
UCC Library and UCC researchers have made this item openly available.
Please let us know how this has helped you. Thanks!

Title Design, implementation, and evaluation of an XG-PON module for ns-3
network simulator

Author(s) Arokkiam, Jerome A.; Alvarez, Pedro; Wu, Xiuchao; Brown, Kenneth
N.; Sreenan, Cormac J.; Ruffini, Marco; Marchetti, Nicola; Doyle,
Linda; Payne, David

Publication date 2017-01

Original citation Arokkiam, J. A., Alvarez, P., Wu, X., Brown, K. N., Sreenan, C. J.,
Ruffini, M., Marchetti, N., Doyle, L. and Payne, D. (2017) 'Design,
implementation, and evaluation of an XG-PON module for the ns-3
network simulator', Simulation: Transactions of the Society for
Modeling and Simulation International, 93(5), pp. 409-426. doi:
10.1177/0037549716682093

Type of publication Article (peer-reviewed)

Link to publisher's
version

http://journals.sagepub.com/doi/abs/10.1177/0037549716682093
http://dx.doi.org/10.1177/0037549716682093
Access to the full text of the published version may require a
subscription.

Rights Copyright © The Author(s) 2017. Reprinted by permission of SAGE
Publications. The published version of record is available online at:
http://journals.sagepub.com/doi/abs/10.1177/0037549716682093

Item downloaded
from

http://hdl.handle.net/10468/5924

Downloaded on 2019-12-02T14:45:04Z

https://libguides.ucc.ie/openaccess/impact?suffix=5924&title=Design, implementation, and evaluation of an XG-PON module for ns-3 network simulator
http://journals.sagepub.com/doi/abs/10.1177/0037549716682093
http://dx.doi.org/10.1177/0037549716682093
http://hdl.handle.net/10468/5924

Design, Implementation, and Evaluation of an XG-PON
Module for ns-3 Network Simulator

Jerome A. Arokkiam1, Pedro Alvarez2, Xiuchao Wu1, Kenneth N. Brown1, Cormac J.
Sreenan1, Marco Ruffini2, Nicola Marchetti2, Linda Doyle2, David Payne2

Abstract
10-Gigabit-capable Passive Optical Network (XG-PON), one of the latest standards of optical access networks, is
regarded as one of the key technologies for future Internet access networks. This paper presents the design and
evaluation of our XG-PON module for the ns-3 network simulator. This module is designed and implemented with the
aim to provide a standards-compliant, configurable, and extensible module that can simulate XG-PON with reasonable
speed and support a wide range of research topics. These include analysing and improving the performance of XG-
PON, studying the interactions between XG-PON and the upper-layer protocols, and investigating its integration with
various wireless networks. In this paper, we discuss its design principles, describe the implementation details, and
present an extensive evaluation on both functionality and performance.

Keywords
XG-PON, ns-3, simulation, modelling, performance, evaluation

Introduction

Passive Optical Networks (PON) offer a highly-efficient and
cost-effective technology for broadband access, based on
a model of point-to-multipoint distribution using passive
components.

PONs gained their popularity with the standardisation
of gigabit-capable Ethernet PON (EPON) by Ethernet in
the First Mile (EFM) task force14 of the Institute of
Electrical and Electronics Engineers (IEEE) in 2004; Full
Service Access Network (FSAN) group of the International
Telecommunications Union (ITU) also introduced its version
of gigabit-capable PON standard with Gigabit-capable PON
(GPON)17 shortly after, in 2005. Since then, FTTx (Fibre
To The Home/Building/Curb, etc.) networks based on
standardised PON technologies, have been widely deployed
in many countries around the globe, including in the US,
Korea and Japan.

10-Gigabit-capable Passive Optical Network (XG-PON)
is the new standard released by the FSAN. XG-PON
improves GPON in numerous aspects; notable changes
include increasing the default downstream data rate to 10
Gb/s, while increasing the upstream data rate to 2.5 or 10
Gb/s; the minimum logical split is increased to 256 (from 64
in GPON) and the physical reach extended up to 60 Km.

Since XG-PON could pave the way for many bandwidth-
intensive applications (IPTV, Video On Demand, Video
Conference, etc.), it is very important to study the
performance issues arising with the deployment of XG-
PON. For instance, it is valuable to study the impacts on
the performance of XG-PON, when the propagation delay
is much longer than that of the current PON networks30.
It is also important to investigate the interactions between
XG-PON and the upper-layer protocols (TCP28, etc.) for
improving user experience16. In addition, XG-PON has been
proposed for Fibre To The Cell, in which XG-PON acts

as the backhaul for multiple base stations of a cellular
network18. Under this scenario, it is also very valuable to
study its integration with various wireless networks (LTE3,
WiMAX15, etc.) for providing high speed mobile Internet
access.

Due to its very recent standard definition, XG-PON is
still in its early stages of deployment - thus the above
research topics can only be studied through simulation as
it is too expensive and highly complex to set-up a full-
fledged and fine-grained XG-PON test-bed. In this paper,
we present an XG-PON module for the state-of-the-art
ns-31 network simulator. Our XG-PON module is based
on a series of G.987 Recommendations from the FSAN
group of ITU. These recommendations mainly define the
specifications of Physical Media Dependent (PMD) and
Transmission Convergence (TC) layers of XG-PON. To
study the above research topics with reasonable simulation
speed, the optical distribution network and the operations
of the physical layer are simplified significantly. This XG-
PON module focuses on the issues of TC layer, such
as frame structure, resource allocation, Quality of Service
(QoS) management, and Dynamic Bandwidth Assignment
(DBA) algorithms for the upstream wavelength. During the
design and implementation of this module, we have also paid
a lot of attention to its extensibility and reconfigurability.
Since this XG-PON module needs to simulate a 10Gb/s
network and hundreds of Optical Network Units (ONU), its

1CTVR, Dept. of Computer Science, University College Cork, Ireland
2CTVR-The Telecommunications Research Centre, Trinity College
Dublin, Ireland

Corresponding author:
Jerome A. Arokkiam, Room 2.15, Insight Centre for Data Analytics,
Western Gateway Building, University College Cork, Ireland
Email: jerome.arokkiam@insight-centre.org

Prepared using sagej.cls [Version: 2015/06/09 v1.01]

2 Simulation: Transactions of the Society for Modeling and Simulation International XX(X)

Figure 1. An illustration of PON as part of regional network

performance (the speed of simulation and the overhead of
memory) has also been given a high priority when designing
and implementing these components.

This is the first standards-compliant XG-PON module
designed for an open-source simulation platform. It allows
reasonable simulation speed, even when the XG-PON
supports more than 1000 ONUs and is simulated at
9.6Gb/s in the downstream (validated by our experiments
in ’Evaluation results’ section). This simulation platform
enables extensive study of the performance issues that would
arise with practical deployment of XG-PON, and allows
applications of and modifications to XG-PON, to be explored
in a common and open-source simulation environment. Our
XG-PON module is built completely in C++ with 72 classes
and approximately 22,000 lines of code. This code is under
the GNU General Public License and can be downloaded
through sourceforge2. More related information can be
found on our websites (CTVR1 and MISL2).

Organisation of the paper is such that, firstly PON, ns-3,
and related works are briefly introduced. Then the details
of XG-PON are presented. The design principles and key
decisions are discussed thereafter, followed by the details
on the trade-offs made in terms of simulation accuracy and
speed. After that more specific details of the design and
implementation of our XG-PON module for ns-3 are given.
Evaluation results on both functionality and performance are
then demonstrated before concluding the paper along with
directions for future work.

Background and related work

Passive Optical Network (PON)
Compared to copper, optical fibre can provide higher
bandwidth over a longer distance; but deployment of the
latter in access networks is severely hindered by its heavy
capital (capex) and operational (opex) expenditure. Hence
PON was specifically designed to reduce overall cost by
sharing fibre and electronic equipment among multiple users.
This concept of shared optical medium in PON heavily
improved the economic viability of FTTx.

As shown in Figure 1, PON is a point-to-multipoint
fibre network and there are two kinds of equipment: the
first kind, the active elements, includes the OLT (Optical
Line Terminal) in central office and ONUs at/near customer
premises; the second kind, a passive element, includes the
optical splitters/jointers, which connect OLT and ONUs,

without the need for any other active electronic equipment
in the middle, thereby reducing capex and opex significantly.

In a classical TDMA (Time Division Multiple Access)
based PON network, downstream traffic is broadcast by the
OLT to all ONUs that share the same optical fibre and
encryption is used to prevent eavesdropping. Upstream traffic
from ONUs is interleaved by OLT to use the optical fibre in
a TDMA-like manner. Since ONUs normally have different
distances to the OLT, the data bursts from these ONUs
must be scheduled carefully to provide a collision-free and
efficient upstream data communication. To accommodate
the dynamics in bandwidth demands from users and exploit
the gain of statistical multiplexing, dynamic bandwidth
allocation (DBA) algorithms are normally used to provision
the shared upstream bandwidth. More specifically, ONUs
will report their buffer occupancy to OLT, which will then
allocate the upstream bandwidth to ONUs based on their
bandwidth demands and their Service Level Agreement
(SLA).

