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Abstract

Constraint Programming (CP) is a programming paradigm &/helations be-
tween variables can be stated in the form of constraints. €2Rufes discrete
domains and global constraints. Global constraints caghieresting substruc-
tures of a problem, encapsulate dedicated inference Higwibased on feasi-
bility and/or optimality reasoning, and provide infornaatito the search process
on the most viable course. Stochastic Constraint Progragu(@CP) is a novel
framework that generalizes CP to stochastic problemsyadpboth to model and
solve this class of problems by using any available exis@iRgsolver. Although
this framework proves to be extremely flexible in terms of elody power, its
current implementation does not scale well.

In order to enhance this framework, in this dissertation w@ppse a gen-
eral extension for SCP: global chance-constraints. Inrashtto global con-
straints, which represent relations among a non-fixed nurmabdecision vari-
ables, global chance-constraints represent relations@@aoon-fixed number of
decision variables and stochastic variables. Nevertbekes global constraints
do, global chance-constraints encapsulate dedicateceimde algorithms based
on feasibility and/or optimality reasoning and may provid®rmation to the
search process. We call optimization-oriented global chaionstraints those
global chance-constraints performing optimality reasgni

We applied global chance-constraints encapsulating destianference algo-
rithms based on feasibility and/or optimality reasoningptoblems in the area
of stochastic inventory control. Our computational expece shows that global
chance-constraints let us model and solve to optimalitpleras that could not or
could be only approximately solved by other existing apphes. It also shows
that filtering based on optimality reasoning is extremefgative for this class of
problems.

Roberto Rossi, Cork Constraint Computation Centre, UrsiNgrCollege Cork,
College Road, Cork, Ireland.

Copyright© 2008 by Roberto Rossi. All rights reserved.
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Chapter 1

Introduction



1.1 Preliminaries

In this section we firstly provide the motivations for the waqresented in this
dissertation; secondly we briefly state the topic discugs#us dissertation; and
finally we discuss the structure of the rest of this chapter.

1.1.1 Motivations

Many computational problems can be described in terms ¢ficésns imposed
on the set of possible solutions, and Constraint Programmia problem-solving
technique that works by incorporating those restrictiona programming envi-
ronment. It draws on methods from combinatorial optim@atnd Artificial In-
telligence, and has been successfully applied in a numbieldé from schedul-
ing, computational biology, finance, electrical enginegrand Operations Re-
search through to numerical analysis.

Constraint Programming has been extremely successfukifigld of deter-
ministic production planning and scheduling [47]. The coencral success of
off-the-shelf tools such as ILOG Scheduler [49] is remal&ab

Nevertheless, real-life management decisions are usoalje in uncertain
environments. Random behavior such as the weather, lackseh&al exact in-
formation such as the future demand, incorrect data duedosan measurement,
and vague or incomplete definitions, exemplifies the themmoértainty in such
environments.

In this work we aim to investigate the application of Conistr&rogramming
to decision problems under uncertainty and in particulgromuction/inventory
control problems. Having an effective means to handle tipesblems is a key
to profitability for retail business, which is particularffected by uncertainty.
Supply chains are plagued by uncertainty associated wigtomers’ demand,
lead-times, suppliers’ capacity, and so forth. We now mevsome evidence of
the impact that uncertainty has on retail and on the impogar having state-of-
the-art decision support systems for hedging against it.

Retail replenishmehis a high-value activity. According to the US Commerce

fThe process of moving or re-supplying inventory from a resstorage location to a primary
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Department,$1.1 trillion in inventory supports3.2 trillion in annual US retail
sales. This inventory is spread out across the value chaith, $400 billion at
retail locations,$290 billion at wholesalers or distributors arg50 billion with
manufacturers. This is a colossal amount of capital tied mpnventory [...].
Improving distribution centre efficiency of just a few perage points through
advanced automation and real-time replenishment mayeledignificant savings
and require less capital to be tied up in inventéry.

Table 1.1 shows inventory as a percentage of total assetsofoe major in-
dustries. It appears that such an amount of inventory shsigtdficantly reduce

Industry Inventory relative to total assets
Automotive dealers and service stations (retail) 53.81%
Apparel and accessory stores 41.14%
Building materials, garden supplies and mobile home dedtetail) 40.09%
Food stores 33.52%
Electrical and electronic equipment 19.57%
Total construction 17.20%

Table 1.1: Inventory as a percentage of total assets for staj@ industries. Data
source: Internal Revenue Service, U.S. Treasury Depatti@tatistics of Income,
1977; Corporate Income Tax Returns (Washington, DC: Gawent Printing Of-
fice, 1982), pp. 27-34.

the probability of stock-odtat retail level. In fact, many surveys reveal that what
happens in reality is that a high percentage of shoppersyerage, fail to find
products in stock. Stock-out events for many firms repreaengnificant portion

of all retail sales. Even if some of these events are actuvadlguped via alterna-
tive products, still the lost sales faced by these firms rarhah. Obviously this

is seriously affecting both retail margins and customesfaattion. OverstocKs

on the other hand, can be just as damaging financially to trenaration. Nowa-
days no retailer can afford to tie up capital unnecessarilgventory, or risk lost
sales and dissatisfied customers due to stock-outs. Hoyeewegnt practices put

picking location, or to another mode of storage in which pigks performed.

“The Future of Retaill Replenishment’, Manhattan Assosiate®), 2006,
http://www.manh.com/library/MANH-TechVisVhitepaper.pdf

SWhen at a given moment in a given inventory there is not theatilyeof a part or a product
that is demanded. A stock-out occurs in a distribution aenteen there are orders that can not be
filled within their due date.

9To stock more products than strictly necessary or desirable

3



in place by firms seem unable to produce a balanced situatiemeathe right
good is in the right place at the right time. High stockouglevin retail settings
prove to be the norm, rather than the exception. As a studgiumad in 1996
by the Andersen Consulting Group — today known as Accenturevealed, on
a typical afternoon in a typical US supermarket, 8.2% of geare out of stock,
and this number is nearly doubled for items that are adesttig 3.4% of stock-
outs, consumers refuse to buy an alternative and often haieliusiness to the
competition. The costs of stockouts in US supermarketseaboa estimated at
$7-12 billion of sales. This example illustrates the dastinsequences of stock-
outs, and underlines the importance of properly managivgnitory investments
by means of sound modeling techniques and advanced desigport systems.

In the last few decades the Operations Research communigyoged a large
amount of lore for decision making under uncertainty. Séstic Programming
(see Sengupta [78], Vajda [95], Kall and Wallace [54]) hasrbeidely and suc-
cessfully applied to problems from the retail world.

In contrast to what has happened in the Operations Reseamumanity with
Stochastic Programming, only recently the Constraint Rmmgning community
has started to formalize general approaches that emplogt2amt Programming
for optimization under uncertainty. The probabilistic CB&nework [29] has
been one of the first work in this direction. Relevant worle a@so Partial CSPs
[36] and Soft CSPs [13]. Nevertheless, none of these appesais as general
as the techniques employed in Stochastic Programming. &hefiwst step to-
wards the integration of Constraint Programming and Stetah&rogramming
was made by Walsh, who introduced Stochastic Constrairgrenoming [98] a
novel framework able to fully represent the stochastic readdi decision problems
under uncertainty. Stochastic Constraint Programminglisasyoung field, and
only recently a general purpose modeling and solution freonle was proposed
for stochastic constraint programs in [91]. There are s¢¥leral issues open both
in terms of expressiveness of the framework and of efficierid¢iie current solu-
tion methods available. Applications to real world probseane also very limited.
In this sense Stochastic Constraint Programming is indaddtaresting “green
field” for research.

We claim that Stochastic Constraint Programming may briggificant ben-
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efits in the field of stochastic inventory/production cohtiithe results we present
in this work fully support this thesis. In fact we propose @tastic Constraint
Programming approaches for inventory control that are:

e more accurate than other existing approaches in the litweatThe quality
of the solution found is improved significantly, i.e. coste eeduced, and
the expected cost predicted is closer to that realized ictipe

e more effective in terms of computational performar@ar Constraint Pro-
gramming reformulations proved to be orders-of-magnitudee efficient
than other approaches in the literature;

e more effective in terms of expressivene€®nstraint programming refor-
mulations are particularly compact and, as shown in [92juie fewer
constraints and decision variables than other existingagmbes in the lit-
erature.

As discussed above, large amount of capital are investet/@ntories by firms.
Having more effective, accurate and efficient approachesventory optimiza-
tion is therefore desirable. The research presented indibgertation tries to
pursue these objectives.

Topic. In this dissertation we investigate the application of &tmtic Con-
straint Programming techniques and in particular of glolwhlance-constraints,
a novel modeling concept introduced here, in the area ohstsiic inventory con-
trol. We implemented global chance-constraints encapsgaledicated infer-
ence algorithms based on feasibility and/or optimalityseaing. Our computa-
tional experience shows that global chance-constrairttasemodel and solve to
optimality problems that could not or could be only approaiety solved by other
existing approaches. It also shows that filtering based dimglity reasoning is
extremely effective for this class of problems.

1.1.2 Structure

The rest of this chapter is structured as follows:

5



in Section 1.2, we provide the relevant formal backgroundynamic Pro-
gramming, Constraint Programming, Stochastic ConstiRiagramming,
and inventory control;

in Section 1.3, we discuss the relevant literature in Stetahaonstraint
Programming and stochastic inventory control; then we disouss exist-
ing techniques for integrating Operations Research angt@ant Program-
ming approaches in Combinatorial Optimization;

in Section 1.4, we summarize the content of this dissertati@ state at a
high level our contributions, and finally for each of the éwling chapters
we list the respective contributions in details;

in Section 1.5, we discuss possible future research doretiSpecifically,
for each of the following chapters we discuss which questr@main open
and which directions may be interesting to follow in the fetvesearch;

in Section 1.6, we draw conclusions.

The general structure of this dissertation will be furthescdssed in Section
1.4.



1.2 Formal background

In this section we discuss the relevant formal backgrounthénareas of Dy-
namic Programming (Section 1.2.1), Constraint Progrargr(fdection 1.2.2) and
Stochastic Constraint Programming (Section 1.2.3), a émonk that employs
Constraint Programming for solving decision problems uncheertainty. Finally
we discuss relevant topics in stochastic inventory cori8ettion 1.2.4).

1.2.1 Dynamic Programming

This section is mainly based on [33].

Dynamic Programming (DP) is an optimization procedure duwves opti-
mization problems by decomposing them into a nested faniiljubproblems.
The core of DP is therinciple of optimality[8, 25].

In DP a problemP is associated with state space grapiG = (S,T') where
each element of the vertex s6tis a state and each element of the arc’Set
represents a feasible transition between two states. Tdiearproblem is solved
by solving a shortest path problem in the state space graph &n initial state
to a final state (boundary conditidn) If the original problem is NP-hard, the
corresponding state space graph will have an exponentiabauof nodes.

Consider a discrete system definedrosteps. Each step is characterized by:

a final states, that represents the system at the end of étep, € S,
wheresS,, is the set of feasible states at the end of g¢tep

a decision variable, that represents a decision taken at step;, € Xy,
whereX}, is the set of feasible decisions that could be taken at/step

a cost/profit functiorp, (sx, xx) representing the cost/profit achievable in
stepk if s; is the final state and,, the decision considered.

a state transitiony (s,_1, zx) that leads the system toward the state=

t(Sk—1, Tk).

IThis definition of DP is restrictive, but sufficient for thesduission in this work.
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Without loss of generality we will here refer to minimizatiproblems. Op-
timization problems aim at finding the set optimal valuesto be assigned to
decision variables such that the following objective fiumeis minimized:

z = min {Zpk(sk,xk)} :
k=1

To determine the value of, DP solves a set of problems= 1,...,n, each

corresponding to a system composed: lsyeps and characterized by the state

at the end of step The recursive formulation of the cost function at stéq

s = mip { i {fica(si0) + i)

z,€X; | $i€Si—1

wheres; = t;(s;_1, z;). In addition, we have the following boundary condition:

fi(s1) = xflléi)f(ll{Pl(bel)}

wheres; = t1(sg, z1).

DP is based on therinciple of optimality{8] stating that aroptimal policyis
such that given whatever staig and the decision;, the decisionsy, ..., x;_;
corresponding to the remaining steps constitute an opfoolady w.r.t. the state
s;_1 resulting from the decision taken at step

DP is often applied to problems requiring a sequence ofrielgEted decisions,
and has been applied to solve a wide variety of combinatopamization prob-
lems, as well as optimal control problems. Recently, eiffedtybrid optimization
techniques involving DP and Constraint Programming haea lpeoposed in [33].
In Chapters 5 and 6, we develop similar hybrid techniquegsderoto efficiently
solve combinatorial optimization problems for inventopntrol. In the next sec-
tion we formally introduce Constraint Programming.

1.2.2 Constraint Programming

This section is mainly based on [1].

Letv be a variable. Thdomainof v is a set of values that can be assigned to
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v. In what follows we will restrict our attention ftite domains. Consider a finite
set of variable®’ = {v;, v, ..., v}, wherek > 0, with respective domairn® =
{D1, Ds,...,Dy}. A constraintC onV is defined as a subset of the Cartesian
product of the domains of the variablesWni.e. C C Dy x Dy X ... x Dy. The
cardinality ofV, |V|, is thearity of C. C' is aunary constraintf it has arity 1,
it is a binary constraintf it has arity 2, and it is aaon-binary constrainif it has
arity k, with £ > 2. Finally, C' is aglobal constraintf it is a relation among a
non-fixed number of variables.

A Constraint Satisfaction Proble(@SP) [1, 17, 62] is atripléV, C, D), where
V = {v,v,...,v;} is a finite set of variables with respective domaifs=
{D1, Ds, ..., Dy}, andC is a finite set of constraints, each of which is defined on
a subset of the variables In

Consider a CSRV,C, D), atuple(dy, . ..,d;) € Dy x Dy x ... x Dy satisfies
a constraint’; € C on the variables;, vy, . . ., Vi If (di1, dso, ..., di) € Cs. A
tuple(ds, ...,dx) € D1 x Dy x ... x Dy is asolutionto a CSP if it satisfies every
constraintC' € C.

Consider the CSPE = (V,C,D) andP’ = (V,C’,D’). P and P’ are called
equivalentif they have the same solution seP. is said to besmallerthat P’ if
they are equivalent anf); C D; for all 7. This relation is written a® < P’. P is
strictly smallerthat P, if P < P’ andD; C D for at least ong. This is written
P < P'. When bothP? < P’ andP’ < P we writeP = P’

Often we want to find a solution to a CSP that is optimal witlpees to certain
criteria. Consider a CSP/,C, D), whereD = {Dy, D,, ..., D;}. LetS be the
solution setthat is the set of all the tupldg,...,dy) € Dy X Dy X ... x Dy
that are solutions to the CSP. @onstraint Optimization Problejror a COP, is
a CSP on the solution set of which abjective functionf : S — R, has to be
optimized. Anoptimal solutionto a COP is a solution to the CSP that is optimal
with respect tof. The objective function value is often represented by catéei
z, together with the “constraintiaxi m ze z ormi ni m ze z, respectively for
a maximization or a minimization problem.

In Constraint Programming (CP), the goal is to find a solut@mrall solutions)
to a given CSP, or an optimal solution (or all optimal sologipto a given COP. A
filtering algorithm is typically associated with every ctmait. This algorithm re-
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moves values from the domains of the variables particigatirthe constraint that
cannot belong to any solution of the CSP. These filteringréalyos are repeat-
edly called until no new deduction can be made. This procesaliedconstraint
propagationor propagationin short. In conjunction with this process CP uses
a search procedure (like a backtracking algorithm) wheterifilg algorithms are
systematically applied when the domain of a variable is ffiredli The solution
process interleavggopagationandsearchto reach the given goal.

