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Highlights: ”The Suitability of Machine

Learning to Minimise Uncertainty in the

Measurement and Verification of Energy Savings”

Colm V. Gallagher, Ken Bruton, Kevin Leahy, Dominic T.J. O’Sullivan

August 23, 2017

• The suitability of machine learning algorithms to improve the measure-
ment and verification of energy savings in industrial buildings is presented.

• Six individual modelling algorithms are applied and their prediction ac-
curacy was validated in the context of a case study.

• Machine learning was found to reduce error by 51.1% compared to an
assumed typical approach.

• A higher measurement frequency does not always result in reduced uncer-
tainty in savings quantified.

• The use of machine learning under missing baseline data conditions is
shown to be advantageous.
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The Suitability of Machine Learning to Minimise Uncertainty in the Measurement and
Verification of Energy Savings

Colm V. Gallaghera,b,∗, Ken Brutonb,c, Kevin Leahya,b, Dominic T.J. O’Sullivana,b

aIntelligent Efficiency Research Group, School of Engineering, University College Cork, Cork, Ireland
bMaREI Centre, Environmental Research Institute, University College Cork, Cork, Ireland

cDepartment of Mechanical, Biomedical and Manufacturing Engineering, Cork Institute of Technology, Cork, Ireland

Abstract

Accurate energy modelling is a critical step in the measurement and verification (M&V) of energy savings, as a model for con-
sumption in the baseline period is required. Machine learning (ML) algorithms offer an alternative approach to train these models
with data-driven techniques. Industrial buildings offer the most challenging environment for the completion of M&V due to their
complex energy systems. This paper investigates the novel use of ML algorithms for M&V of energy savings in industrial buildings.
This approach enables the extension of the traditional project boundary also. The ML techniques applied consist of bi-variable and
multi-variable ordinary least squares regression, decision trees, k-nearest neighbours, artificial neural networks and support vector
machines. The prediction performances of the models are validated in the context of a biomedical manufacturing facility to find the
optimal model parameters.

Results show that models constructed using ML algorithms are more accurate than the conventional approach. A 51.09% reduc-
tion in error was achieved using the optimal model algorithm and parameters. The use of a higher measurement frequency reduced
the spread of error across the six models. However, further analysis proved the use of more granular data did not always benefit
model performance. Results of the sensitivity analysis showed the proposed ML approach to be beneficial in circumstances where
missing baseline data limits the model training period length.

Keywords: Measurement and verification, energy efficiency, machine learning, energy modelling, uncertainty analysis, energy
performance

1. Introduction

An energy conservation measure (ECM) is implemented
to reduce consumption in energy systems. The term
ECM encompasses a wide range of measures and is
used to refer to any energy performance improvement
project. In recent years, the measurement and verification
(M&V) of energy savings has received increased focus due to
measures imposed by energy policy worldwide. Improving effi-
ciency across all elements of energy systems is being utilised as
an essential tool to achieve policy targets. The European Union
has issued the Energy Efficiency Directive to ensure member
states achieve individual improvements in energy efficiency [1].
Accurate and reliable estimation of energy savings from a wide
range of ECMs are needed to cumulatively ensure the effective
implementation of the Directive.

To quantify the savings resulting from an ECM, the en-
ergy consumption in the reporting period, or post-ECM, must
be compared to what the consumption would have been had
the ECM not been implemented. This is known as the ad-
justed baseline. Hence, the post-ECM consumption must be

∗Corresponding Author
Email address: c.v.gallagher@umail.ucc.ie (Colm V. Gallagher)
URL: www.ucc.ie/en/ierg (Colm V. Gallagher)

normalised to pre-ECM conditions. Engineering or statistical
methods are typically employed to construct a baseline model
capable of performing this normalisation. The accuracy with
which the energy savings can be quantified is reliant upon the
level of uncertainty that exists. Thus, uncertainty analysis is a
necessary step in reliably estimating the energy savings, as an
estimation of energy savings alone is insufficient to validate an
ECM. A quantifiable measure of uncertainty must also be pro-
vided to give an indication of the savings estimation accuracy.

The three sources of uncertainty in M&V are sampling, mod-
elling and metering. This body of research is concerned with
minimising the modelling uncertainty that exists in projects.
Estimating the uncertainty in M&V provides a deeper in-
sight into the energy savings and supports the decision mak-
ing process in developing baseline consumption models [2].
Both the American Society of Heating, Refrigerating and Air-
Conditioning Engineers (ASHRAE) and the Efficiency Valua-
tion Organization (EVO) provide extensive methodologies to
quantify all three sources of uncertainty in any project [3, 4].
A statistical methodology to evaluate the predictive accuracy
of building energy baseline models has also been developed
and applied [5]. The application of this evaluation procedure
reviewed five energy baseline models and highlighted the po-
tential of each to minimise modelling uncertainty in whole-
building cases. However, it was found that all the models re-
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viewed performed poorly when the energy consumption of the
building varied in ways that are not predictable from the out-
door air temperature or the time of week. This is a common
occurrence in industrial buildings containing complex energy
systems in which many variables are affecting consumption.
The energy consumption in these applications is most often a
function of a number of independent variables which frequently
change over time.