Some standards have been developed for PONs by both
EFM of IEEE (EPON) and FSAN of ITU-T (GPON). EPON
is designed for carrying Ethernet frames and GPON can
carry various traffic, such as Ethernet frames and ATM
cells, through encapsulation. Although EPON and GPON
have different frame structures, they share the same network
architecture and employs the same data communication
principles. One important difference between EPON and
GPON is that GPON provides granular QoS definitions,
while EPON requires adherence to the simple Multi Point
Control Protocol (MPCP); hence GPON is equipped with a
well-defined QoS framework, a feature highly preferred by
the Internet Service Providers (ISP) for comprehensive traffic
management in the access and last-mile networks. XG-PON
standard, the successor of GPON and the prime focus of our
work, is given in Section ’XG-PON details’, in detail.

ns-3 network simulator
ns-31 is a state of the art open-source network simulator.
Based on many lessons from the well-known ns-2
simulator23, ns-3 is written from the scratch to be a
completely new network simulator, with no backward-
compatibility with the former. It is a discrete-event network
simulator with the simulation core and modules of ns-3
implemented in C++;it is built as a library which may be
statically or dynamically linked to a C++ main program. ns-3
also exports nearly all of its API to Python, allowing Python
programs to import an ns3 module in much the same way as
the ns-3 library is linked by executables in C++.

ns-3 has many attractive features, such as high emphasis
on conformance to real networks, good support for
virtualisation and testbeds, a novel attribute system for
configuring simulation parameters, automatic memory
management, a configurable tracing system and the ability
to incorporate existing open-source modules through simple
APIs13. It has also been reported that ns-3 performs much
better than other simulators in terms of simulation speed and
memory overhead32. The first release of ns-3 was made in
June 2008 with support for a number of modules including
CSMA, Point-to-Point, WiFi (IEEE 802.11), TCP, UDP and
IPv4.

Prepared using sagej.cls

Arokkiam, Alvarez 3

In the last few years, many new modules have been
developed and added into ns-3, such as WiMAX module
from Inria8 and LTE module from CTTC27. Thus,
implementing an XG-PON module in ns-3 offers an
established research platform for studying the issues that
my occur in a deployment of XG-PON itself as well as in
interfacing XG-PON with other network technologies.

Related work
Although simulation has been used to study PON in the
past, such work cannot be used directly or extended easily
to study the performance issues arising with the deployment
of XG-PON. Song H, et al. developed their own simulator
to study dynamic bandwidth assignment (DBA) algorithms
when the physical reach is much longer than the current PON
networks30. This simulator has limited functions and there
is no Internet protocol (IP) stack, which is needed to study
many research topics.

EPON, GPON and XG-PON4;7;9;24;26 have all been
implemented in OPNET31. However, these models tend to be
abstracted away from the relevant standards definitions, and
thus do not represent issues that may occur at lower layers -
particularly the Physical (PHY) and Medium Access Control
(MAC) layers - of a large-scale XG-PON deployment. They
were also implemented at bandwidths lower than 1 Gb/s.
Finally, as OPNET is not an open-source simulator, there is
limited public access to the models, and we cannot adapt the
OPNET’s core to simulate a 10Gb/s XG-PON network with
a reasonable simulation speed.

On the other hand, a simple EPON module has been
developed for OMNeT++6 and the code is available to
the public, thereby providing a better simulation platform
to understand communication in and via a PON network
with conformance for standardisation. However, due to
the differences between EPON and GPON discussed in
’Background’ section, this EPON code will not be very
helpful to implement a GPON or XG-PON module for
OMNeT++, so that communication through (X)G-PON can
be studied in detail.

Summary
Hence, there is a requirement to design and implement
a standard-compliant XG-PON module from scratch for
the state-of-the-art and open-source ns-3 simulator. With
such an XG-PON module, we can simulate XG-PON at its
actual data rates with reasonably swift simulation speeds;
such a scenario would pave the way for researchers to
identify and validate issues that may occur in a large scale
XG-PON deployment. With the more realistic IP stack of
ns-3, we can also study the performance experienced by
users/applications in XG-PON networks. With the existing
ns-3 modules for various wireless networks (WiFi, WiMAX,
LTE, etc.), we can study the integration between XG-PON
and wireless networks, which is the trend of the future
Internet access networks.

Besides XG-PON, we can also extend this XG-PON
module to study Long-Reach PON (LR-PON), an evolution
of XG-PON with a larger number of users, symmetric data
rate (10 Gb/s in both upstream and downstream), and longer
reach (100+ km)25;29. The aim of our LR-PON research

����������	
���

�"5#
&!�5

�������1

&������ '�+)

&������ '�+ �

�":�":

!�� ��":����

�"�� �"��

&������ ���

���9&�

!�� �"6�

�4��"&2

����"&2

&!!!��;�)

	�"�

&!�5

��	 :26

��������������
	��������� �!� �"�� #Figure 2. XG-PON common functions 18

group is to initially build LR-PON from the XG-PON
standard, while identifying the required modifications and
improvements.

The initial design and implementation of our XG-PON
module had been reported in the 4th Workshop on ns-333.
Since then this module has been significantly redesigned
and extensively evaluated. In this paper, we will discuss the
design principles of the latest XG-PON module, describe its
implementation details and present an extensive evaluation
of the same.

XG-PON details
The XG-PON standard has many similarities with GPON,
such as its TDMA scheme used to share the medium, the
mechanism to provide QoS, and the DBA scheme used for
the upstream bandwidth assignment. However, some changes
are required in order to support a larger number of users,
higher data rate, and extended physical reach. In this section,
we will present the details of XG-PON.

Overview of XG-PON
A series of recommendations has been released by FSAN
of ITU-T for XG-PON. ITU-T G.987 explains several
important concepts of XG-PON; ITU-T G.987.1 presents
the general requirements, services to be supported, hardware
specifications and protocol stack of XG-PON as well as the
network migration from and coexistence of XG-PON with
GPON; ITU-T G.987.2 focuses on issues of the physical
media dependent (PMD) layer, such as the used wavelength
and the supported data rates whereas ITU-T G.987.3 presents
the details of transmission convergence (TC) layer for
XG-PON. Besides the protocols for data communication,
it also covers QoS management and Dynamic Bandwidth
Assignment (DBA) scheme for the upstream wavelength.
Another related recommendation is ITU-T G.988, which
specifies ONU management and control interface (OMCI)
for both GPON and XG-PON. Figure 2 illustrates XG-PON
common functions and the recommendations in which they
are specified.

Prepared using sagej.cls

4 Simulation: Transactions of the Society for Modeling and Simulation International XX(X)

Network architecture
XG-PON has been proposed for various deployment
scenarios to serve different customers, such as residential,
business, and cell site. To serve these customers, XG-
PON lists the services to be provided, such as Telephony,
high speed Internet access, mobile backhaul, etc. XG-PON
also introduces many ONU variants that provide different
functions and interfaces. In summary, XG-PON has been
well standardized for providing full services to various users
using optical network. As for optical distribution network,
XG-PON can be deployed as a classical PON with its
reach up to 60km. To support longer physical reach, active
reach extenders (RE) can be applied before and/or after
the passive splitter to connect multiple passive segments
belonging to a single XG-PON network. These REs can be
optical amplifiers or optical- electrical-optical regenerators
that could fulfil the necessary optical link budget.

PMD Layer
There are two flavours of XG-PONs based on the upstream
line rate: XG-PON1, featuring 2.5 Gb/s and XG-PON2,
featuring 10 Gb/s in the upstream. The downstream line
rate is 10 Gb/s in both XG-PON1 and XG-PON2. ITU-
T G.987.2 focuses on the PMD layer for XG-PON1. XG-
PON2 has not been standardized yet. In XG-PON1, the
used wavelengths are 1575-1580nm (downstream) and 1260-
1280nm (upstream). The exact downstream line rate is
9.95328 Gb/s and the upstream one is 2.48832 Gb/s. For
line coding, NRZ (Non-Return to Zero) is used for both
directions. ITU-T G.987.2 also specifies the requirements for
hardware, such as optical fibre, transmitter/receiver, etc.

Transmission Convergence Layer
The XG-PON Transmission Convergence (XGTC) layer
contains the definition for the MAC protocol of XG-PON.
The XGTC layer maintains logical connections between
OLT and each ONU, in pairs, in order to carry one
downstream and one upstream traffic between the OLT and
a corresponding ONU. Each connection is identified by a
unique XG-PON encapsulation method (XGEM) Port-Id,
which, while ensuring that packets are sent to the correct
ONU, associates every connection to a certain Quality of
Service (QoS) agreement. Note that one connection can only
be configured to carry either a downstream or upstream
traffic. To reduce the overhead of the DBA scheme, upstream
bandwidth is allocated to groups of connections belonging to
a single ONU. These groups are designated as Transmission
Containers (T-CONT) and each group/T-CONT is identified
by a unique identifier, the Alloc-Id.

XGTC comprises of three sublayers, with service
adaptation sublayer on the top of the protocol stack, followed
by framing sublayer and PHY adaptation sublayer.

Service Adaptation Sublayer: The service adaptation
sublayer is responsible to adapt the upper layer traffic to the
transmission mechanisms of XG-PON. It does this by map-
ping upper layer traffic to the corresponding connections,
encapsulating/decapsulating data, segmenting/reassembling
service data units (SDU) when necessary and inserting
padding when there is insufficient data to fill an XGTC

frame. If needed, it is also this sublayer’s responsibility to
encrypt/decrypt SDUs.

