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ABSTRACT 14 

Robust event detection of low signal-to-noise ratio (SNR) events, such as those characterized as 15 

induced or triggered seismicity, remains a challenge. The reason is the relatively small magnitude 16 

of the events (usually less than 2 or 3 in Richter scale) and the fact that regional permanent seismic 17 

networks can only record the strongest events of a microseismic sequence. Monitoring using 18 

temporary installed short-period arrays can fill the gap of missed seismicity but the challenge of 19 

detecting weak events in long, continuous records is still present. Further, for low SNR recordings, 20 

commonly applied detection algorithms generally require pre-filtering of the data based on a priori 21 

knowledge of the background noise. Such knowledge is often not available.  22 

We present the NpD (Non-parametric Detection) algorithm, an automated algorithm which detects 23 

potential events without the requirement for pre-filtering. Events are detected by calculating the 24 

energy contained within small individual time segments of a recording and comparing it to the 25 

energy contained within a longer surrounding time window. If the excess energy exceeds a given 26 

threshold criterion, which is determined dynamically based on the background noise for that 27 

window, then an event is detected. For each time window, to characterize background noise the 28 

algorithm uses non-parametric statistics to describe the upper bound of the spectral amplitude. Our 29 

approach does not require an assumption of normality within the recordings and hence it is 30 

applicable to all datasets. 31 

We compare our NpD algorithm with the commonly commercially applied STA/LTA algorithm 32 

and another highly efficient algorithm based on Power Spectral Density using a challenging 33 

microseismic dataset with poor SNR. For event detection, the NpD algorithm significantly 34 

outperforms the STA/LTA and PSD algorithms tested, maximizing the number of detected events 35 

whilst minimizing the number of false positives.  36 
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 37 

 38 

INTRODUCTION 39 

Microseismic monitoring refers to the recording and detection of small in magnitude (less than ML 40 

3) earthquakes. It was mainly developed in the framework of the Test Ban Treaty (late 1950s) for 41 

the monitoring of the relaxation of the rock mass after nuclear weapon testing (Lee and Stewart, 42 

1981). In such a demanding environment, microseismic monitoring proved to be a powerful tool, 43 

tuned to detect weak seismic signals in low signal-to-noise ratios. Induced (RIS) or Triggered 44 

Seismicity (RTS) mainly consists of sequences of microearthquakes with magnitudes ML 3 or less. 45 

Unless there are specific concerns of the occurrence of RIS/RTS, the phenomenon is usually 46 

monitored by existing national seismic networks with completeness magnitudes usually down to 47 

M = 2 or 1. Microseismic monitoring based on temporary installations has the potential to provide 48 

missed information on the occurrence of shocks with magnitudes ML=0 or even less than that (e.g. 49 

Pytharouli et al. (2011)). Hence, its applications have expanded into a wide range of projects 50 

related to RIS/RTS including the monitoring of rockslides and landslides (Helmstetter et al. 51 

(2010); Torgoev et al. (2013); Yfantis et al. (2014)), the monitoring of fracking processes 52 

(Maxwell (2011)), reservoir monitoring for geological CO2 (Zhou (2010)) and radioactive waste 53 

disposal (Young et al. (1993)). A microseismic monitoring configuration mainly consists of short-54 

period seismic arrays, with the components (seismometers) placed in a grid or triangular geometry, 55 

depending on their number. For short-duration projects and temporary installations, one array 56 

consisting of four (single or three-component) seismometers, deployed in a triangular geometry, 57 

is regarded adequate (Joswig (1992)). 58 
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The high sensitivity of a microseismic monitoring system is also its main caveat. Seismometers 59 

record every vibration of the ground that is caused by any type of sources, at distances that can 60 

extend to tens of kilometers depending on the site conditions and the energy emitted by the seismic 61 

source. In addition, instrumental self-noise is present at all times. As a result, it can be extremely 62 

difficult to distinguish between the microseismicity that is of interest to a project and everything 63 

else. Such circumstances may be less problematic for projects such as hydro-fracturing, where the 64 

likely location and time of occurrence of microseismicity is known a priori. But for the vast 65 

majority of applications, this is not the case and peaks in ambient noise can be mistakenly regarded 66 

as microseismic events. A false increase in the recorded frequency of microseismic events will 67 

bias project results. Furthermore, manual verification of each event will result in significant data 68 

processing time, yet neglecting verification can lead to other adverse economic impacts; for 69 

example, unnecessary road closures due to the false triggering of an early warning system for 70 

landslides. By contrast, relaxing event detection criteria to avoid false alarms can result in excess 71 

risk, with microseismic events remaining undetected. Monitoring for longer than a couple of days 72 

and with a sampling rate between 200 – 250 Hz (a range adequate for the needs of most projects 73 

requiring microseismic monitoring) leads to vast datasets that are not cost effective for visual 74 

inspection and require a computational detection approach.  75 

A number of automatic detection approaches have been developed that work in the time or 76 

frequency domain or both e.g., Freiberger (1963); Goforth and Herrin (1981); Joswig (1990); 77 

Gibbons and Ringdal (2006); Küperkoch et al. (2010); Vaezi and Van de Baan (2014), to name a 78 

few. For a more detailed review on existing detection algorithms see Supplementary material, 79 

Section A.  80 



5 

All detection algorithms have advantages and shortcomings with no algorithm being clearly 81 

optimal under all source, receiver, path and noise conditions (Withers et al. (1998)). The most 82 

widely used event detection algorithm at present is the STA/LTA (Bormann (2012)) which 83 

operates in the time-domain. STA/LTA is an excellent onset time detector for adequately high 84 

SNR events; a condition that may not be true in the case of weak microseismic events. Also, the 85 

method can lead to false triggers unless the data used are optimally filtered to minimize the effect 86 

of noise; this is difficult to achieve in a varying noise background. In fact, in all algorithms where 87 

bandpass filtering is part of the detection process (STA/LTA or Goforth’s and Herrin’s algorithm), 88 

some kind of a priori knowledge on the expected signals is assumed. The choice of the filter to be 89 

used is important, as inappropriate filtering can result in the removal of useful information from 90 

the data.  91 

The method by Vaezi and Van de Baan (2014) was found to outperform the STA/LTA technique 92 

by detecting a higher number of weak events while keeping the number of false alarms at a 93 

reasonable level (Vaezi and Van de Baan (2015)). It requires, however, some pre-processing where 94 

all noise bursts or transients that may exist in the data are removed. It also assumes stationary noise 95 

that follows a normal distribution and, therefore, employs the mean and standard deviation as 96 

statistical tools. Although this might be a good approximation for recordings with high SNR, it is 97 

not the case for seismic data with low SNR. In such cases, the average PSD is not representative 98 

of the central tendency of noise and as such any detection criteria based on deviation from the 99 

mean could lead to a large number of ‘false’ detections. This is particularly important where long, 100 

continuous recordings are available as it can significantly increase the processing time and bias 101 

the results. 102 
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The aim of this paper is twofold: first, we present a methodology for the characterization of the 103 

background noise in microseismic recordings. This is an important step in the analysis as it allows 104 

for the characteristics of noise to be revealed, i.e. whether it is a stationary or non-stationary 105 

process, and helps making informed decisions on the value of parameters in subsequent analyses 106 

for automatic event detection. Second, we propose a new detection algorithm, namely NpD (Non-107 

parametric detection) algorithm, which assumes the presence of non-stationary noise and most 108 

importantly, does not require any bandpass filtering of the microseismic records. The algorithm 109 

operates in the frequency domain, using the Power Spectral Density (Welch (1967)) and it has 110 

been implemented in Matlab. The NpD algorithm is influenced by the research of Shensa (1977) 111 

and Vaezi and van der Baan (2014). We extend their method by introducing non-parametric 112 

statistics and a dynamic event detection threshold, to be applicable to datasets with non-stationary 113 

background noise. 114 

 115 

 116 

THE POWER SPECTRAL DENSITY (PSD) SPECTRUM 117 

The Power Spectral Density (PSD) spectrum can be estimated using Fourier transforms, such as 118 

the Welch’s modified periodogram method (1967) or other techniques such as the maximum 119 

entropy method (Kesler (1978)). The PSD of a signal refers to the spectral energy distribution per 120 

unit time and is simply the representation of the signal in the frequency domain (Press et al. 121 