In 2015, industry accounted for 25.3% of final energy con-
sumption in the EU [6] and 21.1% in Ireland [7]. ECMs are
being used to reduce this energy consumption that industrial
activities are responsible for. However, the increased scrutiny
of M&V in these applications has highlighted the shortcom-
ings in accurately verifying the energy savings and associated
uncertainty. M&V of energy savings in the residential and com-
mercial sectors is in a more mature state, with the methods used
in each intertwined with one another. Research in this field is
currently progressing towards the concept of M&V 2.0, which
differs from traditional M&V as it uses large data sets and auto-
mated advanced analytics to streamline and scale the process
[8]. The topic of industrial applications of M&V has been
largely neglected due to its dissimilarity with residential and
commercial applications. As a result of this, it is more difficult
to perform M&V and the lack of accurate verification impedes
efforts to maximise industrial energy efficiency [9].

Outside air temperature and production levels are often given
as common examples of independent variables that can be used
to develop baseline models. In machine learning, these vari-
ables are called features. For many energy systems in industrial
buildings, the features that impact energy consumption most
significantly can be identified using knowledge of engineering
first principles. M&V practitioners are often satisfied to de-
velop baseline models using these most prominent features as
they can be employed to achieve reasonable levels of accuracy.
This results in many relationships between energy consumers
not being analysed, but would the inclusion of these features
significantly improve the accuracy of energy savings verifica-
tion? The size of these relationships relative to the more promi-
nent features make them difficult to infer and utilise for the pur-
poses of model development. This paper investigates the ability
of machine learning to verify energy savings in industrial build-
ings, with the objective of minimising uncertainty to deliver ac-
curacy and precision. The proposed approach allows the less
prominent features to be included in the analysis, as it enables
a wider project boundary be employed and more efficient pro-
cessing of data.

2. Research Questions

A number of previous studies have investigated the suitability
of machine learning for modelling baseline energy consump-
tion in end-use residential and commercial applications. These
are reviewed in detail in Section 3. There are many common-
alities between energy modelling in residential and commercial
buildings. However, industrial buildings operate quite differ-
ently with complex, multi-faceted energy systems. The defi-
ciency of research on M&V in the industrial sector means crit-

ical questions remain unanswered, the following of which are
addressed in this paper:

1. Does a wider boundary of analysis aid the reduction of
uncertainty in M&V?

2. Can machine learning be utilised to improve the prediction
accuracy for M&V in industrial buildings?

3. How does missing baseline data affect the ability to accu-
rately perform M&V?

4. Can optimal modelling parameters be identified for all use
cases?

3. Related Work

3.1. Guidance Documentation
EVO developed the most widely used and recognised M&V

protocol: the International Performance Measurement and
Verification Protocol (IPMVP). IPMVP defines four distinct
methodologies that can be applied to estimate the energy sav-
ings for a given project [10]. Option A and B focus on isolat-
ing the project boundary to the ECM only. If this is not pos-
sible, Opton C allows you to use a whole-facility approach, al-
though this is only advisable if the savings are greater than 10%
of the total site energy use. Option D is a calibrated simula-
tion approach often used in situations when there is no baseline
data available. An initial estimate of potential savings is used
to guide this decision making process. Guidance is provided
to identify parameters but it does not provide a rigid calcula-
tion process to follow [11]. ASHRAE Guideline 14 also pro-
vides three distinct methodologies for calculating energy sav-
ings. These are akin to that of IPMVP. Both EVO and ASHRAE
define acceptable levels of uncertainty as when the savings are
larger than twice the standard error of the baseline value [3, 4].
ASHRAE also stipulate that maximum levels of uncertainty
must be calculated based on annual savings only. Other M&V
protocols include the guidelines published by the U.S. Depart-
ment of Energy and the California Energy Evaluation Protocols.
Typically, M&V costs are 1% to 5% of total project costs using
IPMVP Option A and 3% to 10% for verification using Option
B [12]. Minimising these costs, while maintaining accuracy, is
critical to maximising the benefits of an ECM.

3.2. Machine Learning in M&V
Machine learning has been extensively applied to model en-

ergy consumption across residential and commercial applica-
tions in the field of energy engineering. M&V practices in in-
dustrial buildings are dissimilar from the more developed res-
idential and commercial sectors. Hence, there remains signifi-
cant scope to improve the accuracy with which industrial energy
savings are verified. In this section, the research published to
date is reviewed to depict the state of maturity in each sector.