When mapping upper layer data to and from the
connections of XGTC layer, while the OLT will maintain
information pertaining to all the connections, an ONU
will only maintain the connections that it owns. When the
upper layer has something to transmit, it is also the service
adaptation sublayer’s responsibility to select the connections
to be served according to their QoS parameters. When a
connection is scheduled to be served, the service adaptation
sublayer will then get data from its queue and insert an
XGEM header to create an XGEM frame. The XGEM
header will contain an XGEM Port-Id and some other
information related to segmentation, padding, encryption,
etc. When receiving an XGEM frame, the service adaptation
sublayer will get the XGEM Port-Id from the XGEM header.
If the corresponding connection exists in the connections
maintained by the OLT/ONU, this sublayer will carry out
reassembly (if necessary) and pass the data to upper layer.
Otherwise, this XGEM frame will be discarded.

Framing Sublayer: In XG-PON, the OLT will send
downstream XGTC frames every 125 µs, to broadcast
traffic to all ONUs. In the upstream, ONUs send variable
length XGTC bursts to the OLT for their upstream traffic.
The length and start time of these upstream bursts are
determined by the OLT through a DBA algorithm. The
framing sublayer is responsible to generate and parse these
XGTC frames/bursts. When generating a downstream XGTC
frame at the OLT, the framing sublayer gets XGEM frames
from service adaptation sublayer and joins them together into
an XGTC payload. To create an upstream XGTC burst at
ONU side, the framing sublayer may create multiple XGTC
payloads, where each payload will carry XGEM frames
from a single T-CONT. When parsing an XGTC frame/burst,
the framing sublayer will send its payloads to the service
adaptation sublayer for further processing.

In the header of the upstream XGTC burst generated
by an ONU, there might be queue occupancy reports for
the T-CONTs of this ONU. For each downstream XGTC
frame, its header contains a BWmap, which instructs ONUs
to share the upstream wavelength in a TDMA-like manner.
More specifically, BWmap specifies the size of bandwidth
allocations for T-CONTs, the used burst profile (the length
of preamble, the length of delimiter, forward error correction
or not, etc.), and the time to start to transmit. Since the
OLT-ONU physical distance could be quite different for
ONUs, each ONU should adjust the start time for avoiding
collision in the upstream direction. Note that when an ONU
is activated, the ranging procedure is carried out between the
OLT and this ONU to determine how to adjust the start time
of its upstream bursts.

Figure 3 illustrates the time-lines in XG-PON. The OLT
and ONUs have a common view of the logical one-way
delay of the optical distribution network (the largest one-way
propagation delay plus various processing delays) and each
ONU uses its own equalization delay (EqD calculated in
ranging procedure) to avoid collisions in upstream direction.

In the header of an upstream XGTC burst, the
ONU can send one PLOAM (Physical Layer Operations,
Administration and Maintenance) message to the OLT.

Prepared using sagej.cls

Arokkiam, Alvarez 5

Start of the DS PHY frame

in OLT's view

Start of US PHY frame

in OLT's view

Teqd StartTime

T1577,i RspTimei EqDi StartTime

Start of

DS PHY frame

in ONU's view

T1270,i

G.987.3(10)_F13-5

BW Grant

 StartTime = s

PHY frame content PSBd PHY frame content PSBd PHY frame content

PSBu PHY burst content

PSBd

Figure 3. Time-line in XG-PON 18

As for a downstream XGTC frame, the OLT can send
multiple PLOAM messages to multiple ONUs. Through
exchanging PLOAM messages, many XGTC functions (key
management, ONU power management etc.) can be fulfilled.

PHY Adaptation Sublayer: PHY adaptation sublayer
interacts with PMD layer directly. Its main functions are
forward error correction (FEC), scrambling, and frame
delineation through a Physical Synchronization Block
(PSB). In the downstream, the PHY adaptation sublayer will
get an XGTC frame to create a PHY frame. These PHY
frames are sent continuously every 125 µs. In the upstream,
the PHY adaptation sublayer will get the XGTC burst and
create a PHY burst. These PHY bursts have variable length
due to the variable-length XGTC bursts. In the PHY burst,
the PSB is determined by a burst profile selected by the
OLT (through the BWmap) among the burst profiles, that are
configured through PLOAM messages.

Scheduling and DBA
To decide the data to be transmitted in a downstream
XGTC frame, a downstream scheduler is used by the OLT.
Based on QoS parameters and service history of these
downstream connections, the downstream scheduler will
decide the connections to be served and the amount of data
to be transmitted for each of them.

As for the upstream scheduling, the OLT uses a DBA
algorithm to allocate the upstream bandwidth to T-CONTs.
The DBA algorithm makes decisions based on queue
occupancy reports, QoS parameters, and service history
of these T-CONTs. The DBA algorithm needs to select
the T-CONTs to be served, reserve a short gap time
between the consecutive XGTC bursts for tolerating clock
synchronization errors, determine the size of each bandwidth
allocation, and calculate the start time for each bandwidth
allocation. These decisions are broadcast to ONUs through
BWmap. Since the upstream bandwidth is allocated to T-
CONTs and each T-CONT may have multiple upstream
connections, the ONU also needs an upstream scheduler to
determine the upstream connections to be served during one
transmission opportunity assigned to one T-CONT.

These scheduling algorithms, especially the DBA algo-
rithm, are very important to network performance and QoS
management. To allow competition and encourage research,

these algorithms were intentionally left out of the standard.
Indeed, it has been a very hot topic to study DBA algorithms
for EPON and GPON12;22;30. Hence, there should be many
research opportunities for XG-PON too.

Design principles and key decisions
When designing and implementing an XG-PON module,
many issues must be considered and several trade-offs must
be made when the goals conflict with each other. This section
presents the design principles followed by the key decisions
we made to realise a simulation-friendly XG-PON module in
ns-3.

Design principles
Standard compliance: The ultimate goal of our research
is to improve the performance issues associated with a
deployed XG-PON network. Hence, when our simulation
model has a close resemblance to a real world XG-
PON deployment, we will be able to identify more
realistic problems and provide solutions that can directly
be applied in deployments. Hence, we will follow G.987
Recommendations from the FSAN group of ITU when
designing our XG-PON module.

Simplicity: Considering that XG-PON is quite a complex
standard, it will take a very long time to simulate a high-
precision PON network, including all the layers, ranging
from physical to network management. For instance, the
document for ONU Management and Control Interface
(G.988) is more than 500 pages. Hence, only the key
components that are necessary to create a simple, yet
working XG-PON network, are given priority in our module
design; less important definitions that require extensive and
complex implementation are added as stub classes for future
extensions. For instance, since we are mainly interested in
XGTC layer and upper layer issues, we can simulate the
physical layer in a very simple way. We can assume that
power budget for the optical distribution network has been
satisfied through various techniques. The reach extenders and
passive optical splitters/jointers need not be simulated. The
channel, that simulates the optical distribution network of
XG-PON, can simply pass downstream frames to all ONUs
and pass upstream bursts to the OLT. As for Forward Error

Prepared using sagej.cls

6 Simulation: Transactions of the Society for Modeling and Simulation International XX(X)

Correction (FEC), instead of the algorithm itself, we can
simulate only its effect, i.e., the bandwidth overhead and
the much lower packet corruption rate. Further details of
omissions of less important features are explained in ’XG-
PON Details’ section, as we describe our module in detail.

Extensibility: When designing the XG-PON module for ns-
3, we should also consider its extensibility since many other
research topics might also be studied using this module.
Hence, the extensibility is very important. When designing
the class architecture of the XG-PON module, we followed
the standard principles of Object Oriented Programming
(OOP) such as using abstract classes to design easily
extensible interfaces. Such abstraction, while providing full
implementation for the key components of XG-PON, also
pave way for quick integration of future extensions. For
instance, when designing the class interface for the channel
that simulates the optical distribution network of XG-PON,
we should enable researchers to specify the tree structure of
fibres, reach extenders, and splitters. When adding an ONU,
they can also specify the splitter that it will be attached to and
the physical distance between them. With this interface, it is
possible to simulate the optical signal propagation and the
possible packet corruption. However, for the current phase,
we can let the channel store a list of ONUs and pass the
downstream frames to all of them (without any error)3. Since
DBA is a hot research topic, the classes for DBA should be
well designed to allow the easy implementation of various
DBA algorithms.

Configurability: In a single simulated XG-PON network,
there could be thousands of nodes, such as the OLT, hundreds
of ONUs, and hundreds of data traffic generators/sinks in
core networks. Many nodes will also be attached to ONUs
through various networks and act as traffic generators/sinks.
Thus, while exporting as many configurable parameters as
possible, we should also provide default parameters for most
of them. Other methods, such as using helpers, should also
be considered to ease the researcher’s task of configuring the
XG-PON network for simulation.

