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Abstract

In this paper we study social networks as an enabling technology for new applications and ser-

vices leveraging, largely unutilized, opportunistic mobile encounters. More specifically, we quantify

mobile user similarity and introduce a novel mathematical framework, grounded in information the-

ory, to characterize fundamental limits and quantify the performance of sample knowledge sharing

strategies. First, we introduce generalized, non-temporal and temporal profile structures, beyond

geographic location, as a probability mass function. Second, we examine classic and information-

theoretic similarity metrics using data in the public domain. A noticeable finding is that temporal

metrics give lower similarity indices on the average (i.e., conservative) compared to non-temporal

metrics, due to leveraging the wealth of information in the temporal dimension. Third, we intro-

duce a novel mathematical framework that establishes fundamental limits for knowledge sharing

among similar opportunistic users. Finally, we show numerical results quantifying the cumulative

knowledge gain over time and its upper bound, the knowledge gain limit, using public smartphone

data for the user behavior and mobility traces, in the case of fixed as well as mobile scenarios. The

presented results provide valuable insights highlighting the key role of the introduced information-

theoretic framework in motivating future research along this ripe research direction, studying diverse

scenarios as well as novel knowledge sharing strategies.

Keywords: social networks, opportunistic, profiles, similarity, modeling, user traces, numerical

results

1. Introduction

Recent studies by the International Telecommunication Union (ITU), e.g., [1], point out that

mobile phone coverage is now nearly ubiquitous, with an estimated 95% of the global population

about seven billion people living in an area covered by at least a basic 2G cellular network. In

IThis work was supported in part by a Google Faculty Research Award to Nile University.
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2016, more than 75% of the population in Europe and the Americas has access to mobile broadband5

subscriptions whereas Africa has about 30% penetration, yet, is steadily growing [1]. These global

trends, complemented by a variety of wireless technologies and applications, has inspired innovative

networking regimes ranging from personal and social [2, 3] to professional. However, formally char-

acterizing and leveraging the inherent social structure exhibited by mobile users persist as major

challenges hindering optimized resource allocation and new services. Recent studies have investi-10

gated bridging the divide between the social structure of users and wireless networking [4]. Prior

studies in social sciences, e.g., Homophily [Lazarsfeld and Merton (1954)], demonstrate that people

tend to have similarities with those in close proximity. In those communities of interest, users typ-

ically establish trust, communicate, and interact [5]. Hence, smartphones have strong potential to

enhance the mobile user experience with the aid of personalized applications, e.g., location-aware15

services, targeted advertisement in addition to recommendation systems [6] and social networks

among others.

The development of similarity-based, opportunistic social networking applications would typi-

cally involve the design of three core components, namely mobile user profiles, similarity assessment,

and knowledge sharing if users are deemed similar. User profiles capture behavioral patterns rele-20

vant to the application of interest. The similarity assessment component judges, quantitatively, the

similarity between the profiles of mobile users in proximity. Once two users are deemed similar, they

may share knowledge and tips using policies that may depend on the service type and user prefer-

ences. For instance, two shoppers coming in proximity, in the same store (e.g., kids wear), would

exchange their “anonymized” profiles to assess similarity. If similar, the smartphone application25

exchanges tips about stores ratings, special offers, and other relevant information. Despite the fact

that establishing trust in opportunistic settings [7] and profile anonymization are key components of

the envisioned system, they are complementary to this work and are important subjects for future

research. In this paper, we assume trust is established among all users and focus on introducing the

new mathematical framework instead.30

Our prime contribution in this work is a new information-theoretic framework for opportunistic

social networks established on the basis of user similarity. The major contributions of this paper

can be summarized as follows:

• Generalize the mobile user profiles, beyond the user geographic location, to a probability dis-

tribution function incorporating multiple facets and study non-temporal and temporal models.35

• Unveil valuable insights about legacy and new temporal and non-temporal similarity metrics,

using datasets in the public domain [8]. Moreover, we draw attention to the merits of the

Hellinger distance, from information theory, to assess similarity between probability distribu-

tion user profiles.
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• Introduce a new temporal similarity metric, using matrix vectorization, to incorporate the40

important dynamics in the temporal dimension that affect similarity, yet, with lightweight

computations.

• Formally define the novel concepts of Knowledge Gain per user, and its upper bound, Knowl-

edge Limit for opportunistic device-to-device (D2D) social networks.

• Establish fundamental limits using information theoretic results and provide important insights45

for different topologies, knowledge sharing policies and mobility patterns and validate our

findings using public domain user behavior and mobility datasets.

The remaining of this paper is organized as follows. Section 2 motivates the work and Section 3

surveys related work in the open literature. In Section 4, we study mobile user similarity with

emphasis on probability distribution profiles, using classic and novel metrics. In Section 5, we shift50

our attention to the novel information-theoretic framework to characterize fundamental limits on

performance (Knowledge Limit) and quantify the Knowledge Gain of sample policies. We present

performance results based on real user mobility traces [9, 10] augmented with behavior traces from

another data set [8]. Finally, we draw conclusions and provide directions for future work in Section 6.

2. Motivation55

The wide spread of powerful smartphones renders them coupled to the users, keeping a treasure

of valuable user behavior data, e.g., mobility, circles of interaction, applications, etc., inferring

information about the mobile user’s interests. This data has not only imposed research challenges but

also provided new directions to enrich user experiences [11]. Examples of crowdsourcing applications

that leverage user real-time mobility are Waze and Google Maps which provide road traffic congestion60

alerts and route alternatives.

Motivated by the strong link between users’ behavior and their smartphone usage, we seek to

address the following open question; Can we leverage the knowledge and prior experiences of peo-

ple with similar interests whom we encounter daily? In order to answer this question, we propose

a framework for an envisioned type of applications, called opportunistic recommendation systems65

(ORS). An example of ORS is introduced in [12], whereby mobile devices exchanges are bound by

homophily. ORS enable users to extend their regular everyday “conversational” recommendations,

from people they know and meet to “cyber” swaps with similar mobile users opportunistically en-

countered and, even further, to never encountered users, through “knowledge forwarding” discussed

later.70

Finally, we argue that opportunistic social networks, established based on user similarity, could

give rise to a variety of new network services, e.g., establishing trust, targeted marketing, friend
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recommendations, and location-aware services. In addition, ORS could promote a variety of new

smartphone applications serving large public events, e.g., fair grounds, sports arenas, etc.