Example 1.2.1.Let z,, 2, be variables with respective domaibs = {0, 1, 2, 3},
Dy ={0,1,2,3,4,5}. Letz3 be a binary variable with domaib; = {0,1}. On
these variables we impose the following constraints:> 3 z; + x5 > 8 and
(xg > 0) < (z3 = 1). We denote the resulting CSP as

xr1 € {0, 1, 2,3},1’2 c {0, 1,2, 3,4, 5},1’3 € {0, 1},
X1 2 37
I + To = 8,

(29 > 0) < (z3 =1).

A solution to this CSP ig; = 3, 2, = 5 andz; = 1. o

Propagation. Constraint propagation is a process that removes a subsdt or
the inconsistent values from the domains, by reasoning erintiividual con-
straints. This process may significantly reduce the segrabes Thus constraint
propagation is a key instrument to improve the efficiency Bf€®lvers.

Let C' be a constraint on the variables, . .., x,, with respective domains
Dy, ..., D,,. A propagation algorithmfor C' removes values fronb, ..., D,,
that do not participate in a solution €. A propagation algorithm does not have
to removeall such values, as this may lead to an exponential running tuedal
the nature of some constraints.

We consider the CSP = (V,C, D). P can be transformed into a smaller CSP
P’ by repeatedly applying the propagation algorithm for alkgtoaints inC until
there is no more domain reduction. This process is calbedtraint propagation
When no more domain reduction can be achieved by iteratmgntbcess, we say
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that each constraint, and the CSHoisally consistenand that we have achieved
a notion oflocal consistencyn the constraints and the CSP. The term “local
consistency” reflects the fact that the CSP obtained thrdlghliscussed process
is not globally consistent. It is instead a CSP in which al tonstraints are
“locally”, i.e. individually, consistent. A comprehensidiscussion on the process
of constraint propagation is given by Apt [1].

If we demand that every domain value of every variable in thestraint be-
longs to a solution to the constraint then what we achieligper-arc consistengy
that is the strongest local consistency notion for a comgtrd his still does not
guarantee a solution to the whole CSP because other constirait are not con-
sidered in such a process.

Example 1.2.2.Consider again the CSP of Example 1.2.1, i.e. variables,, =3
with respective domain®; = {0,1,2,3}, D, = {0,1,2,3,4,5}, D3 = {0,1},
and

1+ Ty = 8, (12)
(xg > 0) < (z3=1). (1.3)

We apply constraint propagation until the constraints gpeharc consistent:

z1 € {0,1,2,3} z1 € {3} z1 € {3} z1 € {3}
z2 € {0,1,2,3,4,5} (1_1)) z2 €{0,1,2,3,4,5} (1_2)) z2 € {5} (1_%) z2 € {5}
x3 € {0,1} z3 € {0,1} z3 € {0,1} z3 € {1}

<

The three constraints are examined sequentially, as irdiGbove the arcs.
We first examine constraint 1.1, and deduce that values @22an D; do not
appear in a solution to it. Then we examine constraint 1.8, remove all the
values except 5 fronD,. This is because 5 is the only value that supports the
remaining value 3 irD,. Finally we examine constraint 1.3 and we remove value
0 from Ds. The resulting CSP is hyper-arc consistent. In fact, we dcagolution
to the CSP.

The method applied to make a CSP locally consistent shoulkhefficient
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as possible, in fact constraint propagation is applied @achevery time a deci-
sion variable domain has been changed. This happens veeindy during the
solution process. Note that both the efficiency of the pragiag algorithms and
the order in which the propagation algorithms are appliedadly influences the
efficiency of constraint propagation.

Search. Inthe solution process CP employsearch tree A search tree is com-
posed by a set of vertices, nodes and a set of arcs, diranches A nodew is a
direct descendaraf a nodeu and, converselyy is theparentof v, if (u,v) is an
arc of a search tree.

Definition 1.2.1 (Search tree [1])Let P be a CSP with a sequence of variables
X. A search tree fol? is a (finite) tree such that

e its nodes are CSPs,

e itsrootisP,
o if P,..., P, wherem > 0 are all direct descendants @1, then the union
of P,..., P, is equivalent w.r.tX to F,, for every node",.

A node P of a search tree is aepthd if the length of the path from the root
to Pisd.

In CP, a search tree is dynamically built by splitting a CSB smaller CSPs,
until we reach an inconsistency , i.e. some decision vaidoimain becomes
empty, or a solution to the CSP. There are two possible wagpltba CSP into
smaller CSPs: we can either split a constraint (for instandisjunction) or split
the domain of a variable. The second being the most commabnitpee.

A direct consequence of what we discussed is that a CSP isiassbwith
each node in the search tree. At each node we can therefohe @pystraint
propagation and we may detect that the corresponding CSiamsistent, or
we may achieve some domain reduction for it. Obviously, ithlmases we will
generate and explore less nodes, this is the reason whyaiomgtropagation can
speed up the solution process. However, in order to do s@t@ont propagation
must be efficient. This means that the time spent on propagahould be less
than the time that is gained by it.
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In splitting the domain of a variable, we first select a vaeadnd then decide
how to split its domain. This process is guided\ariable andvalue ordering
heuristics. These heuristics impose an ordering on the variables doésjare-
spectively. The ordering imposed by these heuristics hagat gmpact on the
search process.

First we give the following definitions that are relevant mtroduce variable
and value ordering heuristics. A relatiehon a setS is called gpartial orderif it
is reflexive ¢ < s for all s € S), transitive ¢ < t andt < u impliess < ), and
antisymmetric § < ¢t andt < s impliess = t). A partial order= is atotal order
if s <tort <X sforallt,s € S. Given a partial ordex on a sets, an element
s € S'is called aleastelement ifs < t for all ¢ € S. Two elements;,t € S are
incomparablewith respect to< if s A ¢t andt £ s.

A variable ordering heuristiamposes a partial order on the variables with
non-singleton domains. Thaost constrained firstariable ordering heuristic is
of common use. Variables are ordered according to the regpemmber of oc-
currences in the constraints. A variable that appears the often, is ordered
least. The ratio behind this is that, most likely, changhmgdomains of such vari-
ables will cause more values to be removed by constraintggaon. Another
variable ordering heuristic is th@mallest domain firsheuristic, also known as
thefirst fail heuristic. Variables are ordered, in this heuristic, webkpect to the
size of their domains. A variable that has the smallest dorisaordered least.
By using this heuristic less nodes are generated in thelsgaeand inconsistent
CSPs are detected earlier. If two or more variables are ipapable, a common
strategy is to apply the lexicographic ordering to the \ada in order to obtain a
total order.

A value ordering heuristimduces a partial order on the domain of a variables.
Values in the domains are ordered according to a certaiariont, such that val-
ues that are ordered least are selected first. For instdreextcographicvalue
ordering heuristic orders the values according to a lexaplgic ordering. The
randomvalue ordering heuristic, instead, orders the variablegaely. Simi-
larly to what discussed for the variable ordering heurssti€ a value ordering
heuristic imposes a partial order on a domain, we can applyetkicographic or
random value ordering heuristic to incomparable valuegdeioto create a total
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order. A value ordering heuristic is also referred tdesmnching heuristibecause
it decides the order of the branches in the search tree.

A domain splitting procedure is applied after a variable has been selected
and a value ordering heuristics imposed a total order ondteain. Given a
domain, adomain splitting procedurgenerates a partition of the domain. Con-
sider a domainD = {d;,ds,...,d,,} and a total order such thatd; < dy <

. = d,,. Two common domain splitting procedures are labeling arsgdi
tion. Labelingsplits D into {d1},{ds},...,{d.}. In practice the labeling pro-
cedure is often implemented to split a domaininto {d1}, {ds,...,d,,}. This
procedure is also callednumerationin the literature. Bisectionsplits D into
{d1,...,dy},{dks1,...,dn}, wherek = |m/2].

Consider a CSP, = (V,C, D) and a variable € V whose domain has been
split into the partitionDy, ..., D. Then we define the direct descendantgpf
aspP, = (V,CU{v € D;},D) fori = 1,...,k. In practice, we modify the
domain of a variable instead of adding a constraint to defideszendant. If the
partition “respects” the value ordering heuristic that aaplied to the domain,
lLe.d; = d,foralld;, € D;,d; € Dj,i < jandi =1,..., k—1, the corresponding
descendants inherit the ordering of the value orderingisigziri.e. P, < ... <
Py.

A search strategydefines thdraversalof the search tree. Assume that all
the direct descendants of a node in a search tree are totdlyeal, for instance
according to the given value ordering heuristic. The lekshent corresponds to
the first descendant.

Depth-first search (DFS): starting from the root node, peddy descending
to its first descendant. Continue until a leaf is reachedntbacktrack to the
parent of the leaf and descend to its next descendant, iistsexContinue the
process until the root node is reached again and all its dedaats have been
visited DFS is a complete (or exact) search strategy, not redund&ig means
that it explores all paths from the root to a leaf exactly oo FS backtracking
to a previous node only takes place after we have visitedfaTéas leads to the
more general notion of depth-first based search strategies.

Depth-first based search strategies: we start at the rootenadd we pro-
ceed by descending to its first descendant. This processuestuntil a leaf
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is reached. Then we backtrack to some previously visite@ aod descend to

its next descendant, if it exists and if it is allowed. Thisgass continues until

all leafs have been visitedther examples of depth-first based search strategies,
in addition to DFS, are limited discrepancy search or LDH,[8&pth-bounded
discrepancy search or DDS [97], and discrepancy-boundethdiest search, or
DBDFS [7].

Optimization. By recalling that a COP consists of a CSP together with an ob-
jective functionf, it is easy to see why the search for an optimal solution (or al
the optimal solutions) to a COP operates in a similar faskiotime search for a
solution to a CSP. By restricting (without loss of geneyaliurselves to mini-
mization problems, we represent the objective value usivariablez. When a
solutions to the CSP is found, the corresponding valug s&y: = (3, represents

an upper bound for the optimal value 6f It follows that we can add the con-
straintz < [ to all the CSPs in the search tree and continue. This willféciice,
replace the maximum value in the domainzokith (.

Example 1.2.3.We present the solution process of CP, using the followingeCO
Py

x1 € {3,8}, 10 € {0,1,2,3,4,5}, 23 € {0,1},

mnimze z,

z = x1 + 6x3,

x1 2> 3,

T1 + 19 = 8,

(x2 >0) < (z3=1).
To build a search tree, we apply the lexicographic variabie alue ordering
heuristic and use labeling as domain splitting procedure.séarch strategy we

use DFS. At each node we apply hyper-arc consistency camspri@pagation.
The CSPF, is the root. The search tree is depicted in Fig. 1.1. We firptyap
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Figure 1.1: The search tree of Example 1.2.3

constraint propagation th,. It follows that
X € {3,8},1’2 S {0,5},.7}3 c {O, 1},2 c {8,9}

We select the lexicographically least variabte, split its domains intgd3} and
{8}, and generate the descendaftsand P, whereP, = Py U z; € {3} and
Py, = PyUux € {8}.

We descend to node, and apply constraint propagation. It follows that

xr1 € {3},1’2 € {5},.753 € {1},2 - {9}

We have found a solution with = 9. Hence we add to all CSPs the constraint
z < 9.

Next we backtrack td%, descend ta?, and apply constraint propagation. It
follows that

x1 € {8}, x5 € {0}, 23 € {0}, 2 € {8}.

We have found a solution with = 8. Hence we add to all CSPs the constraint
z < 8. Next we backtrack t@, and stop because all its descendants have been
visited.

We return the optimal solution we found in le&f. o

Optimization-oriented global constraints embed an optimization compo-
nent, representing a proper relaxation of the constrasetfjtinto a global con-
straint [32]. The relaxation employed can be a continuoilexation, as in the
examples provided in [32], a DP relaxation, as discusse®3j, [or it can be
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any other suitable relaxation. The optimization compomeatides three pieces
of information: (a) the optimal solution of the relaxed plexh; (b) the optimal
value of this solution representing an upper bound on thgrai problem objec-
tive function; (c) agradient functiongrad(V',v), which returns for each couple
variable-value {,v) an optimistic evaluation of the profit obtainedifs assigned
to V. These pieces of information are exploited both for progiaggurposes
and for guiding the search.

1.2.3 Stochastic Constraint Programming

In order to extend CP to decision problems under uncertaiviysh [98] proposed
an extension of CP called Stochastic Constraint Progragp®CP) in which
there is a distinction between decision variables, whiah loa set freely, and
stochastic (or observed) variables, which follow some gbality distribution.

We first provide some basic notions on probability theory.

Probability theory. In probability theory uncertainty is represented in terrhs o
random experiments. Let be an outcome of an experiment, the set of all the
possible outcomes is representedby

Subsets of? are calledevents which combine one or more outcomes. We
denote byA4 a collection of random events.

To each eventl € A is associated a valuer{ A}, called aprobability, such
that0 < Pr{A4} < 1, Pr{0} = 0, Pr{Q} = 1 andPr{4; U 4>} = Pr{A;} +
Pr{Ay}if Ay N Ay = 0.

The triplet(€2, A, Pr) is called aprobability spacehat must satisfy a number
of conditions (see, e.g, [54]). Several random variables@ated with a prob-
ability space can be defined, namely, all the variables tteatrdluenced by the
random events itd.

In some cases the elemenisc (2 are used to describe a festates of the
world or scenarios All random elements then jointly depend on these finitely
many scenarios.

For a particular random variablg its cumulative distribution is defined as
Fe(z) = Pr{¢ < z}, or more precisely(z) = Pr{{w|¢ < x}}.
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A discrete random variable takes a finite or countable nunobelifferent
values. It is described by its probability mass functionisTii the list of possible
valuest,, k € K, with associated probability

fe(§k) = Pr{€ = &},

suchthad, . fe(&) = 1.
Continuous random variables can often be described thrawsghcalledien-

sity function f¢(£). The probability of¢ being in an intervala, b] is obtained
as

b
Pria<¢ <t} = [ 6
or equivalently

Pria<¢ <) = [ dRe(e),

whereF(.) is the cumulative distribution as earlier. Contrary to tisecbte case,
the probability of a single valuer{¢ = «} is always zero for a continuous random
variable. The distributioi; (.) must be such thaf™_dF;(¢) = 1.

The expectatiorof a random variable is computed as= >, _ - & fe(&) Or
= ffooo EdFe(€) in the discrete and in the continuous case, respectively.

Thevarianceof a random variable i&[(¢ — u)?], whereE][.] denotes the ex-
pectation.

The expectation of” is called ther-th momenbf £. A point 7 is called the
a-quantileof ¢ if and only if for 0 < o < 1, n = min{z|F¢(x) > a}.

Let¢ : R — R be a convex function angla random variable. ThepE[¢]) <
E[¢(£)] (Jensen’s inequalidy

Equipped with these notions, we now formally introduce SCP.

Semantics. A stochastic CSks defined as a 6-tupl@’, S, D, P, C, 0), whereV/

is a set of decision variables alfds a set of stochastic variables,is a function
mapping each element df and each element ¢fto a domain of potential values.
A decision variable inl” is assigneda value from its domain.P is a function
mapping each element 6fto a probability distribution for its associated domain.
C'is a set of constraints. A constrailate C' that constrains at least one variable
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in S is achance-constrain®,, is a threshold value in the intervl, 1], indicating
the minimum satisfaction probability for chance-consttai Note that a chance-
constraint with a threshold df (or without any explicit threshold specified) is
equivalent to a hard constraint.

A stochastic CSP consists of a numbedetision stagesA decision stage is
a pair(V;, S;), whereV is a set of decision variables atgis a set of stochastic
variables.