Simulation speed: Since the XG-PON to be simulated is a
10Gbps network, simulation speed must be considered at all
times. A module, that can simulate XG-PON accurately (but
very slowly), is useless for our research in which extensive
simulations are needed. Saving CPU cycles and memory
are primary focus here. For instance, when XG-PON is
fully loaded in downstream and the size of each packet is
1KBytes, the simulator needs to process around one million
packets per second. Since XG-PON could have hundreds
of ONUs, the simulator must run the procedure used by
ONU to judge whether it is the destination of one XGEM
frame one billion times per second. This procedure must
be implemented with high-efficiency. Straightforwardly, we
can add one vector at each ONU whose index is XGEM
Port-Id. When configuring XGEM Ports for this ONU, this
vector can be marked correspondingly. Consequently, this
vector can be used to filter out the traffic for this ONU
quickly. However, XGEM Port-Id is a 16-bit number and this
vector can consume a lot of memory when the number of
ONUs is large. Hash map, in which GEM Port-Id acts as the
key, suffers from the same memory issue. In our XG-PON
module, we impose some simple relationship among XGEM

Port-Id, Alloc-Id, ONU-ID, and IP address of the computer
that this XGEM Port belongs to. Consequently, we consume
a small amount of memory in total and achieve O(1) time
complexity when mapping IP address/XGEM Port-Id to the
corresponding data structure.

During the implementation, many useful features of C++
language should be exploited and black-holes in CPU
cycles must be avoided. First, we should pass parameters
by reference whenever it is possible; const reference is
preferred. We should also know that the smart pointer
provided by ns-3 is fundamentally an object, though small.
When the function is called frequently and some of its
parameters are smart pointers, we should replace them with
the reference of that smart pointer. Second, since C++ allows
one class to override its new and delete operators, we should
exploit this feature for data structures that are created and
destroyed dynamically and frequently. By overriding these
two operators, a pool of pre-allocated memory is used for
small and dynamic memory requirements, thereby avoiding
frequent calls to malloc/free and saving CPU cycles as a
result. Third, when we select the data structure for a sequence
of objects, vector should be considered due to its efficiency.
However, when too many objects are added into one vector,
reallocation may occur and the simulation can be slowed
down significantly. Thus, we should reserve enough memory
if the largest vector size can be pre-determined. Otherwise,
dequeue should be considered as the container.

Additionally, virtual functions and inheritance are very
attractive mechanisms in OOP that is exploited in designing
classes for our XG-PON module. However, depending on the
behaviour of entities in XG-PON module, there are instances
when these mechanisms would result in cumbersome parent
classes, requiring the use of downcast instead. Downcast,
though, is a very unsafe mechanism that consumes a lot
of CPU cycles at code execution. At such instances, we
opted for designing classes individually, that is, without
using inheritance, in order to expedite the overall simulation
speed. For example, for each function of XGPON (DBA,
etc.), there should be two classes designed for OLT and
ONU, respectively, and it is attractive to let them inherit from
the same parent. However, since the logic at OLT is totally
different than that at ONU, the amount of reused code is
limited, the interface of the parent becomes more complex,
and simulation speed is slowed down. Thus, these classes are
designed independently and the inheritance is not used.

Key decisions
Below are several key decisions we made, when designing
and implementing our XG-PON module in ns-3. Corre-
sponding implementation details will be presented in section
’XG-PON module for ns-3’.

Stand-alone simulation: Since XG-PON is a 10Gbps
network with hundreds of ONUs, it would be very
attractive to use distributed simulation to speed up XG-
PON simulation. Yet, it is necessary to have a robust
cluster or multi-core computer to realise the advantages of
MPI for a high-speed network such as XG-PON. On the
other hand, although ns-3 supports distributed simulation
through standard Message Passing Interface (MPI), this
feature only works for point-to-point links. But XG-PON is

Prepared using sagej.cls

Arokkiam, Alvarez 7

fundamentally a point-to-multipoint network and extensive
works are necessary to enable distributed simulation. These
works include verifying MPI synchronisation against the
simulation speed of XG-PON, obtaining reasonable speed
in simulating an XG-PON with the added overhead of
(de)packetization at cluster node interfaces, creating the
topology of XG-PON in each core in a cluster as per MPI
requirement and allocating ONUs to different cores. As
we would rather prefer an XG-PON module which is both
simple and used extensively among the research community,
in this phase, we decided to model our XG-PON module
as a stand-alone simulator, without support for MPI. That
is our XG-PON module uses only one core even when one
computer has multiple processors or cores. In the future,
distributed simulation may be considered.

Packet-level simulation: Since ns-3 is an event-driven
simulator, we have the options of simulating our XG-PON
module at byte, packet or flow level. However, due to the
high bandwidth of XG-PON (10Gbps) and the moderate
frequency of state-of-the-art processors (mere several GHz),
it is not feasible to simulate the extensive details of data
transfer in XG-PON at byte (or bit) level. On the other
hand it’s too complex to model both XG-PON and TCP/IP
protocol stack in a flow-level simulation with the added issue
of not being able to study the potential subtle interactions
between TCP/IP and XG-PON. Thus, we decided to
simulate our XG-PON module at packet-level, to simulate
as many details of data transfer as possible, while allowing
sufficient interaction between TCP/IP and XG-PON layers.
Furthermore, when passing traffic between OLT and ONU,
all XGEM frames in the downstream frame or upstream
burst should be handled together; as a result the number of
simulation events can be reduced significantly. Due to the
short XG-PON frame size (125µs), the upper layer protocols
won’t be affected if we keep the order of XGEM frames in
the downstream frame or the upstream burst. Based on this
decision, many physical layer operations, such as line coding
and Forward Error Correction, will not be implemented
in this module. However, the bandwidth overhead of FEC
must be considered. Payload encryption/decryption will not
be implemented as well, though the logic used for key
management will be implemented for future extensions.
We also assume that all the sub-modules in our XG-PON
module complete their execution at the required point in time
within every downstream/upstream frame, regardless of the
complexity of the sub-modules. The total run time of the
simulation however depends on the scale and complexity of
the configured XG-PON network.

XG-PON in operation: Since we are mainly interested in
the performance issues of an XG-PON network in operation,
many aspects of XG-PON can be simplified. For instance, the
activation procedure that uses PLOAM messages to add each
ONU to an operational XG-PON need not be implemented.
Instead, we can simply add all ONUs to the network before
starting the simulation through a helper class. The ranging
procedure that uses PLOAM messages to measure the one-
way propagation delay of each ONU, can be simplified by
setting the same delay values to both at the OLT and at
the corresponding ONU at the time of configuring (before

running the simulation of) the XG-PON network. In XG-
PON, XGEM Port and T-CONT configuration is carried out
through OMCI (ONU Management and Control Interface:
G.988). For simplifying the dynamic configuration of XGEM
Port and T-CONT by OMCI, we will configure all XGEM
Ports and T-CONTs before starting the simulation through a
helper class. Relevant stub classes will be designed in future
extensions, for a detailed implementation of PLOAM and
OMCI channels.

Simple Optical Distribution Network (ODN) and reliable
data transfer: In XG-PON, the optical distribution network
is quite complex and is comprised of many optical fibres,
splitters/jointers, and reach extenders. However, we model
the optical distribution network as a simple channel and
we only simulate the propagation delay and line rates. We
assume that the link power budget has been ensured through
various techniques (reach extenders, etc.) and the laser
receiver can work well. Thus, we will not simulate optical
signal propagation (wavelength-dependent) and assume that
all downstream frames and upstream bursts can arrive to their
recipients correctly. In other words, transmission errors are
not simulated in our XG-PON module. This is reasonable
since FEC is normally applied to rectify transmission errors.
Based on this decision, Cyclic Redundancy Check (CRC)
and Header Error Correction (HEC) are not executed in the
simulation.

In the future, transmission errors may be simulated at
the recipient, by dropping an entire downstream frame or
upstream burst with a distance-dependent probability. That
is, an occurrence of transmission error, with no frame
delineation, should be able to prevent a recipient from
decoding an entire frame/burst when FEC fails to identify
the frame/burst with sufficient accuracy.

Serialization avoidance and meta-data in data structures:
Since this XG-PON module is designed for stand-alone
simulation,(de)serialization is unnecessary and should be
avoided4. Thus we defined our own data structure in this XG-
PON module, instead of the Packet class from ns-3. This is
because, though Packet supports easy insertion/extraction of
headers, fragmentation and reassembly, when XGEM frame
header is added into Packet, the header is serialized into
one byte array. When one XGEM frame is received, the
recipient needs to extract the XGEM frame header from
the byte array, i.e., create a new data structure and carry
out de-serialization. Considering that one XGEM frame in
downstream direction will be processed by hundreds of
ONUs, the above operations may consume too much CPU.
To solve this issue, our data structure is designed to have one
smart pointer to the header and another to the corresponding
SDU (an instance of Packet). Hence, the header can be
directly extracted from our data structure.

Another observation is that some meta-data can be added
into data structures for various purposes since they are
exchanged between OLT and ONU as objects (instead of a
byte array). For instance, all the broadcast XGEM frames in
downstream need be checked by all ONUs, to decide whether
to accept the relevant frames or to drop them. However,
our observations indicate that the traffic in one downstream
might belong only to a few ONUs, due to the small size of
the downstream frames and the bursty nature of bandwidth

Prepared using sagej.cls

8 Simulation: Transactions of the Society for Modeling and Simulation International XX(X)

Figure 4. Functional block diagram of our XG-PON module

allocation. Thus, to speed up the simulation significantly,
we have added a bitmap to each downstream XGEM frame
merely to indicate whether one ONU needs to check the
particular frame, so that not every XGEM is checked by each
ONU in detail for acceptance or dropping.

