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We consider the positions and velocities of electrons and spinning nuclei and demonstrate that these particles

harbour hidden momentum when located in an electromagnetic field. This hidden momentum is present in all

atoms and molecules, however it is ultimately canceled by the momentum of the electromagnetic field. We

point out that an electron vortex in an electric field might harbour a comparatively large hidden momentum and

recognize the phenomenon of hidden hidden momentum.
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I. INTRODUCTION

A loop of electric current I and magnetic-dipole moment
m0 at rest in a static electric field E0 has “hidden momentum”
phidden = m0 × E0/c

2, even though the loop is not moving
[1–4]. This system is illustrated in Fig. 1. The hidden mo-
mentum results from the different charge carriers in the loop
having different speeds, due to a modification of their usual
motion around the loop by E0 [2–4]. It is canceled by the
momentum −m0 × E0/c

2 of the electromagnetic field [2,3,5–
7]. The phenomenon of hidden momentum is not unique to this
system, nor is it unique to electrodynamics [1–3,8].

This paper was motivated by a question posed recently by
Filho and Saldanha: “does an electron with a magnetic moment
resulting from its spin in the presence of an applied electric
field have hidden momentum” [4]? In Sec. II, we consider
a free electron, as described by the (first-quantized) Dirac
equation. We highlight subtleties associated with “the” position
and velocity of the electron, an understanding of which is
necessary for the analysis that follows. In Sec. III, we introduce
an external electromagnetic field and demonstrate that the
electron harbours hidden momentum associated with its spin,
thus providing an affirmative answer to the question above. In
Sec. IV, we consider an isolated atom or molecule and reaffirm
that its constituent electrons, as well as any spinning nuclei
present, harbour hidden momentum individually. We also show
that the sum total of this hidden momentum is canceled by
the momentum of the electromagnetic field, as it should be.
In Sec. V, we point out that an electron vortex in an electric
field might harbour a comparatively large hidden momentum
and recognize the hitherto neglected phenomenon of hidden
hidden momentum. Our work is timely, given the recent surge
of interest in relativistic electron vortices [9–16].

In what follows, “hats” are used to indicate physical quanti-
ties whereas the mathematical operators used to express these
quantities in different representations do not have hats—we al-
ternate between the Dirac representation (primed) [17] and the
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FIG. 1. A loop of electric current in a static electric field. Different

charge carriers in the loop have different speeds, as indicated here

by their color. The imbalance of their momenta is the loop’s hidden

momentum [1–4].

Foldy–Wouthuysen representation (unprimed) [18], defined in
the Appendix. These distinctions are important. Consider, for
example, r̂′

q = r̂M = r. Here, two different physical quantities

(r̂′
q and r̂M ) are expressed in two different representations

(primed and unprimed) by the same mathematical operator (r).

II. FREE ELECTRON

Let us consider first a free electron. In the Dirac represen-

tation, the electron obeys

ih̄ψ̇ ′ = Ĥ ′ψ ′, (1)

with ψ ′ = ψ ′(r,t) being the electron’s spinor and

Ĥ ′ = cααα · p + βmc2 (2)

being the free Dirac Hamiltonian [17]. Here,

ααα =
(

0 σσσ

σσσ 0

)

, p = −ih̄∇∇∇, β =
(

1 0

0 −1

)

, (3)

and m is the rest mass of the electron. The momentum of

the electron can be identified unambiguously as p̂′ = p̂ = p.
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However, “the” position and velocity of the electron are not

unique [8,9,16,18–26]. For the purposes of this paper, we

find it necessary to identify and distinguish between the

instantaneous position r̂′
q of the electron’s electric charge, the

kinetic position ˆ̄r′
q of the electron, and the so-called mean

position r̂′
M of the electron. Because the electron is free, these

positions can be defined as follows:

A. Positions and velocities

The position of charge takes on a simple form in the Dirac

representation [17],

r̂′
q = r. (4)

The interpretation of r̂′
q as the position of charge [22,24] will

be made apparent in the next section, where we impose an

electromagnetic field.

