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ABSTRACT 

Our primary goal was to objectively quantify pain. The experiment we designated 

for this task was via dry electroencephalography (EEG) in conjunction with a support 

vector machine classifier (SVM).  

Normal gel-based electrode EEG has been validated as reliable in pain 

measurement. Yet, to date, there are few documented trials that use dry-EEG for pain 

quantification. In addition, SVM classifiers have proven accurate when classifying pain 

intensity. Therefore, we believe EEG combined with SVM could increase the statistical 

power of pain assessment.  

However, due to the subjectivity of pain, currently clinicians mainly rely on 

verbal reports. This research could offer a method to objectively monitor pain, eliminate 

observer error and individualize treatment.  
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Pain Background 

Definition 

Acute pain results directly from injury, such as stubbing a toe or falling on ones 

face. Chronic pain is from an underlying disease, or untreated condition; and is normally 

treated using NSAIDS, non-opioid and opioid medications. 

Economic Burden of Pain  

Due to the medications, social losses, rehabilitation and decreases in work 

productivity etc., chronic pain conditions constitute a growing burden on the healthcare 

system. Its annual cost in 2010 was estimated to range from $560 to $635 billion, 

surpassing that of diabetes ($188 billion), cancer ($243 billion) and heart disease ($309 

billion) 1. Furthermore, in 2011 chronic pain sufferers in the United States numbered up 

to 100 million, compared to those diagnosed with diabetes (25.8 million)2, coronary heart 

disease (16.3 million)2-4 or cancer (11.9 million)5. 

Undertreatment of Pain 

Untreated pain can lead to increased risk of myocardial infarction and ischemia.6 

Other issues include loss of sleep, mobility and strength.  

Aim of work  

Human pain has been analyzed using various non-invasive, medical imaging 

devices. Examples include: positron emission tomography (PET) and functional magnetic 

resonance imaging (fMRI). 7. Due to the high temporal resolution of 

electroencephalograms (EEG), some researchers have concluded that EEG is the most 

effective neuroimaging device for pain diagnosis. It also can capture real-time, dynamic 

changes within the brain. Therefore, our primary goal was to design an experiment that 

could objectively quantify pain sensation using this device. In comparison to normal gel-

electrode EEG, dry EEG is more convenient and feasible in a clinic setting.  

https://paperpile.com/c/5KL8O3/KmNGL
https://paperpile.com/c/5KL8O3/ORmSD
https://paperpile.com/c/5KL8O3/2HA0r
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We implemented a support vector machine classifier (SVM) which uses 

supervised machine learning to predict offline and real-time changing levels of pain 

stimulus. The data we used was frequency band power (described further down) obtained 

during EEG recordings. We processed the raw data using power spectral analysis and 

used results as input (i.e. features) into our support vector machine algorithm.  

Dry EEG vs. normal gel-electrode EEG 

Quick-20 Dry EEG (19 channels) differs from normal EEG in that it doesn’t use 

gel-based electrodes.  

It has the advantage of quicker setup time, increased versatility and mobility. It 

also has increased resistance against movement and electrical artifacts and can measure 

impedance in real-time. Previous results show that this device has the same quality of raw 

data collection as the current gold standard, wet EEG.  

On the adverse side: recordings include more impedance due to the lack of gel 

which is normally used to fill gaps in between electrodes and the surface of the scalp. In 

addition, the dry system must overcome shortcomings pertaining to sensor design, 

mechanics and electronics. 24 

Power Spectral Density 

Variations in brain neural activity causes increases and decreases in the power of 

EEG waves. Power refers to the energy of these waveforms, seen as variations in 

amplitude of EEG signals in the time domain. In signal processing, power is defined as 

the average of the magnitude of a signal, squared, and spectrum refers to the variations in 

frequency of an entire wave signal. 8 

Therefore, power spectral density (PSD) can be used to characterize brain activity 

by tracking changes in amplitude of frequency waves. Figure 1 shows EEG time signals 

converted to the frequency domain.  