As a proof of concept, we implemented an Android mobile application for opportunistic recom-75

mendation systems coined O’BTW (Oh By The Way) [12] whereby mobile devices can anonymously

exchange ratings, knowledge and recommendations with other “similar” users and happen to meet

opportunistically. A “conference-setting” O’BTW use case was demonstrated at ACM MobiSys

2013 as shown in Figure 1. Simplified user profiles were constructed on the spot, through a simple

GUI, based on conference participation over the past three years. Assuming trust is established,80

O’BTW first creates a Bluetooth connection between smartphones in proximity. Afterwards, it tests

pair-wise, temporal profile similarity using a newly proposed metric, called Vectorized Cosine, to

be discussed in Section 4. If found similar, they exchange stored recommendations representing the

user’s knowledge.

Figure 1: A knowledge sharing proof-of-concept Android mobile application coined ”Oh By The Way” (O’BTW).

3. Related Work85

There has been growing interest in mobile social networks over the past few years. In [13], a

review is given for mobile social networks, highlighting proposed architectures, social properties and

key research challenges. Prior work on opportunistic mobile social networks can be roughly aligned

along two major thrusts. First, the routing problem has received attention, e.g., [14, 15]. In [14],

the authors propose a home-aware community model towards a distributed optimal Community-90

Aware Opportunistic Routing (CAOR) algorithm. In [15], two social metrics, namely centrality

and community, based on real human mobility traces, are exploited in the design of a social-based

forward algorithm, coined BUBBLE.

4



The second major research thrust is content dissemination and sharing in opportunistic mobile

social networks [16, 4, 17, 18, 19, 20]. In [16], the authors develop an analytical model to analyze epi-95

demic information dissemination in opportunistic mobile social networks. In [4], the authors study

information dissemination in integrated cellular and opportunistic networks in an attempt to bridge

the gap between user social aspects and wireless networking. However, unlike our work, they focus on

integrated cellular and opportunistic networks and employ Markov chain modeling tools. In [17], the

authors focus on multicast and propose a Social-Similarity-based Multicast Algorithm (Multi-Sosim)100

using nodes dynamic social features and a compare-split scheme to improve multicast efficiency in

impromptu mobile social networks. In [18], the authors propose a socially-aware network-based

content dissemination scheme which outperforms centralized infrastructure-based content dissemi-

nation and leverages the users’ social characteristics, e.g., common interest and social ties, among

others. In [19], the focus is on cellular traffic offloading whereby it proposes a framework for Traffic105

Offloading assisted by Social network services (SNS) via opportunistic Sharing, coined TOSS, to

offload SNS-based cellular traffic via user-to-user sharing. In [20], the paper studies content dis-

semination in opportunistic social networks and shows that non-social nodes with high contact rate

(rarely found in “temporal communities”) efficiently disseminate content. In contrast, the model

proposed in our work is similarity-centric and information-theoretic.110

Unlike the previous two thrusts, this work focuses on knowledge exchange in opportunistic mobile

social networks. It is centered around user behavioral profiles and pair-wise similarity.

Mobile user profiles proposed in the literature can be grouped based on different perspectives.

Few are based on user location, e.g., [21, 5], while others extend the profile to capture facets beyond

location, e.g., [22, 23]. From another perspective, profiles may be classified into vector (nontemporal)115

and matrix (temporal) profiles depending on whether the temporal dimension is captured or not.

Similarity assessment depends on the profile type and application context. Classic metrics exist for

vector-based profiles such as cosine and Pearson correlation [24]. Distance metrics from probability

theory, e.g., Hellinger distance [25], can be employed to test the similarity of probability distribution

functions, like the user profiles proposed here. On the contrary, very few metrics are introduced for120

temporal profiles, e.g., singular value decomposition (SVD) based metrics [5].

In [26], the authors present a universal definition of similarity in terms of information theory.

However, the similarity measure is derived from a set of assumptions rather than being directly

stated as in earlier definitions. Moreover, experiments are not conducted on real user profiles to

study the behavior of the proposed metrics. Examples of information-theoretic based models include125

cooperative data compression and distributed source coding for data collection in sensor networks

with spatial correlations, e.g., [27, 28, 29, 30]. However, the main objective in that line of research is

to eliminate redundancies among correlated sensor measurements [28, 29]. The joint entropy of the

individual sensor random variables constitutes a lower bound on the total traffic volume generated
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by the sensors that compression algorithms try to attain. On the contrary, our objective here is130

completely different. With the aid of information-theoretic constructs, we draw fundamental limits

on the maximum knowledge available for a user in an opportunistic setting [31]. Later, we define the

knowledge limit of a user as the upper bound on the knowledge a user can gain in an opportunistic

encounter, characterized mathematically by the joint entropy of the knowledge users have. Moreover,

nodes are generally fixed in sensor networks and the communications are largely multi-hop. On the135

other hand, in our problem setting, users are mostly mobile and communications are single-hop, yet,

users can forward knowledge acquired over past single-hop encounters.

Recommendation services in the context of the Internet of Things (IoT) have been recently

studied in [6]. However, the prime focus in [6] is to share data across IoT vertical applications for

recommendation services, unlike this work which proposes the novel concept of opportunistic D2D140

recommendation systems.

4. Pair-wise Mobile User Similarity

One of the classic problems in Computer Science is similarity assessment, e.g., data mining,

clustering and classification [32, 33]. For instance, it has received considerable attention for online

social networks’ recommendation systems in [34, 35, 36, 37]. In [34], the authors propose a model145

to infer the strength of relationships based on similarity and interactions. In [35], the similarity of

users’ ratings of items is computed using heuristic measures such as cosine similarity and Pearson

correlation. The similarity is also studied in various contexts, e.g., web users recommendation [36]

and peer recommendation systems [37].

In mobile scenarios, similarity has received limited attention through exploiting the users’ spatio-150

temporal proximity (i.e., residing at the same place at the same time), e.g. [38, 39, 40]. In [40], similar

users exchange ratings about touristic places they have previously visited. In [38] and [39], users can

check who is in proximity and based on common interests may decide to establish communications.

To the best of the authors’ knowledge, mobile users’ similarity has been investigated only in [38,

39, 41, 42]. However, the proposed mobile user profile is defined in terms of the geographic location155

only.

4.1. Proposed Mobile User Profiles

In this section, we propose a new model for profiling mobile users, that incorporates facets beyond

the geographic location. In addition, we scrutinize non-temporal and temporal profiles. We assume

V general life categories, e.g., books, travel, sports, among others, decided by the system designer160

taking into consideration the application of interest.