(2007)), measured in squared magnitude units of the time series data per unit frequency.  122 

 123 

Background noise and microseismic event discrimination based on the PSD spectrum 124 
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Microseismic events have been found to represent stronger spectral content over a frequency band 125 

that depends on the nature of the event, than that of background noise (Vaezi and van der Baan 126 

(2014)). According to this, a microseismic event can be regarded as an outlier, i.e. a data value or 127 

values that are outwith an expected range which represents the noise. The challenge is to define 128 

the upper bound of this range when no a priori knowledge of the expected signal (in terms of 129 

amplitude and frequency content) is available. 130 

In statistical analyses, for populations that are normally distributed, the detection of outliers is 131 

usually based on the 3j criterion, where j is the standard deviation of the data (Barnett et al. 132 

(1994)). Any values that are outwith the ±3j range are considered outliers. This range includes 133 

99.7% of the data. For populations that are not normally distributed though, this criterion could 134 

lead to erroneous results as the mean is not necessarily the best quantity to describe the central 135 

tendency of the data. Even if the PSD values are indeed normally distributed for one hour of data, 136 

it does not guarantee that this will be the case for the full duration of the data set. A robust method 137 

for the characterization of the background noise and the determination of an upper bound for the 138 

noise PSD value is required. 139 

 140 

 141 

SPECTRAL CHARACTERISATION OF BACKGROUND NOISE 142 

Background seismic noise can result from numerous sources: natural perturbations, e.g. tides, 143 

tectonics, seasonal changes, etc., and man-made perturbations. Perturbations can have a periodic 144 

or transient nature; their durations may differ from instantaneous bursts to elevated noise that lasts 145 

for hours, days or even months; in the case of seismic arrays, noise amplitudes may vary between 146 
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seismometers at different locations. Investigations of the seismic noise in hydrofracking sites have 147 

shown that noise has nonstationary properties, correlated in both time and space (e.g. Chambers et 148 

al. (2010)). Despite this, most detection algorithms assume normality for the noise distribution 149 

(e.g., Vaezi and Van der Baan (2014) and (2015)).  150 

The following methodology allows for the determination of a characteristic level of background 151 

noise in the frequency domain through examination of the statistical distribution of its PSD 152 

spectrum. Knowing the distribution allows for the determination of the appropriate statistics, i.e. 153 

parametric or non-parametric, to be used in further analysis.  154 

 155 

Characteristic spectral level of background noise (Noise PSD) 156 

To determine a characteristic upper bound to the spectral amplitude of background noise, from 157 

here onwards named Noise PSD, over hourly, daily, or any other duration, time periods (temporal 158 

variation) and at seismometers deployed at different locations (spatial variation) we introduce a 159 

methodology based on the power spectral density (PSD).  160 

We compute the individual PSDs for Nw non-overlapping (to ensure that the data between 161 

segments are statistically independent) segments of duration tl for the frequency range 0 - Nyquist 162 

frequency, fNyq using the Welch’s modified method (Welch (1967)); see also Supplementary 163 

material, Section B). The PSD is calculated at discrete frequencies within this range. The total 164 

duration of the data set is then Nw*tl. In general, the duration of an individual segment should 165 

include at least two full cycles of the expected signal. We suggest a duration of 0.5 to 2 seconds is 166 

adequate for microseismicity due to shear failure. For research on other types of microseismic 167 
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events, such as those induced during a landslide, segments with longer durations are 168 

recommended.  169 

Upon completion of the PSD calculations for each individual segment, there are Nw PSD values 170 

for each discrete frequency in the range 0 - fNyq. To determine normality in the PSD values for a 171 

specific frequency, graphical methods, i.e. histograms, probability plots and boxplots, can be used. 172 

An alternative to graphical methods are normality tests such as Shapiro-Wilk test S-W (Razali 173 

(2011)) and Kolmogorov-Smirnov K-S test (Massey (1951)).  174 

If the normality check results in normally distributed PSD values for each frequency of the PSD 175 

spectrum, then a mean PSD value and a standard deviation (j) for each specific frequency can be 176 

calculated. The Noise PSD (i.e. the characteristic upper bound) value for each individual frequency 177 

can then be specified by applying the ± 3j criterion or any other suitable combination between the 178 

mean and the standard deviation as an upper threshold, e.g. mean ± j. 179 

If the normality testing reveals a non-normal distribution, an upper bound for the background noise 180 

can be determined using non-parametric statistics, i.e. percentiles. We recommend that a high 181 

percentile, between 75 and 90, is chosen. The Noise PSD is then defined by the chosen percentile 182 

PSD value at each discrete frequency f. 183 

 184 

 185 

THE NpD EVENT DETECTION ALGORITHM 186 

The NpD event detection algorithm (Non-parametric detection) enables microseismic events to be 187 

discriminated without any prior filtering of the data.  188 
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The algorithm is an alternative detection approach for data sets with low signal-to-noise ratios. It 189 

is based in the frequency domain by searching and detecting any changes in the PSD spectrum of 190 

the data recordings compared to the Noise PSD.  191 

The algorithm is described on the basis of continuous recordings 捲岫建岻 of any duration, though 1-192 

hour durations provide computational and time efficiency. The algorithm is executed in two Steps 193 

in order to minimize the computational time required. At the first step, (Step 1) a scan is performed 194 

to identify time segments that could potentially contain a microseismic event (or any other signal 195 

of interest in the more general case). Only those time segments that are picked in Step 1 are further 196 

investigated to detect potential microseismicity, or rejected altogether. The procedure is described 197 

in detail below: 198 

 199 

Step 1- Calculation of the excess energy over a continuous data record 200 

Following the background noise spectral characterization methodology described in the previous 201 

section, the Noise PSD for each data record 捲岫建岻 is calculated. The individual time segment 202 

duration tl to which the data record is divided, is chosen large enough to be able to accommodate 203 

the energy of a microseismic event or a representative energy section of a long-period long-204 

duration event (Das and Zoback (2011)) whilst at the same time small enough to be able to pick 205 

closely-spaced events. It is not necessary for the NpD algorithm to include full cycles of the 206 

expected signal. 207 

Next, the Noise PSD is subtracted from the PSD of each individual time segment forming a set of 208 

differences. Within each one of the Nw individual time segments, only the positive differences are 209 
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kept and summed. This sum is termed excess energy which, for each individual time segment 210 

starting at time t, is given by:  211 

鶏鯨経ｅ結捲潔結嫌嫌津痛 噺 崕デ 岫鶏鯨経津痛 岫血岻 伐 軽剣件嫌結 鶏鯨経岫血岻岻朝槻槌捗退待 ┸ 件血 鶏鯨経津痛 岫血岻 伐 軽剣件嫌結 鶏鯨経岫血岻 伴 どど                            ┸   剣建月結堅拳件嫌結          ┸   (eq. 1) 212 

where 券 噺 な┸に┸ ┻ ┻ ┸ 軽栂  213 

The total number of non-zero only, excess energy values, described here as N1, is equal to or less 214 

than the number Nw of the individual time segments that the data record is split to. The results of 215 

this process can be graphically presented as a scatterplot with each point’s coordinates being pairs 216 

of (PSD_excessn
t, t), with t being the start time of the nth individual time segment.  217 