Extensible DBA, scheduling, and queue schemes: DBA
engines, scheduling algorithms and the queue used by each
XGEM Port at the sender side are very important to the
performance of the whole network and the QoS experienced
by user traffic. Thus corresponding classes were designed
carefully to support future extensions. Creating abstract
classes for these schemes, would allow new algorithms to be
implemented easily, by redefining only a few key functions.
Additional details of DBA classes implemented in our XG-
PON module will be discussed in Section ’XG-PON module
for ns-3’, under ’Major modules’.

XG-PON module for ns-3
Our aim, in developing the XG-PON module for ns-3, is to
provide a standard compliant, configurable, and extensible
module that can simulate an XG-PON at reasonable
simulation speed with support for a wide range of research
topics. Hence, the below subsections explain the functional
blocks as we modelled them in our XG-PON module,
followed by its implementation details.

Functional blocks of our XG-PON module
Figure 4 explains the data transmission paths in both
downstream (green arrow) and upstream (blue arrow)
directions, as we modelled in our in our XG-PON module,
based on the XG-PON standard18 and our design principles.

Downstream traffic on OLT side: As shown by the green
arrows in OLT side of Figure 4, when an SDU is received
from the upper layer (eg: IP), the SDU should first be mapped
to the corresponding connection (XGEM Port) based on the
destination IP address and put into the queue for transmitting

in the future. Thus, there must be an algorithm for mapping
the IP address to an XGEM Port-Id.

Since the OLT needs to broadcast the downstream XGTC
frames every 125 µs, it will periodically ask the OLT’s
Framing Engine to generate an XGTC frame. This engine
will first generate an XGTC header since the available
space for data in the frame depends on the size of the
XGTC header. For the payload of a downstream XGTC
frame, the Framing Engine resorts to the XGEM Engine
to get an XGTC payload. This payload is comprised of
concatenated XGEM frames that occupy all the available
space. As for the SDUs to be encapsulated and transmitted,
the XGEM Engine lets the Downstream Scheduler decide the
connections to be served. This scheduler makes decisions
based on Downstream Connection Manager which knows
queue length, QoS parameters, and service history of each
downstream connection. When carrying out encapsulation,
fragmentation will be carried out by XGEM Engine if an
SDU is too long for the current transmission opportunity.
XGEM Engine is also responsible to encrypt these SDUs to
avoid eavesdropping. The keys used for data encryption are
negotiated through PLOAM messages and are maintained by
Ploam Engine.

To construct the XGTC header of the frame, the DBA
Engine is used to generate BWmap that tells ONUs
how to share the upstream wavelength. DBA Engine
makes decisions based on queue occupancy reports, QoS
parameters, and service history of T-CONTs. PLOAM
messages in the header, are generated by Ploam Engine. The
downstream frame is sent to the ODN after passing through
PHY Adaptation Engine and PMD Engine.

Downstream traffic on ONU side: Shown by the green
arrows in ONU side of Figure 4, when a downstream PHY
frame arrives at an ONU, it will pass through PMD Engine
and PHY Adaptation Engine which will remove the physical-
layer overhead. The Framing Engine is then responsible to
parse the resulting downstream XGTC frame.

The PLOAM messages from the XGTC header will be
given to the Ploam Engine, which will process the messages
related with this ONU. The DBA Engine is responsible to
process BWmap in the header, i.e., schedule its upstream
XGTC bursts if required by this BWmap.

As for the payload, the XGEM frames are passed
to XGEM Engine. Based on the list of its connections
maintained by Downstream Connection Manager, the
XGEM frames for this ONU are first extracted. XGEM
Engine then carries out decapsulation, decryption, and
reassembly (if needed)5. The received SDUs are then sent
to the upper layer (eg: IP).

Upstream traffic on ONU side: As illustrated in Figure 4 by
the blue arrows in ONU side, when a IP packet is received at
the ONU, it is first mapped, based on the source IP address, to
the corresponding upstream connection, which is maintained
by Upstream Connection Manager. The packet is then put
into the corresponding queue for transmitting in the future.

When it is the time to transmit one upstream XGTC
burst (as instructed in the BWmap sent by the OLT in a
previous downstream frame), the Framing Engine in the
ONU assumes responsibility for producing the XGTC burst.
To do this, the Framing Engine in an ONU asks its XGEM

Prepared using sagej.cls

Arokkiam, Alvarez 9

Figure 5. Sample XG-PON simulation environment

Engine to get an array of XGTC payloads (SDUs), each of
which is a concatenation of several XGEM frames belonging
to an Alloc-Id. To decide the SDUs to be encapsulated,
the Upstream Scheduler and the DBA Engine in the ONU
are also needed since the upstream bandwidth is allocated
to each Alloc-Id with the possibility of multiple upstream
connections (or Alloc-Ids) belonging to the same ONU. Both
the Upstream Scheduler and the DBA Engine make decisions
based on several parameters such as the amount of bandwidth
allocated to each Alloc-Id, queue length, QoS parameters,
and service history of this T-CONT’s upstream connections.

Framing Engine at an ONU also resorts to the DBA Engine
to generate queue occupancy report for the corresponding
Alloc-Id, when permitted by the OLT. This report is deduced
by the Upstream Connection Manager based on the Alloc-
Id(s) associated with each ONU. For various purposes,
PLOAM messages may be generated by Ploam Engine.
When it is allowed by the OLT, one PLOAM message can be
put into the header of the XGTC burst, which may contain
a range of XGTC SDUs multiplexed when the ONU has
several upstream connections/T-CONTs.

The upstream XGTC burst is then passed to PHY
Adaptation Engine with the burst profile to be used. After
going through PMD Engine, this burst is sent to the ODN.

Upstream traffic on OLT side: As shown by the blue arrows
in Figure 4, when the OLT receives an upstream XGTC burst
from the XG-PON ODN, this burst first passes through PMD
Engine and PHY Adaptation Engine. The Framing Engine at
OLT is then responsible to parse the header and the payloads
of this burst. The potential queue occupancy report will be
sent to DBA Engine and the potential PLOAM message is
sent to the PLOAM Engine. As for the XGTC payloads, they
are sent to XGEM Engine for decapsulation and reassembly
(if needed). Hence, an Upstream T-CONT Manager is needed
to hold the potential segments for reassembly.

As illustrated in Figure 4, both OLT and ONU should have
an OMCI Engine for exchanging OMCI messages that are
used for various purposes (ONU management, XGEM Port
and T-CONT configuration, etc.).

Implementation of our XG-PON module
Overview: Figure 5 illustrates a common simulation
set-up that uses our XG-PON module and other ns-3
components to study the performance issues that may
occur in XG-PON. The OLT is simulated as a node that
has an XgponOltNetDevice and another network device,
such as PointToPointNetDevice, to connect to an external

network. The ONU is simulated as a node with an
XgponOnuNetDevice and other network devices (Ethernet,
WiFi, WiMAX, LTE, etc.) for connecting user equipments to
the ONU. Thanks to ns-3, network devices of a node can be
configured and we can study different deployment scenarios
of XG-PON easily. Although XG-PON is proposed to carry
layer-2 frames of various network technologies (Ethernet,
ATM, etc.), our XG-PON module interacts directly with the
IP layer and IP packets are the SDUs. This is reasonable
since we focus on FTTx networks connected to the Internet.

The OLT and ONUs are attached to XgponChannel
that simulates the optical distribution network (ODN) of
XG-PON. As illustrated in Figure 1, the ODN is a very
complex tree composed by optical fibres, splitters/jointers,
and REs. To produce trustworthy simulation results, it is
highly desirable to simulate all details. But, XG-PON is also
a very high-speed network with highly complex standard
definitions. Hence, our module simplifies several aspects of
XG-PON to reduce the development workload and increase
the simulation speed.

Specifically, our XgponChannel merely simulates dmax,
i.e., the logical one-way delay of the channel that is
determined by the maximum propagation delay of ODN and
various laser on/off delays at the ONU/OLT. dmax in our
XG-PON module can be configured through the attribute
system of ns-3. For a downstream frame from the OLT,
XgponChannel will pass this frame to each ONU after
waiting for dmax. XgponChannel passes the smart-pointer
of this frame to each ONU, which will copy and process
the data for itself 6 to avoid unnecessary data copy. As
for an upstream PHY burst, XgponChannel will pass the
corresponding smart-pointer to the OLT, after the appropriate
dmax. EqD is calculated at the ONU when the upstream
burst is produced, based on the BWmap from the OLT;
EqDi at ONU i is equivalent to the sum of dmax and the
relative upstream burst delay (with regard to the previously
scheduled ONUs in the same upstream frame) perceived at
the XGTC layer by the Framing Engine in ONU i.

This means that although the difference of propagation
delays among ONUs is simulated, the propagation of
optical signals (fibre, splitter, etc.) is not simulated by the
XgponChannel. It is also very CPU-intensive to calculate the
optical signal strength for each downstream frame when it
arrives at each ONU. Thus, our simplification is reasonable
since the targeted research topics are related with MAC
and upper layers. These simplifications also improve the
simulation speeds significantly.