Thus, the non-temporal profile is a 1xV row vector where each element, Ci, represents the

percentage of time spent by the mobile user, possibly online (Interests) or physical site visits (Ex-

periences), in category i [43]. This vector is considered a probability mass function for the random

6



variable associated with the profile since
∑V

i=1 Ci = 1. The probability distribution definition of the165

user profile is not only convenient but also opens room for powerful mathematical tools to study sim-

ilarity and knowledge sharing as discussed in Section 5. It is worth noting that, in general, the user

profile design may take different forms and include different granularities, e.g., sports in general (as

one category) to specific types of sports as sub-categories (e.g., football, basketball, swimming, etc.)

depending on the user needs and application requirements. In this paper, we define the user pro-170

file, generically, as the probability distribution of user interests and experiences over a pre-specified

set of life categories. The mathematical framework and tools in the paper are general enough to

accommodate any set of life categories, which can be arbitrarily defined by the system/application

designer. Finally, the detailed design of the profile, number and type of categories included as well

as sub-categories is an important topic of research. However, it is left for future research, at this175

first look at the problem.

On the other hand, inspired by [5] which proposed a temporal profile matrix for the user Wi-

Fi Access Point connectivity pattern and the key observation that simple vector profiles obscure

paramount specifics about the user’s temporal dynamics [43], we introduce probability distribution

temporal profiles that capture facets other than location. Thus, profile vectors are obtained for K180

time windows where a window represents a day, week, etc. based on the user behavior dynamics

and the target time horizon. This, in turn, yields a KxV matrix where the K profile vectors are

the rows. Choosing the value of time granularity and the length of the horizon, K, is a pivotal

issue which calls for applying data analytics tools on real-life traces capturing the users’ behavior

dynamics over time. This lies beyond the scope of this work. For our comparative analysis, we rely185

on real smartphone traces from the LiveLab project at Rice University [8] where the time window

spans one day and K = 197 days on the average.

Given the proposed PMF user profiles, we move next to similarity assessment.

4.2. Similarity Metrics

The use of similarity metrics highly depends on the profile structure. For non-temporal profiles,190

cosine and Pearson correlation are widely used in the literature [24] with ranges [0, 1] and [−1, 1],

respectively. These metrics are widely used due to their simplicity.

Motivated by the probability distribution definition of the proposed profile vectors, we explore

distance metrics from probability theory, namely the Hellinger distance, Canberra distance and

Jensen Shannon Divergence [25]. The Hellinger distance is defined for two probability mass functions

(PMFs), A and B, as [25]

H(A,B) =
1√
2

√√√√
V∑

i=1

(
√
ai −

√
bi)2,

where H(A,B) ∈ [0, 1] and Hellinger similarity is defined as SimHL(A,B) = 1−H(A,B).

7



On the other hand, the Canberra distance and Jensen-Shannon Divergence were problematic in

our problem context since they yield infinite distance if one (or more) category in the profile vector is195

zero-valued. Zero-valued categories are typical in practice and were found to be recurrent in real-life

traces, e.g., [8], where users’ interests are clustered in few categories.

As for temporal profiles, we study two similarity metrics. First, a metric based on Singular

Value Decomposition (SVD) from linear algebra proposed in [5]. Second, we propose a novel, low-

complexity vectorized cosine metric that is motivated by the limitations of SVD. SVD is an extension

to classic cosine similarity and is defined for two profile matrices X and Y as

SimSV D(X,Y ) =

Rank(X)∑

i=1

Rank(Y )∑

j=1

wxiwyj |VXi.VY j |, (1)

which is, basically, the weighted cosine similarity between the two sets of eigen-behavior vectors,

where VXi and VY j are the ith and jth column of matrices VX and VY , respectively. VX and VY are

the matrices resulting from the SVD transformation [44] of profile matrices X and Y , respectively,200

where X = UXΣXV T
X and Y = UY ΣY V

T
Y .

On the positive side, SVD provides one provision for “anonymization’ since the users exchange

only the elements of Σ and V , but not matrix U . This, in turn, prevents eavesdroppers from

reconstructing the sender’s profile. On the downside, SVD similarity exhibits high computational

complexity (proportional to the quadratic value of the history length K, for a fixed V ). Furthermore,205

the similarity with oneself, SimSV D(X,X), yields the maximum but not necessarily one, which

causes problems while assessing similarity.

Motivated by the drawbacks of SVD and the simplicity of vector-based metrics, we propose a

novel vectorized cosine (VCOS) metric with complexity scaling linearly with K. Thus, we convert

the two KxV profile matrices, under investigation, to two 1xKV vectors using the vectorization210

operation in Linear Algebra [44] and then perform cosine similarity.

4.3. Similarity Metrics Comparison

In this section, we compare different similarity metrics using a real data set from the LiveLab

Project at Rice University [8]. This data set consists of traces for smartphone users and Wi-Fi access

points (APs) from 34 iPhone 3GS users. The 34 users included 24 Rice University students with215

traces spanning Feb. 2010 through Feb. 2011 and 10 Houston College students with traces from Sep.

2010 through Feb. 2011. The relevant data is stored in two tables. The first stores the names and

genre (category) of 2500 iPhone Apps, as defined by the App Store. The Apps are classified into only

23 interest categories, e.g., business, travel, etc. The LiveLab data is carefully chosen since it hosts

digital footprint logs for the mobile users in a categorized manner in contrast to other data sets in220

the literature which record only Wi-Fi AP connectivity traces that are irrelevant to our study. The

second table covers the pattern by which each user accesses Apps on his/her phone. The pattern
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Figure 2: Three users’ sample profiles from LiveLab smartphone traces.

consists of a history log for each of the 34 users with the date and access period. Cross-referencing

the two tables, we build the non-temporal and temporal profiles for each user.

We observe that the resulting probability distribution profiles are zero-valued for most of the225

categories in most profiles and the user’s interests lie in two to five categories as shown in Figure 2

and experienced in our real lives. This, in turn, makes the LiveLab users “qualitatively” similar. This

key finding makes it impossible to use some metrics, such as Canberra Distance and Jensen-Shannon

Divergence, with such sparse profiles due to the aforementioned infinite distance problem.

Thus, we focus on the cosine (COS), Hellinger (HLNG), SVD and Vectorized cosine (VCOS)230

similarity metrics1 to evaluate the pairwise similarity of 34 LiveLab users, which yields 561 exper-

iments. Figure 3 depicts the similarity outcomes of the four metrics vs the experiment index in a

scatter plot. From Figure 3, we note the following:

• Cosine and Hellinger metrics yield higher similarity values in comparison with VCOS and

SVD for the same pair of users. This confirms our intuition that temporal similarity metrics235

are “more thorough” and, therefore, conservative in declaring similarity. Thus, for a given

threshold T between 0 and 1, two users may be declared “similar” using a non-temporal metric,

yet, are deemed “dissimilar” using a temporal one. This is due to the fact that temporal profiles

are generally more comprehensive than non-temporal metrics since they naturally do not filter

out details and dynamics of users. This result is confirmed quantitatively in Table 1. The table240

1Pearson correlation is not examined since it ranges from [−1, 1] and mapping for comparison to other metrics

skew the similarity results.