3.2.1. Residential & Commercial Applications
In the residential buildings sector, the available data for de-

veloping baseline models is often restricted to whole building
consumption, outside air temperature and occupancy. It is im-
portant to note that despite occupancy being highly correlated
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with energy use, it does not always significantly improve the
accuracy of the baseline model [13]. The most widely recog-
nised technique for modelling building energy consumption is
with the use of physics-based models. Lü et al. [14] developed
a simple and accurate model for building energy consumption
using minimal physical parameters.

Data-driven modelling approaches are less well established,
but can be implemented successfully. Ekici and Aksoy [15]
utilised the orientation, insulation thickness and transparency
ratio to develop a back propagation artificial neural network
(ANN) capable of predicting heating energy consumption with
94.8-98.5% accuracy. Similarly, Yu et al. [16] constructed a
building energy demand predictive model based on the deci-
sion tree method with an accuracy of 92% on a test data set.
Catalina et al. [17] propose a multiple regression model to pre-
dict heating energy demand, based on the building global heat
loss coefficient, the south equivalent surface, and the difference
in the indoor set point temperature and the sol-air temperature.
The use of these model features is a novel approach that could
be employed more frequently in M&V. Swan and Ugursal [18]
reviewed both top-down and bottom-up modelling of the end-
use energy consumption in the residential sector and concluded
that the continuous development of alternative energy sources
and technologies, coupled with the focus being placed on effi-
ciency, has created a requirement for bottom-up models. Ad-
ditionally, Dounis [19] demonstrated that these techniques may
play an important role in conserving energy in buildings. There
is a well established precedent for energy modelling in residen-
tial applications of M&V and this ensures low levels of uncer-
tainty are achievable in everyday projects.

The largest portion of published research in the field of M&V
focuses on commercial buildings. There is a wide-range of
studies proving the suitability of ANNs for modelling commer-
cial buildings energy consumption [15, 20–25]. The ASHRAE
Great Energy Predictor Shoot-out identified ANNs as the most
accurate method of modelling a building’s energy use [26, 27].
In the second ASHRAE Great Energy Predictor Shoot-out,
hourly whole-building data was used by four competitors to
model the energy consumption of commercial buildings. A
machine learning approach employing ANNs won the competi-
tion, although a statistical regression method was found to per-
form almost as well as the ANNs [24]. Additional machine
learning algorithms such as support vector machines (SVM) are
also proven to be accurate in modelling the energy consump-
tion of buildings in the commercial sector [21, 28–30]. Neto
and Fiorelli [22] present a comparison between physics based
modelling and ANNs for forecasting energy consumption and
highlight the requirement for training data as a hindrance to
using the ANN, despite it performing as well as the physics
based model. This requirement is common across all machine
learning algorithms and the performance of the models often
depend on the quantity of training data available. More re-
cently research has been conducted on the use of first-principle,
or physics-based, modelling to train machine learning models
and this offers further potential for the utilisation of machine
learning in M&V [31]. Granderson et al. [32] applied novel
M&V 2.0 modelling approaches to commercial buildings and

showed that interval data acquired from advanced metering in-
frastructure offers significant potential for scaling the adoption
of M&V using a whole-building approach.

3.2.2. Industrial Applications
The lack of research investigating energy modelling in indus-

trial M&V applications, coupled with the success achieved in
residential and commercial applications, are strong indicators
of the potential advancements that are possible. In contrast, in-
dustrial buildings contain multiple factors that affect the more
complex consumption and the savings realised are often small
relative to the total facility consumption. The M&V meth-
ods across all applications hold many commonalities; however,
without specific methodologies that address the requirements
of each case, the accuracy of energy savings estimation is re-
stricted. The available information stored within the vast quan-
tities of data that are common in industrial facilities offers a
powerful opportunity to advance the subject area.

Kelly Kissock and Eger [9] present a methodology for mea-
suring whole-facility industrial energy savings that accounts for
weather and production. The method can use sub-metered data
or whole-plant utility billing data. The purpose of the method-
ology is to extract information about savings from the data set;
however, this is limited by the quality of the data set itself. The
use of monthly data was noted as a significant limiting factor in
analysis of ECMs on different time-scales. This research high-
lights the potential benefits of employing granular energy data
for the purposes of M&V. Rossi and Velázquez present a pre-
scriptive methodology for performing M&V on CHP plants in
industrial buildings [33]. These methodologies are beneficial
to progressing the field of M&V, although they are only appli-
cable under specific conditions. Research has established that
machine learning-based energy modelling approaches are capa-
ble of performing better than traditional approaches, while re-
quiring significantly less input data from the end user [30, 34].
The question remains as to how these techniques can be inte-
grated into the process of M&V to minimise uncertainty, while
not increasing costs.