One-stage Stochastic CSP. In a one-stage stochastic CSP, a single stage is con-
sideredV, S), and the decision variables are set before observing thizatans

of the stochastic variables. A solution can be thereforeesged as an assignment
for decision variables i such that, given random values for stochastic variables
in S, the hard constraints are satisfied and the chance-caristeae satisfied in
the specified fraction of all possible scenarios.

m-stage Stochastic CSP. In anm-stage stochastic CSP,andsS are partitioned

into disjoint setsVy,...,V,, and S, ..., S,,, and we consider multiple stages,
(V1,51), (Va, S2), ..., (Vim, Sm). A decision variable:; € V; is set to a value only
after realizations of stochastic variabl%gg Y € U{;ll St} in former stages have
been observed. To solve anstage stochastic CSP an assignment to the variables
in V; must be found such that, given random valuesSgrassignments can be
found forV; such that, given random values 18y, ..., assignments can be found
for V,, so that, given random values fot,,, the hard constraints are satisfied
and the chance constraints are satisfied in the specifietiofnaaf all possible
scenarios. The solution of an-stage stochastic CSP is represented by means of
apolicy tree[91]. A policy tree is a set of decisions where each path spres

a different possible scenario and the values assigned tsidiewariables in this
scenarios.

Stochastic Constraint Optimization. Let S denote the space of policy trees
representing all the solutions of a stochastic CSP. We mayteeested in finding
a feasible solution, i.e. a policy treec S, that maximizes the value of a given
objective functionf(-) over the stochastic variables(edges of the policy tree)
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and over a subsét C V of the decision variables (nodes in the policy tree). A
Stochastic CORs then defined in general as

ne /)
Solution methods. Two solution methods have been proposed so far in the liter-
ature: the first relies on backtracking and forward checlalggrithms proposed
in [98], the second [91] adopts a scenario based approach.

Policy based view. In the policy based view of [98], the semantics is based
on atree of decisions. Each path in a policy representsexr€ift possible scenario
(set of values for the stochastic variables), and the vahdssgned to decision
variables in this scenario. To find satisfying policies, Kiescking and forward
checking algorithms, which explores the implicit AND/ORagh, are presented.
Stochastic variables give AND nodes as we must find a poliay shtisfies all
their values, whilst decision variables give OR nodes as mg need find one
satisfying value. In [5] the authors extend the forward &lveg procedure to
better take advantage of probabilities and thus achieesgér pruning. They
also define arc consistency for stochastic CSPs and intecaln@rc consistency
algorithm that can handle constraints of any arity.

Scenario based approach. In a scenario based approach [11, 91], a scenario
tree is generated which incorporates all possible re@izaif discrete random
variables into the model explicitly. A path from the root to extremity of the
event tree represents a scenaria (), wheref is the set of all possible scenarios.
With each scenario a given probability is associated; I theith random vari-
able on a path from the root to the leaf representing scenaaiadq; is the value
given to.S; in the ith stage of this scenario, then the probability of this sdena
is given byPr{w} = [[. Pr(S; = ;). Within each scenario, we have a conven-
tional (non-stochastic) constraint program to solve. Adllmave to do is replacing
the stochastic variables by the values taken in the sceaadoensure that the
values found for the decision variables are consistentsacsoenarios as certain
decision variables are shared across scenarios. Constagdefined (as in tradi-
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tional constraint satisfaction) by relations of alloweglas of values, and can be
implemented with specialized and efficient algorithms fongistency checking.
The great advantage of this approach is that conventiomskiaint solvers can be
used to solve stochastic constraint programs. The scebhased view of stochas-
tic constraint programs also allows later stage stochaatiables to take values
which are conditioned by the earlier stage stochastic bl$a This is a direct
consequence of employing the scenario representationhichvgtochastic vari-
ables are replaced with their scenario dependent valuesoud$e, there is a price
to pay as the number of scenarios grows exponentially wemthmber of stages.
For this reason, the authors also proposed several appaitxsolution methods
based on scenario reduction methods. We here mention tweeottuction ap-
proaches employed. The “most likely scenario” approacly oahsider a few of
the most probable scenarios and ignore rare events. Lafeddybe Sampling
[84] ensures that the ensemble of random numbers is repatisenof the real
variability whereas traditional random sampling (sometnalled brute force) is
just an ensemble of random numbers without any guarantee.

1.2.4 Inventory Control

In the previous sections we formally introduced CP and iteresion for decision
problems under uncertainty, SCP. We now introduce the aalteformal back-
ground in inventory control, since the rest of this disgestawill extensively
discuss the application of SCP techniques to inventoryrobptoblems.

This section is mainly based on [81].

Lot-sizingis a very active research area in combinatorial optimizatiina-
lyzing and controlling inventory systems that have to cojté @ynamic demand
patterns is a challenging task [14, 30]. Therefore it dogsurprise that control-
ling stochastic inventory systems is even harder and tbhahastic multi-period
lot-sizing problems currently represent a challengingaesh area [100]. In the
following sections we will provide some background on ststit lot-sizing.

In lot-sizing problems, when the demand is assumed to béhastic, the
cost of insufficient capacity in the short run — that is thet@ssociated with
shortages, or with averting them — assumes a great impa@tdre problem in
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stochastic lot-sizing is typically to determine the “catfequantity of buffer (or
safety) stocks that must be kept to meet unexpected fluohsatif the demand.
There are several possible choices for the shortage cosgtigod or for the cus-
tomer service level measure. In what follows we will firstdall the Newsvendor
problem, probably the most studied problem in stochastisilong, and then we
will extend the discussion to multi-period stochastic $ating problems under
continuous and periodic review strategies.

The Newsvendor problem. The Newsvendor problem is the prototype of the
problem faced by a news vendor who needs to decide how mangpa@ers to
buy and stock on a news stand before observing demand. Inwthds, it is
the problem of controlling the inventory of a single item lwviitochastic demand
over a single period. As demand occurs, he may face both geerasts — if
he orders too much — or underage costs — if he orders too littteerefore he
must hedge against overage costs and underage costs intonthénimize the
respective effects. The problem becomes particularlyifsegimt for problem with
high demand uncertainty and large overage and underage cost

The problem inputs are as follows:

e d: the one period random demand, with meas E[d] and variance? =
Vid]

e c: the unit cost,
e p: the selling price, wherg > ¢
¢ s: the salvage value, where< c.

If 2 units are ordered, thenin(z, d) units are sold an¢ic — D)* = max(z —
d,0) units are salvaged.

The news vendor profit is given bymin(z, d) +s(z—d) ™ —cx. The expected
profit is well defined and given by:

7(z) = pE[min(z, d)] + sE[(x — d)"] — cz.
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We now use the fact thatin(z,d) = d — (d — x)™ and we rewrite the expected
profit as
m(z) = (p—c)p— G(x) (1.4)

where
G(x)=(c—s)Elx —d)"+ (p— ¢)E[(d — 2)*] > 0.

Often, it is convenient to formulate the problem in terms ef pnit holding
and penalty cost. Lét = c—s andb = p—c, whereh andb are respectively the per
unit holding cost and penalty cost. Sometimes the penallyisanflated to take
into account thell-will cost associated with unsatisfied demand. Eqg. 1.4 allows
us to view the problem of maximizing(x) as that of minimizing the expected
holding and penalty cost(x).

Obviously, the Newsvendor problem is only interesting wkie demand is
random. In fact, letG%!(z) = h(u — 2)* + b(x — pu)* be the cost whenl
is deterministic, i.e.Pr{d = pu} = 1. Thenz = p minimizesG%!(z) and
G* () = 0, sor(u) = (p — ¢)u. The problem is also trivial when = c. In
this (unrealistic) case we can order an infinite amountsfsadill the demand, and
then return all the unsold items.

We now introducey(z) = ha™ 4 bxz~. G(z) can then be rewritten as(z) =
Elg(z — d)]. Functiong is convex, by recalling that convexity is preserved by
linear transformations and by expectation operator, loves thatG is also con-
vex. By Jensen’s inequality [54}(z) > G%(x). As aresulty(z) < 7%t (z) <
7¥(1) = (p—c)p. We can never expect, in the stochastic case, a higher prait t
the one obtained when the demand is deterministic. Notethigtesult imme-
diately suggests an effective strategy for obtaining bsuiod convex stochastic
programs, in Chapter 4 we will present in details such aeggsat

Consider a continuous distribution far an optimal solution to the above
problem can be found by taking the derivative(dfand setting it to zero. Since
we can interchange the derivative and the expectation tgerat follows that
G'(z) = hE[d(z — d) — bE[d(d — x) whered(x) = 1 if = > 0 and zero otherwise.
SinceE[§(z — d)] = Pr{x —d > 0} andE[§(d — z)] = Pr{d — = > 0}, it follows
that

G'(z) = hPr{z —d >0} = bPr{d — x > 0}.
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Setting the derivative to zero reveals that

F(x)EPr{dgx}:L p—c

= = a. 1.
b+h p—s “ (1.5)

when F' is continuous then at least oneexists that satisfies Eq. 1.5. We select
the smallest of these by letting

¥ =inf{z > 0|F(x) > a}.

Clearly z*, selected this way, is increasinganand therefore it is increasing in
and decreasing ih.

WhenF is strictly increasing then the inverse functin! exists and there is
a unique optimal solution given by

r* = F(a). (1.6)

Nevertheless]is often defined over the set of natural numtérs {0, 1,...}.
In this case we must consider the forward differeda@(z) = G(z + 1) — G(x),
z € N. By writing E[(d — 2)*] = > Pr{d > j}, itis easy to see that

AG(x) =h — (h+b) Pr{d > z}

is non-decreasing im, and thalim, .., AG(x) = h > 0, so an optimal solution
is given byz* = min{z € N|AG(z) > 0}, or equivalently,

" = min{z € N|F(z) > a},

The Newsvendor model dates back to the 1888 paper by Eddej2éijtwho
used the Central Limit Theorem to determine the amount df ttakeep at a bank
in order to satisfy random cash withdrawals from deposihvkigh probability.
The fractile solution 1.5 appeared in 1951 in Arrow, Harnsd &archar [2].

The Newsvendor solution can be interpreted as the smalidst guantity
that guarantees that all demand will be satisfied with pridibabl00a%. In
practice, managers often specilyand then findz* accordingly. This service
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level, also known agycle service levelshould not be confused with the fill-
rate, that is instead the fraction of demand served fromkstdhis is defined as
8 = E[min(d, z)] /Eld).

Normal demand distribution. Particularly interesting is the case when the
demandd is normally distributed. This assumption can be often figstiby the
Central Limit Theorem, when the demand comes from many reiffeindepen-
dent or weakly dependent customers.

If d is normally distributed, thed = 1 + Zo, whereZ is a standard normal
random variable (i.e. a normally distributed random vdeabith mean 0 and
variancel). Let ®(z) = Pr{Z < z} be the cumulative distribution function of
the standard normal random variable. Although the funcfioa not available in
closed form, it is available in tables [52].

distribution of the random demand 4
AN

AN

p+z,o __

20|

r . N
negative inventory level

expected inventory level

The probability associated
to this area (i.e. the probability
that the demand d is greater than

p+z,0) is: 1-a

Figure 1.2: Newsvendor problem with normally distributestrchnd

SincePr{d < u+ z,0} = ®(z,) = «, it follows that
' =+ 240

satisfies Eq. 1.6, so it gives the optimal solution for theeaafsnormal demand.
The quantityz,, is known assafety factorandz* — i = z, * o is known as the
safety stockFig. 1.2.

It can be shown that

G(a") = (h + b)od(za),
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where¢ is the density function of the standard normal random véijand that

(") = (p—c)p— (p—5)od(2a).

In addition the fill-rate can be also easily written as

f=1=clp(z) = (1 = )z

wherec, = o/ is the coefficient of variation of the demand. Sirge,) — (1 —
a)z, > 0 is decreasing imy, it follows that/ is increasing im and decreasing
in ¢,. Notice, for example that = 0.97 whena = 0.75 andc¢, = 0.2, while
G =0.991 whena = 0.9 andc, = 0.2.

Example 1.2.4.Suppose thaf is normal with mean, = 100 and standard devi-
ationo = 20. If ¢ = 5, h = 1 andb = 3, thenae = b/(b+ h) = 0.75 andz* =
100 +0.6745- 20 = 113.49, in fact®~1(0.75) = 0.6745. Note that the order is for
13.49 units (safety stock) more than the mean. Note alsogfat745) = 0.3178
S0G(113.49) =4-20-0.3178 = 25.42 andn(113.49) = 274.58, with 5 = 0.97.

O

Inventory control policies. Inthe previous paragraph we introduced the Newsven-
dor problem. The key aspect of this problem is the fact ttsatglereplenishment
decision concerning an order quantity has to be taken inrexdydo meet the ran-
dom demand till the end of the time horizon considered.

Nevertheless, what usually happens in the reality is thatagement has to
take multiple decisions to meet the demand. These deciasuraly concern the
number of planned replenishments, the timing of such réghements, and the
quantity of items that has to be ordered at each replenishn@pviously there
are many differenstrategiesto decide on replenishment periods and replenish-
ment quantities. For instance we could fix a rule stating ¢hag¢plenishment
should be performed every time the inventory level fallobeh given threshold.

In this case the decision would concern two aspects: chgdise“threshold” and
the quantity that has to be ordered when the inventory posfalls below this
threshold. Alternatively, a strategy could consist in onig according to prede-
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fined time intervals. Moreover, instead of deciding in ach&athe exact quantity
to be ordered, we could instead try to fix a level for each r@phlament (order-up-
to-level) up to which we will raise the stocks. Each of thegteknt strategies
constitutes amventory control policy
For many replenishment policies a challenging problemas ti finding the

optimal “settings”, for instance the reorder levels anddhger-up-to-levels min-
imizing some cost structure or meeting certain servicel lmsguirements [89].
Often people are also interested in comparing differenti@s in such a way to
determine which policy always guarantees the best cosbimeaince [76].

Notation and terminology. We shall now introduce some important issues
and terminology concerning inventory control policies. &dldemand is stochas-
tic, it is useful to conceptually categorize inventoriesaows:

e On-hand stock:This is stock that is physically on the shelf; it can never
be negative. This quantity is relevant in determining wketh particular
customer demand is satisfied directly from the shelf;

e Backorders:These denote an existing demand that cannot be fulfille@é sinc
no stock is available on the shelf;

e On order: These are stocks which have been ordered, but that for some
reason have not reached the shelf yet. Reasons for this mgyise: stock
inspection, transportation etc.;

e Net stock 5On hand) - (Backorders).
This quantity can become negative (namely, if there are draleks). It

is used in some mathematical derivations and is also a coempari the
following important definition:

¢ Inventory positionThe inventory position is defined by the relation

Inventory position = (On hand) + (On order) - (Backorders).
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As we will see, the inventory position is a key quantity foplenishment
decisions.

e Safety stockThe safety (or buffer) stock is defined as the average level of
the net stock just before a replenishment arrives. If thetgatock is zero,
this means that, on average, we will run out of stock at the emdgrwhen
a replenishment arrives. A positive safety stock providbsaféer to hedge
against larger-than-average demand between subseqptarisément ar-
rivals. The numerical value of the safety stock depends,eawilV see, on
what happens to demands when there is a stockout.

What happens to a customer’s order when an item is temppmarilof stock
is of obvious importance in inventory control. There are extreme cases.

e Complete backorderindtVhen a stockout occurs, demands are backordered
and filled as soon as an adequate-sized replenishmentsarrive

e Complete lost saleswWhen a stockout occurs, demands are lost until a re-
plenishment arrives; customers go elsewhere to satisiiyrieds.

Although most inventory models have been developed for orleeoother of
these two extreme situations, in many practical situatieriind a combination of
these two extremes. The ratio behind the inventory modetsmonly in use is
that the decisions they produce tend to be quite insensditlee degree of back-
ordering possible in particular situation. The reason Fis is that in practice
high customer service levels are used, which implies infeed] stockout occa-
sions. When we use the testockoutwe mean a stockout occasion or event. The
number of of units backordered or lost is a measure of the atngfahe stockout.
It should be noted that since the safety stock is defined aawbege nestock
just before a replenishment arrives, its numerical valueflsenced by whether
backordering is actually possible.