9



Figure 3: COS, HLNG, SVD and VCOS outcomes for pairwise similarity between LiveLab users.

Table 1: Comparison of the percentage of similar users under the four metrics for different similarity thresholds (T)

for the LiveLab dataset.

T = [0.1, 0.4] 0.5 0.6 0.7 0.8 0.9 1

SVD 100 92.51 34.41 3.57 0 0 0

VCOS 100 98.93 80.93 18.36 0.3565 0 0

HLNG 100 99.82 92.87 61.5 13.37 0 0

COS 100 100 99.47 97.33 89.13 59.18 0

confirms that VCOS and SVD yield a lower percentage of similar users than the non-temporal

metrics (cosine and Hellinger). Hence, they are more cautious in declaring similar users.

• The Hellinger metric can be perceived to achieve a balance between the non-temporal and

temporal paradigms since it is closest to the average of the four metrics [43]. Although this

sheds some light and loosely shows the potential of Hellinger similarity, it still needs thorough245

analysis in future studies.

The metrics studied and proposed in this section, and the insights distilled constitute only a step

towards answering the more challenging question of when are two users “actually similar”, to serve

as the ground truth in future work.

4.4. Scaling the results250

To provide a larger interpretation of the prior analysis for the different similarity metrics, we

complement our analysis with a large scale dataset (UF-WLAN) from a wireless local area network

10



Figure 4: COS, HLNG, SVD and VCOS outcomes for pairwise similarity between UF-WLAN users.

(WLAN) at the campus of University of Florida. The WLAN logs contain wireless association

and deauthentication events, for a period of 479 days in 2011-2012. Assuming MAC addresses are

unique and unchanged, over 300,000 devices were online at least once. Each WLAN record provides255

a timestamp, assigned IP address at a corresponding access point (AP) and MAC address of the

associated user device. Note that a user in the context of this study is defined as a single device. We

cannot determine if two devices belong to the same person and could be correlated. Exact locations

of the APs were not available, so their positions were approximated by the building locations where

they were installed, i.e. the corresponding latitude/longitude returned by Google Maps API. To260

validate this approximation we fetched 8000 mapped APs around the campus area from the crowd-

sourced service wigle.net. From 142 matched APs, in 58 buildings, all were within 200m or less from

their mapped location. This error (1.5% of campus area) is reasonable considering the maximum AP

coverage, inaccuracies in coarse-grained localization services and that we use the coordinates of the

center of each building whereas users may see an AP on the edge of a building. The buildings are265

classified as academic, administrative, housing, library, museum, campus police, social, and sports.

We avoid using these classes as the basis for user profiling since students will tend to cluster in

academic, housing and library settings which would result in highly skewed and similar profiles.

Instead we use the 142 buildings as categories for the previous user profile model. We produce

non-temporal profiles for a set of randomly sampled 200 users from the most active users. We also270

generate temporal profiles where each row represents a day rendering the size of the profile to be

479 x 142. Our sample of 200 users gives 19,900 pairs for which the similarity results are depicted

in Figure 4 and Table 2.
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Table 2: Comparison of the percentage of similar users under the four metrics for different similarity thresholds (T)

for the UF-WLAN dataset.

T = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SVD 13.6 2.6 0.8 0.3 0.1 0 0 0 0 0

VCOS 0.7 0.1 0 0 0 0 0 0 0 0

HLNG 58 27.1 9.4 2.3 0.5 0.1 0 0 0 0

COS 37.4 22.2 14.4 9.7 6.2 3.7 2.2 1.2 0.6 0

The results presented in Figure 4 and Table 2 confirm our previous observation that temporal

metrics (SVD and VCOS) are more conservative than non-temporal metrics (COS and HLNG).275

5. Modeling and Fundamental Limits of Knowledge Sharing

In this section, we focus on knowledge sharing between similar users. Our main focus is to intro-

duce a novel mathematical framework and build fundamental limits. Developing efficient knowledge

sharing schemes is not the prime focus of this paper, yet, an important direction for future work.

This framework lays the theoretical foundation for studying delay-tolerant knowledge sharing policies280

in opportunistic networks.

In particular, we characterize, using information theory concepts, the ”knowledge” a user can

extract in an opportunistic encounter, coined knowledge gain (KG), and the maximum knowledge

a user can reap, coined knowledge gain limit (KL). Modeling abstractions have been heavily used

in the literature to study the formation, evolution and dynamic behavior of social networks. For285

example, graph-theoretic tools and random graph models have been extensively employed in social

networks studies to formally model patterns of networking, homophily, and clustering as well as

basic concepts like centrality and connectivity, e.g., [45, 46]. In addition, they have been used to

model social networks formation and growth, e.g., [47, 48]. However, to the best of our knowledge,

employing information theory to formally model knowledge sharing and forwarding in opportunistic290

social networks has not been studied in the open literature.

5.1. Network Model and Assumptions

The notion of a “network” here, that is, nodes exchanging information, is established solely based

on pairwise similarity, according to Section 4. Thus, if a group of users in an opportunistic encounter

are all dissimilar, then there is no network since no knowledge sharing will follow. The scenario of295

interest is the one that involves a subset of similar users which triggers tips exchange. Accordingly,

we focus on a group of nodes where all nodes are pairwise similar. We adopt a wireless ad hoc

network model to represent an opportunistic setting of M pair-wise similar users. We assume that

the network is formed because a user is pair-wise similar to all other users in the network. Each

user has its own non-temporal profile vector, or multiple row vectors across the temporal dimension,300
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defined as a probability distribution over different categories as described in Section 4.1. We assume

each user hosts a table storing tips and recommendations (i.e. knowledge) to share with similar users,

e.g., bestsellers, events of common interest, etc. Finally, all nodes leverage wireless communication

technologies with fixed power to communicate (i.e. circular range transmission), e.g., Wi-Fi or

Bluetooth, and, therefore, the multiple access problem is assumed to be resolved.305

In this section, we pose two key questions related to knowledge fundamental limits and sharing

policies:

1. For user i, what is the fundamental limit on (i.e. maximum) knowledge that can be reaped by

this user in an opportunistic network setting?