The kinetic position is [19,27,28]

ˆ̄r′
q =

1

4

[

1

Ĥ ′
(Ĥ ′r̂′

q + r̂′
qĤ

′) + (Ĥ ′r̂′
q + r̂′

qĤ
′)

1

Ĥ ′

]

. (5)

This coincides with the center of the electron’s electric charge,

as evidenced by the result that 〈ˆ̄r′
q〉 = 〈r̂′

q〉 for a state with

energy of definite sign [16]. ˆ̄r′
q is sometimes referred to as the

“observable” part of the position r̂′
q of charge [21], being the

projection of r̂′
q onto positive- and negative-energy subspaces

[9,16]. ˆ̄r′
q is not the electron’s center of energy [16], in spite of

its suggestive form.

The mean position takes on a simple form in the Foldy–

Wouthuysen representation [18,20],

r̂M = r. (6)

Loosely speaking, r̂M can be thought of as the kinetic position

in the electron’s rest frame, actively boosted with appropriate

velocity [16,21,29,30]. It is r̂M that is usually regarded as being

“the” position of the electron in low-energy studies [18,31],

although one can argue that the kinetic position ˆ̄rq is closer to

the classical notion of position for a particle like the electron

[23]. The “mean” terminology introduced in Ref. [18] for r̂M

and other quantities is something of a misnomer—it is ˆ̄rq rather

than r̂M that embodies the electron’s “average” position [24].

The components of the velocity v̂′
q = d r̂′

q/dt = cααα of

charge [32,33] support discrete eigenvalues of ±c while the

kinetic velocity ˆ̄vq = d ˆ̄rq/dt = βc2p/Ep [23] and mean ve-

locity v̂M = d r̂M/dt = βc2p/Ep [18] vary continuously with

p and are equal.

The above can be summarized as follows:

Quantity Definition

Position of charge r̂′
q = r

Kinetic position ˆ̄r′
q = 1

4

{

1

Ĥ ′ ,
{

Ĥ ′,r̂′
q

}

}

Mean position r̂M = r

Velocity of charge v̂′
q = cααα

Kinetic velocity ˆ̄vq = βc2p/Ep

Mean velocity v̂M = βc2p/Ep

Momentum p̂′ = p̂ = p

(7)

where we have used curly brackets to indicate anticommuta-

tors.

B. Zitterbewegung

In the Heisenberg picture, the positions evolve as [24,27,28]

r̂q(t) = ˆ̄rq(t) + ξ̂ξξ (t), (8)

ˆ̄rq(t) = r̂M (t) + δ̂δδ, (9)

r̂M (t) = r̂M (0) + v̂M t, (10)

with

ξ̂ξξ (t) =
ih̄c

2

[

v̂q(t) −
cp̂

Ĥ

]

e−2iĤ t/h̄

Ĥ
, (11)

δ̂δδ =
c2p × s

Ep(Ep + mc2)
=

p × s

2m2c2
+ O

(

1

c3

)

. (12)

Here,

s =
h̄

2

(

σσσ 0

0 σσσ

)

, Ep =
√

m2c4 + c2p2. (13)

The position difference ξ̂ξξ (t) executes a complicated oscil-

latory motion with amplitude comparable to the Compton

wavelength 2πh̄/mc and the resulting motion of the position

r̂q(t) of charge is referred to as the electron’s Zitterbewegung

[18,24,27,28,34]. Meanwhile, the kinetic position ˆ̄rq(t) and

the mean position r̂M (t) translate uniformly, with ˆ̄rq(t) offset

from r̂M (t) by the position difference δ̂δδ. The equality ˆ̄vq =
d ˆ̄rq(t)/dt = v̂M = d r̂M (t)/dt = βc2p/Ep holds because δ̂δδ is

constant.

C. Relativistic Hall effect

The position difference δ̂δδ might be regarded as a man-

ifestation of the relativistic Hall effect [25]. It embodies a

distortion of the trajectory of the electron’s charge, due to

the electron’s spin and translation. A rotating, translating

wheel serves as an instructive (classical) analogy—different

elements on the rim (r̂q) have different speeds and are Lorentz

contracted by different amounts, giving a shift (δ̂δδ) of the

element-weighted center (ˆ̄rq) away from the axle (r̂M ) [25,35].