Continuous vs Periodic Review. A key question in inventory control sys-
tems is: “how often should the inventory status be deterdfihe The answer
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to this question specifies the review interval)( which is the time that elapses
between two consecutive moments at which we know the stoek le

An extreme case is the so called “continuous review”. Unad&tiauous re-
view the stock status is always known. In reality, continrusurveillance is almost
never employed; instead, each transaction (shipmeniptedemand, etc.) typi-
cally triggers an immediate updating of the statwar(saction reporting

Under “periodic review”, as the name implies, the stockustas determined
only every R time units; between the moments of review there may be censid
able uncertainty concerning the value of the stock level.

Example 1.2.5.A common example of periodic review system is the petrol sta-
tion. The drivers of the gas truck comes regularly, say owvegyeother day, to
refill the station. If the station runs out of gas between twsity, no action is
taken until the next review. o

Inventory control policies. Theformof the inventory control policy is tightly
related to the following two issues: “When should a repliemisnt order be placed?”
and “How large should the replenishment order be?”. Thexe@arumber of pos-
sible control systems, in what follows we shall review foosgible types which
are rather common in practical applications. The notatienmil use is the fol-
lowing: s denotes a reorder point, which is the inventory positioaghold which
triggers a replenishmeng) denotes a fixed order quantity; denotes the order-
up-to-level, that specifies a level to which the order issrexlld bring the current
inventory position.

Order-Point, Order Quantityq, Q) Policy: This is a continuous review policy
(that is, R = 0) that results extremely simple to be implemented in practi&
fixed quantity is ordered whenever the inventory position drops to thedeor
point or lower (Fig. 1.3). It should be noted that the invepfmosition, and not the
net stock, is used to trigger an order. This because thetomeposition includes
the on-order stock and it takes proper account of the maregaested but not
yet received.

Order-point, Order-Up-to-Levels( .S) Policy: Again this is a continuous re-
view policy where a replenishment is made whenever the ovgposition drops
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Net stock or both the inventory position and the net stock, if equal
_____ Inventory position
An order placed at time 4 arrives at time B after a lead time of L time units

Figure 1.3: Theg, Q) system

to the order poing or lower (Fig. 1.4). In contrast to the, () policy, here a vari-
able replenishment quantity is used, in fact we order entoigise the inventory
position to the order-up-to-levél. If all demand transactions are unit-sized, the
two systems are identical because the replenishment deewsli always be made
when the inventory position is exactly that isS = s + . Otherwise if trans-
actions larger than unit-size are allowed the replenistimeantity in the §, S)
system becomes a variable. It should be noted that the hes) jolicy can be
shown to have total cost of replenishment, carrying inventand shortage no
larger than those of the best () policy. However, the computational effort to
find thebest(s, S) pair is substantially more.

Periodic-Review, Order-Up-to-LeveR(.S) Policy: This policy, also known as
replenishment cycle policy, is in common use especiallymitems are ordered
from the same supplier, or require resource sharing. EXemyits of time (that
is, at each review instant) we order the amount required is® rdoe inventory
position to the leveb (Fig. 1.5).

(R, s, S) Policy: This policy combinesy; S) and (R, S). The idea is that every
R units of times we check the inventory position. If it is at @dw the reorder
point s, we order enough to raise it t8. If the position is above, nothing is
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Net stock or both the inventory position and the net stock, if equal
_____ Inventory position
An order placed at time 4 arrives at time B after a lead time of L time units

Figure 1.4: Theq, S) system

done until at least the next review. The §) policy is the special case where
R =0, and the(R, S) is the special case whese= S — 1. Alternatively one can
think of the (R, s, S) as a periodic implementation of,(S) with s = S — 1. It
has been shown [76] that under quite general assumptiorieeaetnand pattern
and the cost structure, the be#t, 6, .S) policy produces a lower total cost than
any other policy. Nevertheless the computational effofirtd the optimal policy
parameters?, s andsS is more intense than for any other policy.

We presented four inventory control policies of common uleshould be
noted that demand uncertainty is not the only reason for vhie may not be
able to satisfy some of customers’ demand on a routine baeistlg out of stock.
When the supplier capacity or the replenishment lead-timthe-time required
for the items ordered to be effectively available on thefshelre probabilistic,
we may also end up at some point without enough items to gatiithe demand.
As we have seen, under all these possible sources of umtgrtdidemand is
unusually large, lead-times are longer than expected oreveggerating for some
reason at reduced capacity, a stockout may occur or emgrgetions may be re-
quired to avoid a stockout. On the other hand, if demand igtdtan anticipated
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Figure 1.5: The R, S) system

or lead-times are shorter than expected, then the replaeisharrives earlier than
needed and inventory is carried at a cost. Safety stocksharentin lever to
hedge against uncertainty. Different perspectives cardbptad to balance these
two types of risk.

Safety Stocks Based on Minimizing Cagtese approaches involve specifying
a way of costing a shortage and then minimizing the total obsrdering, car-
rying inventory and dealing with shortages. Holding moneeimtory reduces the
probability of shortages, but increases the inventory ingl@¢ost. The objective
is to then find the optimal trade off that minimizes the ovierast.

Safety Stocks Based on Customer Servidéen it is the case that costing
shortages raises difficulties. An alternative approactptatbby the management
is then to introduce a control parameter knowrsasvice level The service level
becomes a constraint in establishing the safety stock ofeam;ifor example,
minimize the carrying cost of an item subject to satisfyiraytinely from stock,
95% of all demands. There is a considerable choice in the seleofia service
measure. Three commonly used measures areyttie service levethefill-rate,
and theready-rate The cycle (orx) service level denotes the required minimum
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fraction of cycles in which a stockout does not occur. A stutkis defined as
an occasion when the on-hand-stock drops to the zero leved. fill-rate (or(
service level) is the fraction of customer demand that is roetinely; that is,

without backorders or lost sales. Finally, the ready-ratée fraction of time that
net stock is positive.
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1.3 Related works

In this section we discuss related works in three areas: S&G€&hastic inventory
control and hybrid methods employing techniques from Oypmra Research and
CP for combinatorial optimization. Related works in SCPdiseussed in Section
1.3.1. Previous approaches to stochastic inventory carealiscussed in Section
1.3.2. Works on integration between CP and Operations Resese discussed
in Section 1.3.3.

1.3.1 Stochastic Constraint Programming

In this section we discuss, firstly, the seminal work on SCRMaysh [98]. Sec-
ondly we discuss two solution techniques that have beerogempand that build
two alternative solution methods on the original framewanbposed by Walsh: a
scenario based approach by Tarim et al. [91]; and an imprforedird checking
procedure and an arc consistency algorithm by Balafoutissdergiou [5].

Foundations. To the best of our knowledge the first work that tried to create
bridge between Stochastic Programming and CP is by Benbat ¢9]. This
work is mainly a review over existing Stochastic Prograngniechniques for
optimization under uncertainty and ad-hoc approachedaese by the CP com-
munity to cope with similar problems. The authors emphatsigdact that, while
Stochastic Programming [11] produced a wealth of impressdsults over the
last 35 years, in the CP community people often developedised ad-hoc tech-
niques, of which very little has been formalized. The aushmention, among
the typical approaches adopted in CP for optimization undeertainty, the use
of a static combinatorial algorithm using expected valugsnauts, the use of
simulation-based optimization to compare possible decgsiand finally the use
of hybrid approaches trying to introduce the stochastianeain the general de-
sign of the algorithm. The authors also conclude that CRulez of its expressing
power, is particularly suitable for modeling and solvingrdmnatorial optimiza-
tion problems that are stochastic in nature. Both simutatiased approaches
for optimization under uncertainty and expected valuestiagproaches can be
easily implemented, nevertheless the authors left segaestions opened: “how
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can the search space be abstracted from a stochastic diescrgnto which a
combinatorial approach can be found?”; “how to obtain up@wver) bounds
to be used in a branch-and-bound algorithm?”; “how can adadtincremental
CP simulation engine be built, which possibly integratelsrid/methods combin-
ing CP and Stochastic Programming methods?”. Some of thesstigns have
been addressed in some recent works by Walsh [98], Tarim 8| Balafoutis
and Stergiou [5] etc. Walsh [98] propos&tibchastic Constraint Programming
a generic framework for representing problems that arensisicc in nature using
CP. Walsh [98] and Tarim et al. [91] proposed two effectivd alternative ways
for representing the search space of a generic stochasstramt program. Some
other questions will be answered in this work. For instahogy to obtain and ex-
ploit tight upper (lower) bounds through Stochastic Pragrang techniques to
perform cost-based filtering for certain classes of staahasnstraint programs.
Other questions are still open, particularly those coriogrthe integration of ef-
ficient general purpose techniques for stochastic optitoizén CP.

The framework. SCP is a framework proposed by Walsh [98]. The framework
has been described in Section 1.2.3 and it is meant to modisioie problems in-
volving uncertainty and probability. In contrast to CP, S@&ures both decision
andrandom(or stochastic) variables. Walsh discusses both the seraanfitthis
framework and the computational complexity of a genericlsastic constraint
program. He also proposes two complete algorithms in [983ddving stochastic
constraint program: &acktracking algorithm and aforward checking algo-
rithm.

The backtracking algorithm differentiates between deaisind stochastic vari-
ables. On meeting a decision variable, it tries each valite siomain in turn. On
meeting a random variable, it tries each value in turn anetitrns the sum of the
answers to the subproblems weighted by the probabilitiéssaf occurrence. The
algorithm also follows a scheme similar to the Davis-Putri&in algorithm for
stochastic satisfiability [61], employing upper and loweubds on satisfaction
probability for a given random variable assignment to pregerch and determine
optimal satisfaction.

The forward checking algorithm is based on the backtrackiggrithm. On
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instantiating a decision or a random variable, it checka#od and it prunes value
from the domains of future decision and stochastic varghlbich break con-

straints. Walsh also briefly mentions some approximatiamtedures, namely a
strategy where stochastic variables are replaced by thest probable values,
thus leading to a deterministic constraint satisfactiavbpgm, and a strategy em-
ploying Monte Carlo sampling to test a subset of the possioidds.

There are three main assumptions in the framework propgs@thish. Firstly,
his framework assumes that stochastic variables are indepé instead in the
work on Tarim et al. [91] dependency between random varsabi# be properly
accounted by means stenariosand effective sampling techniques. Secondly,
probability distributions are not allowed to change overdiand are assumed to
be fixed and known a-priori. Thirdly, variable domains arsumsed to be finite,
this third assumption will be in some cases relaxed in ourkwtirus allowing
continuous distributions to be considered.

Walsh also discusses related works that inspired SCP. Bathastic integer
programming [11] and stochastic satisfiability [61] origliy motivated SCP. SCP
shares the advantages that CP has over integer programnuroyer satisfiability
(eg. global constraints, non-linear constraints, andtrtams propagation). Mixed
constraint satisfaction [29] is closely related to onagetstochastic constraint pro-
grams. In [79] constraint satisfaction has been extendéactade probabilistic
preferences on the values assigned to variables. Branchimgjraint satisfaction
[35] models problems in which there is uncertainty in the bemof variables.
Walsh also points to three existing extensions of the tiauhl constraint satis-
faction problem that model uncertain constrairfartial constraint satisfaction
[36] tries to maximize the number of constraints satisfleébabilistic constraint
satisfaction[29] assigns to each constraint a certain probability ohggiart of
the problem, this probability is independent of all the ott@nstraints that partic-
ipate to the problem. Finallyaluedandsemi-ring based constraint satisfaction
[12] generalizes probabilistic constraint satisfactiarthe sense that a value is
associated with each tuple in a constraint, whilst in valkemastraint satisfaction,
a value is associated with each constraint. Nevertheletsh\aints out the fact
that none of these approaches deal with variables that nveymrecertain or prob-
abilistic values as SCP does.
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A scenario-based approach. In [91] Tarim et al. proposed scenario based
SCP. The novelty in this work is the fact that the authors adogemantics for
stochastic constraint programs based on scenario treesisiByg this semantics
the authors can compile stochastic constraint progranescotventional (non-
stochastic) constraint programs and they can thereforeexisting constraint
solvers to effectively solve this class of problems.

Scenario-based SCP has been outlined in Section 1.2.3n &ual. not only
defined a general way to compile stochastic constraint progiinto conventional
constraint programs, but they also proposed a languageiststochastic OPL,
which is based on the OPL constraint modeling language [48]ing this lan-
guage the authors modeled optimization problems undertaice from a vari-
ety of fields: portfolio selection; agricultural planningnd production/inventory
management.

The main novelty brought by this scenario based approadteisact that it
allows multiple chance-constraints and a range of diffeodectives to be mod-
eled, such as Markowitz's mean/variance model. The authmirg out that each
of these changes would require substantial modificatiotisarbacktracking and
forward checking algorithms proposed in [98]. The scenbdsed view allows
each of these extension to be easily modeled using stocl@lti, compiled down
into standard OPL and solved by means of existing solvershaduld be noted
that the approach is general and the compilation does not meeessarily to be
performed using OPL, but it can be implemented using anyaai CP language
and/or software package. The main drawback of this apprisaehated to the fact
that the scenario tree required to model a given problem rexquitally grows in
size when random variable domains are large thus leadirgdge models difficult
to be solved. However, the authors in [91] remark that a st@tased approach
is feasible for many problems and that they observed mudbryarformance us-
ing scenario-based approach on the book production plgrexample of Walsh
[98] compared to the tree search methods.

In addition to this general purpose modeling/solving framek the authors
also proposed some technique to improve the efficiency afdhgion process. In
order to do so, they proposed scenario reduction techniguek as Monte Carlo
Sampling or Latin Hypercube Sampling [84], to reduce the benof scenarios
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considered in the model. Their experimental results shevetfectiveness of this
approach, which in practice is able to find high quality sols using a small
number of scenarios. Finally, inspired by robust optimaatechniques used in
Operations Research [60], the authors also proposed sahm@dees to generate
robust solutions, that is solutions that adopt similar @ $ame) decisions under
different scenarios.

Animproved forward checking procedure and an Arc Consisterty algorithm.
The scenario based semantics of Tarim et al. for SCP is a aiéithative to the
original policy based semantics proposed by Walsh. Thepbksed semantics in
[98] has been further explored in [5]. In this work Balaf@uind Stergiou propose
an improved formulation for the original forward checkingpedure proposed by
Walsh.

The new forward checking procedure takes better advantageobabilities
and achieves stronger pruning. The key observation isectled the fact that
when a forward check is operated and values from future agichvariables are
removed, the strategy in [98] exploits only a “local” viewtbk future problem.
Thus it is not taken into account the fact that, as valueser®ved from future
stochastic variables, the maximum possible satisfactidineocurrent assignment
is reduced. In other words the strategy in [98] considersevaémovals from any
future stochastic variable as “independent” of value reafrom other future
stochastic variables.

In addition to the improved forward checking strategy ththats in [5] also
define arc consistency for stochastic constraint programanalogy with the
widely known notion of arc consistency [1] for classic (detaistic) constraint
programs, which we discussed in Section 1.2.2. Based ordé#fisition an arc
consistency algorithm is proposed that is able to handlstcaints of any arity
and that is particularly effective on binary constraintsrtRermore, a Maintain-
ing Arc Consistency algorithm is also proposed, that carraipeon non-binary
problems.
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1.3.2 Stochastic Inventory Control

In this section we discuss the relevant literature on ststaheventory control and
in particular on the R,S) model, to which we extensively apply SCP techniques
in this dissertation.

In Section 1.2.4 the relevant formal background on detastiistochastic in-
ventory control and stochastic lot sizing has been provided a further discus-
sion the reader can refer to several textbooks on inventegyry [53, 64, 81, 102].
Although an extensive literature exists on inventory colpthis is still a very ac-
tive research area especially when modeling requires taiogrto be taken into
account. Girlich and Chikan [39] give a very interestingstbrical’ review on
the topic. A well known review on the literature on quantitaly-oriented ap-
proaches for determining lot sizes when production or prement yields are
random is provided by Yano and Lee [100]. Yano and Lee unuethe fact that
very little literature exists on multi-period stochastit $izing problems.