3.3. Optimal Model Parameters

The model training period and the measurement frequency
of the data are variable and have been found to significantly in-
fluence prediction performance. Cho et al. [35] examined the
effect of measurement frequency on the performance of tem-
perature dependent regression models. The training data varied
from 1 day to 3 months with the relative error for predicting
annual energy consumption being 100% and 6% respectively.
Jain et al. [36] analysed the impact of measurement frequency
varying from 10-minute to daily measurements and found that
hourly data was the most appropriate for multi-family residen-
tial applications. Zhao and Magoulès [34] conducted a com-
prehensive review of simplified engineering methods, statistical
methods and artificial intelligence methods for the prediction of
energy consumption in buildings. This review concluded that it
is difficult to identify any one best performing model without
complete comparison under the same circumstances. Hence,
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the optimal training period length and data measurement fre-
quency for each individual case must be investigated within the
context of the unique project conditions. This paper performs
this analysis in a biomedical manufacturing facility and inves-
tigates the impact training period characteristics have on model
performance.

4. Methodology

As outlined in Section 2, the objective of this analysis is to
assess the suitability of machine learning for improving M&V
in industrial buildings. As concluded by Zhao and Magoulès
[34], each model must be compared under the same circum-
stances for a complete analysis. Hence, a biomedical manufac-
turing facility was chosen as a test-bed for this proposed ap-
proach. The site has an approximate footprint of 4.2 acres and
has over 1000 employees. It comprises processes such as cast-
ing, milling, grinding and packaging. As a result, it utilises a
significant quantity of energy in both machines directly, as well
as in the preparation and conditioning of clean-rooms to enable
medical device manufacture. The site was deemed applicable
as no ECM was performed during the period of analysis. This
allowed for complete evaluation of the model prediction perfor-
mance; something that would not be possible had the consump-
tion changed as a result of an ECM. The building characteristics
(e.g. envelope, materials, openings) did not change during the
period of analysis, hence, these factors were not considered in
the baseline energy model.

The compressed air electricity consumption at the site was
selected to be modelled for this investigation. ECMs are very
commonly performed on compressed air systems as they can
achieve savings of 20-50% [37]. In this case study, the total
electricity consumption of the compressors was metered, but
there was no flow meter on the compressed air header. To carry
out M&V on this system, there are two clear options. One
solution is to install a meter to measure compressed air flow.
This would be useful for quantifying savings on the generation
side of the system, although it would increase costs and delay
the project as baseline data would need to be gathered. The
alternative solution is to model the compressed air electricity
consumption on it’s relationships with other energy consumers
within the facility. This approach requires the construction of
a model of baseline consumption; thus, it was deemed an ideal
case study for conducting the analysis.

There were 24 months of data available for this study. The
data set was split to hold out 12 months of data for training
the models and the remaining 12 months stored separately to
be used as a testing data set for model evaluation on unseen
data. These would be representative of baseline (pre-ECM) and
reporting (post-ECM) periods in a practical application. It is
important to note that although an 80/20 split of training to test
data is more common in machine learning, a 12 month test-
ing period is representative of real world M&V applications.
This approach has been developed and applied previously by
Granderson et al. [5] and is effective in simulating the condi-
tions necessary for comparison of model performance. Table 1

contains a summary of the data available to be used in the mod-
elling process. The input variables employed contain a mix of
both building and process related energy consumers. These are
classified in Table 1 and ensures that both building and process
related energy consumption is accounted for in the models, thus
providing an accurate representation of the system operation in
the baseline period. All analysis was carried out using the open
source programming language R.

4.1. Algorithms

Five prominent machine learning algorithms were selected
to solve this problem; multi-variable linear regression, decision
tree regression, k-nearest neighbours, artificial neural networks
and support vector machines. There are a wide range of algo-
rithms that could be applied for this type of analysis; however,
these five were selected based on previous success in the field
in the published literature reviewed in Sect. 3. For compara-
tive purposes, it was decided that an ordinary least squares re-
gression model constructed using outside air temperature and
production electricity was a reasonable assumption of a typical
approach taken by M&V practitioners.

In machine learning, the term hyper-parameter is used to dis-
tinguish from standard model parameters. Standard model pa-
rameters are learned in the model training process. However,
hyper-parameters cannot be directly learned from the regular
training process. These parameters convey properties of the
model such as its complexity and the speed of learning. The op-
timised value of each hyper-parameter was found by perform-
ing a grid search on possible values and using 10-fold cross-
validation on the training data to determine the best perform-
ing model. 10-fold cross-validation was deemed an appropriate
means to estimate prediction error based on published research
[38, 39]. It also prevents the modelling algorithms from over-
fitting to the training data. In addition to this, the ANN weight
decay hyper-parameter is used to prevent over-fitting.