 218 

Excess energy threshold determination 219 

Not all N1 excess energy values are accepted. In data records with highly variable background 220 

noise, the detection procedure described so far might result in a number of incorrect detections that 221 

do not correspond to events. In order to minimize this possibility, we introduce a threshold value 222 

and only accept those (PSD_excessn
t, t) pairs for which the excess energy is above this threshold.  223 

The threshold is determined based on the statistical properties of the excess energy values over the 224 

duration of the data record analyzed; more specifically, the first (Q1) and third quartiles (Q3) of 225 

the excess energy values. We then define the threshold value as: 226 

Threshold = Q3 + 0.5×IQR,           (eq. 2) 227 

where IQR = Q3 – Q1. 228 
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For the detection of outliers using the quartile values, a commonly used threshold is given by Q3 229 

+ 1.5×IQR, with the 1.5 factor justified by the standard normal distribution and leading to a 230 

probability of 99.3% for correctly detecting no outliers (Sun and Genton (2012)). We adopt the 231 

value 0.5 as a more conservative threshold. 232 

Only N2 (out of the total N1) excess energy values are eventually above the threshold and these are 233 

processed in the next Step of the analysis (Step 2). This reduces the calculation time significantly. 234 

 235 

Step 2 - Calculation of the excess energy over a local time window 236 

Step 2 is exactly the same as Step 1, but now the Noise PSD refers to a local time window rather 237 

than the duration of the full data record 捲岫建岻. This local time window, has a predetermined length 238 

and is centered around the starting time t of each of the N2 individual time segments that fulfilled 239 

the criteria of Step 1. The total number of local time windows used in Step 2 is N2 and as a result 240 

the methodology of Step 1 is repeated N2 times in Step 2: A Noise PSD and then the excess energy 241 

and threshold are calculated for each one of the N2 local time windows as described previously.  242 

The times corresponding to the excess energy values that are higher than the threshold for each of 243 

the local time windows in Step 2 constitute the approximate times where a potential event occurred. 244 

 245 

Detected events: Microseismicity or local noise? 246 

A detected potential event from Step 2 could still represent local noise, e.g. steps, drilling noise or 247 

even an instrumental glitch. This possibility can be minimized by combining the NpD results from 248 

multiple seismometers, for example, from a whole array (voting scheme, Trnkoczy (1999)). A real 249 
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microseismic event, irrespectively of how small it is, should be recorded by neighboring 250 

seismometers. This is not the case for a local noise burst that is usually recorded by the 251 

seismometer closest to it, nor for a mechanical glitch.  252 

The number of seismometers that are required to have recorded the same event depends on the 253 

application and the distance between them. A time delay between seismometers for the same event 254 

should also be considered. 255 

To avoid having multiple true positives (i.e. correctly identified events) corresponding to different 256 

phases of the same event (i.e. different peaks in the same microseismic waveform), we decided to 257 

‘clean-up’ consecutive events that are detected in consecutive PSD time segments. Consequently, 258 

only the first arrival from the consecutives is considered a trigger. This decision was verified 259 

during a sensitivity analysis for several hours of data, to ensure that it does not result in missed 260 

true positives.  261 

  262 
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CASE STUDY: DETECTION OF MICROSEISMICITY AT GRIMSEL TEST SITE 263 

(GTS) USING THE NpD ALGORITHM 264 

Passive seismic monitoring at Grimsel Test Site 265 

Microseismic monitoring was conducted as a part of the LASMO project (Nagra (2017)), to 266 

determine whether drainage and subsequent natural refilling of Lake Raeterichsboden can be 267 

associated with hydro-mechanical changes within the surrounding rock mass. LASMO aims to 268 

evaluate existing monitoring techniques in a repository-like environment. For a 30-month period, 269 

two short-period surface arrays were deployed at GTS as part of the microseismic monitoring 270 

network. Each array consisted of one three-component seismometer (LE3D-lite MKII) and three 271 

one-component sensors (LE1D-lite). Seismometers within an array were deployed at 272 

approximately 45 m distance from each other, and the two arrays were approximately 1.1 km apart. 273 

The arrays were deployed at the neighboring, to GTS, Gerstenegg tunnel, located in the Swiss Alps 274 

adjacent to Lake Raeterichsboden (Figure 1).  275 

 276 

Passive seismic monitoring data 277 

Data acquisition at GTS was initiated in November 2014 and lasted until June 2017. The sampling 278 

rate was 250Hz. The acquisition was continuous and data were stored in 1-hour long data files. 279 

Two full drainage and refilling cycles of the Lake Raeterichsboden took place during that period.  280 

There are a large number of activities that contribute to seismic noise in the region; engineering 281 

activities within the GTS (drilling, hammering etc.), engineering activities in the surrounding 282 

tunnels, pumping and hydropower generation, tunnel boring, drilling, maintenance, and finally, 283 

natural background seismic noise such as glacial movement.  284 
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In order to explore the temporal and spatial variation of the spectral characteristics of the 285 

background noise at Grimsel test site, we followed the methodology for the background noise 286 

characterization described earlier. First, we determined whether the background noise followed a 287 

normal distribution in order to choose appropriate statistics and then checked if there were 288 

significant temporal or spatial variations in background noise. 289 

To determine appropriate statistics for the analysis we needed to assess the assumption of 290 

normality for the distributions of all PSD values for the frequencies within the interval 0 – 125 Hz. 291 

We computed the PSDs, for all non-overlapping 2 second time windows within quiet hours at the 292 

frequency range (0-125 Hz). Hours outside of the GTS working hours, during which no tectonic 293 

events were reported by the Swiss Seismological Service catalogue (see Data and Resources 294 

Section), were randomly chosen to be used for this analysis. To determine if random samples of 295 

independent PSD observations were normally distributed, different graphical methods 296 

(histograms, probability plots and boxplots) and the Shapiro-Wilk test S-W (Razali (2011)) and 297 

Kolmogorov-Smirnov K-S test (Massey (1951)), were applied. Here we present indicatively, 298 

random hours within 04/11/2014 and 16/05/2015. Both S-W and K-S tests rejected the null 299 

hypothesis of normality in all cases checked (p<0.05). In fact, the noise PSD histograms are 300 

negatively skewed with positive kurtosis; examples for the frequencies of 30 and 85 Hz for the 301 

vertical component of the 3-component sensor in the North and of the South Array, located 302 

approximately 1km apart, are presented in Figure 2a and 2b respectively. The histograms are 303 

clearly not derived from normally distributed data, hence non-parametric statistics for noise 304 

characterization are appropriate. Also, the histograms for each sensor are different, hence 305 

background noise at each sensor is not the same. Figure 2a and 2b also show the two Noise PSDs 306 

derived for the same hour, using a characteristic upper bound of the 75th percentile. The value of 307 
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the 75th percentile for each frequency and how this is related to the noise PSD is clearly annotated 308 

on the Figure. 309 

Further analysis (see Supplementary material, Section C) of the background noise demonstrated 310 

extremely large, highly unpredictable variations in background noise both between sensors and 311 

between consecutive hours/days on a single sensor. No repeatable pattern could be determined. 312 