2. For user i, what is the knowledge gain that the user can actually attain from pair-wise similar310

users, for a given knowledge sharing scheme?

Towards addressing these questions, we introduce, next, terminology and definitions.

5.2. Definitions: Quantifying Knowledge

We commence by defining the Knowledge Gain and Knowledge Limit concepts as follows.

Definition V.1. The Knowledge Limit (KLi) for user i is defined as the maximum knowledge that315

can be reaped by user i from pair-wise similar users in the network.

Definition V.2. The Knowledge Gain (KGi) for user i is defined as the knowledge user i can

collect from pair-wise similar users, using a given knowledge sharing scheme.

As given in the above definitions, the Knowledge Limit for user i (KLi) is a fundamental limit

and, hence, constitutes an upper bound on the knowledge that user i can acquire from similar users320

in the network, regardless of the knowledge sharing scheme. On the other hand, the Knowledge Gain

(KGi) is defined as the knowledge that user i can collect from pair-wise similar users, using a specific

knowledge sharing scheme. In general, a given knowledge sharing scheme may/may not attain the

KL available for the user, as shown later in the paper. Thus, by definition, KGi ≤ KLi. This

bound is general, irrespective of the specific network setup, topology or number of nodes. Motivated325

by the user profile structure defined as a probability distribution, we indicate that probability and

information theory tools would be suitable for analyzing such systems.

The next step is to formally define the knowledge gain in a two-user encounter. The tips and

recommendations (typically stored in a table) of an arbitrary user are assumed to follow the same

distribution as that user’s profile. Although this assumption might seem somewhat strong, it has330

practical relevance and its motivation is two-fold. First, this modeling assumption is reasonable

since, in practice, typical mobile users would tend to have more tips (knowledge) in life categories

they are more interested in (i.e. spend more time on, either consuming content or site/event visits).

Second, it is a convenient mathematical abstraction for tips which are typically stored in the form of

a database on the mobile users device. This assumption renders the proposed mathematical model335

tractable and the problem nicely lends itself to powerful tools for quantifying the knowledge gain
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and associated fundamental limits, grounded in information theory.

5.2.1. The Knowledge Gain for a Two-User Encounter

Among basic information-theoretic concepts, the Entropy of a discrete-valued random variable

X, denoted as H(X), is a central concept that represents a measure of the information borne by this340

random variable [49]. Since the user recommendations/tips have an identical distribution to the user

profile, we model tips as a discrete random variable, X. Accordingly, H(X) formally characterizes

the information (or knowledge) 2 the user possesses. This, in turn, allows us to define mathematically

the new concepts of KL and KG.

First, we consider the simple example of a two-user opportunistic encounter, i.e. the users are345

within the communication range of each other. The two users are assumed to have tips/recommendations

probability mass functions, denoted X and Y . Assume users X and Y meet, opportunistically, and

are found similar3, in the sense of Section 4. Accordingly, they start exchanging tips. Based on

information theory, we characterize the following types of “knowledge” quantities:

1. Tips kept by user X but not by user Y , defined as H(X|Y ).350

2. Tips kept by user Y but not by user X, defined as H(Y |X).

3. Tips kept by both users, characterized as I(X;Y ), the mutual information between X and Y .

Note that the first type of tips is the knowledge gain for Y while the knowledge gain for user X

from Y is defined as

KG(X) = H(Y |X) = H(X,Y )−H(X) (2)

where H(X,Y ) is the joint entropy of X and Y modeling the tips probability distributions. The last

type of tips (carried by the two users), denoted by the mutual information I(X;Y ), is considered the

“communication overhead” since it is transmitted over the air without any contribution to increasing355

the knowledge of user X or Y . This is in complete agreement with the reasonable assumption

that mobile users do not have any prior information about the others’ individual tips when they

opportunistically meet and, hence, this communication overhead is unavoidable.

In this toy example, the knowledge limit for any of the two users is equal to the attainable

knowledge gain.360

5.2.2. The Knowledge Limit

Given the aforementioned definitions of the knowledge gain and limit for a two-user encounter,

the KL definition for user X1, without loss of generality, in an opportunistic setting with M − 1

2We use the terms Information and Knowledge interchangeably in the sequel.
3We abuse notation and use tips PMFs, X and Y , to refer to the users.
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users, who are similar to X1, is generalized as follows:

KL(X1) = H(X1, X2, X3, ......, XM )−H(X1) (3)

which can be written as

KL(X1) = H(X2|X1) + H(X3|X2, X1) + ..... + H(XM |XM−1, ......, X1). (4)

Thus, (3) shows that the maximum knowledge user X1 can acquire, via exchanging tips with users365

in the network, is merely the aggregate knowledge all users bear, after removing redundancies, which

is essentially the joint entropy, H(X1, X2, X3, ......, XM ), less the knowledge user X1 already has,

denoted by H(X1). It is worth noting that the KL characterization in (3) and (4) above is general,

holds for any network topology and does not depend on knowledge sharing schemes.

5.3. Fundamental Limits and Policies370

Utilizing the previous definitions section, we seek to characterize the KL for a user in different

scenarios as well as its KG, under two sample knowledge sharing strategies: i) Send my own tips,

coined “Send Mine Only”, whereby a user shares his/her own tips with a pair-wise similar, encoun-

tered user and ii) Forward my own tips and others, coined “Forward Mine Plus Others”, whereby a

user shares his/her own tips and forward tips collected previously in other encounters.375

These two policies are simple examples to explain the framework introduced in this paper, how-

ever, the model lends itself to studying and analyzing more sophisticated and advanced sharing

strategies. For example, a user could selectively forward her own tips with a ”portion” of others’

tips based on a criteria of choice. This introduces a new class of strategies that deserves careful

analysis, to quantify the strengths and trade-offs, which is a subject of future research.380

The next step is to characterize the fundamental KL and the KG attainable by the two previously

mentioned sharing strategies, while varying network configurations. We consider two opportunistic

connectivity scenarios, namely single- and multi-hop topologies as well as two mobility scenarios,

namely fixed topologies in case of quasi-stationary users and time-varying topologies caused by the

user’s portability within the same area.385

5.3.1. Fixed Topology, Similarity-based Opportunistic Networks

A. Single-hop Network Topologies

In this scenario, the users could be fixed, quasi-stationary or portable, yet, any node remains in range

with all other nodes, i.e. one-hop away, at all times. For this setting, KL is easily characterized, as

in (3), and the KG will attain the limit. This is intuitive since a node can take turns to exchange390

tips with all other nodes in range. Thus, for any node, “all” available knowledge can be acquired.