An interesting class of production/inventory control geshs considers the
single-location, single-product case under non-statipstochastic demand. In
this class of problems a fixed procurement cost is chargeuteae a replenish-
ment order is placed, whatever the size of the order, andeariholding cost is
charged on any unit carried over in inventory from one petwtthe next. The ob-
jective is to minimize the expected total cost under a serlgeel constraint, that
is the probability that at the end of every time period theimatntory will not be
negative or a penalty cost incurred for each unit of demaatishback-ordered.
This class has been widely studied because of its key roleaictipe.

As discussed in section 1.2.4 one of the possible policigisdén be adopted
to cope with this class of problems is tieplenishment cycle poliayr (R,S) pol-
icy. A detailed discussion on the characteristics 8fY) can be found in [22].
We recall that in this policy a replenishment is placed ev@rgeriods to raise
the inventory level to the order-up-to-lev€l This provides an effective means
of damping planning instability (deviations in plannedengl also known aser-
vousnes§23, 44]) and coping with demand uncertainty. As pointedlyuSilver
et al. ([81], pp. 236-237) K,S) is particularly appealing when items are ordered
from the same supplier or require resource sharing. In tteses all items in a co-
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ordinated group can be given the same replenishment pén¢8l] Janssen and
de Kok discuss a two-supplier periodic model where one seipgélivers a fixed
quantity while the amount delivered by the other is goverbgdn (R,S) pol-

icy. In [82] Smits et al. consider a production-inventorgiplem with compound
renewal item demand. The model consists of stock-points,foneach item,
controlled according toK,S)-policies and one machine which replenishes them.
Periodic review also allows a reasonable prediction ofelellof the workload on
the staff involved, and is particularly suitable for advatiplanning environments
and risk management [85]. For these reasdt$) is a popular inventory policy.

Under the assumption of non-stationary demand thg') policy takes the
form (R",S™) where R" denotes the length of th€” replenishment cycle ans*
the corresponding order-up-to-level.

For the service level constrained problem, early works wexgristic (Silver
[80] and Askin [3]). Bookbinder and Tan [15] proposed anotheuristic, under
the static-dynamic uncertainty strategy. In this stratélgg replenishment peri-
ods are fixed at the beginning of the planning horizon and theah orders at
future replenishment periods are determined only at theglemishment periods,
depending upon the realized demand.

For the formulation under penalty cost scheme a mixed imtege-linear pro-
gram has been proposed by Sox [83]. A solution algorithm tes¢mbles the
Wagner-Whitin [96] algorithm but with some additional féakty constraints has
been also presented in the same work.

The first complete approach for solving the non-station&ny policy under
service level constraints has been proposed by Tarim angiskian in [89]. This
approach operates under mild assumptions and models th&epras a mixed
integer linear program. The model proposed can be solveddaneof any avail-
able off-the-shelf tool such as ILOG CPLEX [49].

Similarly, a mixed integer program — which again operategamsimilar mild
assumptions — has been proposed by Tarim and Kingsman ifid®0je formu-
lation operating under a penalty cost scheme. In this casedst function in the
Stochastic Programming formulation of the problem is naedr and it cannot be
directly represented in the mixed integer linear prograris Tunction is there-
fore modeled by means of a piecewise linear approximatiogai#y the model
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provided can be solved using any available package for nrettieal program-
ming.

Both the two models discussed in the former paragraphs ayesffective and
provide for the first time two practical means for computirgaroptimal policy
parameters for the replenishment cycle policy.

In [92] an efficient CP formulation has been proposed by Taimd Smith
for the service level constrained problem. This formulatxploits key features
of CP: search heuristics, global constraints and discreteaihs. The search
process is guided in such a way to branch first on binary vi@salihe model is
formulated in a more natural way than the respective mixesbigr program, by
employing decision variables to index other decision \@es. A preprocessing
algorithm is proposed to reduce a-priori the set of optinaddidate values in
decision variable domains and thus to reduce the efforttspethe tree-search
process. The model proves to be much more effective tharedpective mixed
integer programming formulation.

Two recent works by Tempelmeier [93] and by Pujawan and &j6%&] show
that finding optimal replenishment cycle policy parameterén both a heuristic
or a complete way — is an active research area and prove theeghtthat the
works by Tarim and Kingsman raised in the Operations Rekeamonmunity.
Specifically the first work extends Tarim and Kingsman modelar service level
constraints in order to cosider a different service levehsuee, thes service
level (or fill rate), which has been discussed in Sectiordl.Zhe second work
develops two heuristics to minimize the expected totavesecost per unit time.
These heuristics try to select an appropriate augmentgt@mtity beyond the
expected total demand through to the planned (deterngpiSthe of the next
replenishment.

1.3.3 Integration of Operations Research and Constraint Ro-
gramming Techniques in Combinatorial Optimization

In this section we shall give a brief overview on the integmatof Operations
Research and CP techniques in combinatorial optimizafibrs research area is
attracting more and more attention in different commusiti&n extensive dis-

41



cussion on hybrid techniques for combinatorial optimizais presented in [94].
The discussion in [94] is mainly focused on integrating CB msathematical pro-
gramming (and in particular mixed integer linear programgiifor combinatorial
optimization. This is only one of the many possible directidor integrating CP
with other techniques from Operations Research and Asifiaitelligence. For
instance, CP has been successfully integrated with locatkd99], DP [33],
linear programming and cost-based reasoning [31, 32].h&k¢ works show that
techniques from Operations Research and Artificial Irgetice can be effectively
incorporated within global constraints in constraint peogs in order to achieve
stronger filtering during the search, guide the search ggyapiickly obtain near-
optimal solutions, etc.

For the discussion in this dissertation, it is particulanieresting to further
describe the approaches in [31, 32] and [33].

In the first work, by Focacci et al. [31, 32], a linear programgnrelaxation
is employed in the filtering process. The filtering is perfedhsing the reduced
costs provided in the final tableau that gives the solutiotheflinear program.
Nevertheless the approach described in their work is geartadoes not neces-
sarily need reduced costs or a linear relaxation to be peddr In fact, as already
discussedpptimization-oriented global constraingsnbed a generic optimization
component, representing a proper relaxation of the cansitself, into a global
constraint.

In the second work, by Focacci and Milano [33], the originanbinatorial
optimization problem of interest, typically NP-hard, idapeed in such a way to
obtain a new problem whose DP state space representatipeoj2@ins a number
of nodes and arcs polynomial in the problem input. The sofuto this relaxed
problem is efficiently obtained using a shortest path atgoriin the state space.
The optimal solution to this relaxed problem provides a labtlmat is again used
for filtering purposes or for guiding the search.
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1.4 Thesis Statement

In this section, firstly we provide a summary of the work désemt in this disser-
tation, secondly we highlight the contributions of our wofkinally, for each of
the following chapters we summarize the respective content

1.4.1 Summary

This dissertation is mainly focused on investigating theliaption of SCP tech-
niques in the area of stochastic inventory control. Hybeichhiques integrating
SCP with DP and other approaches borrowed from OperatiogsdReh are em-
ployed for improving the optimization process.

We concentrate on an interesting problem of practical @stein inventory
control: the computation of optimal replenishment cycléqygparameters under
non-stationary stochastic demand. As discussed in Sett®@, this problem
has been the object of significant research in the last twedys. We consider
different existing formulations of this problem, namelg ttne under service level
constraints, and the one under penalty cost scheme. Fothexdh formulations
the existing approaches proposed by Tarim and Kingsmarf{(B9Qresent two
drawbacks.

Firstly, these approaches are not complete and can prowigienear-optimal
solutions. Specifically, for both the models mixed integee&r programs have
been proposed. The one proposed to address the servicedesttained prob-
lem [89] assumes that negative orders are not allowed, $df tine actual stock
exceeds the order-up-to-level for that review, this exstssk is carried forward
and not returned to the supply source. This event is assumée tare, and
therefore its effects are ignored. As a direct consequehttes) the model only
computes suboptimal policy parameters and an approxinxgkected total cost.
The model proposed under penalty cost scheme [90] openatks the same as-
sumption, but in addition to that it also employs a piecewisgar approximation
for representing the cost function.

Secondly, these approaches do not scale well and performypioo real-
world sized instances. Specifically, both the models reqaitarge number of
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binary decision variables and, in addition to this, the niaoheler penalty cost
scheme quickly becomes intractable as the planning hoteragth and the num-
ber of segments in the piecewise linear approximation asze

Furthermore, no approach in the literature exists for camguoptimal re-
plenishment policy parameters under non-stationary sstchdemand when a
stochastic delivery lag is considered for each order issliedeed a model that
considers immediate delivery is a poor representationefeil world.

In our work, firstly we address the assumption on negativergrtbr the ser-
vice level constrained model. In order to do so, we developv@imodeling tool
in SCP —qglobal chance-constraints- that lets us fully represent the complex
interactions that arise when multiple chance-constraanésadded in a model.
One of the conclusions drawn is that the original assumpgods to underes-
timate holding costs and to produce, in certain cases, bsfteks higher than
strictly necessary. Nevertheless in general this assompties not significantly
affect the quality of the optimal policy parameters comgut&herefore, when
considering the problem under penalty cost scheme, wenrftaiassumption on
negative orders, and we employ global chance-constrantspresent the non-
linear cost function and to obtain a more accurate solutian the one provided
by the mixed integer linear program.

Global chance-constraints have been employed in our wdrkmlg to obtain
more accurate or complete solutions, but also to obtain rificent reformula-
tions of the existing models. Specifically, we enhanced BB $odel proposed
by Tarim and Smith [92] by augmenting it with three global mba-constraints
implementing dedicated cost-based filtering techniques.al& enhanced with
similar techniques our SCP model under penalty cost scheme.

Finally we employed global chance-constraints to repriesiitiple level of
uncertainty, namely demand uncertainty and delivery uacdy, and compute
optimal policy parameters for this challenging model tlwefies has not been stud-
ied in the literature.

In the next section we analyze in details the contributidribis work.
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1.4.2 Contributions

From a theoretical point of view there are two main contiitmg in this dis-
sertation: we introduced the novel conceptglafbal chance-constraintand of
optimization-oriented global chance-constraint$e first, as stated, let us model
complex interactions that arise in stochastic constraiagfams where several
chance-constraints appear together. The second let ug epgl based filter-
ing in a stochastic environment, by exploiting cost-basasoning and/or relax-
ations involving decision variables, random variables #edconstraints defined
on these.

From a practical point of view, our contribution consiststie application
of both these techniques to known problems in the area ohastic inventory
control.

Global chance-constraints

There are three main contributions related to this novelty:

e Formal background. We have formally introducedjlobal chance-
constraintsdefined as constraints that capture a relation among a rea-fi
number of decision and random variables. These constnagttenly are
more expressive than the respective aggregation of sirpleoe-constraints,
but they can be associated with more powerful filtering atgors (Chap.
2).

e Application 1. We have appliedylobal chance-constraintso com-
pute optimal replenishment cycle policy parameters understationary
stochastic demand and service level constra@tsbal chance-constraints
allow the assumption on negative orders adopted in previauks [89, 92]
to be relaxed and thus they let us compute the real optimatisolfor the
problem (Chap. 2).

e Application 2. We exploitedglobal chance-constraint® represent mul-
tiple layers of uncertainty, demand uncertainty and dejivencertainty,
and to compute replenishment cycle policy parameters uralestationary
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stochastic demand, service level constraints and staclaadivery lag (Chap.
3).

Optimization-oriented global chance-constraints

There are two main contributions related to this novelty:

e Formal background. We have formally introducedptimization-oriented
global chance-constraintslefined as global chance-constraints that encap-
sulate suitable relaxations of the constraints considérbi relaxation, in
contrast to conventional optimization-oriented globahstoaints, may in-
volve stochastic variables (Chap. 4).

e Application3. By usingoptimization-oriented global chance-constraints
we have augmented the SCP model originally proposed by Exch&Emith
[92] for computing optimal replenishment cycle policy paeters under
non-stationary stochastic demand and service level @nttr In Tarim
and Smith’s model domain filtering was originally performedly in a
proactive way before starting the search process. Thebassd filter-
ing dynamically performed during the search by the optitnraoriented
global chance-constraints proposed let us now efficienipmute near-
optimal replenishment cycle policy parameters under riatiesmary stochas-
tic demand and service level constraints (Chap. 5). The autgd model
produces run times that are orders-of-magnitude lower timage achieved
by the state of the art approach in [92].

A global perspective

Finally we have employed botflobal chance-constrainemndoptimization-oriented
global chance-constraint® obtain the state of the art approach for computing re-
plenishment cycle policy parameters under non-statiostghastic demand and
a penalty cost scheme:

e Application 4. We have appliedjlobal chance-constraint®d model
the non-linear cost function that is only approximated by #ipproach in
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[90], which employs a piecewise linear approximation fordeking pe-

riod holding and back-ordering costs. In addition to thishese applied

optimization-oriented global chance-constraimdésthe same model in or-
der to perform cost-based reasoning and thus improve tlogeeity of the

search process (Chap. 6).

1.4.3 Paperl(Chap. 2): A Global Chance-Constraint for Stobas-
tic Inventory Systems under Service Level Constraints
[75]

SCP has been introduced in [98] to model decision problewivinvg uncertainty
and probability. In contrast to conventional approacheStwchastic Program-
ming, SCP features all the key features of CP: constrairppggation, variable
and value selection strategies and so forth.

To solve stochastic constraint programs, Tarim et al. ir] [@bposed a se-
mantics based on scenario trees. This semantics is exiréledble, especially
for the fact that it lets stochastic constraint programsdragiled down into con-
ventional constraint programs, so that conventional camgtsolvers can be em-
ployed to find a solution. Nevertheless, the framework psepoby Tarim et
al. still presents limits: in particular, as formulated Bi], it does not specify
how a generic relation among a non-predefined number ofidaciariables and
stochastic variables under a given policy of response shioeiltranslated into a
conventional constraint program. This is obviously not asygask, as it is prob-
lem dependent.

In order to address this issue we propose in this chaptertang®gn for SCP:
global chance-constraintsGlobal chance-constraints, similarly to conventional
global constraints, represent relations among a non presgefiumber of vari-
ables and incorporate dedicated filtering algorithms. Imtrast to conventional
global constraints, global chance-constraints represgations among decision
andstochastiozariables and can model any policy of response.

By means of this novelty and using the scenario based sersgmtbposed
by Tarim et al. [91], in this work we were able to relax the amag assumption
on negative order quantities that had to be adopted in [§90®@2Zomputing re-
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plenishment cycle policy parameters under non-statiostrghastic demand. In
contrast to models previously proposed our model provigebé exact cost of
an optimal solution, and (ii) exact policy parameters, thaeplenishment cycle
lengths and order-up-to-levels. A comparison among ourcgmih and previous
approaches shows that the discussed assumption does mifitaigly affect the

quality of the policy parameters computed by the models 8 92], but it does

affect the computed cost, which typically differs signifidg from the real cost
of the solution provided.

1.4.4 Paper Il (Chap. 3): Computing Replenishment Cycle
Policy under Non-stationary Stochastic Lead Time [72]

Also in this chapter we rely on the scenario based semantigsally proposed

in [91]. The problem here is to compute replenishment cyolécp parameters
under non-stationary stochastic demand, delivery lag andlce level constraints.
Incorporating a delivery lag in inventory control modelsisery active research
topic, as the literature review presented in this chaptésthwow. To the best of our
knowledge, this is the first work in which a non-stationacsiastic demand and
a non-stationary stochastic delivery lag are considergdtter when computing
replenishment cycle policy parameters under service Ewatraints.

The first part of this work is dedicated to the derivation of atinematical
model for computing feasible buffer stocks under non-gtetry stochastic de-
mand, delivery lag and service level constraints. The esgioa obtained repre-
sents a non-linear relation among decision variables€regthment decisions and
inventory levels) and stochastic variables (stochasticatels and delivery lags).