 

https://paperpile.com/c/H3bF3E/tOOCy
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Figure 1: Example of EEG waveforms in the frequency domain. Displays δ (1–4 Hz), θ 

(4–8 Hz), α (8–12 Hz) and β (12–28 Hz) frequency bands. 9 

 

The significance of each frequency band above is that each relate to specific brain 

functions. The brain contains billions of specialized cells called neurons, which are 

recruited in populations numbering in the thousands to perform a specific task. Neuron 

rate of recruitment, or “firing rate,” is displayed as power fluctuations in EEG data. For 

example, high α frequency-band power has been shown to be associated with processing 

painful stimuli. 10 

Null Hypothesis 

We believed all people experience pain differently. Therefore, the null hypothesis 

was that everyone's pain experience would be similar when exposed to the same modality 

and magnitude of pain stimuli; thus, there would be no significant differences in EEG 

data.  

https://paperpile.com/c/5KL8O3/W8BnW
https://paperpile.com/c/5KL8O3/kWg18
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Methods  

We started with a pool of 15 subjects but selected only a sample size of nine due 

to noisy data. This is data that is convoluted with meaningless information which is 

common during EEG recordings since it is highly sensitive to movement (i.e. blinking, 

muscle twitch, person walking near device etc.). We chose seven males and two females 

placed into three age categories, youngest (age 20-29, n=5); middle (age 30-39, n=2) and; 

mature (age 40+, n=2). When choosing subjects, the exclusion criteria was that no pre-

existing injury could be present in either hand due to the examination method. A pre-

consent form approved by the IRB committee was given to each subject before testing 

began.  

Subject Comfort 

Participants were tested in an isolated, temperature-controlled room. The 

experimenters’ instructions were for the subject to relax in a comfortable chair with both 

of their hands placed palm down on a table in front of them. The Adductor pollicis 

muscle of both subject’s hands were marked to ensure accurate and consistent pressure 

stimulus application. Wireless, dry EEG was connected to the subject’s scalp while 

instructions were read (figure 2). Subjects were told to hold a time-sensitive trigger 

throughout the test. They were instructed to press the button when: 1) Initial signal, 

“press trigger” was given, 2) discomfort was first experienced (threshold), and when 3) 

stimulus pressure became unbearable. Subjects could opt out at any time.   
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Figure 2: Subject awaiting pressure stimulus test. Dry quick-20 EEG device is connected 

 in testing room; with hands (adductor pollicis) marked using dry erase marker for 

points of stimulus and with Quick-20 Dry EEG connected to detect brain waves.  

 

Experimental Procedures  

Tactile stimulation was performed using a Wagner pressure gauge. During the 

baseline trial: The pressure gauge was placed on the surface of subjects’ hand, but no 

pressure was applied.  Afterwards the tester applied pressure with the 1 cm2 tip while 

monitoring the pressure with an algometer. Pressure was slowly increased during each 

trial at a fixed rate of 1 kg (2.20 lbs) every 30 seconds to a maximum of 5.5 kg (12 lbs). 

Results were recorded in pounds. 
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Measures 

There was a one-minute interval of rest in between each trial to avoid pain wind-

up 11. There were four trials (excluding baseline), each included step two-four below:  

1. Baseline (no stimulus/beginning of experiment); 

2. Low stimulus (beginning of trial to threshold); 

3. Max stimulus (threshold to maximum tolerance/end of trial);  

4. Rest (no stimulus in between trials). 

Data was separated into time epochs then analyzed in MATLAB 12 using support 

vectors to categorize pain.  

Pre-Processing 

EEG-signal data were sampled at 500 Hz. Preprocessed signals were visually 

examined for high amounts of convoluted data and if present, omitted from the study. 

Butterworth and notch filters were used to eliminate noisy data. 

Supervised Machine Learning with SVM 

Feature Extraction 

 

 This study was performed using eight frequency band powers captured in the 19 

channels as features (8*19=152 features): δ (1–4 Hz), θ (4–8 Hz), α (8–12 Hz), β1 (12–16 

Hz), β2 (16–20 Hz), β3 (20–24 Hz), β4 (24–28 Hz), and low γ (28–32 Hz) bands. The 

label vector was supplied to the machine learning algorithm, which included stimulus 

levels: no stimulus, low stimulus, and max stimulus. Time epochs occurring before 

baseline and after the end of the final trial were discarded. 