 313 

Application of the NpD algorithm for the detection of microseismicity at GTS 314 

Three hours of microseismic data recordings from the North array over two consecutive days were 315 

chosen to test the sensitivity of the algorithm to two input parameters: the percentile used for the 316 

calculations of the Noise PSD (Step 1) and the length of the Local time window (in Step 2). More 317 

specifically, the following hours were selected and used: Hour 1: 15/03/2016   18:00 - 19:00 318 

(UTC); Hour 2: 15/03/2016   19:00 - 20:00 (UTC); and Hour 3: 16/03/2016   05:00 - 06:00 (UTC). 319 

Hours 1 and 2 were chosen because after visual inspection were found to contain a number of 320 

potential microseismic events. Hour 3 was chosen as a ‘quiet hour’ with no events visually 321 

confirmed. We located a random selection of the visually observed events to confirm that they are 322 

indeed events occurring in the surrounding area (within 8 km from the arrays). Three of them were 323 

subsequently found in the Swiss Seismological Service catalogue (see Data and Resources 324 

Section), having magnitudes down to ML -0.6. 325 

The visual inspection took place prior to applying the NpD algorithm. For the visual inspection, a 326 

bandstop, bidirectional two-pole Butterworth filter was applied to all Hours to remove the AC 327 

effect (the arrays were connected to the mains for power supply), as well as a high-pass 2 Hz filter 328 
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to suppress ambient noise. This was only done for the purpose of visually picking potential events. 329 

For the NpD algorithm we used raw data.  330 

Figures 3-4 show plots of the filtered waveforms of Hours 1 and 2. The vertical lines above the 331 

waveforms indicate the visually observed events that are expected to be detected by the algorithm. 332 

We then applied the NpD algorithm for various combinations of percentiles within the range 75 – 333 

95 (for the calculation of the Noise PSD) and local time window lengths. Tables 1 and 2 show the 334 

best outputs from the sensitivity analyses for these two hours, for each of the arrays individually. 335 

The number of the visually observed events is represented by the Actual no of events parameter. 336 

The number of events that each algorithm detects is represented by the Detected events parameter. 337 

Those events amongst the detected events that are also within the actual no of events, i.e. visually 338 

observed, are the True positives. The ratios 迎な 噺  痛追通勅 椎墜鎚沈痛沈塚勅鎚 鳥勅痛勅頂痛勅鳥  結懸結券建嫌 ゲ などどガ and 迎に 噺339 

 痛追通勅 椎墜鎚沈痛沈塚勅鎚銚頂痛通銚鎮 津墜 墜捗  結懸結券建嫌 ゲ などどガ  were formed to investigate the efficiency of the various 340 

combinations of parameters. Ratios R1 and R2 were introduced to quantify the tendency of the 341 

algorithm to trigger false positives, e.g. noise mistakenly picked as an event, and their detection 342 

efficiency, respectively. R1 and R2 take values between 0 and 100%. A high value for R1 would 343 

indicate a small amount of false positives, while for R2, a high value indicates high detection 344 

capability. Using these ratios the most efficient combination of parameters was chosen to be the 345 

one for which both R2 and R1 are at their highest values.  346 

As shown in Table 1 and 2, all {percentile, local time window} combinations yield quite high R2 347 

ratios (伴84%), depending on the location and hour. The differentiating factor is the R1 ratio. Upon 348 

checking other combinations of parameters from the two Tables we also see that the R1, R2 ratios 349 

do not vary drastically within a particular hour and array. This means that the assumption that we 350 
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can treat seismic events as outliers and our choice of a dynamic threshold which adapts well to the 351 

statistical properties of each examined segment work well. In the case Hour 3 (Figure 4), the hour 352 

for which no visually observed events existed, the low number of events that the algorithm detected 353 

was acceptable (Table 3).  354 

For our project, the combination of parameters that best suited our data for identifying as many 355 

seismic events with the least possible false positives was the 75th percentile for the calculation of 356 

the Noise PSD (Step 1) and a 300 second duration for the local time window (Step 2 of the NpD 357 

algorithm). 358 

 359 

 360 

DISCUSSION 361 

Main advantages of the NpD algorithm 362 

In this paper we presented a new algorithm for the detection of microseismic events at 363 

environments with low SNR. The main advantage of our approach is that it does not require any 364 

pre-filtering of the data as would be the case for detection of weak signals with most other 365 

methodologies. Pre-filtering assumes a priori knowledge of the expected microseismic signals 366 

which is seldom the case for passive monitoring applications. As a result, pre-filtering could 367 

remove information from the recordings, discarding it as noise, especially in cases of low SNR 368 

data. Avoiding pre-filtering altogether, minimizes the possibility of information loss in these low 369 

SNR recordings. 370 

Another advantage of the NpD algorithm is that it is suitable for non-stationary background noise 371 

since the upper bound to the spectral amplitude of background noise, above which an event is 372 
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detected, varies over both space and time; significant differences were observed in hourly noise 373 

characteristics between sensors 1km apart. The approach is also equally effective with non-374 

parametric data i.e. an assumption of normality is not required. Details on the format of the input 375 

and output files for the NpD algorithm are provided in Supplementary Material, Section D. 376 

 377 

Limitations of the NpD algorithm 378 

The NpD algorithm is a powerful microseismicity detection tool but its output does not include 379 

accurate onset times for the detected events. Its accuracy depends on the duration of the individual 380 

time segments to which each recording is divided. For windows of duration 0.5 seconds, such as 381 

those used in this case study, it means that the onset time is within a 0.5 second frame centered 382 

around the estimated NpD time of the ‘event’. For a more accurate determination of the onset time, 383 

the NpD would need to be combined with other existing automated picking algorithms, such as 384 

autoregressive techniques (Oye and Roth (2003); Kong (1997); Leonard and Kennett (1999)). 385 

 386 

Comparison with other, commonly used detection approaches 387 

In order to check the effectiveness of the NpD algorithm we compared its performance to that of 388 

the most commonly used detection algorithm, namely STA/LTA, and the algorithm suggested by 389 

Vaezi and van der Baan (2014).  390 

For the comparison, we chose the same three hours (15/03/2016, hours 18:00-19:00 and 19:00-391 

20:00 and 16/03/2016, hour 05:00-06:00 shown respectively at Figure 3, Figure 4 and Figure 5) 392 

from the GTS data set with varying background noise levels and with, and without, events. Table 393 
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4 shows the parameters used for each of the three detection methodologies used in the comparison. 394 

The detection thresholds in all methods are selected in such a way as to give the best balance 395 

between false positives and missed events for each algorithm. In Table 4, the minimum event 396 

duration parameter for the STA/LTA method is the minimal time length between the time of an 397 

event triggering and detriggering. The minimum event separation parameter specifies the minimal 398 

time length between the end of a previous event and the beginning of a new event. The STA and 399 

PSD window lengths were kept the same and equal to 0.5s to allow for a valid comparison of the 400 

algorithms. The same applies for the LTA window length and local window. The consecutive 401 

events cleaning parameter presumes that when the output peaks are consecutive within distances 402 

of 0.5s they correspond to the same event. All algorithms have been implemented in a multi-403 

channel strategy in which events are detected only if they are detected by all vertical channels of 404 

each array. 405 

Results are summarized in Figure 6 and Table 5. Figure 6 shows the filtered (bandstop  48-52 Hz 406 

to remove the AC effect) waveforms of the three hours examined previously, both as recorded 407 

from the North (a, c, & e) and the South Array (b, d & f). The vertical lines show the detection 408 

times obtained by the STA/LTA, PSD and NpD algorithms (see inset for details). From just visual 409 

inspection, it is noticeable that the STA/LTA detects very few events and the PSD algorithm 410 

detects many more events than the NpD. In Table 5 we can see the breakdown of these detected 411 

events to true and false positives. The ratios R1 and R2 were once again used to quantify the 412 

fraction of the total number of detected events that were visually observed (R1) and the fraction of 413 

the visually observed events that were detected (R2). 414 

As seen from Table 5, the STA/LTA algorithm is outperformed by both the PSD picker and the 415 