Due to the spin dependence of δ̂δδ, the components of ˆ̄rq do

not commute: [ ˆ̄rqα, ˆ̄rqβ] = −ih̄c2ǫαβγ ˆ̄sγ /Ĥ 2 [19]. Here, ˆ̄s =
ĵ − ˆ̄rq × p̂ [27,28], with ĵ being the total angular momentum

of the electron [17]. It seems that ˆ̄s is the electronic analog

[9,16] of the spin of freely propagating light [36–41]—each is

conserved and both have similar commutations relations. r̂q(t),
ˆ̄rq(t), and r̂M (t) are depicted schematically in Fig. 2.

Position differences like δ̂δδ are well known for electrons in

the solid state and can be regarded as Berry connections in

momentum space [9,16,42–47].

III. ELECTRON IN AN EXTERNAL

ELECTROMAGNETIC FIELD

To demonstrate that an electron can harbour hidden momen-

tum associated with its spin, let us consider now an electron

042125-2
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FIG. 2. There is a sense in which a free electron resembles

an electric current “loop”—the electron’s Zitterbewegung sees the

position of charge circulate, in spite of there being no obvious

external fields. It can be argued that this is the origin of the electron’s

spin and magnetic-dipole moment [18,24,27,28,34]. It seems natural,

therefore, to anticipate that an electron in an electric field harbours

hidden momentum associated with its spin, due to a modification of

its Zitterbewegung by the field.

in an external electromagnetic field, with scalar potential

� = �(r,t) and magnetic vector potential A = A(r,t) in the

Coulomb gauge [48]. We work to order 1/c2 and assume that

the leading-order contribution to A is of order 1/c2. According

to the principle of minimal coupling, the Hamiltonian in the

Dirac representation becomes [17]

Ĥ ′ = cααα · (p − qA) + βmc2 + q�, (14)

where q is the electron’s electric charge. It is important now

to distinguish between the canonical momentum p̂′ = p = p̂ +
O(1/c3) and the total kinetic momentum π̂ππ ′ = p − qA = π̂ππ +
O(1/c3) of the electron. It is π̂ππ ′ rather than p̂′ that obeys the

Lorentz force law [32,33,49],

dπ̂ππ ′

dt
= q(E + ααα × B). (15)

Here, E = E(r,t) = −∇∇∇� − Ȧ is the electric field and B =
B(r,t) = ∇∇∇ × A is the magnetic field. The absence of explicit

magnetic-dipole moment terms in Eq. (15) agrees with the view

that the magnetic-dipole moment of the electron is an emergent

feature, due to the electron’s Zitterbewegung [18,24,27,28,34].

A. Positions and velocities

We continue to identify and distinguish between the position

r̂′
q of charge, the kinetic position ˆ̄rq and the mean position

r̂M—as the electron is in the presence of an electromagnetic

field, we now define these as

r̂′
q = r, ˆ̄rq = r̂M + δ̂δδ, r̂M = r, (16)

with

δ̂δδ =
p × s

2m2c2
+ O

(

1

c3

)

. (17)

Note that the potentials in Eq. (14) are evaluated at r, in accord

with the interpretation of r̂′
q as the position of charge [22,24].

Unlike the case for a free electron, the position difference δ̂δδ is

not necessarily constant—the electromagnetic field can alter

p × s to leading order, because dp̂/dt = −q∇∇∇� + O(1/c1)

and d ŝM/dt = 0 + O(1/c1), with ŝM = s being the mean spin

of the electron [18]. It follows that the kinetic velocity ˆ̄vq =
d ˆ̄rq/dt no longer equals the mean velocity v̂M = d ˆrM/dt ,

because

ˆ̄vq − v̂M =
dδ̂δδ

dt
=

qs × ∇∇∇�

2m2c2
. (18)

This subtlety will prove important below.

Velocity contributions like dδ̂δδ/dt are also known for elec-

trons in the solid state and are sometimes referred to as being

“anomalous” [42–47].

B. Hidden momentum

Explicit calculation of i[Ĥ ,r̂M ]/h̄ reveals that the mean

velocity is

v̂M =
βp

m
−

βp2p

2m3c2
− βqA +

qs × ∇∇∇�

2m2c2
+ O

(

1

c3

)

. (19)

Multiplying this by β and rearranging reveals that the canonical

momentum is

p̂ = βmv̂M +
p̂2p̂

2m2c2
+ qA −

βq(s × ∇∇∇�)

2mc2
+ O

(

1

c3

)

.

