	have	proposed	a	fully	automatic	vertebrae	segmentation	framework	for	X-ray	images.	The	complete	process

is	divided	into	three	subtasks:	localization	of	the	spine,	localization	of	the	vertebrael	centers	and	segmentation	of	the	vertebrae.	We	have	proposed	a	solution	tofor	each	of	these	subtasks	using	deep	learning	concepts.	First,	we	have

proposed	a	novel	approach	of	using	fully	convolutional	segmentation	network	for	solving	a	localization	problem.	Our	global	localization	algorithm	produced	a	sensitivity	and	a	specificity	of	0.96	in	localizing	the	vertebrae	in	the	X-ray

images.	Second,	we	have	introduced	a	novel	 loss	function	for	predicting	a	probabilistic	map	using	a	fully	convolutional	network	for	 localizing	 image	 landmarks.	Our	center	 localization	framework	has	been	able	to	correctly	detect

93.73%	of	vertebrae	with	an	average	error	of	1.81 mm.	Third,	we	have	proposed	a	novel	shape-aware	loss	term	for	vertebrae	segmentation.	The	shape-aware	segmentation	has	produced	an	average	Dice	similarity	coefficient	of	0.944

Fig.	23	Fully	automatic	framework	results	for	challenging	cases.	True	positive	(green),	false	positive	(blue)	and	false	negative	(red).	Ground	truth	center	( )	and	predicted	centers	( ).	(a)	Original	image.	(b)	Global	localization.	(c)	Center	localization.	(d)	Vertebrae	segmentation.

(For	interpretation	of	the	references	to	color	in	this	figure	legend,	the	reader	is	referred	to	the	web	version	of	this	article.)

alt-text:	Fig.	23



and	an	average	point	to	curve	error	of	0.55 mm	over	a	dataset	full	of	real-life	emergency	room	X-ray	images,	containing	surgical	implants,	clinical	conditions	and	image	arteifacts.	Last	but	not	the	least,	we	have	proposed	a	complete

and	fully	automatic	framework	for	vertebrae	segmentation	in	X-ray	images	which	has	been	able	to	produce	a	final	Dice	similarity	coefficient	of	0.84.

The	 current	 framework	 still	 has	 several	 limitations.	 The	 center	 localization	 framework	 can	 be	 further	 improved	 by	 removing	 outlier	 centers	 away	 from	 the	 vertebral	 curve.	 The	 current	 patch	 -based	 center	 localization

framework	has	the	limitation	of	not	knowing	which	center	belongs	to	which	vertebra.	We	are	currently	working	on	a	vertebra	detection	framework,	which	will	be	able	to	determine	which	vertebrae	are	visible	in	the	image.	The	shape-

aware	segmentation	framework	can	further	be	improved	to	determine	if	a	segmented	vertebrale	shape	is	regular	or	injurious/fractured.	The	next	step	in	our	research	is	to	build	a	complete	injury	detection	system	which	will	be	able	to

help	the	emergency	room	physicians	by	highlighting	spinal	areas	with	high	possibility	of	injuries.	The	proposed	framework	is	general	and	can	be	extended	to	other	views	of	the	cervical	spine,	including	odontoid	peg	and	anteroposterior

(AP)	views.
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Highlights

• A	deep	segmentation	network	based	spine	localization	algorithm	which	outperforms	the	previous	state-of-the-art	by	a	large	margin.

• A	novel	spatial	probability	prediction	deep	convolutional	network	which	achieves	human-level	performance	in	localizing	vertebrae	centers.

• A	novel	shape-aware	deep	segmentation	network	for	vertebrae	segmentation.



Queries	and	Answers
Query:	Please	confirm	that	givennames	and	surnames	have	been	identified	correctly.
Answer:	Yes

Query:	Please	validate	affiliation	“b”.
Answer:	correct

Query:	Please	validate	if	corresponding	author	has	been	correctly	identified.
Answer:	Identified	correctly.

Query:	Figs.	2,	3,	5,	6,	8,	13,	14,	15,	18,	22	and	23	have	been	submitted	as	color	images;	however,	the	captions	have	been	reworded	to	ensure	that	they	are	meaningful	when	your	article	is	reproduced
both	in	color	and	in	black	and	white.	Please	check	and	correct	if	necessary.
Answer:	I	have	corrected	the	captions	where	necessary.	I	have	also	provided	original	images	in	hope	that	the	embedded	texts	in	some	of	the	images	in	the	paper	could	be	removed.	In	the	original	paper
I	used	'.pdf'	images	thus	the	texts	appear	as	text.	here	the	images	have	been	formated	as	png	or	tif	image	where	the	texts	become	embedded	text,	making	the	quality	of	article	unprofessional.	Whereever
possible,	please,	update	the	images	with	the	provided	replacement	images	and	add	the	subfigure	indexes	appropriately.	

Query:	Please	provide	year	information	in	Refs.	[1]	and	[29].
Answer:	These	are	web-links.	They	do	not	have	a	publication	year.	The	date	when	these	web-links	have	been	checked	are	added	in	the	references	as	Accessed:	xxxx-xx-xx.

Query:	Please	complete	and	update	Ref.	[24].
Answer:	This	is	an	unpublished	work	only	available	as	arXiv	preprint.	It	has	already	been	cited	in	151	times.

Query:	Please	provide	volume	number	in	Ref.	[28].
Answer:	No	volume	number	available

• A	first	of	its	kind	fully	automatic	framework	which	combines	the	global	localization,	center	localization	and	vertebrae	segmentation	in	a	single	thread	and	provides	a	segmentation	result	for	a	real-life	emergency	room	X-ray	images

without	any	manual	input.


