
Greenland, Steve and Ireland, Murray and Kobayashi, Chisato and 

Mendham, Peter and Post, Mark and White, David (2018) Development of 

a minaturised forwards looking imager using deep learning for 

responsive operations. In: 4S Symposium 2018. ESA, Noordwijk. , 

This version is available at https://strathprints.strath.ac.uk/63922/

Strathprints is  designed  to  allow  users  to  access  the  research  output  of  the  University  of 

Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights 

for the papers on this site are retained by the individual authors and/or other copyright owners. 

Please check the manuscript for details of any other licences that may have been applied. You 

may  not  engage  in  further  distribution  of  the  material  for  any  profitmaking  activities  or  any 

commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the 

content of this paper for research or private study, educational, or not-for-profit purposes without 

prior permission or charge. 

Any correspondence concerning this service should be sent to the Strathprints administrator: 

strathprints@strath.ac.uk

The Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research 

outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the 

management and persistent access to Strathclyde's intellectual output.

http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/


The 4S Symposium 2018 – S. Greenland 1

Design & Prototyping of a Minaturised Forwards Looking Imager 

using Deep Learning for Responsive Onboard Operations

Steve Greenland (1), Murray Ireland (1), Chisato Kobayashi (1), Peter Mendham (2), 
Mark Post (3), David White (4)

(1) Craft Prospect Ltd, Tontine Building, Glasgow, G1 5ES, United Kingdom, 

+44 (0) 75 88 888 146, steve.greenland@craftprospect.com
(2) Bright Ascension Ltd, Edinburgh, United Kingdom.

(3) University of Strathclyde,Glasgow, United Kingdom
(4) University College London, London, United Kingdom

ABSTRACT

This work presents the design and prototyping work of a miniaturised camera system with integrated 

‘deep learning’ neural network capabilities, developed within a framework for implementing 

autonomous data processing onboard small and nanosatellites. The framework targets low-resource 

algorithms developed in other sectors including autonomous vehicles and commercial machine 

learning. For proof of concept, the system has been initially trained for real time cloud detection and 

classification, looking 1 min ahead of the satellite to enable responsive decision making for Earth 

observation and telecommunication applications. The design has been miniaturised and modularised 

to allow accommodation on small and nanosatellite systems. Flight representative and heritage 

components have been selected for prototyping. Compatibility of the autonomy framework with 

ECSS and CCSDS standards and existing off-the-shelf flight software was evaluated. A simulator to 

facilitate end to end testing of the system has been developed using existing data sets as input, 

incorporating distortions to test robustness. Results show that a competitive low power < 2 W system 

can be delivered, with the chain < 5 seconds from capture to input into the onboard planning and with 

timing consistent with continuous real time decision-making.

1 INTRODUCTION

With progress in miniaturised high performance sensing capabilities, and despite technology 

improvements in data rates, small and nanosatellite systems will remain downlink limited; able to 

capture more data than can be returned to the ground cost-effectively in traditional raw or near-raw 

forms. The current state of the art is the reported as 120 Mbps X-band downlink achieved by Planet 

on their satellites using an extensive ground network sized for ~5 TB of downlink per day [1], whilst 

the incoming generation of multi-, hyper- spectral and high resolution CubeSat imagers are capable 

of generating data rates in excess of 100 Mbps [2]. This presents a challenge both to the ground 

station infrastructure, solved to some extent by shared outsourced facilities, and technological 

enhancements in downlink bandwidth. Growth in the market for new applications like video capture 

[3] will further push downlink demands, while the embedding of existing ground-based image 

processing algorithms into onboard systems is non-trivial especially in limited resource 

nanosatellites, necessitating new approaches. Pushing the boundaries of these systems beyond Earth 

orbit present additional challenges around relay availability and bandwidth, and delay-tolerance, 

leading to more autonomous approaches. This paper presents part of a larger work into onboard data

autonomy, part funded by the Centre for Earth Observation and Instrumentation on behalf of the UK 

Space Agency, performed in a consortium led by Craft Prospect Ltd.
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2 FORWARDS LOOKING IMAGER INSTRUMENT CONCEPT 

The Forwards Looking Imager (FLI) instrument provides analysis of the upcoming environment of 

the satellite to allow real-time decision making.  This can take a number of forms: it may be the 

prioritisation of sensing targets from a list, repositioning and slew manoeuvres to capture targets of 

opportunity, or reassignment of targeting tasks among a constellation.  Figure 1 shows the system 

architecture of the FLI instrument. 
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Figure 1; System architecture of the Forwards Looking Imager concept 
 