Next, we establish this result for the Send Mine Only (SMO) strategy.
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Proposition 1. For single-hop network topologies using the SMO strategy, any node achieves its

knowledge limit.

Proof. We assume, without loss of generality, that node X1 encounters other nodes in an increasing395

order of their IDs. Under SMO, the cumulative knowledge gain for X1, KG(X1), after receiving tips

from all other nodes, X2, X3, X4, ...., XM in turn, is given by H(X2|X1) + H(X3|X2, X1) + ..... +

H(XM |XM−1, ......, X1), which is the same as KL(X1) in (4). The proposition is proven using a

similar argument for all other nodes in the network.

As indicated earlier, one of the key issues in this context is the amount of time it takes a user to400

achieve its KL, if attainable. This is directly related to the number of exchanges needed to attain

the KL. Under SMO for single-hop networks, as in Proposition 1, and assuming that each node has

one or more unique tips to contribute to the “network knowledge”, then the worst-case (maximum)

number of direct exchanges for an arbitrary user to attain the KL is simply (M − 1), i.e., O(M).

Next, we quantify the KG of single-hop networks, under the Forward Mine Plus Others (FMPO)405

strategy. Thus, a user sends not only his/her own tips but also tips from previously encountered

users, denoted by the subscript p. We prove in the next proposition that the KL is also attainable

under FMPO.

Proposition 2. For single-hop network topologies using the FMPO strategy, any node achieves its

knowledge limit.410

Proof. We assume, without loss of generality, that each node initially has its own tips only and node

X1 encounters all other nodes in an increasing order of their IDs. The knowledge exchange goes

over multiple rounds whereby in the first round, for instance, the following exchanges take place

in parallel: X1 ↔ X2, X3 ↔ X4, X5 ↔ X6, etc. Thus, KG(X1) based on encountering nodes

X2, X3, X4, ..., XM in turn, is given by415

KG(X1) = H(X2, |X1) + H(X3, ~X3p|X2, X1) + H(X4, ~X4p|X3, ~X3p, X2, X1) + .....

+ H(XM , ~XMp|XM−1, ~X(M−1)p, ......, X1)
(5)

where ~Xip are the previous encounters of node Xi. After the first round, we notice that X3p = X4.

The second round schedule would be X1 ↔ X3, X2 ↔ X5, and X4 ↔ X6. This would render

X4p = X6, X6p, X3 where X6p = X5 yielding X4p = X6, X5, X3, and so on. Thus, substituting in

(5) after M/2 rounds yields

KG(X1) = H(X2, |X1) + H(X3, X4|X2, X1) + H(X4, X3, X5, X6|X4, X3, X2, X1) + .....

+ H(XM , ~XMp|XM−1, ~X(M−1)p, ......, X1)
(6)
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Using the chain rule of entropies and expanding all terms in (6) yields some zero terms due to

acquiring the same (redundant) knowledge from previous encounters. This, in turn, results in the

KL formula in (4) and proves the proposition.

It is worth noting that when the conditioning, in the conditional entropy terms in the RHS of (6),

includes all nodes in the network, the incremental gain becomes zero and the node achieves its KL.420

Compared to SMO, FMPO attains the KL faster essentially due to the role of the previous encounters

(appearing in the conditional entropy terms), which will be shown in Section 5.4. Evidently, this

speed up is not for free due to an inherent trade-off between the cumulative KG build up over time

on one hand and the incurred communication overhead on the other hand, which deserves further

attention in future work, especially in multi-hop scenarios. The following proposition asserts that425

the communication overhead of FMPO is greater than or equal to SMO, in single-hop networks.

Proposition 3. For single-hop network scenarios, the communication overhead incurred under

FMPO is greater than or equal to SMO.

Proof. We consider an encounter between two users, X and Y . Generalizing to a sequence of

encounters is straightforward. The previous encounters for users X and Y are denoted by vectors430

~Xp and ~Yp, respectively.

The communication overhead that user X incurs is the mutual information with user Y , that

is, the knowledge overlap between what X sends (its own knowledge only in case of SMO) and Y ’s

accumulated knowledge so far. Under SMO, the overhead is given by

OH(X)SMO = I(X;Y, ~Yp). (7)

Similarly, the overhead for Y is OH(Y )SMO = I(Y ;X, ~Xp).

On the other hand, the communication overhead under FMPO is the same for both users as

given below

OH(X)FMPO = OH(Y )FMPO = I(X, ~Xp;Y, ~Yp). (8)

It is well-known from information theory that the mutual information between random variables

A and B is given by

I(A;B) = H(A) + H(B)−H(A,B). (9)

Using (9) in (7) gives

OH(X)SMO = H(X) + H(Y, ~Yp)−H(X,Y, ~Yp). (10)

Using (9) in (8) gives

OH(X)FMPO = OH(Y )FMPO = H(X, ~Xp) + H(Y, ~Yp)−H(X, ~Xp, Y, ~Yp). (11)
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By subtracting (10) from (11), we get

OH(X)FMPO −OH(X)SMO = H(X, ~Xp)−H(X)−H(X, ~Xp, Y, ~Yp) + H(X,Y, ~Yp) (12)

Based on the definition of joint entropy, H(A,B) = H(A) + H(B|A) = H(B) + H(A|B), (12)

can be written as

OH(X)FMPO −OH(X)SMO = H(X) + H( ~Xp|X)−H(X)

− [H( ~Xp|X,Y, ~Yp) + H(X,Y, ~Yp)] + H(X,Y, ~Yp),
(13)

which can be reduced to

OH(X)FMPO −OH(X)SMO = H( ~Xp|X)−H( ~Xp|X,Y, ~Yp) ≥ 0, (14)

where the inequality in (14) holds since conditioning does not increase entropy. This proves the435

sought result.

B. Multi-hop Fixed Network Topologies

In this scenario, the network topology is time-invariant and always connected where some nodes are

multi-hop away from each other. In this setting, the effect of knowledge sharing strategies prevails

and plays a key role in whether a user can or cannot, achieve the knowledge limit.440

Next, we investigate the KL achievability and trade-offs for SMO and FMPO under fixed multi-

hop networks. The knowledge gain achieved by node X1, in case of SMO, is limited by the size of

the single-hop neighborhood (N < M) which results in a KG strictly less than KL. We formally

prove this result in the next proposition.

Proposition 4. For multi-hop fixed network topologies, SMO is not guaranteed to achieve the445

knowledge limit, i.e., KG(X1) ≤ KL(X1) iff N < M .