Classification 

We constructed feature vectors containing frequency band powers obtained 

through PSD for 19 channels. Then a label vector for pressure stimulus levels was created 

https://paperpile.com/c/5KL8O3/dL6fD
https://paperpile.com/c/5KL8O3/OQbpt
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for each row (no stimulus, low stimulus and high stimulus). Afterwards, SVM was used 

to compare each individual observation.  

Type of classification - Linear classification was performed using SVM to 

predict a maximum margin classifier for: 1) rest vs. low stimulus; 2) rest vs. max 

stimulus; and 3) low vs. max stimulus. The support vector machine algorithm is 

determined by a binomial classifier 

(𝑐) = ∑𝑎𝑖 𝑘(𝑠𝑖, 𝑥) + 𝑏,  (1) 

where c is used to classify observations in vector x. When c > 0 then x is classified in the 

1st group, and when c<0, x is placed in the 2nd group. Contributions of each x vector is 

explained by ai. The kernel function is k which becomes a dot product when using a 

linear kernel. The support vectors are represented by si and the bias by b.13 

Validation 

Efficacy of the SVM algorithm was assessed using rate of true negatives 

(specificity), true positives (sensitivity) and correctly identified observations. This is 

known as accuracy. Standard error and p-values were calculated for individual and group 

classifications using a binomial test. 
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Results and Discussion  

Channel and Subject Averaged Relative Band Powers- Figure 2 displays 

results for relative EEG band power. Height of each bar represents relative band power 

taken as the mean value during the three conditions.  

 

Figure 2: Relative EEG frequency band power in multiple frequency ranges for window 

size = 6 s Averaged across observations, channels, and subjects. All changes in relative 

band powers were significant at the 5% level.  

 

We used a one-sample t-test to determine any significant changes. Standard error 

bars describe the amount of variability in each result from 10-fold cross validation. 

Results show that relative change in each frequency band power from rest to 

painful states decreased significantly at the 5% level: δ (p =.002), θ (p = .004), α (p = 

.005), β1 (p = .005), β2 (p = .009), β3 (p = .013), β4 (p= .015), and low γ (p = .024). This 

means there is only a 0.05 or a 5% chance of incorrectly assuming these differences in 

brain activity resulted from test conditions. Results indicate that neural activity decreased 

throughout the cortex because of increasing pain stimulus.  

The significance of these results, taken in retrospect to previous studies, is that 

increased pain normally leads to decreased average power density in δ, θ, α and β ranges 

(2 - 25 Hz). 14,15 Our results for δ and θ were similar to a previous study involving cold 

pain, where these powers were highest 16.  

 

https://paperpile.com/c/5KL8O3/m8hG1+qGzca
https://paperpile.com/c/5KL8O3/xPLwa
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 Subject average topographical distribution of difference of band powers- 

Figure 3 shows difference between subjects’ band power for each condition. For 

example: rest = band power during low stimulus minus band power during no stimulus. 

Red indicates that an increase occurred in power for the frequency band; blue represents a 

decrease occurred; and green represents no change in power of frequency occurred during 

changing stimulus level.  

 

Figure 3: Topographic distribution of frequency band power.  Window Size = 6 sec. 

  Averaged across subjects and observations. 

   

Changes in frequency power appeared consistent for each condition. Power was 

high for lower frequency bands (i.e., δ and θ) then decreased with rising frequency. These 

results indicate that the entire brain response to pressure pain stimulus is relatively the 

same.  

 Static changes in resting state EEG have been reported in previous experiments 

dealing with pain 16; this does not indicate unusable data but could reflect brain activity 

not explicitly studied. Alpha band (1-4 Hz) and θ bands (4-8 Hz) once again had the 

highest average power. Both have been shown to be highly associated with pain. 17, 18 

 

https://paperpile.com/c/5KL8O3/xPLwa
https://paperpile.com/c/5KL8O3/zm7QH
https://paperpile.com/c/5KL8O3/zvQgU
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Classification accuracy for subject specific trained SVM: Figure 4 displays 

accuracy of binomial classification using the SVM algorithm to determine moments of: 

rest vs low stimulus; rest vs max stimulus; and low stimulus vs max stimulus for 

individual subjects. Height of bars represent accuracy as a percentage. Each comparison 

was completed with changing window sizes of two, four and six seconds.  