Within this field, the cloud detection case represents a near-term opportunity for responsive Earth 

observation imaging, and an opportunity to apply the framework described in previous work [4] and 

summarised here in Sec. 3.  The operations concept considered is real-time detection of clouds using 

forwards looking wide field of view imager to allow a second near-Nadir pointing payload to be 

targeted at cloud gaps, such as for high resolution Earth imaging or to enable optical laser 

communications.  In all avoidance scenarios, a rapid reacquisition of the payload is necessary, with 

the assumption that the overhead is significantly less than the active operations.  In subsequent passes 

retasking the satellite or satellites within the same network can fill the gaps, provided information on 

previous acquisitions can be efficiently exchanged. 

 

The FLI is designed to provide imagery across a swath sized for the application and dependent upon 

the range of viable targets.  Two design points have been considered in development: (a) a wide 

swath, with a design point defined maximise both access to targets across a wide elevation and 

response time to subsatellite point, and (b) a moderate swath, with the design point driven by a factor 

of CubeSat imaging state of the art, taken as the PlanetScope instrument [5], in order to meet a 

minimum response time.  These design points imply differing levels of control authority, resolution, 

and responsiveness for a targeting payload. 

 

(a) Taking a design point altitude of 400 km and ignoring oblateness effects, the swath to 30 deg 

elevation is 1480 km.  Based on a camera with a detector width of 2000 pixels, each pixel will 

equate to around 750 m.  With a pitched forwards looking angle of 55 deg the satellite response 
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time after imaging would be up to 2 min, however this would be at the expense of distortion 

the imagery due to the viewing angle at elevations close to 30 deg. 

 

(b) Taking a design point of the FLI operating over 10x the swath of the current state of art for a 

CubeSat imaging system at 4 m GSD, would give a 40 m per pixel system, over a 2000 pixel 

width driving a total swath of 80 km.  With a desired advanced time of 60 s in this case, a 

shallower pitched forwards angle of 22 deg leads to significantly improved viewing factor and 

distortion at elevations above 60 deg. 

3 AUTONOMY FRAMEWORK 

It is recognised that the FLI instrument represents an enabling technology for autonomy, but must 

exist within a wider framework of hardware and software elements to realise the goal of responsive 

onboard operations.  Previous work has been undertaken to characterise this framework by extension 

of existing ECSS and CCSDS standards [4].  The CCSDS Mission Operations Service Standard 

(MOSS) [6] was identified as a basis for adding the autonomy building blocks, using a Service 

Oriented Architecture (SOA) to facilitate transition from more common ‘monolithic’ architectures to 
provide a service-driven networked system for new applications.  This allowed the definition of a 

high level autonomy framework visualised in Figure 2 and referenced against existing off-the-shelf 

space software, GenerationOne [7] produced by Bright Ascension Ltd. 

 

 
 

Figure 2; Autonomy framework architecture, defined with respect to MOSS, identifying new services, 

and functional groupings based on existing standard off-the-shelf software for CubeSats 
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MOSS enables a modular approach to the operational system design through the identification of 

components which interact through open and published service interfaces.  In reviewing the suitability 

of MOSS for the operational concept anticipated here, additional classes of services and element were 

identified.   

 

• The Communications Management Service permits the management of communications 

functions, controlling aspects such as link utilisation and data routing. 

• The Data Source Service captures the ability to generate data, either from the original source, 

in the case of an instrument, or as an output of a data processing chain. Data can either be 

sourced for real-time applications (“pushed” to other onboard functions) or archived for later 
use. 

• The Data Processing Service provides the ability to query and configure data processing 

chains which can be used with a data source or archived data. 

 

Within the framework shown in Fig. 2, the FLI represents elements within the Data Source and 

Processing Services, which might be expected to sit within an implementation such as is described in 

Fig. 3 to enable an autonomous imaging system for a next generation Earth observation nanosatellite. 