NpD algorithm as its ability to detect events, when using unfiltered recordings is significantly 416 
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smaller (small values of the R2 ratio). The NpD algorithm also outperforms the PSD picker. For 417 

those hours containing events, the NpD algorithm detects the same number of true events as the 418 

PSD picker. However, the value of the R1 ratio is consistently higher for the NpD algorithm than 419 

the PSD picker, indicating that the number of false positives from the NpD algorithm is 420 

significantly smaller. 421 

In the last tested hour, where there are no seismic events, the STA/LTA, PSD and NpD algorithms 422 

detected 1, 1 and 3 at the North and 3, 15 and 7 false positives respectively. For this hour, the 423 

STA/LTA is the best performing algorithm, with the smallest number of false positives. However, 424 

the other two hours show that this is at the cost of missing large numbers of small events with 425 

amplitudes close to noise level (low SNR).If a seismic array is deployed for decision-making 426 

processes, such as an early-warning system for landslides, then visual validation of detected events 427 

may be required by the operator (e.g. if road closure results in a long detour). This manual quality 428 

control is a time-consuming procedure. The very low number of false positives that our NpD 429 

algorithm detects, by comparison to the STA/LTA and PSD detection algorithms, ensures that 430 

expensive operator time is minimized. 431 

 432 

CONCLUSIONS 433 

This work was motivated by the need for automatic detection of seismic signals from long, 434 

continuous passive seismic recordings acquired by temporarily installed short-period seismic 435 

arrays. The NpD algorithm is a powerful tool for microseismic event detection from noisy 436 

recordings without the need for pre-filtering. This is a key advantage, as it does not require any a 437 

priori assumptions on the background noise characteristics. The algorithm detects potential events 438 
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by calculating the energy contained within small individual time segments of a recording and 439 

comparing it to the energy contained within a longer surrounding time window. If the excess 440 

energy exceeds a given threshold criterion, which is determined dynamically based on the spatially 441 

and temporally varying background noise, then an event is detected. The efficiency of the NpD 442 

algorithm was successfully tested on a demanding data set. For event detection, it significantly 443 

outperforms the two STA/LTA and PSD algorithms tested, maximizing the number of detected 444 

events whilst minimizing the number of false positives.   445 
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DATA AND RESOURCES 446 

Data and seismograms used in this study were collected as part of the LASMO project using Reftek 447 

instruments and are confidential until completion of the PhD. 448 

For the NpD algorithm free accessible built-in functions from Matlab were used (MATLAB and 449 

Statistics Toolbox Release 2016a, The MathWorks, Inc., Natick, Massachusetts, United States.) 450 

The Swiss Seismological Service catalogue database was searched using 451 

http://www.seismo.ethz.ch/en/earthquakes/switzerland/all-earthquakes/ (last accessed on 452 

November, 2017).  453 

 454 
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TABLES 545 

Table 1: Hour 1: Comparison of results for different values of the parameters of Noise PSD 546 

percentile and Local time window length.  547 
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Actual no of events: 

34 
North Array 

Noise PSD 

percentile: 
70 75 80 85 

Local window: 150 300 450 150 300 450 150 300 450 150 300 450 

Detected events: 34 34 34 37 37 37 38 37 36 37 37 36 

True positives: 31 30 29 32 32 32 32 32 32 32 32 32 

R1 91% 88% 85% 86% 86% 86% 84% 86% 89% 86% 86% 89% 

R2 91% 88% 85% 94% 94% 94% 94% 94% 94% 94% 94% 94% 

Actual no of events: 

27 
South Array 

Noise PSD 

percentile: 
70 75 80 85 

Local window: 150 300 450 150 300 450 150 300 450 150 300 450 

Detected events: 28 29 28 28 29 28 28 29 28 27 29 29 

True positives: 25 25 25 24 25 25 25 25 25 25 25 25 

R1 89% 86% 89% 86% 86% 89% 89% 86% 89% 93% 86% 86% 

R2 93% 93% 93% 89% 93% 93% 93% 93% 93% 93% 93% 93% 

 548 

  549 
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Table 2: Hour 2: Comparison of results for different values of the parameters of Noise PSD 550 

percentile and Local time window length. 551 
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Actual no of 

events: 18 
North Array 

Noise PSD 

percentile: 
70 75 80 85 

Local 

window: 
150 300 450 150 300 450 150 300 450 150 300 450 

Detected 

events: 
30 30 31 30 31 32 29 32 31 28 35 32 

True 

positives: 
18 18 18 18 18 18 18 18 18 18 18 18 

R1 60% 60% 58% 60% 58% 56% 62% 56% 58% 64% 51% 56% 

R2 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Actual no of 

events: 19 
South Array 

Noise PSD 

percentile: 
70 75 80 85 

Local 

window: 
150 300 450 150 300 450 150 300 450 150 300 450 

Detected 

events: 
20 24 25 20 24 29 20 28 31 23 32 34 

True 

positives: 
16 16 16 16 16 16 16 16 16 16 16 16 

R1 80% 67% 64% 80% 67% 55% 80% 57% 52% 70% 50% 47% 

R2 84% 84% 84% 84% 84% 84% 84% 84% 84% 84% 84% 84% 

 552 

Table 3: Hour 3: Comparison of results for different values of the parameters of Noise PSD 553 

percentile and Local time window length. 554 
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 Actual no of events: 0 North Array 

Noise PSD percentile: 70 75 80 85 

Local window: 150 300 450 150 300 450 150 300 450 150 300 450 

Detected events: 3 2 2 3 3 3 5 3 3 6 5 3 

True positives: 0 

Actual no of events: 0 South Array 

Noise PSD percentile: 70 75 80 85 

Local window: 150 300 450 150 300 450 150 300 450 150 300 450 

Detected events: 8 7 9 8 7 12 8 9 15 9 11 15 

True positives: 0 

 555 
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Table 4: The parameters used for the STA/LTA, PSD technique and NpD methods.  556 

STA/LTA parameters PSD technique parameters NpD parameters 

STA window length 0.5s  PSD window length 0.5s  

Individual 

time segment 

duration 

 0.5s 

Minimum event 

duration 
0.005s  Window overlap 50%  Noise PSD  75th 

Minimum event 

separation 
0.5s 

Minimum event 

separation 
0.5s 

Consecutive 

events 

cleaning 

 0.5s 

LTA window length 5mins _  Local window  5mins 

STA/LTA detection 

threshold 
2.5 

PSD detection 

threshold 
0.50 

Dynamic 

detection 

threshold 

 Q3+0.5IQR 

  557 
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Table 5: Summary of detections using the STA/LTA, the PSD and the NpD algorithms for hours 558 

1, 2 and 3, for both North and South arrays.  559 

 560 

  561 

 STA/LTA algorithm PSD Picker NpD algorithm 
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Actual no of events: 34 North Array 

Detected events: 4 123 37 

True positives: 4 32 32 

R1 100% 26% 86% 

R2 12% 94% 94% 

Actual no of events: 27 South Array 

Detected events: 3 102 29 

True positives: 3 24 25 

R1 100% 24% 86% 

R2 11% 89% 93% 
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Actual no of events: 18 North Array 