The optimised hyper-parameter values are specific to each
individual application and thus, allow the methodology to be
adaptable and customisable to the properties of any given data
set. Descriptions of the machine learning algorithms applied,
the hyper-parameters associated with each and the notation
used throughout this paper can be found in Table 2.

4.2. Performance Metrics

The models trained using the baseline period data were ap-
plied to the testing data to evaluate prediction performance.
The coefficient of variation of the root mean square error
(CV(RMSE)) is a measure of the variability between the ac-
tual and predicted values. It is calculated by dividing the root
mean square error by the average energy consumption [3]. The
CV(RMSE) is a metric used to quantify modelling error in both
ASHRAE Guideline 14 and IPMVP. The equation for the met-
ric is provided in Equation 1, where yi is the actual value, ŷi is
the predicted value, ȳ is the average of the actual value, and n
is the total number of predictions in the period of analysis. In
the ASHRAE Great Energy Predictor Shoot-out II, CV(RMSE)
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Variable Description Average Value Type Service

Compressed Air Total electricity consumption of four air compressors. 363.3 kW Dependent Process

Chilled Water Total electricity consumption of chilled water generation system. 142.7 kW Predictor All

Heating Electrical heating load. 36.4 kW Predictor All

Cooling Tower
Water Pumps

Electricity consumption of cooling tower water pumps. 5.9 kW Predictor All

Dust Extraction Total electricity consumption of dust extraction system. 87.6 kW Predictor Process

Grid Electricity Quantity of electricity imported from the national grid. On-site genera-
tion services the remainder of the load.

1747 kW Predictor All

Production
HVAC

Electricity consumption of HVAC servicing production floor area. 82.21 kW Predictor Process

Non-Production
HVAC

Electricity consumption of HVAC servicing all non-production areas. 28.3 kW Predictor Building

Production Production equipment electricity consumption. 1355 kW Predictor Process

Outside Air
Temperature

Outside air temperature measured in degrees Celsius. 15 ◦Celsius Predictor Building

Operation Status of operation in the facility (1 = In-production, 0 = On-standby). - Predictor Process

Table 1: Summary of variables included in the available dataset.

Algorithm Description No. of
Features

Hyper-parameters Grid Search Notation

Bi-variable
Linear
Regression

An ordinary least squares approach assumed to be rep-
resentative of typical M&V practice. Production elec-
tricity consumption and outside air temperature are the
features employed.

2 Intercept True/False Bi-Lin

Multi-
variable
Linear
Regression

A more detailed ordinary least squares model con-
structed using 9 additional features from the available
data set.

11 Intercept True/False Multi-
Lin

Decision
Tree
Regression

Models in the form of a tree structure with decision
nodes. The topmost node in a tree represents the best
predictor.

11 Maximum tree depth dmax = 1:10 Tree

k-Nearest
Neigh-
bours

Non-parametric model where the input consists of the k
closest training examples in the feature space. The out-
put is the average of the values of its k-nearest neigh-
bours.

11 Maximum no. of
neighbours
Distance
Kernel

kmax = 1:10

d = 1:5
kernel =

rectangular,
triangular

k-NN

Artificial
Neural
Networks

Non-linear statistical model. It is a two-stage regres-
sion model typically represented by a network diagram.
A single hidden layer feed-forward neural network was
developed in each instance.

11 No. of hidden units
Maximum no. of
iterations
Threshold
Weight decay

size = 1:11
itmax = 500,000

t = 0.01
d =

(0.5,0.1,0.01,0.001)

N-net

Support
Vector
Machines

Non-parametric technique reliant on kernel functions.
Examples are represented as points in space with a clear
gap separating mapping categories.

11 Kernel
Cost

kernel = linear
c = (0.25,0.5,1,10)

SVM

Table 2: Description of machine learning algorithms employed in the analysis.
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was the primary metric employed to determine overall model
ranking.

CV(RMS E) =

√
(1/n)

∑n
i (yi − ŷi)2

ȳ
∗ 100 (1)

In the same study, normalised mean bias error (NMBE) was
the secondary metric used to support the evaluation process
[24]. The mean bias error is an indication of overall bias in
a regression model and is calculated using the formula in Equa-
tion 2. It quantifies the tendency of a model to over or underes-
timate across a series of values. This metric is independent of
time-scale so care must be taken as overall positive bias error
can cancel out negative bias. In contrast, the CV(RMSE) does
not suffer from this problem.