Major modules: Table 1 presents the summary of major
classes used in our XG-PON module. We have also explained
some significant sub-modules below, as they involve certain
design choices. For information on all the classes our XG-
PON module comprises of, the reader may refer to the
documentation provided in sourceforge2.

Connection Managers: For both XgponOnuConnMan-
ager and XgponOltConnManager, we have implemented two
subclasses in which these data structures are organized in
different ways for different purposes: (1) XgponOnuCon-
nManagerSpeed and XgponOltConnManagerSpeed impose
some relationships among XGEM Port-Id,d Alloc-Id, ONU-
ID, and IP address of the computer connected to ONU.

Prepared using sagej.cls

10 Simulation: Transactions of the Society for Modeling and Simulation International XX(X)

Table 1. Major classes in XG-PON module in ns-3.

Classes Functionality

XgponChannel Represents the physical medium of ODN

XgponNetDevice
Communicate with both upper layers and PonChannel, implements statistics related
to OLT and ONU, defines various engines representing protocol stack of XG-PON

XgponDsFrame Frame transmitted over XG-PON for downstream data
XgponUsBurst Frame representing upstream burst
XgponXgemFrame Represent XGEM frame and includes the payload and header
XgponXgemHeader Represents the XGEM header defined in XG-PON standard
XgponTcont Represents a T-CONT

XgponTcontOnu
Maintains queue occupancy reports from ONU, QoS parameters and service history of
this T-CONT for DBA algorithm. Also holds the received segments for reassembly

XgponOnuConnManager
Contains a list of downstream connections and a list of T-CONTs in each ONU
and implements both Downstream and Upstream Connection Managers for the ONU.

XgponOltConnManager
Downstream Connection Manager and Upstream T-CONT Manager for the OLT. Contains
broadcast and uni-cast downstream connections and T-CONTs for upstream connections

XgponPhy Implements PMD Engine and PHY layer parameters common to OLT and ONUs
XgponOltFramingEngine Generate the downstream XGTC frames and parse the upstream XGTC bursts in OLT

XgponXgemRoutines
Implements routines common for both OLT and ONU (eg: XGEM frame creation)
It also implements encapsulation, decapsulation, fragmentation, reassembly etc

XgponOltDsScheduler Acts as the OLT Downstream Scheduler shown in Figure 4
XgponOltSimpleDsScheduler A sub-class that follows the round robin (RR) scheme for downstream scheduling

XgponOnuUsScheduler
The ONU upstream scheduler shown in Figure 4. Also decides which connection in
each ONU to be served in the next transmission opportunity, after payload generation

XgponOnuUsSchedulerRoundRobin A subclass to serve the connections of every ONU in a round robin manner
XgponHelper Helper class for configuring an XG-PON network
XgponConfigDb Database that holds the information used by XgponHelper

They can carry out mapping very quickly, but they also limit
the number of XGEM Ports that an ONU could have; (2)
XgponOnuConnManagerFlexible and XgponOltConnMan-
agerFlexible do not have such limitations,but they are much
slower. Since millions of packets need to be processed per
second, we recommend (1) for most cases.

PMD and PHY Adaptation: PMD Engine and PHY
Adaptation Engine in Figure 4 are simplified significantly
for simulating XG-PON with reasonable speed. The most
important function of the interface here is to tell other
classes about the size of an downstream/upstream frame.
XgponOltPhyAdapter and XgponOnuPhyAdapter are used
to implement PHY Adaptation Engine for the OLT and
ONU, respectively. Instead of simulating their functions (line
coding, FEC, scrambling, etc.) step by step, they just pass
frames/bursts between XgponChannel and Framing Engine
after removing physical layer header. Hence, we implicitly
assume that all frames/bursts can be received correctly. Since
the network should be well planned and FEC has been
adopted, the observed frame corruption rate will be very
low and this assumption is reasonable. In the future, the
corruption rate of frames will be simulated based on the
distance between OLT and ONU or empirical measurements
of XG-PON networks in real world.

DBA: To study different scheduling and DBA schemes,
several abstract classes are used in this module for extensi-
bility. The actual schedulers can then inherit these abstrac-
tions and implement their specific algorithms. For exam-
ple, XgponOltDbaEngine is designed for the OLT DBA
Engine shown in Figure 4. When XgponOltFramingEngine
generates one downstream XGTC frame, it will resort to
XgponOltDbaEngine to generate a BWmap. XgponOltD-
baEngine is also responsible to receive queue occupancy

reports from ONUs. Currently, a simple DBA algorithm
is implemented in XgponOltDbaEngineRoundRobin, which
serves fixed amount of bytes for each T-CONT in a RR
manner. Similarly, we could also implement the modified
GigaPON Access Network (GIANT) DBA22, which was
initially proposed for GPON and the recent Efficient Band-
width Utilization (EBU) DBA11 in our XG-PON module, for
supporting different classes of T-CONTs with multiple QoS
parameters. XgponOnuDbaEngine acts as the ONU DBA
Engine shown in Figure 4. It is responsible for processing
BWmap, generating queue occupancy report, and scheduling
upstream burst.

Helper: For facilitating researchers to configure an XG-
PON network with hundreds of ONUs and thousands
of connections, XgponHelper is also implemented in
this module. Through XgponHelper, researchers can
install XgponNetDevice on nodes and attach them to
XgponChannel. They can also configure XGEM Ports and
T-CONTs for carrying user traffic. Researchers can also use
XgponHelper to enable Ascii and Pcap tracing.

Miscellaneous: Further classes of interest in our
implementation are listed here.

• As explained in subsection ’Key decisions’, we used
XgponXgemFrame to represent XGEM frame in our
XG-PON module, instead of Packet class from ns-3

• XgponOltPloamEngine and XgponOnuPloamEngine
are designed for exchanging PLOAM messages
between the OLT and ONU. They also use XgponLink-
Info to maintain per-ONU information, such as keys
and burst profiles.

• XgponOltOmciEngine and XgponOnuOmciEngine,
are designed for implementing the OMCI channel. For

Prepared using sagej.cls

Arokkiam, Alvarez 11

Downstream

Traffic Generator

Upstream

Traffic Sink

ONU1 PC
1

ONU2 PC
2

ONUn PCn

Router OLT

Figure 6. Simulated network topology

these classes though, we have only implemented their
interactions with other layers. We will simulate their
messages and the related procedures in the future.

• XgponOnuUsScheduler is put within XgponTcontOnu
so that T-CONTs of the same ONU may use different
scheduling algorithms for their upstream traffic.

• XgponConfigDb uses one flag to make sure that
XgponOltConnManagerSpeed, XgponOnuConnMan-
agerSpeed, and XgponIdAllocatorSpeed are used
together.

Evaluation results
In this section, with several typical simulation scenarios,
we first demonstrate that our XG-PON module, designed
for simulating a 10Gbps optical network with hundreds of
ONUs, can indeed work as expected. Then we evaluate
our XG-PON module’s simulation speed and memory
consumption under different load and ONU numbers using
an off-the-shelf server, since simulation performance is one
of the most important metrics in large-scale and high-speed
network modelling. Extensive pressure tests are also carried
out to demonstrate that our XG-PON module can run for a
very long time and work as expected under controlled and
random simulation environments.

Figure 6 shows the network topology used in our
evaluations. We simulate an XG-PON network whose dmax

is 0.4ms, which is more than the one way propagation delay
in fibre (= 0.3ms) for a refractive index of 1.5 and a physical
reach of 60km. For the data rates of XG-PON, we follow
XG-PON1, which is capable of 10Gbps in downstream and
2.5Gbps in upstream. There is a total of n ONUs in the
XG-PON and one PC is connected to each ONU through a
point-to-point link. These PCs act as the customer of XG-
PON and play the role of generators for upstream traffic and
that of sinks for downstream traffic. Delay between each
PC and an ONU is set at 2ms, indicating a maximum one-
way delay between the user application and the ISP terminal
near the user. The OLT is connected to a Router and the
point-to-point link between them is used to simulate the core
network. More specifically, the delay of this link is set to
10ms, which is a practical one-way delay between routers at
ISP and an OLT placed at the ISP edge of an access network.
Downstream Traffic Generator and Upstream Traffic Sink
are connected to Router through point-to-point links whose
delay is 2ms, which again is a realistic representation of a
one-way delay between an application at the ISP and its core
routers. The bandwidth of all the above point-to-point links is
set to 20Gbps so that XG-PON is the only bottleneck link in

 0

 2

 4

 6

 8

 10

 0 50 100 150 200 250 300

T
h
ro

u
g
h
p
u
t
(G

b
p
s
)

Seconds (s)

downstream
upstream

Figure 7. Effective bandwidth of XG-PON1

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50
 0

 0.5

 1

 1.5

 2

 2.5

 3

F
a
ir
n
e
s
s
 I
n
d
e
x

A
v
g
.
T

o
ta

l
T

h
ro

u
g
h
p
u
t
(G

b
p
s
)

No of ONUs

Fairness Index
throughput (Gbps)

Figure 8. Fairness of Round-Robin-based DBA Algorithm

the entire simulation environment. At the application layer
in the Downstream Traffic Generator/PCs, we use traffic
models with uniform inter packet arrival time distribution, to
generate the user traffic. More specific details of the network
traffic will be presented in the respective subsections.