Using the expression derived in the first part of this chapterdeveloped a
global chance-constrairand the respective filtering procedure able to take into
account both demand and delivery lag uncertainty while aging buffer stocks
required to guarantee the given minimum service level imgeof non-stockout
probability. The approach was tested against differenveigl lag distributions.
The experimental results presented show the behavior afxpected total cost
of the optimal policy with respect to the expected value antthé variance of the
delivery lag.
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1.4.5 Paper lll (Chap. 4): Cost-based filtering for stochast
constraint programming [74]

In this chapter we introduagptimization-oriented global chance-constrainihiese
are global chance-constraints incorporating an optindmatomponent that al-
lows cost-based reasoning to be performed during the se@aodi-based reason-
ing lets the solver filter in a proactive way provably suboyati values from the
domain of decision variables. In contrast to conventiormminoization-oriented
global constraint, in optimization-oriented global chertonstraints the cost-based
reasoning may involve stochastic variables in differengsvdy relaxing some of
the constraints in which they appear, or by exploiting knavagualities borrowed
from Stochastic Programming.

In this chapter we discuss a general purpose procedure fforpeng cost-
based reasoning for certain classes of stochastic camsgraigrams, when some
assumptions are respected. These assumptions are gemesakbcted in prac-
tical applications, as witnessed by a large literaturelalibg in the Stochastic
Programming community that operates under the same assuns\pt

Two problems from the Stochastic Programming literatusecamsidered in
order to show the effectiveness of cost-based reasoningih Bhe static stochas-
tic knapsack problem [56] and the stochastic sequencinilgmounder release
time and deadline, a stochastic generalization of a knowshald problem [37].
Our experimental results show order-of-magnitude impmosets for both the
problem considered.

1.4.6 Paper IV (Chap. 5): Cost-based Filtering Techniquesof
Stochastic Inventory Control under Service Level Con-
straints [87, 88]

The assumptions discussed in Chapter 4, required in orégaly the cost-based
filtering strategy there discussed, are not always respégtstochastic constraint
programs. When the relaxations and the inequalities thisisised cannot be
applied, it is usually still possible to perform cost-basedasoning by employing
some ad-hoc methodology for the problem modeled. It may afwn be the
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case, that even if the methods discussed are applicabl®achethodologies may
provide tighter bounds and therefore be more appropriapettorm cost-based
reasoning.

We consider the problem of computing replenishment cycleypparameters
under non-stationary stochastic demand and service levati@ints as formu-
lated in [89, 92]. The model proposed by Tarim and Smith isestage stochas-
tic constraint program addressed through ad-hoc techsigdepted to compute
minimum buffer stocks required to meet the given servicellegnstraints. Some
ad-hoc domain filtering techniques are proposed in [92].s&hechniques con-
sider the probability distribution of the stochastic vates and the input parame-
ters of the problem (holding cost, ordering cost, servigellprobability) in order
to perform a preprocessing of decision variable domainedas cost-based rea-
soning.

In this work, in order to enhance the search process, we aleveldedi-
catedoptimization-oriented global chance-constrairts for simplicity, global
constraints) able to dynamically perform Tarim and Smittdst-based reason-
ing involving decision and stochastic variables duringgbarch process. On the
top of this we developed novel ad-hoc cost-based reasoeatgiques for Tarim
and Smith’s model. These techniques are incomparable hatbet proposed by
Tarim and Smith in terms of filtering power. Finally an efigetDP relaxation is
proposed, which can produce tight bounds employed to prubeptimal nodes
of the search tree during the search. According to what dsseml in Chapter
4 also in this case experimental results show order-of-magm improvements
with respect to both the mathematical programming fornmein [89] and the
CP formulation in [92].

1.4.7 PaperV (Chap. 6): Constraint Programming for Stochas
tic Inventory Systems under Shortage Cost [71, 73]

This final chapter is particularly interesting since bothk thchniques described

in former chaptersglobal chance-constraintand optimization-oriented global

chance-constraintare employed in order to provide the state of the art apjoac
both in terms of quality of the solution provided and effiadgrmf the search pro-
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cess, for computing replenishment cycle policy parameteder non-stationary
stochastic demand and a penalty cost scheme.

Global chance-constraintgre employed in this chapter to dynamically com-
pute during the search process the non-linear cost funofitme problem, which
in [90] was approximated by using a piecewise linear repriesion.

Optimization-oriented global chance-constraiate employed to perform cost-
based reasoning exploiting a DP relaxation similar to treediscussed in Chapter
5, for the service level constrained problem.

For this reason this chapter somehow provides a global viewhe contri-
butions of this dissertation, since it synthesizes bothnibeelties proposed in a
single application.

Our experimental results show: (i) the improvement in teofnguality of the
solution obtained over the mixed integer linear prograngmirodel in [90], (ii)
the efficiency of our approach that can be effectively ajgpte planning hori-
zons of a significant length, (iii) the stability of the perftances achieved under
different input parameters and random demand patterns.
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1.5 Future Work

Several topics in this dissertation suggest directiondifture research. In this
section, for each of the following chapters, we try to sumpgawhich questions
remain open and which future research directions are piogis

Chapter 2.  We recall that this chapter deals mainly with the conceglobal
chance-constraintThere are both theoretical and practical aspects thaicdhbeu
considered in the future research on global chance-cantstr®bviously there is
a clear opportunity for proposing a full family of global ¢fte-constraints with
dedicated consistency and filtering rules similarly to wihas been done in the
last 20 years for deterministic constraints. In our speefiplication discussed
in Chapter 2 DP is used in the filtering procedure. We emplayé&iial recur-
sive implementation, that is obviously quite inefficienpna efficient procedures
may be developed by trading space with time and by storingrimétion indy-
namictables updated through a publish-subscribe mechanisgeted by con-
straint propagation. We believe this is a promising redednection that should
be pursued in future works, since it provides a general me@pproach to deal
with propagation in global chance-constraints.

Chapter 3.  In this chapter a global chance-constraint is developel thi¢
respective filtering procedure. Again we see an opportumete for employing
dynamictables in order to improve efficiency as discussed abovedditian to
this, we also think that the hybrid technique here employgudch merges de-
terministic equivalent modeling [18] and scenario basqur@gch [11,91], may
be employed as a general technique to develop propagagonitainms for other
global chance-constraints. Furthermore no bounding erifily techniques have
been discussed. Itis clear that, by incorporating dedild@tering algorithms, the
proposed model has the potential of becoming very effici€ight bounds may
be obtained, for instance, by applying the technique dseadighn Chapter 4.
Chapter 4. This chapter proposes a general approach for performirgoesed
filtering in SCP. Obviously the approach may have a wide rafggpplications
that should be considered in future works. Possible rekeadirections may also:
consider different inequalities that may be suitable faregating valid bounds in
the filtering process; discuss the cost-based filteringegfyavhen generic chance-
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constraints and stochastic constraint programs are cemesid— the discussion
in this chapter is restricted to special classes of stowhashstraint programs
—; and exploit the information provided by optimizatioriemted global chance-
constraints to define search strategies.

Chapter 5. In this chapter we develop three optimization oriented glob
chance constraints for improving the search process incaasbic constraint pro-
gram that computes replenishment cycle policy parametatsrunon-stationary
stochastic demand and service level constraints. Thetirgguhodel, in which
these three global constraints are posted, is very effiaedtprovides the state-
of-the-art approach for computing replenishment cyclecggdarameters. Obvi-
ously CP is not the only approach that can be used to solvertbidem. We also
explored other research directions, in particular in thiel foed DP. Our prelimi-
nary experience, not discussed in this dissertation, slloatsDP also provides
remarkable performances and it should be further explosed alid technique
for computing replenishment cycle policy parameters. Ijingechniques similar
to the those developed in this chapter may be also applieldetprioblems dis-
cussed in Chapter 2 and 3 for speeding up the search process.

Chapter 6. This chapter, as already discussed, summarizes all thelmatians
of this dissertation in a single application. Again perfamoes are very satisfac-
tory and they suit real world problems with long planningihons spanning up to
38 periods. Note that with 36 periods we can plan for a yeaacdeth a weekly
granularity. Again we see a window of opportunity in this lplem for applying
other techniques such as DP, but we do not have any result sotfas direction.
Another possible research direction consists in considetiso for this problem a
stochastic lead time and in developing a propagation dtgarsimilar to the one
developed in Chapter 3. Supplier capacity constraints nf&y lze considered,
note that this would make the problem extremely hard to keerk thus this last
extension is a particularly challenging one.
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1.6 Conclusions

There are two main research areas for which this dissentegjoresents a contri-
bution: Stochastic Constraint Programmimgdstochastic inventory controlThe
contributions brought to the field of SCP are mainly thegedtand they consist
in the introduction of two novel modeling conceptglobal chance-constraints
and optimization-oriented global chance-constraintSlobal chance-constraints
are mainly concerned with expressiveness, although thgybmaalso used to
perform efficient propagation in SCP. In contrast, optimi@aoriented global
chance-constraints play a key role in achieving efficiendye search process for
stochastic constraint optimization problems. The coatrdns brought to the field
of stochastic inventory control directly follow from the@jation of the former
novelties to well-known problems from the inventory cohtiterature. The com-
putation of replenishment cycle policy parameters understationary demand
is a very active research topic as we have shown. We imprdwedtate of the
art approaches both in terms of quality of the solution foand in terms of com-
putational efficiency. We also augmented the complexitynefrhodels studied in
the literature by adding multiple-layers of uncertaintg (idemand and delivery
uncertainty), a topic that has not been explored beforenfonbn-stationary case.
In summary, not only we propos@wvel optimization models and algorithms that
constitute a step forward in stochastic inventory contooit we also made signif-
icanttheoretical contributions to a new trend of research thaplés constraint
reasoning— a technique that in the last 25 years generated a remaraatdant
of lore —to optimization problems under uncertainty
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Chapter 2

Paper I. A Global
Chance-Constraint for Stochastic
Inventory Systems under Service
Level Constraints

R. Rossi, S. A. Tarim, B. Hnich and S. Prestwich

Abstract

We consider a class of production/inventory control protddehat has a single
product and a single stocking location, for which a stodhas¢mand with a
known non-stationary probability distribution is givenndler the widely-known
replenishment cycle policy the problem of computing polgarameters under
service level constraints has been modeled using variamigues. Tarim &
Kingsman introduced a modeling strategy that constitutesstate-of-the-art ap-
proach for solving this problem. In this paper we identifyotaources of approx-
imation in Tarim & Kingsman’s model and we propose an exothastic con-
straint programmingpproach. We build our approach on a novel conagphal
chance-constrainfavhich we introduce in this paper. Solutions provided by our
exact approach are employed to analyze the accuracy of tdelrdeveloped by
Tarim & Kingsman.
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2.1 Introduction

The study of lot-sizing began with Wagner and Whitin [96]dahere is now

a sizeable literature in this area extending the basic midebnsider capacity
constraints, multiple items, multiple stages, etc. Howgawvmst previous work on
lot-sizing has been directed towards the deterministie.césr a general overview
over deterministic lot-sizing problems the reader mayrrefg¢30].

The practical problem is that in general many, if not all,he future demands
have to be forecasted. Point forecasts are typically tleasedeterministic de-
mands. However, the existence of forecast errors radiaffibgts the behavior of
the lot-sizing procedures based on assuming the detetimidesmand situation.
Forecasting errors lead both to stock-outs occurring wittatisfied demands and
to larger inventories being carried than planned. The thtotion of safety stocks
in turn generates even larger inventories and also morerdieis reported by
Davis [21] that a study at Hewlett-Packard revealed thetfadt60% of the inven-
tory investment in their manufacturing and distributiostgyn is due to demand
uncertainty.

As pointed out in [40] one major theme in the continuing depetent of in-
ventory theory is to incorporate more realistic assumpstamout product demand
into inventory models. In most industrial contexts, demengincertain and hard
to forecast. Many demand histories behave like random whlkisevolve over
time with frequent changes in their directions and rategofth or decline. Fur-
thermore, as product life cycles get shorter, the randosaed unpredictability
of these demand processes have become even greater. licgrémt such de-
mand processes, inventory managers often rely on fordeasésl on a time series
of prior demand, such as a weighted moving average. Typitladlse forecasts
are predicated on a belief that the most recent demand @tgery are the best
predictors for future demand.

An interesting class of production/inventory control peohs therefore con-
siders the single-location, single-product case understationary stochastic de-
mand. This class has been widely studied because of its keynrpractice. We
assume a fixed procurement cost each time a replenishmantisfgaced, what-
ever the size of the order, and a linear holding cost on anyaamiied over in
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inventory from one period to the next. Our objective is to imiize the expected
total cost under a service level constraint, that is the @odiby that at the end of
every time period the net inventory will not be negative. lfearorks in the area
were heuristic (Silver [80] and Askin [3]). Bookbinder andnl[15] proposed an-
other heuristic, under the static-dynamic uncertaintgtsty. In this strategy, the
replenishment periods are fixed at the beginning of the phgnimorizon and the
actual orders at future replenishment periods are detedhonly at those replen-
ishment periods, depending upon the realized demand. Tgexted total cost is
minimized under the minimal service-level constraint.

We focus on the work of Tarim & Kingsman [89], where the autharoposed
a mathematical programming approach to compute near-appinlicy parame-
ters for the inventory control policy known as theplenishment cycle poliogr
(R,S) policy. A detailed discussion on the characteristicsiofY) can be found
in [22]. In this policy a replenishment is placed eveRyperiods to raise the
inventory level to the order-up-to-levél. This provides an effective means of
damping planning instability (deviations in planned osjalso known aser-
vousnes§23, 44]) and coping with demand uncertainty. As pointeduSilver
et al. ([81], pp. 236-237),K,S) is particularly appealing when items are ordered
from the same supplier or require resource sharing. In tteeses all items in a co-
ordinated group can be given the same replenishment pén¢8l] Janssen and
de Kok discuss a two-supplier periodic model where one seipgélivers a fixed
quantity while the amount delivered by the other is goverbgdn (&,5) pol-
icy. In [82] Smits et al. consider a production-inventorgiplem with compound
renewal item demand. The model consists of stock-points,foneach item,
controlled according toK,S)-policies and one machine which replenishes them.
Periodic review also allows a reasonable prediction ofekellof the workload on
the staff involved, and is particularly suitable for advadi@lanning environments
and risk management [85]. For these reasdt)§) is a popular inventory policy.
Under the assumption of non-stationary demand it takesottme (R",S5™) where
R" denotes the length of the” replenishment cycle anf" the corresponding
order-up-to-level.

Tarim & Kingsman’s formulation operates under the assuomginat negative
orders are not allowed, so that if the actual stock exceegl®ittier-up-to-level
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for that review, this excess stock is carried forward andrettrned to the supply
source. This event is assumed to be rare, and thereforéatsseére ignored. As a
direct consequence of this, the model only computes suinapgiolicy parameters
and an approximate expected total cost.

In this paper we exploistochastic constraint programming novel model-
ing framework introduced by Walsh [98], to fully model theginal stochastic
programming formulation for computing?™, S™) policy parameters. In our ap-
proach we extend the original framework with a new concgfibal chance-
constraints and we employ this to compute optim@™, S™) policy parameters
and the exact expected total cost for a given parameter ewafign. By using
optimal solutions provided by our model we gauge the acguoathe solutions
provided by Tarim & Kingsman’s approach for a set of instancén our ex-
periments we show that the assumption adopted in Tarim & $timen’s model
are justified and that their model constitutes a valid trafiéder computing near-
optimal (R", S™) policy parameters when a short computational time is reguir

This paper is organized as follows. In Section 2.2 we progioime formal
background about different modeling techniques emplogekis paper: stochas-
tic programming, constraint programming, stochastic trairg programming and
inventory control models. In Section 2.3 we review the éngapproaches devel-
oped in the literature to computé&™, S™) policy parameters. In Section 2.4 we
introduceglobal chance-constraintsnd we present a novstochastic constraint
programmingapproach, based on this new concept, to compute opfiRfalS™)
policy parameters. In Section 2.5 we compare results pextiby our exact ap-
proach with those provided by the state-of-the-art MIP apph for computing
near-optimal R, S™) policy parameters. In Section 2.6 we draw conclusions.