(20)

It is tempting to identify the first and second terms here with the

relativistically corrected kinetic momentum, and the third term

with the electromagnetic momentum. However, this leaves the

fourth term unaccounted for. To proceed, we must recognize

that the kinetic momentum should be cast in terms of the kinetic

velocity ˆ̄vq , rather than the mean velocity v̂M . This leads us to

recast the spin-dependent term in Eq. (20) as

−
βq(s × ∇∇∇�)

2mc2
=

βq(s × ∇∇∇�)

2mc2
−

βq(s × ∇∇∇�)

mc2

= βm
(

ˆ̄vq − v̂M

)

+
m̂ × Ê

c2
+ O

(

1

c3

)

,

(21)

with m̂ = βqs/m being the magnetic-dipole moment of the

electron. Here, we have made use of Eq. (18) and E = −∇∇∇� +
O(1/c1). Substituting Eq. (21) into Eq. (20) gives

p̂ = βm ˆ̄vq +
p̂2p̂

2m2c2
+ qA +

m̂ × E

c2
+ O

(

1

c3

)

. (22)

Thus, p̂ is comprised of relativistically corrected kinetic

momentum terms (βm ˆ̄vq + p̂2p̂/2m2c2), an electromagnetic

momentum term (qA) and, pleasingly, a hidden momentum

term (m̂ × E/c2) with the prototypical form described in

the introduction. We attribute this hidden momentum to a

modification of the electron’s Zitterbewegung by the electric
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field E. For the special case in which E is due to a “test particle,”

a complementary result was derived in Ref. [8]. A similar result

was derived in Ref. [23], but with no explicit recognition of

the hidden momentum. Note that the total kinetic momentum

π̂ππ includes the hidden momentum m̂ × E/c2.

The hidden momentum m̂ × E/c2 is small; its expectation

value being � − qh̄|E|/2mc2 = |E| × 10−40 A s2 in magni-

tude.

IV. ISOLATED ATOM OR MOLECULE

The formalism employed in the previous section does not

allow us to confirm that the hidden momentum m̂ × E/c2

is canceled by the momentum of the electromagnetic field,

because the field is externally imposed. Let us conclude,

therefore, by considering an isolated atom or molecule—a

closed system. Our description is effectively truncated at order

1/c2 and we therefore neglect terms of order 1/c3 or smaller.

The subscripted “q” and “M” notation used above is henceforth

dropped, for the sake of clarity. Let us focus our discussion

upon a molecule (an atom being a special case with one nu-

cleus). We regard the molecule as being an electrically neutral

collection of electrons (subscript i) and spin 0 or 1/2 nuclei

(subscript j ), bound together by electromagnetic interactions

in the absence of external influences. We refer to the electrons

and nuclei collectively as “the particles” (subscript k) and treat

the kth particle as a point-like object of rest mass mk , mean

position r̂k = rk , canonical momentum p̂k = −ih̄∇∇∇k , electric

charge qk , and magnetic-dipole moment m̂k = γk ŝk , with γk

being the gyromagnetic ratio and ŝk = h̄σσσ k/2 being the mean

spin, where it is to be understood that m̂k/γk = ŝk = 0 for spin

0 nuclei. Let Ri =
√

3h̄/2mic account for the effective finite

sizes of the electrons [50,51], Rj account for the finite size of

the j th nucleus [52,53], and fk = (1 − qk/2mkγk) be the usual

spin-orbit factor [54–57] for the kth particle. We regard R2
k as

being of order 1/c2 and take the Hamiltonian governing our

molecule to be [33,51–53,58–61]

Ĥ =
∑

k

p̂2
k

2mk

+
∑

k

1

2
qk�̂k −

∑

k

p̂4
k

8m3
kc

2

+
∑

k

1

6
qkR

2
k∇

2
k �̂

q

k −
∑

k

fkm̂k ·
(

p̂k × ∇∇∇k�̂
q

k

)

mkc2

−
∑

k

qkp̂k · Âk

2mk

−
∑

k

1

2
m̂k · (∇∇∇k × Âk), (23)

with

�̂k = �̂
q

k + �̂R
k (24)

being the intramolecular scalar potential seen by the kth

particle at r̂k and

Âk = Âm
k + Âv

k (25)

being the intramolecular magnetic vector potential, where

�̂
q

k =
∑

k′ �=k

qk′

4πǫ0r̂kk′
, (26)