Functionality validation
Effective bandwidth of XG-PON1: The data rates of
XG-PONs are 10Gbps in downstream and 2.5Gbps in
upstream. However, due to the overhead of FEC (Forward
Error Correction) and the headers of various layers, the
effective bandwidth observed by applications is much less.
In this experiment, 256 ONUs are simulated, UDP traffic is
generated in both directions, and the overall network load
is maintained higher than the data rate of XG-PON in each
direction.

Figure 7 plots the effective bandwidth observed by
applications with time. The red line indicates that the overall
throughput in downstream is around 8.5Gbps while the
blue line indicates that the overall throughput in upstream
is around 2.3Gbps; these data rates are equivalent to
theoretical values, given a packet size of 1024 Bytes with
the above overheads are accounted for. Thus, these results
show that our XG-PON module has properly simulated
SDU encapsulation (XGEM and XGTC headers) and other
overheads (FEC, inter-burst gap, etc.).

Fairness of Round-Robin-based DBA algorithm: DBA
is one of the most complex functions of XG-PON and it is
necessary to verify that it works as expected. In this group of
experiments, we will demonstrate that our round-robin-based
DBA algorithm can allocate the upstream bandwidth fairly

Prepared using sagej.cls

12 Simulation: Transactions of the Society for Modeling and Simulation International XX(X)

 0

 2

 4

 6

 8

 10

 0 4000 8000 12000 16000
 2

 2.1

 2.2

 2.3

 2.4

 2.5
A

v
e
ra

g
e
 D

e
la

y
 (

m
s
)

T
o
ta

l
T

h
ro

u
g
h
p
u
t
(G

b
p
s
)

Maximum Service Size (Bytes)

Average Delay (ms)
Total Throughput (Gbps)

Figure 9. Effects of Maximal Service Size used by DBA

 0

 2

 4

 6

 8

 10

 0 50 100 150 200 250 300

T
h
ro

u
g
h
p
u
t
(G

b
p
s
)

Seconds (s)

downstream
upstream

Figure 10. TCP traffic on XG-PON1 (throughput vs. time)

and efficiently. In each experiment, n ONUs are simulated,
customers (the PCs connected to ONUs) generate the same
amount of upstream UDP traffic, and the overall network
load in upstream is higher than the upstream data rate
(=2.5Gbps) of XG-PON1; n is set to 10, 20, 30, 40, and 50.

Figure 8 plots Jain’s fairness index19 among the customers
and the overall throughput in upstream. The red line shows
that the fairness index is equal to 1, indicating that the round-
robin-based DBA algorithm fairly allocates the upstream
bandwidth to all the customers. The blue line indicates that
our round-robin-based DBA algorithm is also efficient since
the overall throughput is 2.3Gbps.

Trade-off between throughput and delay: The well-
known trade-off between throughput and delay is also
applicable to XG-PON, due to its large bandwidth-delay
product (BDP). More specifically, when an ONU gets
the chance to be served, the larger the maximal service
size (MSS) used by the DBA algorithm is, the smaller
the upstream burst overhead is and the higher the overall
upstream throughput is. However, larger MSS also enforces
larger interval between two consecutive services for the
same ONU; as a result the packets wait longer at the ONU
upstream buffer due to larger scheduling delay. In this group
of experiments, 256 ONUs are simulated, customers generate
the same amount of upstream UDP traffic, and the overall
network load in upstream is higher than 2.5Gbps. The MSS is
set to 500B, 1KB, 2KB, 4KB, 8KB, and 16KB. Validation is
considered only for the upstream since the round-robin DBA
is employed only for upstream bandwidth allocation.

Figure 9 illustrates the impact of MSS on throughput
and delay; both the overall upstream throughput (blue line)

Figure 11. General CUBIC TCP congestion window growth 10

and the scheduling delay (red line) increase with MSS,
indicating the existence of the well-known trade-off between
throughput and delay in large BDP networks.

TCP in downstream and upstream directions: Here,
we demonstrate the behaviour of a common congestion
control algorithm from a realistic TCP stack to validate the
ability of our XG-PON module to work seamlessly with TCP.
First, we successfully integrated our XG-PON module with
a real-world TCP stack from Linux Kernel(version 2.6.26)
packed in Network Simulation Cradle (NSC20). Using
this integration, we generated a single CUBIC TCP10;21

flow across our XG-PON module, both in downstream
and upstream directions, individually. Figure 10 shows the
throughput vs. time plots for a single TCP connection in the
downstream (red line) and the upstream (blue line). When
the data rate at the sender is higher than network bandwidth,
packets are dropped and sending rate (or throughput) is
reduced. We can observe that at each TCP epoch, both in
downstream and upstream, throughput curves in Figure 10
matches well with the congestion window (cwnd) growth
function of Cubic TCP (Figure 11) Steady State Behaviour
and Max Probing periods; each CUBIC flow, at the end
of every Max Probing period in Figure 10 shows heavy
exponential growth of its cwnd until a congestion is
caused by the downstream or upstream capacity XG-PON.
We have also performed extensive simulations combining
our XG-PON module and realistic TCP stacks (Linux
Kernel from NSC) employing different congestion control
algorithms5 to validate that our XG-PON module is capable
of accommodating real-world TCP stacks, under various
scenarios.

Performance evaluation
In evaluating performance, one dedicated computer is used
to measure performance of our XG-PON module, to avoid
interference from other processes. We used Dell PowerEdge
R320 rack server and the processor is Intel(R) Xeon(R) CPU
E5-1410 0 @ 2.80GHz with a cache of 10MBytes. Note that
although this processor has 4 cores, just one of them is used
by our simulation. As for the main memory, the server is
installed with 48GBytes in total.

To study the simulation performance of our XG-PON
module under various scenarios, the number of ONUs
and the amount of network traffic are changed in our
experiments. The evaluated values of n (the number of
ONUs) are 25, 50, 100, 200, 400, 800, and 1000; values
for total amount of network load in the downstream are,
150Mbps, 300Mbps, 600Mbps, 1.2Gbps, 2.4Gbps, 4.8Gbps,
and 9.6Gbps. Due to the overhead of XG-PON physical

Prepared using sagej.cls

Arokkiam, Alvarez 13

 100

 1000

 100

 1000

 10000

 1

 10

 100

Number of ONUs
Downstream Network

Load (Mbps)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 Scale (seconds)

 Simulation Time (s)

Figure 12. Simulation speed of our XG-PON module

 100

 1000

 100

 1000

 10000

 100

 1000

Number of ONUs Load (Mbps)

Downstream Network

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 Scale (MBytes)Memory Consumed

(MBytes)

Figure 13. Memory consumption of our XG-PON Module

and XGTC layers, we observe packet drop when the
downstream network load is beyond 9.6Gbps. Furthermore,
for all experiments, the upstream network load is always one
quarter of the downstream network load. Thus, when the
downstream network load is 9.6Gbps, the upstream network
load is 2.4Gbps and with observable packet drop in the
upstream direction.

To evaluate the speed of our XG-PON module, 400
seconds are simulated in each experiment, the total amount
of time used to complete the simulation is recorded; finally
the average time consumed for each simulation second in
each scenario is calculated and plotted in Figure 12. The
results indicate that the average time consumed (shown by
the vertical axis and the scale in the figure) increases linearly
with the network load. This is reasonable since ns-3 is a
packet-level network simulator and the number of events
increase linearly with the number of packets. We observe,
on the other hand, the consumed time increases at a slower
pace with the number of ONUs. Figure 12 also indicates
that our XG-PON module takes around 160s to simulate one
second even when there are 1000 ONUs and the downstream
network load is 9.6Gbps with which XG-PON is over-
loaded.

We also used gdb, the standard debugger for GNU
software system, to run the simulation of the most difficult
scenario (ONUs: 1000; Network load: 9.6Gbps) in debug

mode. After the simulation enters into steady phase, we break
it at random time, check the call stack, and continue the
simulation. We observe that our XG-PON code occupies
the CPU cycles only at 4 instances of the 126 such breaks.
This clearly indicates that our XG-PON module is not
the bottleneck of simulation speed and calls for additional
investigation of other associated ns-3 modules (routing, etc.)
to further improve simulation speed of our XG-PON module.

Besides simulation speed, we also evaluated the memory
consumption of XG-PON simulation. The same experiments
are repeated to collect these results. For each experiment,
after starting the simulation, we wait for sufficiently long
time until the simulation enters into its steady phase, where
the amount of consumed memory does not increase any
more. The recorded values, plotted in Figure 13, indicate that
the consumed memory (again, shown by the vertical axis and
the scale in the figure) increases linearly with the network
load while it increases at a smaller pace with the number
of ONUs. When there are 1000 ONUs and the downstream
network load is 9.6Gbps, the consumed memory is still less
than 5GBytes.

Based on the above results, we can conclude that with the
off-the-shelf server, our XG-PON module can simulate an
XG-PON network of 1000 ONUs and 10Gbps (downstream),
with reasonable speed and moderate memory consumption.

Pressure tests
To evaluate the robustness of our XG-PON module,
we carried out more experiments. We use the same
configurations designed for performance evaluation and
4000 seconds are simulated in each experiment to
demonstrate that our XG-PON module can run for
sufficiently long periods (longer than one hour). Note that
when there are 1000 ONUs and the downstream network
load is 9.6Gbps, it takes more than one week to complete
the simulation. In another set of 49 experiments, we
randomly select the number of ONUs and the amount of
network traffic, and 500 seconds are simulated in each
experiment. All these simulations ran successfully without
any interruption or memory leakage during the course.