2.2 Formal background

In this paper we employ and merge several different moddkegniques. In
this section some formal background and references are fgvesach technique
exploited.
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2.2.1 Stochastic Programming

Stochastic programmind.1] is a well known modeling technique that deals with
problems where uncertainty comes into play. Problems ofvopation under
uncertainty are characterized by the necessity of makinga&s without know-
ing what their full effect will be. Such problems appear innpapplication areas
and present many interesting conceptual and computatibaiénges. Stochastic
programming needs to represent uncertain elements of tkségon. Typically ran-
dom variables are employed to model this uncertainty to iwprobability theory
can be applied. For this purpose such uncertain elementdranesa known prob-
ability distribution. The typical requirement in stochiagirograms is to maintain
certain constraints, callegthance constraintd 8], satisfied at a prescribed level of
probability. The objective is typically related to the mimzation/maximization
of some expectation on the problem costs. There are sevéeskdt approaches
to tackle stochastic programs. A first method dealing wititlsastic parameters
in stochastic programming is the so-calkpected value modgl1], which op-
timizes the expected objective function subject to someetqal constraints. An-
other methodchance-constrained programmingas pioneered by Charnes and
Cooper [18] as a means of handling uncertainty by specifgiegnfidence level
at which it is desired that the stochastic constraint hdifeance-constrained pro-
gramming models can be converted into deterministic etprtafor some special
cases, and then solved by some solution methods of detstimimathematical
programming. A typical example for this technique is giventbe Newsvendor
problem [81]. However it is almost impossible to do this famplex chance-
constrained programming models. A third approach emplogaarios, which
are particular representations of how the future might lahfach scenario is as-
signed a probability value, that is its likelihood. Somedkot probabilistic model
or simulation is used to generate a batch of such scenar@scHallenge then, is
how to make good use of these scenarios in coming up with antefé decision.

2.2.2 Constraint Programming

A Constraint Satisfaction ProblefCSP) [1,17,62] is a tripléV, C, D), where
V' is a set of decision variable$) is a function mapping each elementlofto a
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domain of potential values, ardis a set of constraints stating allowed combina-
tions of values for subsets of variablesin A solutionto a CSP is simply a set of
values of the variables such that the values are in the dawathe variables and
all of the constraints are satisfied. We may also be intettestBnding a feasible
solution that minimizes (maximizes) the value of a giverechye function over a
subset of the variables. Alternatively, we can define a camgtas a mathematical
function: f : Dy x Dy x ... x D, — {0, 1} such thatf (z;, xs, ..., x,) = 1 ifand
only if C(z, s, ...,x,) is satisfied. Using this functional notation, we can then
define a constraint satisfaction problem (CSP) as follows @so [1]): givem
domainsDy, D, ..., D,, andm constraintsf, fa, ..., fin find z, zo, .. ., z, such
that

IA
a3
IA
3

; (2.1)
(2.2)

fr(xr, zo, ... xy) =1,

T € Dj,

—_ =
VAN
.
VAN
3

The problem is only a feasibility problem, and no objectivadtion is defined.
Nevertheless, CSPs are also an important class of combaladptimization
problems. Here the functiong. do not necessarily have closed mathematical
forms (for example, functional representations) and camdbe@ed simply by pro-
viding the subse$ of the setD; x Dy x ... x D,,, such thatifx, zs, ..., z,) € S,
then the constraint is satisfied.

We now recall some key concepts@onstraint Programmin@CP): constraint
filtering algorithm, constraint propagation and arc-cetesicy [67]. In CP a fil-
tering algorithm is typically associated with every coastt. This algorithm re-
moves values from the domains of the variables particigatirthe constraint that
cannot belong to any solution of the CSP. These filteringrélyns are repeat-
edly called until no new deduction can be made. This processlied propa-
gation mechanism. In conjunction with this process CP uss=aech procedure
(like a backtracking algorithm) where filtering algorithraue systematically ap-
plied when the domain of a variable is modified. One of the niatgresting
properties of a filtering algorithm is arc-consistency. \&fg that a filtering algo-
rithm associated with a constraint establishes arc-ctamiy if it removes all the
values from the domains of the variables involved in the trang that are not
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consistent with the constraint. As a consequence of reisUlf®], where authors
proved that any non-binary constraint can be translatedantequivalent binary
one with additional variables, several studies on arc4isterscy were limited to
binary constraints. However modeling problems by meandradrip constraints
presents several drawbacks. Firstly these constrainggaamein term of expres-
siveness. Secondly the domain reduction achieved by tipectsge filtering al-
gorithm associated is typically weak. In order to overcorathlihese problems
constraints that capture a relation among a non-fixed numbeariables were
introduced. These constraints not only are more expresisare the respective
aggregation of simple constraints, but they can be assatiaith more power-
ful filtering algorithms that take into account the simukans presence of simple
constraints to further reduce the domains of the variablégse constraints are
calledglobal constraintsOne of the most well known examples is thlel di f f
constraint [66], both because of its expressiveness aaffittiency in establishing
arc-consistency.

2.2.3 Stochastic Constraint Programming

In [98] and [91] astochastic constraint satisfaction problgstochastic CSP) is
defined as a 6-tupl@/, S, D, P, C,0), whereV is a set of decision variables and
S is a set of stochastic variableB,is a function mapping each elementiofand
each element of to a domain of potential values. A decision variablé/ins
assigned value from its domainP is a function mapping each element®to
a probability distribution for its associated domaifl.is a set of constraints. A
constrainth € C' that constrains at least one variablesims achance-constraint
0y, is a threshold value in the intervil, 1], indicating the minimum satisfaction
probability for chance-constraint Note that a chance-constraint with a threshold
of 1 is equivalent to a hard constraint.

A stochastic CSP consists of a numbedetision stagesSolving a stochastic
CSP implies a two step process.

In the first step golicy of responséas to be defined. A policy of response
states the rules that decide when decision variables hawe set. There are two
extreme policies: here-and-now and wait-and-see. lre-and-nowpolicy sets
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all decision variables before observing the realizationhef random variables.
A solution can be therefore expressed as an assignment émiate variables
in V. Thewait-and-segolicy delays as much as possible the assignment of a
value to a decision variable. Therefore a decision variable V is set to a
value only after the realizations of stochastic variahles..,y;,_1 € S have
been observed. Under this policy typically the solution cftachastic CSP is
represented by means ofpalicy tree[91]. A policy tree is a tree of decisions
where each path represents a different possible scenatio{salues for the
stochastic variables) and the values assigned to deciartailes in this scenario.
Hybrid policies can be defined by stating at which stagé < k < j a decision
variablez; has to be set. The solution for any policy that is not a fhee-and-
nowwill be expressed in general as a policy tree.

In the second step we solve the stochastic CSP under the golery by
finding specificpolicy parameters In a one-stage stochastic CSP, the decision
variables are set before the stochastic variables and tieeatpolicy ishere-and-
now. Under any other policy, that isait-and-seer hybrid, we have am-stage
stochastic CSP whené and S are partitioned into disjoint set$7,...,V,, and
Si,...,S,. To solve anm-stage stochastic CSP an assignment to the variables
in V1, must be found such that, given random values§gran assignment can
be found forl; such that, given random values 85 . . ., an assignment can be
found forV,, so that, given random values f6f, the hard constraints are satis-
fied and the chance-constraints are satisfied in the speftdiettbn of all possible
scenarios.

In [98] a policy based view of stochastic constraint progsasrproposed. The
semantics is based on a tree of decisions. Each path in & pepecesents a dif-
ferent possible scenario (set of values for the stochaatiables), and the values
assigned to decision variables in this scenario. To findfyatig policies, back-
tracking and forward checking algorithms, which explotes implicit AND/OR
graph, are presented. Such an approach has been furthstigated in [5]. An
alternative semantics for stochastic constraint programisch suggests an al-
ternative solution method, comes from a scenario-based Mig]. In [91] the
authors outline this solution method, which consists inegating a scenario-tree
that incorporates all possible realizations of discreteloan variables into the
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model explicitly. The great advantage of such an approathatsconventional
constraint solvers can be used to solve stochastic CSP.uddeathere is a price
to pay in this approach, as the number of scenarios growshexpially with the
number of stages and such a growth is particularly affecyedabdom variables
that contain a wide range of values in their domain. To de#i this problem the
authors developed dedicated scenario-reduction tecasjquhich unfortunately
affect the completeness of the approach when applied toowmepgperformances
of the search process. Another limit of the approaches ih 488 [91] is that
they provide implementations only forveait-and-segolicy. The reason for this
is that, when decision and random variables are split irdpuht setsl;, ..., V,,
andSy,...,S,, containing more than one element, the computation requaed
find policy parameters usually is special purpose and itligeily to be performed
by a general approach.

2.2.4 Inventory control and (R",S™) policy

expected inventory level

periods

Figure 2.1: @",5™) policy. d; + d; 11 + ... + d; is the expected demand ov&¥;
b(i, j) is the minimum buffer stock required to guarantee servivelle; X, is
the expected order quantity in periogbr replenishment cycle; 7;,_; andfj are
respectively the expected closing-inventory-levels fenigds: — 1 and;.

In this paper we consider the class of production/inventomtrol problems
that refers to the single location, single product case unale-stationary stochas-
tic demand. We consider the following inputs: a planningzwr of NV periods
and a demand, for each period € {1,..., N}, which is a random variable
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with probability density functiony;(d;). In the following sections we will as-
sume, without loss of generality, that these variables armally distributed. We
assume that the demand occurs instantaneously at the begofreach time pe-
riod. The demand we consider is non-stationary, that isntveay from period to
period, and we also assume that demands in different pesiredsdependent. A
fixed delivery cost: is considered for each order and also a linear holding /cost
is considered for each unit of product carried in stock frama period to the next.

We assume that it is not possible to sell back excess itenmeteendor at the
end of a period. As a service level constraint we require thbability that at the
end of every period the net inventory will not be negative ¢oal least a given
valuea. Our aim is to find a replenishment plan that minimizes thesetgx total
cost, which is composed of ordering costs and holding costs, the N-period
planning horizon, satisfying the service level constmint

Different inventory control policies can be adopted for thesscribed prob-
lem. A policy states the rules to decide when orders have toldeed and how
to compute the replenishment lot-size for each order. Faseudsion of inven-
tory control policies see [81]. In what follows the problemsdribed above will
be solved adopting the replenishment cycle poligy,6™). We recall thatR"
denotes the length of theh replenishment cycle ansl’ the respective order-up-
to-level (Fig. 2.1). In this policy the actual order quaytit,, for replenishment
cyclen is determined only after the demand in former periods has besized.
X, is computed as the amount of stock required to raise thengjdsventory
level of replenishment cycle — 1 up to levelS™. In order to provide a solution
for our problem under theR™, S™) policy we must populate both the sét8 and
S™forn={1,...,N}.

2.3 Existing approaches

Early works in stochastic inventory control area adoptedtiséc strategies such
as those proposed by Silver [80], Askin [3] and Bookbinder @ T15]. The
first complete (MIP) solution method, which operates undéd mssumptions,
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was introduced for this problem by Tarim & Kingsman [89]. ifa& Smith [92]
introduced a more compact and efficient CP formulation ferstdaine model. Ded-
icatedcost-based filteringechniques for such a CP model were presented in [87]
and [88]. This latter enhanced model proved to be able tegel world problem
instances considering up t@& periods planning horizon in a few seconds. In the
following sections we discuss the assumptions adopted i BaKingsman and
we propose a stochastic constraint programming approaghich these assump-
tions are dropped. By means of this approach we can comptiteapgR", S™)
policy parameters and the real associated expected taial@bcourse there is a
price to pay for dropping Tarim & Kingsman’s assumptionsfact our approach

is less efficient than the one proposed in [88].

2.3.1 Stochastic programming model

The stochastic programming formulation for the generaltipdriod produc-
tion/inventory problem with stochastic demand can be esqwé as finding the
timing of the stock reviews and the size of the non-negagpéenishment orders,
X, in periodt, with the objective of minimizing the expected total cést7'C'}
over a finite planning horizon a¥ periods. The model is given below:

mhlE{TC}:iépé;.pé ﬁé@ﬁf+h~ma%hﬂn) 23

N t=1

91(d1)g2(ds) ... gn(dn)d(dy)d(dz) ... d(dy)

subjectto, for =1... N

1, if X;>0
§=14 0 (2.4)
0, otherwise

t
I = Iy + Z(Xz — d;) (2.5)
i=1
Pr{l, > 0} > « (2.6)
LeR, X,>0, 6 €{0,1}. (2.7)

65



The demand/, in each period is a continuous random variable with proldgbil
distribution functiong;(d;). Each decision variablé, represents the inventory
level at the end of period. The binary decision variable§ state whether a
replenishment is fixed for period(é, = 1) or not (), = 0). Chance-constraint
(2.6) enforces the required service level, that is the driba o the net inventory
will not be negative at the end of each and every time periotie @bjective
function (2.3) minimizes the expected total cost over tiveigiplanning horizon.

Although this stochastic programming approach fully meaelr
production/inventory problem, a solution cannot be exgedsefore aesponse
policyis chosen. We have already seen that a policy states theéouleside when
decision variables have to be set. By using the general appnoroposed in [91]
a solution can be found undesit-and-segolicy. In this policy a replenishment
decisionX, for periodk is made only after all the outcomes for random variables
associated with former periods. ..,k — 1 have been observed. The solution
therefore is expressed as a policy tree, which can expailgrgrow in dimension
even for short planning horizons.

In order to avoid this intractable solution, approachestdam order-up-to-
level strategies have typically been proposed for this rhiodiae literature. Ex-
pressing replenishment decisions in terms of order-ulewels instead of order
quantities is a convenient way to find optimal policy pararetvithout employ-
ing an exponential solution tree. An order-up-to-levelferiodk represents the
level to which stocks have to be maintained at the beginninguoh a period.
Therefore at the beginning of each periadk = 1..., N, in our planning hori-
zon we can observe the actual inventory level and we can eléad order has to
be issued to bring the inventory up to the required level ré&laee two well-known
order-up-to-level policies for the general model proposed

The so-called {*,5™) policy [81] is a purewait-and-seeolicy where at the
end of periodk we observe the inventory level and if this level is belgWythen
an order is issued to raise stocks up to lev&l It is easy to see that this policy
is wait-and-seesince every decision, placing or not an order and the acizebs$
the order, is taken at the very last moment, by observing émeashds that have
been realized in the former periods. Furthermore a solutrater this policy can
be expressed by using only N paik$,*), in contrast to the exponential solution
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tree required when the problem is modeled using order duesti

A hybrid order-up-to-level policy is the so-calle®’{,S™) policy [15], also
known as replenishment cycle policy, which we describedrabdn this policy
the inventory review times are set unddrexe-and-novstrategy at the beginning
of the planning horizon. These decisions are not affectethbyactual demand
realized in each period. On the other hand, for each invgmesiew we need to
observe the actual demand realized in former periods to aterthe actual order
guantity. This makes the®",S™) policy hybrid, since the order quantity for each
review is computed in avait-and-sedashion only after previous demands have
been realized. Also in this case the solution can be effigi@xjpressed. In fact
we only requireM (< N) couples of valuesi*,S%), k = 1,..., M, whereR*
is the length of theé-th replenishment cycle angf is the respective order-up-to-
level.

From these considerations, and from the well known Jengescgiality [11],
it is easy to see that an'(,5™) policy always has a lower expected total cost than
an (R™,S™) policy. The optimality of the{",S™) policy has been presented in [76].
In what follows we will focus on theR™,5™) policy. In fact, as already discussed,
despite being suboptimal this policy presents severalestag aspects.

In the next section we will recall a CP model proposed by Taaimd Smith
[92] and based on deterministic equivaleninathematical programming (MIP)
model originally introduced by Tarim & Kingsman in [89] to mpute (",5™)
policy parameters. This model can only provide near-ogdtipoécy parameters
because it relies on assumptions that affect optimalitythénfollowing section
these assumptions are discussed.