 

 
 

Figure 3; Autonomy framework implementation within the FLI instrument operations concepts 

4 CLOUD DETECTION ALGORITHM 

Within the implementation architecture proposed in Fig. 3, a survey of potential algorithms for each 

of the functional blocks was undertaken.  For the FLI system, an evaluation of three different 

algorithms were brought forward for further study, outlined in Table 1.  Using available open source 

implementations of code initially, data from LandSat-7 images was processed to compare anticipated 

processing speeds and implementation challenges for these techniques.  Of these, both TextureCam 

and VGG19 were taken forward, to demonstrate two different toolchains for the target hardware 

device: a Zynq Z-7020.  Whilst the TextureCam C code was well maintained and compact enough 

for implementation and acceleration on the Zynq, a number of flavours of Convolutional Neural 
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Network algorithms were then explored to assess (a) the acceleration possible to meet a minimum 

performance threshold and (b) the ease of transfer from a high level language into an FPGA. 

 
Table 1; candidate detection algorithms for the FLI instrument 

 

Algorithm 

class 

Reference 

implementation 

Advantages Disadvantages 

Rule-based Fmask Well known and understood 

Deterministic  

Requires specific wavelength inputs 

including infrared 

Require a catalogue of georectified 

reference images which is not available 

in real time 

Computationally expensive 

Random forest TextureCam Well known and understood 

Rapid inference 

Adequate pre-processing of data set 

might be challenging onboard 

Requires good feature engineering 

Deep learning VGG19 (CNN)  Rapid inference 

 

Requires training data set 

Training computationally expensive  

 

Deep learning CNNs consist of a series of multiple layers of different types, each tailored for a given 

function.  The convolution layers will extract features from their inputs (whether the original input 

layer or else deriving higher-level features from those extracted by previous layers).  Each 

convolution layer contains a set of kernels, that is clusters of processing units that are applied across 

their input (convolved, analogous to passing a filter across an image) using the same weights at each 

point.  By repeatedly applying the same kernels across many points in the image, the space of weights 

that must be learnt is greatly reduced, improving scalability.  Rectified Linear Unit layers (ReLU) are 

usually applied after a convolution layer; they output the maximum of their inputs, and improve the 

efficiency of training.  Pooling layers improve scalability, by downsampling and thus reducing the 

dimensionality of the input to subsequent layers.  Fully-connected layers subsequently learn non-

linear functions of the features learnt by previous layers. 

 

 
Figure 4; an example of a simplified convolutional neural network 

5 IMPLEMENTATION 

A prototype of the end to end system was next developed, using the cloud detection case for a system-

in-the-loop test bench to verify the onboarding process and as the first step for qualifying new 

algorithms in flight ready hardware.  Whilst the goal of the prototype system (see Sec. 6.2) was to act 

as a proof of concept focussed on the cloud detection case; the bench was also designed to be 

reconfigurable to other use cases.  To facilitate rapid deployment of new algorithms into a LEO 

environment, a number of additional strategies were identified during implementation, 

 

• target Zynq FPGA was selected with known flight heritage systems, Zynq Z7020 
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• use of tools to enable transfer from high level languages associated with deep learning like 

Keras, Caffe and Python into accelerated code using high level synthesis and overlays 

• adaption of existing open source libraries for image processing 

• transfer learning of pre-trained neural networks for application to the Earth observation case 

• application of techniques to discretise the convolutional neural network 

 

A common limitation of machine learning in general is the availability and suitability of training data 

sets.  Although LandSat data was used for the input into the simulation, the deep learning algorithm 

itself was trained on pre-classified data available from Planet, demonstrating the potential for 

inference from a different data set to that trained.  It is noted however, that although distortions were 

applied to the data set to represent the as viewed profile of the images, the trained data set used was 

provided after anomalies have been discarded and radiometric calibration applied; future work will 

acquire or emulate a more representative dataset at the detector source. 

 

5.1 Simulation Environment 

 

A modular python-based simulation environment has been developed for the onboard data autonomy 

program, able to run as a standalone model or to interface with hardware under test.  The simulation 

outputs a visualisation of the orbit and classification algorithm performance, and outputs test data.  

Further work will interface this simulation to existing off-the-shelf spacecraft software emulators.  

The simulation feeds the hardware under test with raw image data from LandSat, and receives back 

a tiled classification.  A path finding function was also applied to determine where to focus the 

primary payload or, where no targets existed for a given period, inactivate the primary payload to 

conserve power.  For initial testing a simple discrimination of cloudy, partial and clear was selected, 

allowing more ready human visual confirmation of correct function. 