In summary, these evaluation results indicate that our XG-
PON module is sufficiently robust and can simulate XG-PON
accurately with reasonable speed and moderate memory
consumption. Thus it can be used as a very good research
platform for studying performance issues related with XG-
PON.

Summary and future work
In this paper, we introduced an XG-PON module for the ns-
3 network simulator. We described the details of its design
and implementation, and presented the evaluation results
on both functionality and performance. The results indicate
that our XG-PON module is quite robust and can simulate
XG-PON correctly with reasonable speed and moderate
memory consumption. As the first and a full-fledged XG-
PON module for ns-3, we believe that this work is a
significant contribution to the scientific community; for any
interested researcher, our XG-PON module provides the
opportunity to study the performance issues associated with

Prepared using sagej.cls

14 Simulation: Transactions of the Society for Modeling and Simulation International XX(X)

the deployment of XG-PON, using a validated simulation
module.

In the future, we will implement more scheduling
and DBA algorithms proposed for GPON or XG-PON,
keep improving the simulation speed, add support for
parallel/distributed simulation and investigate how to
simulate Fibre-to-the-Cell using this XG-PON module and
WiMAX/LTE modules in ns-3.

Acknowledgements

This work is supported in part by the CTVR Grant (SFI 10/CE/I
1853) from Science Foundation Ireland

Notes

1. http://www.ctvr.ie

2. http://www.ucc.ie/en/misl/

3. Depending on the situation, it may be worthwhile to simulate a
likely low packet corruption rate, with the effects of FEC

4. All data structures must provide one function to return its
serialized size to accurately compose downstream frame and
upstream burst.

5. For each downstream connection, the Downstream Connection
Manager at ONU should hold the initially received segments
for reassembly while the remaining segments are received.

6. In the future, this will be revised to support parallel simulation,
where ONUs will be simulated in different CPUs of a cluster.

References

1. (2011-15) The NS-3 network simulator. Available at:
http://www.nsnam.org.

2. (2014) XG-PON Simulation Module for NS-3. Available
at:http://sourceforge.net/projects/
xgpon4ns3/.

3. 3GPP (2008) Evolved Universal Terrestrial Radio Access (E-
UTRA).

4. Anthapadmanabhan NP, Dinh N, Walid A and van Wijngaarden
AJ (2013) Analysis of a probing-based cyclic sleep mechanism
for passive optical networks. In: 2013 IEEE Glob. Commun.
Conf. IEEE. ISBN 978-1-4799-1353-4, pp. 2543–2548.

5. Arokkiam JA, Wu X, Brown KN and Sreenan CJ (2014)
Experimental evaluation of TCP performance over 10gb/s
passive optical networks (XG-PON). In: Globecom 2014 - SAC
Access Networks and Systems. Austin, USA, pp. 2269–2274.

6. Bodozoglou A (2010) EPON for OMNeT++.
7. Chang CH (2008) Dynamic Bandwidth Allocation MAC

Protocols for Gigabit-capable Passive Optical Networks. PhD
Thesis, University of Hertfordshire.

8. Farooq J and Turletti T (2009) An IEEE 802.16 WiMAX
Module for the NS-3 Simulator. In: SIMUTools.

9. Fernando DNV, Milosavljevic M, Kourtessis P and Senior JM
(2014) Cooperative cyclic sleep and doze mode selection for
NG-PONs. In: 2014 16th Int. Conf. Transparent Opt. Networks.
IEEE. ISBN 978-1-4799-5601-2, pp. 1–4.

10. Ha S, Rhee I and Xu L (2008) Cubic: a new tcp-friendly high-
speed tcp variant. Operating Systems Review 42: 64–74.

11. Han MS, Yoo H and Lee DS (2013) Development of Efficient
Dynamic Bandwidth Allocation Algorithm for XGPON. ETRI
J. 35(1): 18–26.

12. Han MS, Yoo H, Yoon BY, Kim B and Koh JS (2008) Efficient
dynamic bandwidth allocation for FSAN-compliant GPON.
Journal of Optical Networking 7(8): 783–795.

13. Henderson TR, Lacage M and Riley GF (2008) Network
simulations with the ns-3 simulator. In: Sigcomm (Demo).

14. IEEE (2004) 802.3ah: Ethernet in the First Mile.
15. IEEE (2004) IEEE Std. 802.16-2004, IEEE Standard for Local

and Metropolitan Area Networks - Part 16: Air Interface for
Fixed Broadband Wireless Access Systems.

16. Ikeda H and Kitayama K (2009) Dynamic Bandwidth
Allocation With Adaptive Polling Cycle for Maximized TCP
Throughput in 10G-EPON. Journal of Lightwave Technology
27(23): 5508–5516.

17. ITU (2008) Gigabit-Capable Passive Optical Networks (G-
PON). Rec. G.984.x.

18. ITU (2010) 10-Gigabit-Capable Passive Optical Networks
(XG-PON) Series of Recommendations. G.987.x.

19. Jain R, Chiu DMW and Hawe WR (1984) A quantitative
measure of fairness and discrimination for resource allocation
in shared computer systems. DEC Research Report TR-301.

20. Jansen S and McGregor A (2005) Simulation with real world
network stacks. In: Winter Simulation Conference.

21. Leith D, RNShorten and GMcCullagh (2007) Experimental
evaluation of cubic-tcp. In: PFLDnet Workshop.

22. Leligoun HC, Linardakis C, Kanonakis K, Angelopoulos JD
and Orphanoudakis T (2006) Efficient medium arbitration
of FSAN-compliant GPONs. International Journal of
Communication Systems 19: 603–617.

23. McCanne S and Floyd S (1997) The LBNL network simulator
(NS-2). Http://www.isi.edu/nsnam/ns/.

24. Orphanoudakis TG, Kosmatos EA, Matrakidis C, Stavdas A
and Leligou HC (2014) Hybrid resource reservation scheme
for transparent integration of access and core optical transport
networks. In: 2014 16th Int. Conf. Transparent Opt. Networks.
IEEE. ISBN 978-1-4799-5601-2, pp. 1–4.

25. Payne DB and Davey RP (2002) The future of fibre access
systems? BT Technology Journal 20(4): 104–114.

26. Peng Z and Radcliffe P (2011) Modeling and Simulation
of Ethernet Passive Optical Network (EPON) Experiment
Platform based on OPNET Modeler. In: ICCSN.

27. Piro G, Baldo N and Miozzo M (2011) An LTE module for
the ns-3 network simulator. In: WNS-3 in conjunction with
SIMUTools.

28. Postel J (1981) Transmission Control Protocol - DARPA
Internet Program Protocol Specification. RFC 793.

29. Shea DP and Mitchell JE (2007) A 10-gb/s 1024-way-split 100-
km long-reach optical-access network. Journal of Lightwave
Technology 25(3): 685–693.

30. Song H, Kim BW and Mukherjee B (2009) Multi-Thread
Polling: A Dynamic Bandwidth Distribution Scheme in
Long-Reach PON. IEEE Journal on Selected Areas in
Communications 27(2): 134.

31. Technology R (2015) OPNET Modeler.
32. Weingartner E, vom Lehn H and Wehrle K (2009) A

performance comparison of recent network simulators. In:
ICC.

33. Wu X, Brown KN, Sreenan CJ, Alvarez P, Ruffini M, Marchetti
N, Payne D and Doyle L (2013) An XG-PON module for the
NS-3 network simulator. In: Workshop on NS-3 (held with
SIMUTools).

Prepared using sagej.cls

http://www.ctvr.ie
http://www.ucc.ie/en/misl/
http://sourceforge.net/projects/xgpon4ns3/
http://sourceforge.net/projects/xgpon4ns3/

	Introduction
	Background and related work
	Passive Optical Network (PON)
	ns-3 network simulator
	Related work
	Summary

	XG-PON details
	Overview of XG-PON
	Network architecture
	PMD Layer
	Transmission Convergence Layer
	Service Adaptation Sublayer:
	Framing Sublayer:
	PHY Adaptation Sublayer:

	Scheduling and DBA

	Design principles and key decisions
	Design principles
	Standard compliance:
	Simplicity:
	Extensibility:
	Configurability:
	Simulation speed:

	Key decisions
	Stand-alone simulation:
	Packet-level simulation:
	XG-PON in operation:
	Simple Optical Distribution Network (ODN) and reliable data transfer:
	Serialization avoidance and meta-data in data structures:
	Extensible DBA, scheduling, and queue schemes:

	XG-PON module for ns-3
	Functional blocks of our XG-PON module
	Downstream traffic on OLT side:
	Downstream traffic on ONU side:
	Upstream traffic on ONU side:
	Upstream traffic on OLT side:

	Implementation of our XG-PON module
	Overview:
	Major modules:

	Evaluation results
	Functionality validation
	Effective bandwidth of XG-PON1:
	Fairness of Round-Robin-based DBA algorithm:
	Trade-off between throughput and delay:
	TCP in downstream and upstream directions:

	Performance evaluation
	Pressure tests

	Summary and future work