NMBE =
(1/n)

∑n
i (yi − ŷi)
ȳ

∗ 100 (2)

The median of the absolute relative error (med(absRTE)) is
a useful metric to understand the typical error in the prediction
of total energy consumption over the testing period. The metric
is similar to the mean absolute percent error, but uses the me-
dian to overcome the sensitivity of the mean to extreme values.
Equation 3 contains the formula for calculating the median of
the absolute relative error.

med(absRT E) = median(
abs(yi − ŷi)

yi
) (3)

4.3. Model Uncertainty

The procedure for calculating the uncertainty introduced by
the baseline model is explicitly defined by both IPMVP and
ASHRAE Guideline 14. In both cases, the CV(RMSE) is
used, along with other measures, to compute the uncertainty
associated with the model. The formulae used to calculate
this uncertainty varies between IPVMP (Statistics and Uncer-
tainty for IPMVP) and ASHRAE Guideline 14. However, the
CV(RMSE) is common to both cases, with all other equation
parameters being independent of the model constructed. These
parameters include t-statistics, sample size and the number of
independent variables. As CV(RMSE) is the only parameter
effected by the model performance, it is important to focus on
minimising it to achieve the objectives stated in Sect. 2.

In a practical application using IPMVP approaches, the
CV(RMSE) is calculated by applying the baseline model to the
pre-ECM dataset (i.e. applying the model to the data used to
train it). This approach is very susceptible to over-fitting the
model to the training data. To overcome this issue, a build-
ing in which no ECM has been implemented was chosen as
a test site. A truer measure of performance can be found by
applying the baseline model to the testing data. This model val-
idation procedure allows for direct comparison of the adjusted
baseline, calculated by the model, and the measured post-ECM
consumption. This approach has previously been developed by
Granderson et al. [5].

5. Results and Discussion

5.1. Potential of Additional Model Features
A notable characteristic of the analysis is the use of ad-

ditional model features that would otherwise be overlooked.
Sect. 1 describes the relevance of these features and the typi-
cal approach taken by M&V practitioners. It was deemed that a
typical approach would use production electricity consumption
and outside air temperature as the predictors. This assumption
is based on correlation analysis and engineering first principles,
which are commonly employed techniques in M&V.

Analysis was carried out to assess the value in employing 9
additional features in the model construction process. Hence,
the second approach employed all 11 features that were avail-
able in the facilities data set. Baseline energy models were de-
veloped using an ordinary least squares regression algorithm for
both the traditional (2 model features) and proposed (11 model
features) approaches. 12 months of training data and a selec-
tion of measurement frequencies were used in the analysis. The
performance of each model was evaluated using 12 months of
unseen testing data.

Fig. 1 illustrates the results of this analysis. For daily, hourly
and quarter-hour measurement frequencies, it was found that
the models developed using all 11 model features outperform
those constructed using the more traditional approach. This is
not the case when less granular weekly and monthly data is
employed. The more straightforward approach performs best
in these instances. It is the hypothesis that the more complex
model is too reliant on the additional variables, the detail of
which is lost at these measurement frequencies. The three best
performing models across the spectrum of temporal granular-
ities are those developed using all 11 model features. These
would ordinarily not be employed for this analysis using current
methodologies. The use of these additional features expands the
boundary of analysis; thus, offering a novel and more accurate
means of achieving the objectives of M&V. The best perform-
ing model overall uses all 11 features and a 15-minute mea-
surement frequency. In comparison to the most accurate tra-
ditional model, CV(RMSE) and NMBE are reduced by 15.9%
and 75.6% respectively.

5.2. Harnessing the Power of Additional Features
The findings in Sect. 5.1 identified the potential benefits of

expanding the scope of analysis beyond the currently employed
techniques. Further analysis investigated the ability of differ-
ent algorithms to improve the accuracy in estimating the ad-
justed baseline, beyond that of the ordinary least squares model
constructed using the 11 model features. The training period
was held constant at 12 months with monthly, weekly, daily
and quarter-hourly measurement frequencies reviewed. The tra-
ditional, bi-variable approach used previously was again em-
ployed for comparative purposes, with all other modelling al-
gorithms utilising all 11 features.

Fig. 2 contains a graphical representation of the model per-
formance for each set of project parameters. Comprehensive
performance metrics are included in Table 3. The use of a
higher measurement frequency does not always improve the

6



Page 8 of 12

Acc
ep

te
d 

M
an

us
cr

ip
t

Figure 1: Assessing the value of additional model features for different tempo-
ral granularities.

performance of each model; however, it does reduce the spread
of error between all 6 models. Monthly data provided the most
accurate model across the analysis, a feed-forward ANN with -
3.24% NMBE and 10.8% CV(RMSE). In contrast, the ordinary
least squares, decision tree and SVM models, constructed us-
ing all 11 features, performed with unacceptable levels of accu-
racy at this measurement frequency. The k-nearest neighbours
model constructed using weekly interval data predicted the ad-
justed baseline with next best accuracy. The performance of
the ANN and k-nearest neighbours models deteriorates signifi-
cantly as measurement frequency increases. In contrast to this,
the performance of the multi-variable ordinary least squares
model becomes significantly more accurate as the measurement
frequency increases. SVMs become more prominent as the
measurement frequency increases also. Decision trees perform
poorly across all conditions. The algorithm was unable to suf-
ficiently construct a model at lower measurement frequencies,
possibly as it is too simplistic a means of modelling this com-
plex system. The performance of the ANNs are erratic, with the
greatest accuracy achieved at lower measurement frequencies.