Detected events: 12 97 31 

True positives: 3 18 18 

R1 25% 19% 58% 

R2 17% 100% 100% 

Actual no of events: 19 South Array 

Detected events: 13 140 24 

True positives: 1 16 16 

R1 8% 11% 67% 

R2 3% 47% 84% 
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Actual no of events: 0 North Array 

Detected events: 1 1 3 

True positives: 0 0 0 

Actual no of events: 0 South Array 

Detected events: 3 15 7 

True positives: 0 0 0 
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FIGURES 562 

 563 

Figure 1: Plan view of the locations of two surface microseismic arrays deployed at GTS. Two 564 

surface arrays, consisting of four sensors each, were deployed along the Gerstenegg tunnel, close 565 

to the GTS tunnels. The elevation of all tunnels is lower to the water surface in Lake 566 

Raeterichsboden. Inset: Location map of GTS (from 567 

http://www.nagra.ch/en/grimselrocklaboratory.htm). 568 

 569 

http://www.nagra.ch/en/grimselrocklaboratory.htm
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 570 

Figure 2: Calculation of the Noise PSD for one hour of data recorded by the vertical component 571 

of the 3-component seismometer of (a) the North and (b) the South array. The histograms of the 572 

PSD values at frequencies 30 Hz and 85 Hz and the value of a characteristic upper bound (here the 573 

75th percentile) are shown as an example. These values are then used as the Noise PSD values at 574 

30 Hz and 85 Hz frequencies, respectively. The values of the characteristic upper bound for all 575 

(a) (b) 
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frequencies constitute the Noise PSD (bottom plots in (a) and (b)). All histograms are for data from 576 

the same day and hour.  577 

 578 

Figure 3: Hour 1: Filtered waveform and visually identified events are shown with vertical lines. 579 

 580 

Figure 4: Hour 2: Filtered waveform and visually identified events are shown with vertical lines. 581 
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 582 

Figure 5: Hour 3: Filtered waveform. Hour with no visually identified events. 583 

 584 

 585 
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 586 

Figure 6: Velocity vs time for the filtered waveforms of (a & b) 15/03/2016, 18:00-19:00, (c & d) 587 

15/03/2016, 19:00-20:00, and (e & f) 16/03/2016, 05:00-06:00 as recorded from the North and 588 

(b) (a) 

(c) (d) 

(e) (f) 
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South array respectively. With vertical lines the events detected by the NpD algorithm, the PSD 589 

technique and the STA/LTA algorithm are noted. 590 

  591 
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DETECTION OF WEAK SEISMIC SIGNALS IN NOISY ENVIRONMENTS FROM 592 

UNFILTERED, CONTINUOUS PASSIVE SEISMIC RECORDINGS - 593 

SUPPLEMENTARY MATERIAL 594 

 595 

M. Kinali, S. Pytharouli, R.J. Lunn, Z. K. Shipton, M. Stillings, R. Lord and S. Thompson 596 
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SUPPLEMENTARY MATERIAL 597 

A brief review of the automatic seismic signals detection methods is given in Section A. In 598 

particular time domain methods are presented, such as STA/LTA (Bormann, 2012) and Stewart 599 

(1977) method; frequency domain methods such as those proposed by Freiberger (1963), Goforth 600 

and Herrin (1981), Michael et al. (1982), Vaezi and Van de Baan (2014, 2015) and Shensa (1977); 601 

and time-frequency domain methods such as  Joswig (1990), Ching et al. (2004), Sifuzzaman et 602 

al. (2009) and Anant and Dowla (1997). In Section B, Welch’s (1967) modified periodogram 603 

method is discussed, along with its limitations.  604 

In Section C, the statistical analysis presented in the paper is explained in detail, in particular the 605 

temporal and spatial comparison among non-normal distributions of random, independent PSD 606 

observations. Section D is describing the input and output variables of the NpD algorithm which 607 

is going to be distributed as an open-source detection algorithm.   608 
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REVIEW OF AUTOMATIC SEISMIC EVENT DETECTION ALGORITHMS 609 

Automatic detection in the time domain 610 

The most widely used event detection algorithm at present is the STA/LTA (Bormann, 2012) 611 

which operates in the time-domain. The ratio of two moving averages STA/LTA is computed 612 

continuously at each time t for recorded data xt:  613 

鯨劇畦痛 噺   怠朝縄 デ 検津痛袋朝縄津退痛  ,                     (eq. S2) 614 

and 615 

詣劇畦痛 噺   怠朝薙 デ 検津痛袋朝薙津退痛 .                    (eq. S3) 616 

where STA is the NS-point Short-Term Average, LTA is the NL-point Long-Term Average and the 617 

parameter yt denotes a characteristic function (CF) yt = g(xt). The characteristic function CF is 618 

chosen so that it enhances any signal changes in the time-series; common CF choices include 619 

energy (捲痛態) (McEvilly and Majer, 1982), absolute value (|xt|) (Swindell and Snell, 1977) and the 620 

envelope function (紐捲痛態 髪 捲違痛態, where 捲違 is the Hilbert transform) (Earle and Shearer, 1994), or even 621 

higher-order statistics where skewness and kurtosis are calculated in the sliding windows 622 

(Saragiotis et al., 2002; Küperkoch et al., 2010). The raw data are demeaned and then the ratio 623 

STA/LTA is compared to a user-selected threshold: when the ratio exceeds the user-selected 624 

threshold, an event is detected. The end time of the event is defined by the time when the ratio falls 625 

below a detrigger threshold (also chosen by the user). Ns should be chosen approximately equal to 626 

the dominant period of the events the algorithm aims to trigger. LTA is a measure of background 627 

noise variations, so NL should be set to some value longer than the period of the lowest frequency 628 
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seismic signal of interest. The STA, LTA windows are usually chosen as non-overlapping 629 

(Trnkoczy, 2002).  630 

A different approach was suggested by Stewart (1977). This method uses a high-pass non-linear 631 

filtering process, to determine whether a seismometer is operating within acceptable limits of noise 632 

before its data are accepted to be used. If accepted, the algorithm sets some requirements for 633 

detection and tentative confirmation in the time domain, i.e. setting different lower bounds for the 634 

triggering threshold, the SNR; the number of times the waveform exceeds the triggering threshold; 635 

the consecutive time the waveform stays within the threshold; and the maximum amplitude of the 636 

waveform once the signal is detected.  637 

Model-oriented algorithms are also popular, such as the Oye and Roth (2003) or Akram and Eaton 638 

(2012) autoregressive (AR) techniques. Based on the Akaike Information Criterion (AIC), they 639 

developed procedures of fitting a locally stationary autoregressive model to seismograms. The AIC 640 

criterion, computed using the estimated model order, provides a measure of the model fit, and an 641 

optimal separation of the two stationary time series (noise and signal) is indicated by the time 642 

index associated with the minimum value of AIC (Tronicke, 2007). 643 

 644 

Automatic detection in the frequency domain 645 

Most algorithms in the frequency domain use Fourier transforms. One of the first mathematically 646 

based signal detectors was the one proposed by Freiberger (1963) who developed the theory of 647 

maximum likelihood by applying an approximate comparison of spectral densities, based on the 648 