 

     
Figure 5; embedded deep learning system-in-the-loop simulation 

6 PROTOTYPING RESULTS 

Typical results from the system-in-the-loop prototyping and test run is shown in Fig 6.  The test run 

divided test images of swath 800 x 200 pixels into 64 tiles (16 x 4) for processing by the deep learning 

algorithm.  At the 400 km design point each tile would be just under 2 km in width approximating an 

area access rate of 250 km2/s.   
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Figure 6; prototyping results superimposed over the input image within the system-in-the-loop 

simulation [colours: R: cloudy, G: clear B: partial] 

 

6.1 Performance 

 

There are three key performance metrics for the MLI instrument: accuracy/confidence, power and 

timing. The current algorithm after training shows a 98% accuracy in correctly classifying the tile 

against the human observed data set.  This provides a baseline for relative performance but was non-

optimised and could be improved with the training data set used.   

 

The software-only and accelerated implementations of the deep learning algorithm were compared in 

terms of power and timing for the accuracy level above.  In a test run of 100 images, the time to 

complete was 5293 s in the former, which was accelerated to 19 s in the latter, an improvement of 

nearly x300.  Although the instantaneous power consumption of the accelerated hardware was higher 

due to the increased logic under load, the power reduction available is much lower. 

 

 
 

Figure 7; comparison of power consumption between software-only and accelerated 

normalised with respect to % completion and image processing 

 

In a LEO context for design point specified in Sec.2(b), it would be expected that the forwards looking 

imagery requires processing at an area access rate equal to the swath width multiplied by the ground 

speed, around 580 km2/s.  Maintaining the same tile to pixel ratio to the trial, which was found to be 

strongly impacted by the training data set available, would require a minimum processing rate of 2.2 

images/s.  This hard timing constraint is therefore met by the accelerated algorithm which can process 

5.3 image/s, allowing real-time operation with a margin of 140%.  Taking the inverse would equate 

to a duty cycling in the current (non-optimised) version of > 60%, leading to a mean power 

consumption estimate of 0.9 W.  It is unlikely that the system would be powered down between 

samples, rather in maintaining an overall consumption of 2 W and with optimisation, it is plausible a 
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3x repeated sampling strategy per tile might be used to increase overall confidence.  With latencies 

in the data transfer considered, a response time of less than < 5 s from capture to onboard planning is 

then expected. 

 

6.2 Objective compliance 

 

Based against the objectives specified for prototyping in Table 2, all high-level requirements have 

been verified for the cloud detection case. 

 
Table 2; requirement compliance for the high level objectives of the prototyping activity 

 

Requirement Description Verification Compliance 

Proof-of-

concept 

Demonstrate autonomy in the 

system loop simulation 

Use imagery from forward camera to enable onboard 

decision-making and vertical camera pointing 

C 

Cloud 

detection 

Deploy an algorithm for cloud 

detection 

Coordinates of clouds in supplied camera image are 

returned to satellite OBC 

C 

Integrated unit 

test 

Develop unit test for system-in-

the-loop 

Images are transmitted from simulation to FPGA and cloud 

coordinates are returned 

C 

Acceleration Accelerate algorithm in FPGA 

programmable logic 

Speed and power draw of algorithm running in PL is 

compared to performance in PS 

C 

7 CONCLUSION 

This work has outlined the design and prototyping of the FLI instrument embedded with a deep 

learning algorithm for target classification.  The work has shown that a cost and power effective 

system may be implemented using emerging deep learning concepts to enable more responsive 

onboard operations for Earth observation in real time.   A framework for integrating this system into 

existing off-the-shelf software for CubeSats and aligned to existing standards has been considered. 

 

An initial use case of the system for cloud detection in LEO has been developed.  Such a system may 

be accommodated within a CubeSat form factor for immediate application and in support of more 

complex operations of high value missions or payloads.  For the MLI cloud detection use case, a 

preliminary design point is explored and tested, demonstrating the feasibility of continuous real-time 

operations at a 0.9 W power consumption if duty cycled providing an area access rate equivalent to 

scanning for targets over an 80 km swath and with a 60 s advance notification.  Other swath width 

appear feasible provided appropriately scaled training data sets can be acquired; timing up to 120 s 

may be feasible noting the distortions in the field of view this implies. 

 

Future work will allow flight demonstration of the core systems within the MLI instrument; this will 

begin with a planned drone flight in Q2 2018 looking towards a wind turbine use case and which can 

also serve to demonstrate the rapid application of transfer learning.  This, together with acquisition 

of raw in-orbit imaging from a comparable camera system, will address concerns over image quality 

in the as-deployed system in comparison to the training data used.  Following space ruggedization, 

an initial MLI protoproduct is planned for the second half of 2018. 
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