A comprehensive and complete analysis of all approaches
under the same set of operating conditions enables an accurate
comparative review to be carried out. There is no clear most
appropriate modelling algorithm across all four measurement
frequencies. Therefore a conclusion cannot be drawn on the
most accurate machine learning algorithm for modelling base-
line energy in M&V, although there is a clear best perform-
ing model for each measurement frequency. Despite this, only
one model is required for the purposes of any M&V project.
The optimal model is the ANN that uses 11 model features and
monthly interval data. This highlights the need to conduct this
type of analysis in each case as individual project requirements
and characteristics will influence model performance.

5.3. Sensitivity Analysis: Training Period Length

In Sect. 5.1 and 5.2, a 50:50 ratio of training to testing data
was applied. Although this is uncommon in most machine
learning applications, it is representative of typical M&V cases
in which only 12 months of baseline data are available and the

adjusted baseline must be predicted for a 12 month reporting
period. The algorithms and approach proposed thus far have
been proven to be suitable for improving the accuracy of M&V.
However, the sensitivity of this accuracy to the quantity of train-
ing data available offers further scope to evolve M&V practices
in industrial applications. Data availability is an ever present
constraint to many M&V practitioners. To adhere to IPMVP,
backfilling cannot be carried out in the baseline period. A lack
of data in the baseline period is often the single biggest hin-
drance to completing accurate M&V. Additional metering in-
frastructure is usually installed to overcome this issue, but this
increases project costs and delays implementation as baseline
data must be gathered.

To simulate the conditions of missing data, the best perform-
ing algorithms from Sect. 5.2 were applied to construct mod-
els based on limited training data. The best performing model
using the proposed approach employed the ANN algorithm
and a monthly measurement frequency. The algorithm hyper-
parameters were optimised using 10-fold cross validation, re-
sulting in a hidden layer with 11 units and a weight decay of 0.5.
For comparative purposes, the best performing model devel-
oped using the traditional approach was also brought forward
for analysis. This also used a monthly measurement frequency,
while employing the ordinary least squares linear regression al-
gorithm and just two predictor variables. Both models were
evaluated using 3, 6, 9 and 12 months testing data. For reduced
training periods, the most recent period of data was considered
in each case. The practicalities and requirements of M&V limit
its accuracy and hence, these unconventional training to testing
ratios need to be investigated to fully understand the limitations
of the approach.

The sensitivity of the bi-variable model is illustrated in Fig. 3.
It is clear that the length of training period directly improves
prediction accuracy in every case. This analysis shows the de-
pendency of the traditional approach on the availability of base-
line data to train the model. This restricts the potential applica-
tions of M&V. The results of the sensitivity analysis conducted
on the ANN are included in Fig. 4 and offer a more intrigu-
ing insight into the potential of the proposed approach. The
models constructed using shorter training periods are capable
of performing adequately with respect to those constructed us-
ing longer training periods. It is very common in M&V that
models are required to predict the adjusted baseline for a 12
month period. This is akin to that of a 12 month testing period
in this analysis. For these conditions, the model constructed
using 6 months training data performs with a CV(RMSE) of
10.8%, while the model constructed using 11 months training
data results in a CV(RMSE) of 10.7%. The prediction accu-
racy achieved, using almost half the quantity of training data,
highlights the potential of the proposed machine learning-based
approach to be applicable to projects with limited data avail-
able. This pattern in performance is common across the 6, 9
and 12 month testing data sets. Across all testing data sets,
it is clear that acceptable performance, relative to that of a 12
month training period, can be achieved using 6 months of train-
ing data or more. The results for the testing set containing 3
months of data show promising results, with a CV(RMSE) of
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(a) 15-minute interval data (b) Daily interval data

(c) Weekly interval data (d) Monthly interval data

Figure 2: The performance of each algorithm using 12 months training data and 12 months testing data.