Proof. We assume, without loss of generality, that node X1 communicates with other nodes in an in-

creasing order of their IDs. The cumulative KG for node X1, KG(X1), according to exchanges with

neighbors X2, X3, X4, ...., XN is given by H(X2|X1)+H(X3|X2, X1)+ .....+H(XN |XN−1, ......, X1).

Notice that the sum of non-negative conditional entropy terms is limited to the single-hop neighbor-450

hood, N < M nodes, which misses other non-negative terms involving the M −N non-neighbors of

X1. Hence, it follows that KG(X1) ≤ KL(X1), which establishes the proof.

It is worth noting that the special case of N = M , for all nodes, reduces to the single-hop network

case where we have shown in Section 5.3.1.A that the KL is achievable under both knowledge sharing

policies. An interesting, and somewhat surprising insight, which will be discussed later, is that nodes455

mobility can be leveraged to achieve the knowledge limit, even if N < M .
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We shift our attention next to the performance of FMPO for multi-hop fixed network topologies.

As predicted, forwarding tips acquired from other users could allow a node to achieve its knowledge

limit, even if N < M . We prove this result in the following proposition.

Proposition 5. For multi-hop fixed network topologies, any node can achieve the knowledge limit460

using the FMPO strategy.

Proof. We assume, without loss of generality, that each node is initialized with its own knowledge

only and user X1 goes through exchanges with single-hop neighbors in an increasing order of their

IDs. At the same time, other neighbors proceed with pairwise encounters with other users in the net-

work. The cumulative KG for X1, KG(X1), after meeting single-hop neighbors X2, X3, X4, ...., XN

is given by

KG(X1) = H(X2, |X1) + H(X3, ~X3p|X2, X1) + H(X4, ~X4p|X3, ~X3p, X2, X1) + .....

+ H(XN , ~XNp|XN−1, ~X(N−1)p, ......, X1)
(15)

Next, we have two cases. First, if the previous knowledge vectors, namely ~Xip ∀i, carry all

knowledge (forwarded tips) from non-neighboring nodes, namely XN+1, XN+2, ......, XM , then it is

straightforward to show that the cumulative KG of X1 is

KG(X1) = H(X1, X2, X3, ......, XM )−H(X1) = KL(X1) (16)

which proves the result. Second, if previous encounters for neighbors of X1 do not cover knowledge

from all non-neighbors in the network, then node X1 would still need to re-encounter its single-hop

neighbors to achieve KL(X1). Backed by network connectedness and unconstrained delay, user X1

will achieve its KL almost surely via repeated pairing with single-hop neighbors it has paired with465

before (to reap new knowledge they acquired over time) until it acquires all missing knowledge from

non-neighboring nodes beyond its radio range. This proves the result.

5.4. User Traces and Numerical Results

In this section, we supplement our analytical findings so far with performance results based on

real smartphone profile traces [8] and real-life user mobility traces, gathered at Infocom 2005 [9, 10].470

5.4.1. Single-hop Network Topologies

Our experiments incorporate real traces, either for user profiles or mobility. For user behavior,

we utilize digital footprint traces (interests) for 20 smartphone users, over V = 24 life categories,

from the LiveLab project [8]. In order to quantify the KL and KG for a user, we need to process a

huge six month worth of interests data. To this end, we determine the joint probability for the 20475

profiles under investigation in two steps as follows.
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Figure 5: Cumulative KG over time for three arbitrary users in a single-hop network topology under SMO.

• Step 1: record the users’ activities categorized under 24 categories4, each second, and record

their concurrent activities over the period from September 2010 to February 2011.

• Step 2: normalize the results of the first step over the whole six month duration to get the

joint PMF.480

We show next that more node encounters over time results in increasing the cumulative knowledge

gain.

First, we give results for a single-hop network under SMO. For the M = 20 nodes network

described earlier, any user can achieve the KL within M − 1 = 19 encounters. This is confirmed

in Figure 5 for three arbitrary users, namely B00, B04 and D03. As depicted in Figure 5, the485

cumulative KG is a non-decreasing function over time. The KL, on the other hand, is a horizontal

line that generally varies from one user to another, depending on the user’s own knowledge and the

amount of prior knowledge the user bears before encounters others.

Next, we consider the same network topology, yet, under FMPO knowledge sharing. Grounded

in Proposition 2, we confirm that for single-hop networks, all nodes attain the KL using the FMPO490

strategy, yet, in fewer encounters compared to SMO, due to forwarding the tips of others. We

confirm this behavior for three arbitrary users, namely B00, B04 and D03, in Figure 6.

4The 24th category captures the case when the smartphone is off or not running any application.
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5.4.2. Multi-hop Fixed Network Topologies

Recall from Proposition 4 that attaining the KL of any user using SMO is limited by the single-

hop neighborhood size of this node, denoted N . Therefore, we examine 100 randomly generated495

topologies of users, uniformly distributed, whereby a user has only 6−7 single-hop neighbors, on the

average. It should be noted that user B00 does not achieve the knowledge limit, as established in

Proposition 4 and confirmed using real smartphone behavior traces in Figure 7. Thus, the maximum

knowledge gain attainable by node B00 is only 46.33% of its knowledge limit. Similarly, users B06

and D00 have single-hop neighborhoods strictly less than the network size and, hence, cannot achieve500

their respective knowledge limits using SMO.

To conclude our fixed networks performance evaluation, we analyze the KG and KL performance

of the FMPO policy in multi-hop topologies. In this case, the FMPO policy is expected to overcome

the limited neighborhood problem due to sharing others’ tips and, hence, nodes could attain the

knowledge limit as proven before in Proposition 5. The results here are based on 100 randomly505

generated topologies. The cumulative knowledge gains for users B00, B06 and D00 are depicted in

Figure 8. We notice that the KL is achievable for the three shown users after 7 encounters for B00

and B06, and 8 encounters for D00.

5.4.3. Time-varying Topology (Mobile) Networks

A. User Profiles and Mobility Traces510

After an extensive search for mobile user traces on publicly available data repositories, e.g., CRAW-

DAD [9, 10] and the alike, we did not find traces that include both, user behavior and mobility

Figure 6: Cumulative KG over time for three arbitrary users in a single-hop network topology under FMPO.
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Figure 7: Cumulative KG over time for three arbitrary users in a multi-hop fixed network topology under SMO.

Figure 8: Cumulative KG over time for three arbitrary users in a multi-hop fixed network topology under FMPO.
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traces. Moreover, most of the mobility traces are university campus Wi-Fi access patterns as op-

posed to mobile user encounters. In order to proceed with the performance evaluation based on

real data, we resort to jointly leveraging traces from two different data sets, for user behavior and515

mobility. First, user profiles are constructed based on the LiveLab project data [8] described earlier.