Toeplitz approximation forms, for the detection of Gaussian signals in Gaussian noise.  649 
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Goforth and Herrin (1981), in order to overcome the challenge of a varying non-normal 650 

background noise, developed an automatic seismic signal detector based on the Walsh transform, 651 

which is a series of rectangular waveforms with amplitudes of +1 or -1, instead of the sines and 652 

cosines of Fourier. Once the data are filtered in the time domain, segmented in overlapping 653 

windows and transformed, the Walsh coefficients are assigned a weight such that the noise 654 

spectrum is whitened and the expected signal is isolated. The values of the weights need to be 655 

chosen by the analyst, after manual inspection of the appropriate noise segments. At each time 656 

window, the current sum of the absolute values of the weighted Walsh coefficients is compared to 657 

a threshold,  658 

劇月堅結嫌月剣健穴 噺  撃泰待 髪 計岫 撃胎泰 伐  撃泰待岻┸                  (eq. S4) 659 

where  撃泰待 is the median of the distribution of previous 512 values,  撃胎泰 is the 75th percentile of 660 

the distribution of previous values, and K is the arbitrary constant set by operator. If the current 661 

value exceeds the threshold, it results in a signal detection; if not, the current sum is ranked among 662 

the previous number of predefined values and the oldest sum is discarded. 663 

Michael et al. (1982) modified the Goforth and Herrin approach to develop a real-time event 664 

detection and recording system for the MIT Seismic Network. Their algorithm uses the power 665 

spectrum to remove the effects of phase shifts and instead of the Walsh coefficients (energy 666 

spectrum) they use power Walsh coefficients (i.e. the Walsh coefficients are squared and each pair 667 

is summed). They also add a minimum duration that the coefficients need to be above threshold; 668 

an event termination criterion; and accept events only if they are correlated by at least three 669 

stations.  670 
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Vaezi and Van de Baan (2014, 2015) developed an algorithm for the detection of induced 671 

microseismicity during hydrofracturing. They compared the moving average PSDs of small 672 

segments of their data record to the averaged background noise PSD of quiet segments of their 673 

data record, resulting in the picking of all signals that stand out in a statistical sense from 674 

background noise. The outcome of this comparison, i.e. the normalized misfit 憲痛岫血岻, is calculated 675 

by the following equation (eq.S4) and for a clearer depiction of the events, only the positive values 676 

are kept:  677 

憲痛岫血岻 噺  班牒聴帖韮禰 岫捗岻貸牒聴帖博博博博博博岫捗岻鎚痛鳥岫捗岻 ┸ 件血 憲痛岫血岻 伴 など                   ┸ 剣建月結堅拳件嫌結 ,                     (eq. S5) 678 

where 嫌建穴岫血岻 is the standard deviation at frequency f computed from the PSDs of the noise 679 

segment 鶏鯨経陳嫗 岫血岻, 鶏鯨経津痛 岫血岻 are the PSDs of small segments of the original data x(t) estimated 680 

(eq.S5), using rolling (overlapping) windows of predetermined length L, and 鶏鯨経博博博博博博岫血岻 is the total 681 

average PSD of the quiet sections of the data x'(t) (eq.S6). To isolate only the quiet sections they 682 

discarded all the absolute amplitudes greater than a multiple of the original record’s root-mean-683 

square (RMS) amplitude.  684 

The individual moving average PSDs are estimated using Welch’s modified periodogram method 685 

as follows: 686 

鶏鯨経津痛 岫血岻 噺  畔 銚弁デ 掴韮岫痛如岻摘岫痛如岻勅貼乳鉄肺肉如薙如転迭 弁鉄捗濡挑腸   件血 血 噺 ど┸ 血朝槻槌態銚弁デ 掴韮岫痛如岻摘岫痛如岻勅貼乳鉄肺肉如薙如転迭 弁鉄捗濡挑腸   件血 ど 隼 血 隼 血朝槻槌, n = 1, 2, …, N             (eq. S6) 687 

where a is a scale factor that accounts for variance reduction which depends on the type of the 688 

taper w, fNyq is the Nyquist frequency in Hz, fs is the sampling frequency in Hz,  j = ヂ伐な and U is 689 
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the window normalization constant that ensures the modified periodograms are asymptotically 690 

unbiased and is given by: 戟 噺  怠挑 デ 降岫建沈岻態挑沈退怠 .   691 

The average PSD estimate is calculated by averaging the PSD estimates of the quiet data record: 692 

鶏鯨経博博博博博博岫血岻 噺 怠暢 デ 鶏鯨経旺陳岫血岻暢沈退怠 ,                   (eq. S7) 693 

where 鶏鯨経陳嫗 岫血岻 denotes the PSD estimate of the mth noise segment as a function of frequency f 694 

and is given by eq.S5 where instead of the original data x(t) we are now using the quiet data record 695 

x'(t). 696 

The triggering criterion can either be the summation of the positive misfits (憲痛岫血岻) over the total 697 

number of frequencies and normalized by division with the standard deviation, or the summation 698 

of the squared positive misfits over the total number of frequencies normalized by division with 699 

the standard deviation. When the triggering criterion exceeds a user-selected threshold an event is 700 

declared. 701 

Shensa (1977) had developed a methodology to adapt to a dynamic noise environment with a 702 

variety of (weak) signals with widely different spectra. He computed the PSDs of small segments 703 

of the data and depending on the relation between noise and signal he developed 3 algorithms: (a) 704 

the average power detector, for signals that exceed noise uniformly over a relatively broad 705 

frequency index range when both noise and signal are stable; (b) the maximum deflection detector, 706 

for signals that exceed noise over at least one narrow frequency band; and (c) the average 707 

deflection detector, for signals that exceed background noise uniformly over a relatively wide 708 

frequency index range when both signal and noise are unstable. The relevant detectors are formed 709 

accordingly: 710 
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経結建銚  噺 迭灘 デ 牒聴帖日岫賃岻韮鉄入転韮迭 貸禎蹄 ┸ 軽 噺  券態 伐 券怠┸                 (eq. S8) 711 

経結建長  噺 max 峙牒日岫賃岻貸禎岫賃岻蹄岫賃岻  岫倦 噺 ど岻┸ 牒日岫賃岻貸禎岫賃岻蹄岫賃岻  岫倦 噺 な岻┸ ┼ ┸ 牒日岫賃岻貸禎岫賃岻蹄岫賃岻  岫倦 噺 軽岻峩 ,             (eq. S9) 712 

経結建頂  噺 怠朝 デ 牒日岫賃岻貸禎岫賃岻蹄岫賃岻  ┸津鉄賃退津迭  軽 噺  券態 伐 券怠┸                 (eq. 713 

S10) 714 

where index range 券 怠 判  倦 判  券態, た and j the mean and standard deviation, respectively. The 715 

parameters た and j must be estimated from noise-only data sections (i.e. no signal present). 716 

 717 

Automatic detection in the time-frequency domain 718 

Algorithms that work in the time-frequency domain are also common. Joswig (1990) proposed a 719 

pattern recognition technique using characteristic event features in spectrograms. His algorithm 720 

defines a knowledge base of images of the typical earthquakes and noise bursts in the time-721 

frequency domain, using Fourier transforms, each of which is defined by a matrix and a scaling 722 

factor (to account for magnitude differences). The sonogram-detector matches patterns for the 723 

events that are above a user-defined set of thresholds and provides one message per detected event 724 

stating the detection time, the maximum pattern fit and maximum amplitude of the detected event.  725 

Another pattern recognition technique was proposed by Bodenstain and Praetorius (1977) aimed 726 

at the automatic detection of electroencephalogram signals (0.5 – 30Hz signals). According to their 727 

research, the data record can be segmented into elementary patterns (e.g. seismic signals and 728 

transients) using linear predictive filtering, leading to the extraction of features (power spectra and 729 
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the signal’s time structure) which in turn can be combined (clustering procedures, classification) 730 

so that they represent the seismic signal as a whole. 731 

During the last years, Wavelet transforms have increasingly been preferred over Fourier 732 

transforms. The main reason being the simultaneous time- and frequency-domain localization of 733 

the wavelets, in contrast to the only frequency-domain localization of the standard Fourier 734 

transform, or the frequency-time resolution trade-off of the Short-time Fourier transform which 735 

depends on the width of the window function used (Ching et al., 2004; Sifuzzaman et al., 2009). 736 