Bi-Variable Multi-Variable Decision k-Nearest Neural Support
Lin. Reg. Lin. Reg. Tree Neighbours Network Vect. Machine

Monthly
NMBE 14.39 -30.95 - -11.32 -3.24 -33.26
CV(RMSE) 22.08 36.08 - 17.00 10.80 41.46
med(absRTE) 8.41 27.7 - 14.2 6.89 43.3
Weekly
NMBE 19.19 -28.03 -19.23 -10.13 14.93 -17.86
CV(RMSE) 26.93 34.28 27.93 14.82 23.67 22.72
med(absRTE) 21.58 28.36 18.89 8.06 12.74 17.58
Daily
NMBE 24.20 10.17 22.01 -5.23 18.40 7.85
CV(RMSE) 31.75 19.34 32.73 20.81 26.15 18.04
med(absRTE) 27.17 13.65 29.75 12.45 21.95 13.24
Quarter-Hourly
NMBE 16.10 3.45 10.50 8.70 17.43 5.62
CV(RMSE) 27.07 18.58 27.63 30.82 36.33 18.80
med(absRTE) 19.64 12.32 22.06 20.97 23.09 13.09

Table 3: Performance of each model developed using 12 months training data and evaluated using 12 months testing data with varying measurement frequency.

just 3.7% achieved using 4 months of training data. This pushes
the limitations of traditional techniques to a wider spectrum of
applications, while also improving prediction performance and
hence, minimising uncertainty.

6. Conclusions

Machine learning was found to be an excellent means of
minimising uncertainty in industrial applications of M&V. The
suitability of five different machine learning techniques were

8



Page 10 of 12

Acc
ep

te
d 

M
an

us
cr

ip
t

Figure 3: Sensitivity analysis of bi-variable ordinary least squares linear regres-
sion model performance to quantity of training and testing data.

Figure 4: Sensitivity analysis of ANN model performance to quantity of train-
ing and testing data.

examined with respect to an assumed typical approach. This
analysis was carried out in the context of a biomedical manu-
facturing facility, as it has already been proven that operating
conditions must be kept constant for each technique to enable
a complete investigation [34]. The results identify the potential
performance improvements that are achievable by extending the
boundary of analysis and incorporating additional independent
variables into the model construction process. Machine learn-
ing was used as a tool to extract the knowledge contained within
the data for these variables and construct models of the base-
line energy consumption with varying degrees of success. The
use of data-driven modelling enables a dynamic and flexible
approach be taken to a wide range of projects.

Section 5.1 highlights the accuracy improvements that can be
achieved by employing additional features in the analysis, i.e.
extending the typical project boundary. The prediction accu-
racy was improved when the measurement frequency was daily
or higher. The CV(RMSE) and NMBE were reduced by 15.9%
and 75.6% repectively, when the best performing model con-
structed using al 11 features is compared to that of the more
traditional, bi-variable approach. This initial analysis showed
promise and hence, the same methodology was applied with
four other modelling algorithms in an attempt to further im-
prove the prediction accuracy. An exhaustive methodology was

applied to construct the models for varying measurement fre-
quency. This was necessary to identify the optimal modelling
algorithm and parameters. The most accurate model was a sin-
gle layer feed-forward neural network trained using monthly
data. The CV(RMSE), NMBE and med(absRTE) for this model
were evaluated to be -3.24%, 10.8% and 7% respectively. This
represents a further 41.9% reduction in CV(RMSE) compared
to that of the best performing model in the earlier analysis pre-
sented in Sect. 5.1. In addition to this, it is important to note
that the spread of model error reduced as the measurement fre-
quency increased. This is advantageous in developing consis-
tently accurate models, as opposed to the sporadic performance
at lower measurement frequencies.

The best performing models for the traditional and proposed
approaches were brought forward to Sect. 5.3. For the pro-
posed approach, this was the ANN constructed with monthly
data and for the traditional M&V approach, this was the ordi-
nary least squares regression model that contained just two pre-
dictor variables and used a monthly measurement frequency.
The sensitivity of each model to the quantity of training and
testing data available was investigated. It was found that the
model constructed using the traditional approach was highly
dependent on the length of the baseline period. Performance
degraded across all testing data sets when the training period
was reduced. In contrast to this, the ANN models were found
to perform significantly better. Sufficient accuracy was achiev-
able in all cases for training periods greater than 6 months. A
CV(RMSE) of 10.8% was achieved with a 6 month training pe-
riod and a 12 month testing period. This highlights the potential
benefits of the proposed approach in overcoming the limitations
of traditional M&V in industrial buildings. Interestingly, a 4
month training period and a 3 month testing period resulted in
CV(RMSE) of 3.7%.

7. Future Work

It has been proven that machine learning is a suitable tool
that can be used to minimise uncertainty in M&V. Future work
will focus on formalising a methodology that will incorporate
these machine learning techniques into standard M&V practice,
without putting a strain on resources. The suitability of the ap-
proach will be further validated through the use of additional
case studies. This will also aid the strengthening of the research
field. Beyond this, there is an opportunity to progress M&V in
industrial buildings to the same level as that of residential and
commercial applications. Utilising the proposed techniques for
the purposes of automated advanced analytics, commonly re-
ferred to as M&V 2.0, is an objective the authors intend on
achieving. This area will be the main focus of future work by
the research team.
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