 

Figure 4: Accuracy of binomial classification for multiple window sizes. 

  Subject specific SVM (i.e., SVM trained for individual subjects). 

  Every bar represents one subject. 

 

 We achieved accuracy near 100% during individual trials when classifying for 

each condition. The maximum classification accuracies were as follows: low vs max 

stimulus was 85% (± 27%), rest vs. low stimulus was 98% (± 17%), and rest vs. max 

stimulus accuracy was 98% (± 23%). Lowest accuracy occurred for low vs maximum 

stimulus (20%). Accuracy was calculated as the area under a binomial density curve. 
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Table 1 shows mean classification accuracy along with standard deviation (SD) for each 

comparison. 
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Table 1: Mean classification accuracy for nine subjects and three binary classifications.  

Low vs 

Max Stimulus SD +/- 

Rest vs 

Low Stimulus SD +/- 

Rest vs 

Max Stimulus SD +/- 

48.00% 13.27% 94.33% 12.48% 98.33% 5.00% 

66.61% 17.95% 87.78% 9.70% 94.67% 8.19% 

83.27% 6.74% 93.33% 11.06% 97.09% 4.79% 

75.28% 9.72% 94.56% 5.45% 89.00% 14.28% 

80.00% 24.49% 90.00% 16.58% 95.00% 10.00% 

66.67% 20.71% 81.00% 15.78% 75.50% 22.85% 

57.50% 27.25% 79.00% 11.58% 78.00% 17.46% 

85.50% 13.12% 90.00% 15.28% 81.67% 8.98% 

60.00% 21.91% 98.00% 6.00% 96.33% 7.37% 

Since we were able to use SVM classification to achieve accuracy near 100% for 

individual EEG recordings, this proves that wireless, dry-EEG was successful in 

capturing changing brain patterns resulting from rising pain stimuli.  

Limitations 

 Due to our small sample size, all results should be considered theoretical and not 

based on concrete evidence. 

  



 

15 

Conclusion  

 We used support vector machines to showcase frequency band changes that 

showed significance at the 5% level. With relative band power, we were able to show that 

at rest, and during pain states, EEG power tends to be increased at lower frequencies such 

as δ (1-4 Hz) and θ (4-8 Hz) bands. Results demonstrate that a dry, wireless, quick-20 

EEG can effectively capture changes in brain activity resulting from pain.  

Results from similar studies vary. In two different experiments, both using cold 

pain, Hadjileontiadis et al., used quick-20 dry EEG to discover changes in frequency 

band power due to stimulus condition can be non-significant (all frequencies F statistic <  

3.17 and “p-value> 0.10,” except for β1); whereas, Gram et al., used gel-electrode EEG 

and found significant increase in EEG power for δ (1–4 Hz), β (18–32 Hz) and γ (32–72 

Hz) ranges and decrease in θ (4-8 Hz), α1  (8–10 Hz), and α2 (10–12 Hz) bands.16,19  

One cause for these differences was answered by Pinheiro et al., in their recent 

literature review regarding pain assessment with an EEG: Changes in band power 

depends on the type of injury and stimulus producing discomfort 20. For instance, θ power 

has been shown to increase from rest for patients enduring neuropathic pain and 

migraine, but not in fibromyalgia patients or those with back pain. 21,22 It was noted that 

majority of these studies also found that θ and α band changes were in highest correlation 

with pain, and it was suggested by Pinheiro et al. that increases in θ band power could 

serve as a biomarker in severe neuropathic pain.23, 20 We saw similar changes in all 

frequency bands. Yet, due to our sample size, it will take conducting a larger study 

perhaps with more than one pain modality to make any valid conclusion. 

  

https://paperpile.com/c/5KL8O3/xPLwa+ONLVe
https://paperpile.com/c/5KL8O3/ModDT+ourZU
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