Anant and Dowla (1997) use polarization and amplitude information contained in the wavelet 737 

transform coefficients of the signals to construct "locator" functions that identify the P and S 738 

arrivals. High-pass and low-pass filters are used (wavelet and scaling filters respectively) which 739 

must belong to a perfect reconstruction filter bank. 740 

 741 

THE WELCH’S MODIFIED PERIODOGRAM METHOD (1967) 742 

Welch’s method consists of breaking the time series into, usually overlapping, segments, 743 

computing a modified periodogram of each of these segments, and then averaging their PSD 744 

estimates (eq.S5). Each segment represents approximately uncorrelated estimates of the true PSD 745 

and the averaging reduces the variance of the estimate as compared to the estimate of a single 746 

periodogram for the entire time series. The segments are typically multiplied by a window 747 

function, such as a Hamming or a Hann window, resulting into the estimation of modified 748 

periodograms. Windowing suppresses side-lobe spectral leakage and reduces the bias of the 749 

spectral estimates. The taper used in this study is Hann window which is one of the most commonly 750 
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used for its very good spectral leakage properties (Park et al., 1987). The coefficients of a 751 

Hamming and a Hann window can be generated from the following equations respectively:  752 

拳岫券岻 噺 ど┻のね 伐 ど┻ねは cos 岾に講 津朝峇┸                 (eq. S11) 753 

拳岫券岻 噺 ど┻の岫な 伐 cos 岾に講 津朝峇岻┸                 (eq. S12) 754 

where 0判n判N and window length = N+1 755 

The loss of information at the limits of each segment caused by the windowing is prevented with 756 

the use of overlap at the adjacent segments. However, overlap introduces also redundant 757 

information. The combined use of short data records and nonrectangular windows results in 758 

reduced resolution of the estimator. This trade-off between variance reduction and resolution 759 

cannot be avoided (Park et al., 1987) and this is the shortcoming of this method. It lies with the 760 

analyst to decide on what is the feature they want to have the greatest accuracy at and choose the 761 

respective parameters to achieve that. 762 

The one-sided PSD is calculated at discrete equally spaced frequency values within the range 0 to 763 

fNyq, where fNyq is the Nyquist frequency (equal to half the sampling rate fs). The PSD spectrum is 764 

plotted as a continuous function, assuming a linear change between the calculated values at each 765 

frequency. A high peak in the PSD is interpreted as high energy in the signal at that frequency.  766 

 767 

 768 

STATISTICAL CHARACTERIZATION OF THE BACKGROUND NOISE 769 
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To statistically compare the non-normal distributions of random, independent PSD observations 770 

of size fNyq, we perform two independent sub-analyses: temporal and spatial. The temporal subpart 771 

is composed of upper Noise envelopes of different hours for one of the seismometers, while the 772 

spatial subpart comprises of upper Noise envelopes of different seismometers. Examples of the 773 

PSDs plotted against the frequency range used for the temporal and spatial comparison are 774 

presented in Figure S1.  Just by visual observation of the Figure S1a it is evident that the noise is 775 

different not only for different days but also for different hours within the same day. As it concerns 776 

the spatial variation, Figure S1b shows the PSD spectrum of one hour of data obtained from the 777 

seismometers of the North and South array. It can be seen that the spectra differ even for the 778 

seismometers of the same array (distances between adjacent sensors less than 50 m). 779 

For the temporal subpart we perform an observational study for 4 independent time intervals (TI) 780 

(TI 1:4, see inset of Figure S1a). TI1 is the Noise envelope for hour 15:00-16:00 on the 04/11/2014 781 

(working hour), TI2 for hour 21:00-22:00 on the same day (out of working hours, diurnal 782 

variation), TI3 for hour 15:00-16:00 (same as TI1) on the 05/11/2014 (monthly variation) and TI4 783 

for hour 15:00-16:00 (again same hour) on the 16/05/2015 (annual variation). For the spatial 784 

subpart a cross-sectional study for 3 independent TIs (TI 1:3, see inset of Figure S1b). TI1 is the 785 

Noise envelope for a vertical seismometer of the North array for hour 15:00-16:00 on the 786 

04/11/2014, TI2 is for a vertical seismometer of the South array (temporal variation between 787 

arrays) while TI3 is the Noise envelope for the 3D vertical seismometer of the South array 788 

(temporal variation between different sensors within one array).  789 

At both temporal and spatial analysis subparts the Kruskal-Wallis test (Chan and Walmsley, 1997) 790 

was applied. In both the temporal and spatial analysis the [medians (Q1, Q3)] were found to be 791 
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significantly different between TIs at the level of significance 0.05 (see Table S1 for the descriptive 792 

statistics of each subpart).  793 

 794 

 795 

THE NPD ALGORITHM: INPUT AND OUTPUT FILES 796 

The NpD algorithm is going to be distributed as an open-source detection algorithm. The algorithm 797 

steps (Step 1 and 2) have been automatized in the form of a code that runs in Matlab environment. 798 

The raw seismic data are converted from ASCII format to MATLAB files using simple algorithms. 799 

In this step the files are named: sensor_year_DOY_hour_min_sec_たs_ channel, where sensor can 800 

be either LOC1, LOC2 or BH, DOY is the day of the year, the たsec have an accuracy of four digits 801 

and channel can be CH1:6. Then the mat files are pre-processed before fed into the algorithm: the 802 

counts are converted to ground velocity within the passband. Faulty files are dismissed (e.g. files 803 

that due to electrical malfunction of the sensors recorded some minutes instead of a full hour data 804 

record) during this step. The data are filtered with just a band-stop recursive Butterworth filter at 805 

48-52Hz to remove the mains electromagnetic interference which is prevalent. No further filtering 806 

has been applied. The mat files are also demeaned and fed into the algorithm as structure arrays. 807 

Each structure array contains four fields: data (900000 data points), date (character array in the 808 

form of ‘dd-mmm-yyyy HH:MM:SS.mmmm' which indicates the beginning of the file), sensor 809 

(e.g. ‘LOC2’) and channel (e.g. ‘CH1’).  810 

The output of the code contains the variable ‘FinalRslts’ which is a structure array with 3 fields: 811 

names (character array in the form of ‘DOY_HH’), times (the times from the beginning of the hour 812 

the potential events are detected, in sec), timesForXcel (the times from the beginning of the hour 813 
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the potential events are detected, in MM:SS:mmm). The variable ‘listingTotal’ is another useful 814 

output variable of the code listing the full names of the files checked from the code. The output 815 

variables ‘Step1_all_values’ contains two column cells: the second column encloses the file 816 

checked while the first the values of misfits and corresponding times of all data points during the 817 

first step of the algorithm. The output variables ‘Step1_above_threshold’ follows the logic of 818 

‘Step1_all_values’ only this time the first column cells enclose the values of misfits and 819 

corresponding times of only the data points that successfully passed the first step of the algorithm. 820 

The output variable ‘PredictedEventsIndivChannel’ follows the previous logic and contains all 821 

values of misfits and corresponding times of only the data points that successfully passed the 822 

second step of the algorithm. This variable is different from the ‘FinalRslts’ because the former 823 

refers to individual channels (the voting scheme has not yet been applied), neither has the 824 

consecutive events cleaning.  825 
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