�̂R
k = −

∑

k′ �=k

qk′R2
k′δ

3(r̂kk′)

6ǫ0

(27)

account for the electric charges and finite sizes of the other

particles and

Âm
k =

∑

k′ �=k

μ0m̂k′ × r̂kk′

4πr̂3
kk′

, (28)

Âv
k =

∑

k′ �=k

μ0qk′

16πmk′

[

1

r̂kk′
p̂k′ + p̂k′

1

r̂kk′

+ r̂kk′
1

r̂3
kk′

(r̂kk′ · p̂k′) + (p̂k′ · r̂kk′)
1

r̂3
kk′

r̂kk′

]

(29)

account for the intrinsic magnetic moments and orbital mo-

tions.

A. Hidden momentum of the electrons and nuclei individually

Defining1

δ̂δδk = ˆ̄rk − r̂k =
p̂k × ŝk

2m2
kc

2
, (30)

ˆ̄vk =
d ˆ̄rk

dt
, (31)

v̂k =
d r̂k

dt
, (32)

a calculation analogous to that outlined in the previous section

reveals that the canonical momentum of the kth particle is

p̂k = mk
ˆ̄vk +

p̂2
k p̂k

2m2
kc

2
+ qkÂk −

m̂k × ∇∇∇k�̂
q

k

c2
+ O

(

1

c3

)

.

(33)

Thus, each electron and spinning nucleus in the molecule

harbours a hidden momentum −m̂k × ∇∇∇k�̂
q

k/c
2.

A basic estimate suggests that the hidden momentum of

an electron in a hydrogen atom corresponds to a notional elec-

tronic speed of only�5 × 101 m/s. Significantly stronger elec-

tric fields can be found in heavy atoms and molecules [62], in

which case the hidden momentum might be significantly larger.

In the calculation leading to Eq. (33), the emergence of the

hidden momentum can be traced to the “1” in the spin-orbit

factor fk (a translating magnetic-dipole moment resembles

an electric-dipole moment [23,35,54]) while the emergence

of the momentum difference mk(ˆ̄vk − v̂k) can be traced to

the “−qk/2mkγk” (Thomas precession [23,35,55–57]). This

seems natural, because the position difference δ̂δδk is intimately

associated with Thomas precession [23,35].

For a more detailed discussion of the energy, linear momen-

tum, angular momentum, and boost momentum of a molecule

to order 1/c2, see Ref. [63].

B. Total hidden momentum and its cancellation

We recognize P̂ =
∑

k p̂k as being the total momentum of

the molecule. P̂ is conserved and generates (Cartesian [64])

translations of the molecule in space [65,66]. The hidden

contribution to P̂ is countered by an equal and opposite con-

1For the j th nucleus, the kinetic position ˆ̄rj appears to differ from

the center r̂j + (2mjγj/qj − 1)δ̂δδj of charge.
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tribution due to the magnetic-dipole moments of the particles,

−
∑

k

m̂k × ∇∇∇k�̂
q

k

c2
+

∑

k

qkÂm
k = 0. (34)

Thus, the total hidden momentum of the molecule is canceled

by the momentum of the intramolecular electromagnetic field,

as one might expect [2,3,5–7].

V. OUTLOOK

An electron vortex [9–16] in an electric field E might

harbour a hidden momentum due to a modification of the

electron’s orbital motion by E, in addition to the spin-based

hidden momentum identified in this paper. The orbital-based

hidden momentum should take the form mℓ × E/c2, with mℓ

being the orbital magnetic-dipole moment of the electron. As-

suming that |mℓ| ∼ −qh̄|ℓ|/2m, this is� − qh̄|ℓ||E|/2mc2 =
|ℓ||E| × 10−40 A s2 in magnitude. The orbital-based hidden

momentum could be significantly larger than the spin-based

hidden momentum (expectation value � − qh̄|E|/2mc2 in

magnitude), as the orbital angular-momentum quantum num-

ber ℓ ∈ {0, ± 1, . . . } is unbounded.