On the other hand, mobility traces are based on a “conference encounter” data, namely Infocom

2005 [9, 10]. For the Infocom 2005 experiment, the data set is relatively small whereby participants

are 50 attending the student workshop. Nevertheless, it constitutes a reasonably sized set for our

performance evaluation purposes. The students were given iMotes on March 7th, 2005 between lunch520

time and 5 pm and collected on March 10th, 2005 in the afternoon. Two iMotes were lost while

seven did not deliver useful data due to an accidental hardware reset. Contacts with these nine

iMotes were discarded from the traces of others to avoid any effect on the results. The first six hours

are discarded since they were attending the same workshop. We consider the contacts of 20 nodes

only to match the number used from the LiveLab user profiles data. Thus, we associate the profiles525

of 20 randomly chosen users from the LiveLab data set to the mobility traces of 20 iMotes from

Infocom 2005 and monitor them for half a day. This enables us to conduct our knowledge sharing

analysis and collect the sought performance results.

Despite the fact that user profile and mobility traces are brought from two totally independent

data sets, we find it a very useful attempt towards evaluating our policies, due to the lack of the530

sought data in the public domain. This constitutes a strong motivation for the mobile networking

and computing community to focus on the social dimension as well as the mobility and wireless

connectivity dimensions, which already have several data sets in the public domain.

B. Performance Results

In this section, we quantify the knowledge limit and gain of time-varying topology (mobile) multi-hop535

networks, under the two sharing policies. Intuitively, users’ mobility would play a key role in whether

a node can achieve its KL and, if so, how much time this would incur. The gathered results are shown

in Table 3. We compare the KG acquired by sample nodes using SMO in two cases, namely the

stationary case where a snapshot is taken at time t = 0 and the mobile case over half a day. At time,

t = 0, all nodes, except for node B07, are disconnected yielding KG of zero. Node B07 is initially540

connected to D06 and reaps a KG of 0.64 as shown. The intriguing observation here is that mobility

does help some nodes approach their knowledge limit, e.g., B00, B03, B05, B07, B08, B09. On the

other hand, some nodes, e.g., B06, do not benefit from mobility since they remain disconnected

throughout the experiment lifetime. This insight agrees with intuition since the mobility patterns

of some nodes could assist them in encountering the “knowledge hotspots” of the network and545

acquiring knowledge faster than others. On the other hand, the mobility of other nodes could give

rise to encounters with very slim/no KG benefits, e.g. nodes B02 and B06. Finally, we highlight

that FMPO achieves KG no less than SMO, over the same period of time, which agrees with our
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theoretical findings.

Extensive studies of user encounter patterns in campus WLANs, e.g., [50, 10], have shown that,550

on the average, a user encounters only 2% of the population in a month and pointed out the heavy

clustering of a user’s behavior (spending 90% of their online time within only five APs (out of 600).

In the following proposition, we establish the result based on an ideal mobility model guaranteeing

encounters with all other nodes, which may not be valid for a whole campus scenario according to

to [50]. Nevertheless, for local encounters and mobile communities, the encounter ratio tends to be555

quite high (vs. 2% for the whole population) and our model is likely to be valid for realistic mobility

scenarios.

Based on the seminal work on the effect of mobility on the throughput and delay in wireless

ad hoc networks [51], the following proposition proves that the knowledge limit in mobile, delay-

tolerant, multi-hop social networks is always achievable, under idealistic assumptions and loose560

delay constraints. Under those assumptions, an arbitrary node will encounter all other nodes in the

network, almost surely. Nevertheless, modeling realistic mobility and characterizing the conditions

under which the KG is improved by mobility is an interesting subject of future research.

Proposition 6. For a time-varying topology network, an arbitrary node achieves its KL under

loose delay constraints, almost surely, in case each node moves according to an independent two-565

dimensional random walk in a fixed area.

Proof. In case of loose delay constraints and independent two-dimensional random walks in a fixed

area, it has been shown in the literature that an arbitrary node will encounter all other nodes in the

network, almost surely (refer to Lemma 6 in [51]). Hence, we assume without loss of generality that

node X1 has exchanges with all nodes in the network, when it encounters them, in an ascending570

order of their node IDs. Using SMO, the cumulative knowledge gain for node X1, KG(X1), based

on encountering nodes X2, X3, X4, ...., XM is the same as (4). Similar arguments can be employed

to prove the same result using the FMPO policy, which proves the proposition.

Table 3: Cumulative knowledge gain (in bits) for nine mobile users after half a day.

Users
KG using SMO

for stationary nodes (t=0)
KG using SMO KG using FMPO KL

B00 0 7.12 9.12 10.76

B02 0 0.63 9.05 10.24

B03 0 7.44 7.93 10.44

B04 0 6.94 7.62 10.13

B05 0 9.03 9.03 10.22

B06 0 0 0 10.4

B07 0.64 8.82 8.82 10.46

B08 0 7.78 8.45 10.09

B09 0 8.36 8.97 10.34
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6. Conclusion

We propose in this paper a novel mathematical framework for similarity-based opportunistic575

social networks. We first propose generalized, non-temporal and temporal profiles as a probability

mass function. Second, we study classic and information-theoretic metrics for similarity using public

domain data. We conclude that temporal metrics result in lower similarity indices compared to

non-temporal metrics, on the average, due to capturing details and behavioral variations in the

temporal dimension. Third, we introduce a novel information-theoretic framework for knowledge580

sharing among similar, opportunistic users. Finally, we present performance results quantifying the

cumulative knowledge gain over time and its upper bound, the knowledge limit, using public domain

traces for user behavior and mobility, in case of fixed and mobile scenarios.

The promising research direction explored in this paper is still ripe and opens ample room

for future research and can be extended along a number thrusts. For instance, establishing trust585

between opportunistic users is a key enabler for opportunistic D2D services. Second, proposing novel

similarity metrics which capitalize on the strengths and insights of non-temporal and temporal

profiles pointed out in this paper. Third, an extensive analysis for the Hellinger and vectorized

cosine similarity metrics, with diverse user communities and datasets is expected to deepen the

community understanding of these new similarity metrics and could give rise to other novel metrics590

as well. Fourth, leverage the proposed framework to analyze novel and efficient knowledge sharing

policies. Finally, establish fundamental limits and study the effect of diverse user mobility patterns

on knowledge sharing and emerging opportunistic D2D services.
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