Inferring the existence of hidden momentum in the labora-

tory is an interesting problem. One might endeavour to measure

the associated angular momentum, which is not necessarily

canceled by the angular momentum of the field that gives rise to

the hidden momentum—unlike the total linear momentum, the

total angular momentum of a system “at rest” need not vanish

[2]. An electron vortex with a large orbital angular momentum,

perturbed by an electric field, might prove particularly suitable

for this purpose.

The hidden momentum of a system like the one described

in the introduction might be referred to more descriptively as a

hidden kinetic momentum, to emphasize that it is an imbalance

of the kinetic momenta of the system’s constituent particles:

“
∑

γmv �= 0” [1–4]. In this paper we have established that

even a single particle like the electron can harbour a hidden

momentum associated with its spin. We can now conceive,

therefore, of systems containing such particles in which there is

no imbalance of the kinetic momenta of the particles and yet the

total hidden momentum of the particles is nonzero: “
∑

γmv =
0” but “

∑

m × E/c2 �= 0.” One might say that such a system

harbours hidden hidden momentum, in distinction to hidden

kinetic momentum. A loop of electric current (driven through

a resistive element by a battery) encircling the tip of a (long)

magnetized needle is one such system. To appreciate this,

consider a simple model of such a system in which the loop

is circular and lies in the x-y plane while the tip of the needle

coincides with the center of the loop, at the origin. If we

imagine that the magnetic-dipole moment “m” of each charge

carrier is aligned radially due to the magnetic field of the

needle while the electric field “E” driving the current around

the loop is aligned azimuthally, then the hidden momentum

“m × E/c2” of each charge carrier is aligned axially. Thus, the

system harbours a hidden hidden momentum “
∑

m × E/c2 �=
0,” with no hidden kinetic momentum to speak of: “

∑

γmv =
0.” Hall effects [67,68] have been neglected in our argument.

We do not expect these to dramatically alter the underlying

physics, however.
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APPENDIX: REPRESENTATIONS

The Foldy–Wouthuysen representation was introduced in

Ref. [18] by Foldy and Wouthuysen to establish a correspon-

dence between Dirac’s fully relativistic theory expressed in the

Dirac representation [17] and the low-energy Pauli description

of spin 1/2 particles, familiar from atomic and molecular

studies for example [31]—it is not obvious that the low-energy

limit of the former coincides with the latter. In this paper we use

both the Dirac and Foldy–Wouthuysen representations because

some quantities such as the position r̂′
q = r of charge have

simple operator representatives in the Dirac representation

while others such as the mean position r̂M = r have simple

operator representatives in the Foldy–Wouthuysen representa-

tion instead. The following is a summary of key results from

Ref. [18].

For a free electron, the Foldy–Wouthuysen representation

is related to the Dirac representation by the unitary operator

U = exp

{

i

[

−
iβααα · p

2p
tan−1

( p

mc

)

]}

. (A1)

The transformed Hamiltonian

Ĥ = UĤ ′U † = βEp (A2)

is diagonal and even: the upper and lower components of

the transformed spinor ψ = U0ψ
′ correspond, respectively, to

positive and negative energies.

For an electron in an external electromagnetic field, the

Foldy–Wouthuysen representation is instead related to the

Dirac representation by a sequence of unitary transformations.

Taking

U † = e−iS1e−iS2e−iS3 · · · , (A3)

with

S1 = −
iβααα · (p − qA)

2mc
, (A4)

S2 =
h̄qααα · E

4m2c3
, (A5)

S3 =
iβαaαbαc(pa − qAa)(pb − qAb)(pc − qAc)

6m3c3
, (A6)

gives

Ĥ = UĤ ′U † − ih̄U
∂U †

∂t

= βmc2 +
βp2

2m
+ q� −

βp4

8m3c2
+

h̄2q∇2�

8m2c2

−
qs · (p × ∇∇∇�)

2m2c2
−

βqp · A

m
−

qβ(s · B)

m
+ O

(

1

c3

)

(A7)

as the transformed Hamiltonian, which is even to order 1/c2.
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