2.3.2 Tarim & Kingsman'’s approach

In this section we provide a description of tHeterministic equivalentP for-
mulation for the R",S™) policy proposed by Tarim and Smith in [92] and based
on the approach originally introduced by Tarim and Kingsnmaf89]. It should

be noted that this formulation is the discrete version ofrtiedlel presented in
Section 2.3.1. Since the normal distribution is the lingtocase of a discrete bi-
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nomial distributionP,(k|n)' as the sample size becomes lardge in the discrete
model an uniformly distributed random demand with mgpaand variance? can
be modeled as a discrete random variable following a binbpnabability mass
function P,(k|n), wherenp = p andnp(1 — p) = o2,

Thedeterministic equivalen©P formulation for the 8",5™) policy proposed
in[92] is

N
min E{TC} =Y (aat + hft> (2.8)

t=1

subjectto,for =1... N

Li+d—1I,1>0 (2.9
jt —|— dNt - jt—l > 0 = 6t — 1 (210)
I,>b 0t 2.11
> (jrer{lil_};}J I ) (2.11)
L ezt u{0}, o6, €{0,1} (2.12)

whereb(i, j) is defined by
J ~
b(i,§) = Garasrtora, (@) = D d. (2.13)
k=i
G, +disr+..+4; 1S the cumulative probability distribution function df + d; 1 +
...+d;. Itis assumed tha is strictly increasing, hena@~! is uniquely defined.
Unfortunately the computation of the binomial cumulativ&dbution function is
time consuming. For this reason it is common to adopt an ajopaie approach
that exploits the respective normal cumulative distribfiunctiort, whose com-
putation is much easier. In what follows we will adopt thipegach not only for
its efficiency, but also because it lets us comply in the éigcmodel with the

TThe binomial distribution gives the discrete probabilitgtdbution P, (k|n) of obtaining ex-
actly k£ successes out of Bernoulli trials [52]

*In which caseP, (k|n) is normal with meam = np and variance? = np(1 — p).

5This approximation is a huge time-saver (exact calculatiwf?, (k|n) with large n are very
onerous); it can be seen as a consequence of the centraheoitem [52] sincé’, (k|n) is a sum
of n independent, identically distributed 0-1 indicatorizhles.
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original problem definition that assumes a normally distiélol demand in each
period. We will therefore compute buffer stock levels as

J
b(i,7) = round (G;ﬁdiﬂ _____ dj(oz)) — Z d,
k—i

whered;, d;;1, . . ., d; are normally distributed random variables. The term
G;Z_ﬂrdm%.*dj («) is rounded to the nearest integer — functiemnd(-) — ac-
cording to the known concept @bntinuity correction(see [24]) in probability
theory. For a detailed discussion on this CP model see [83¢hEecision vari-
able I, represents the expected inventory level at the end of peridtdshould

be noted that the expected inventory level at the beginnfrguoh a period is
simply I, + d, and if a replenishment is scheduledtithis latter value denotes
the order-up-to-level{") in periodt. Eachd, represents the expected demand
in a given period according to its probability mass functign(d,). The binary
decision variablesg, state whether a replenishment is fixed for peridd, = 1)

or not ¢; = 0). The objective function (2.8) minimizes the expected ltotsst
over the given planning horizon. The two terms that contalio the expected
total cost are ordering costs and inventory holding costsis@aint (2.9) enforces

a no-buy-back condition, which means that received goodsatebe returned to
the supplier. As a consequence of this the expected inwelgeel at the end of
periodt must be no less than the expected inventory level at the eperiafds — 1
minus the expected demand in periodConstraint (2.10) expresses the replen-
ishment condition. We have a replenishment if the expecteehitory level at the
end of periodt is greater than the expected inventory level at the end abgher
t — 1 minus the expected demand in periodrhis means that we received some
extra goods as a consequence of an order. Constraint (2fidtres the required
service leveh. This is done by specifying the minimum buffer stock reqdifer
each period in order to assure that, at the end of every time period, tblegiility
that the net inventory will not be negative is at leasiThese buffer stocks, which
are stored in matrix(-, ), are pre-computed following the approach originally
suggested in [89].

The CP formulation operates under the assumption thatimegatiers are not
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allowed,

so that if the actual stock exceeds the order-tlpvtel for that review,

this excess stock is carried forward and not returned taupplg source. However
this event is assumed to be rare, therefore in the modelgisred (Fig. 2.2).
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Figure 2.2: In Tarim & Kingsman [89] the event that actualcki@xceeds the
order-up-to-level™ for a given reviewR" is assumed to be rare. In other words,
in their model observing a low demand durif®j—! has negligible probability.

This implies that probabilities,, ps, . . .

, Pm @re assumed to be low.
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Figure 2.3: Negative inventory levels.

Let us analyze the effects of this assumption on the solsifiwoduced by the CP
approach.

1. The cost of carrying excess stock as a consequence of a loardebefore
a givenreplenishmentis ignored, therefore the actualaf@spolicy can be higher
than the one provided by the model.
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2. The event of carrying excess stock as a consequence of loardkbefore
a given replenishment can have an impact on the service dévatxt periods.
In particular, when the probability of ending up with a stdekel higher than the
order-up-to-level fixed in a given replenishment periodiigisiently high, it could
be possible to exploit excess stock to provide the requieedce level, keeping
lower expected closing inventory levels in following petso

Furthermore, the CP approach models holding cost by comsigdexpected
closing-inventory-level valueg in each period (Fig. 2.3), while in the original
stochastic programming formulation negative inventodesot contribute to the
actual overall expected holding cost, which may be theesfiigher than the one
computed by the CP model.

2.4 A stochastic constraint programming approach
based on global chance-constraints

In this section we provide a novel CP approach to find optifd&l, S™) pol-
icy parameters. Our approach avoids both the assumptiameaiin Tarim and
Kingsman [89], therefore it considers the effect of excdsskson the service
level of subsequent replenishment cycles and on the exptattd cost of a given
policy. It also considers the fact that a negative closimgentory-level does not
contribute to the overall holding cost. The core of our modgs$trategy is the new
concept ofglobal chance-constraint8y means of this novelty we are able to dy-
namically compute the exact service level provided by argpelicy parameter
configuration and the expected total cost associated with it

2.4.1 Chance-constraints and policies

The techniques proposed in [98] and [91] for solving stottb&SPs are general-
purpose but limited tovait-and-segolicies. Since in the inventory control prob-
lem presented we apply a hybrid policy, we adopt a differext specialized ap-
proach. By recalling that we can define a constraint as a nrattieal function,
in a similar fashion it is possible to definechance-constraintoriginally intro-
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duced by Charnes and Cooper [18], as a mathematical funcepending on
the chosen policy the domain of our functigrwill change. For instance if we
restrict ourselves to here-and-nowpolicy, so that the solution for our stochastic
CSP can be expressed as a simple assignment for the de@asiablgs, the func-
tion will be f : D(zy) x ... x D(z,) — {0,1}, whereV = {x4,...,2,}, and
f(zq,...,2,) = 1ifand only if x4, ..., z, is an assignment such that, given ran-
dom values fow,, . .., y,, whereS = {y1, ..., y,} the hard constraints are satis-
fied and the chance-constraints are satisfied in the spefrdiettbn of all possible
scenarios. In avait-and-segolicy as we have seér, = {z,},...,V, = {z,}
andS; = {y1},...,S, = {y.}. Therefore the functiorf(z, zs, ..., x,) will
map each possiblpolicy treein the solution space identified by our chance-
constraint to the two possible valu¢8, 1}. f(z1,22,...,2,) = 1 if and only

if the assignment for the variablg is such that, given a random value far,

an assignment can be found for variablesuch that, given a random value for
Y2 . .., an assignment can be found for variabjg so that, given a random value
for y,,, the hard constraints are satisfied and the chance-coristeaesatisfied in
the specified fraction of all possible scenarios. Thesetions can obviously be
expressed in theory for any possible policy.

2.4.2 Global chance-constraints

We recalled a known concept in stochastic programming: @aonstraints. We
also saw in former sections how CP can be extended to considdom vari-
ables and chance-constraints. This leads to what is caltethastic constraint
programming We now aim to extend stochastic constraint programming wit
new concept in analogy to what has been done for CP. We alssadyn Section
2.2 that in CP the simultaneous presence of several simpigtreints, for effi-
ciency and expressiveness, is typically modeled by meag#obtl constraints
Also in stochastic programmingie can identify simple chance-constraints of the
form Pr{D > r} > «, typically involving a decision variabl® and a random
variabler. An example is given by the service level at pertad our inventory
control problemPr{l, > 0} > «. These simple chance-constraints in stochas-
tic programming typically appear as a set. In our inventondel we enforce a
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service level constraint for every period in our planningian, that is we repli-
catePr{l, > 0} > «, fort = 1,..., N. In astochastic constraint programming
framework it is therefore natural to group this set of simgi@nce-constraints
and to define what we will call global chance-constrairgver a set of decision
variables and a set of random variables. The general signfatua global chance-
constraint will be

globalChanceConstraint(Dy, ..., Dy,r1,..., 7N, Q),

whereDy, ..., Dy are decision variables, ..., ry are random variables and

is a value in the intervdD, 1], indicating the minimum satisfaction probability for
the chance-constraint. According to the probability disttion functions of ran-
dom variables, the filtering algorithm of this constraintlwrune values from do-
mains ofDy, ..., Dy that cannot guarantee the chance-constraints are satisfied
the required threshold probability. Depending on the gjwablem and on the re-
sponse policy chosen, dedicated efficient filtering algomg can be implemented
(see the forward checking technique proposed by Walsh [@8jvait-and-see
policies, and the improved algorithm in [5]).

This new concept defines much more than a notation extendiofact it
should be noted that stochastic programming is a very high leodeling frame-
work. An apparently simple constraint like the one presgnt&{/, > 0},
actually hides in the stochastic programming model inteedelencies between
several, and often all, decision variables and random biasain the problem.
Usually evaluating these dependencies requires the catipubf a convolution
integral. Therefore in general it will not be possible to eegs a global chance-
constraint in stochastic constraint programming as a sshgile and independent
chance-constraints. An immediate example is given by TanchSmith’s model
[92]. Here thechance-constraints the stochastic programming model are mod-
eled as independent deterministic equivalent constragasrding to the approach
proposed by Tarim and Kingsman [89]. As discussed in the éorsections this
leads to several approximations, since many dependeneie®én decision and
random variables are ignored. In the following sections mteoduce a global
chance-constraint able to model these dependencies.
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2.4.3 A global chance-constraint for ,5") policy

We focus on theR™,5™) policy, which is hybrid and therefore cannot be solved by
means of the approaches in [5, 91] that only cope with waitsee policies. As
already discussed, by reasoning in terms of order-upvelde under this policy
a solution for our stochastic model can be efficiently expedsas an assignment
for our decision variables, that is replenishment decsimd order-up-to-levels,
and it does not require a tree representation. We developisdliaatedglobal
chance-constrairthat identifies feasible policy parameters for our inveptmn-
trol problem. As in the case of hard constraints the functioes not necessarily
have closed mathematical form. In our case this functiorefindd by provid-
ing an algorithm able to identify feasible assignments fexcision variables, i.e.
policy parameters. Within the same constraint we also d@eel an algorithm to
compute the expected total cost for a given policy paraneaefiguration. The
signature of our global chance-constraint is as follows

serviceLevel RS(C,a, h,I,6,d, )

where(' is a decision variable denoting the expected total co the fixed or-
dering costh is the holding cost per unif,andé are arrays of decision variables,
d is an array of discrete random variabtgsvith probability mass functiog, (d;)
anda is the required service level. This constraint ensures #tahe end of each
time period, the probability that the net inventory will nm¢ negative is at least
a. It is therefore semantically equivalent to Constrain6é)2or ¢ = {1,..., N}
and it can be used to express these constraints in a CP mduetetision vari-
ableC represents a lower bound on the expected total cost (Eq.fd.8)given
partial assignment for decision variableandsd, and such a bound is tight when
all the decision variables andé are ground. It should be noted that tiebal
viewprovided by this constraint allows us to consider joint @ioitities during the
search when service levels and the expected total cost arputed. These joint
probabilities are ignored when the same condition is exgegdy means of many
independent constraints as in Tarim and Smith [92]. In tileviong sections we
will describe the deterministic equivalent CP model thabmporates our global
chance-constraint and the propagation logic for the camgtr
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2.4.4 Deterministic equivalent model

The deterministic equivalent model that incorporates amstraint is

min E{TC} =C (2.14)
subject to
serviceLevel RS(C, a, h, jte{l _____ N} Oreqt,.. N}, drequ,.. N}, Q) (2.15)
andfort=1...N,
L+d,—1,,>0 (2.16)
jt + d~t - ft—l > 0 = 6t - 1 (217)
I,,CezZTu{0}, 4 {01} (2.18)

Itis easy to see that the model is similar to the one proposf®| and presented

in Section 2.3.2. Again we observe two sets of decision e the replenish-
ment decision in period, §;; and the expected closing-inventory-level in period
t, I,. The buffer stocks needed to provide the required servies teand the ex-
pected total cost’ for a given policy are computed by the special purpose global
chance-constraint.

2.4.5 Propagating the service level global chance-consina

In order to propagate our constraint and compute a feasidigranent for the
expected closing-inventory-levels we will consider now a two-replenishment
cycle case (Fig. 2.4) in a four-period planning horizon,ntlvee will extend
the idea in a recursive fashion to the caseldfsubsequent replenishment cy-
cles{R!,..., RM} over N periods. Two consecutive replenishment cycles are
planned over the planning horizon considered, let us calinti®! and R?. R!
covers period$1, 2}, R? periods{3, 4}. LetS* be the opening inventory level for
R andPr{d; < D} be the probability of the event “observing a demand in period
i less than or equal t®”, whered; is a random variable that represents the distri-
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bution of the demand in periad In a simple newsvendor problem [81] over one

4 >
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Figure 2.4: Two replenishment cycle case.

period with random demand the opening-inventory-level that provides a service
level o can be computed &' (), whereG ;! is the inverse cumulative distribu-
tion function ofd. Itis easy to see that' = G, , () and the correct minimum
opening-inventory-leve$? for k2, which guarantees the required service level
can be computed from the following relation that misesnario-based approach
andchance-constrained programming

Pr{d, +dy > S' — S*} - Gyyra,(S*)+
gl-g2 (2.19)
(Pr{d1 + d2 == ’L} . Gd3+d4(Sl - Z)) Z ,
=0
whereGy, q4,,,+..+4,(-) is the cumulative probability distribution function af+
d;4+1 + ... +d;. For the two replenishment cycles case, this can be rewtigag
the following extended form

(1 — Gd1+d2(51 -5 - 1)) . Gd3+d4(52)+

5152 (2.20)
(Gayrds (1) = Gayrar (i — 1)) - Gaypa, (ST — 1) > v

1=0

Notice that ifS! is smaller tharns?, obviously the former cycle has no influence
on the computation of? and Condition 2.19 becomés;, . 4,(S?) > a. Further-
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more, if the computed? is such thas? < S' —d,, we just setS? to the minimum
value allowed, that i$"! — d;.

Finally observe that the term

S1-52

> (Carar (i) = Gayar (i = 1)) - Gayra, (S —4)

=1
in Condition 2.20 has to be multiplied by the normalizatiemt

Sl_sQ
Ga4ar(S' = S* = 1)/ Y (Gaysar (i) — Gayyar (i — 1))
=0
in order to guarantee that the sum of all the event probagsilis one. In fact
negative demands are disregarded, but the respectivelplibba must be taken
into account to cover the space of all possible events.

In order to propagate (Algorithm Jor opagat e) this constraint in the case
of M subsequent replenishment cycles a¥eperiods, at each node of the search
tree we look for the firsf\/ consecutive replenishment cycles (Algorithm 1, line
2) identified by the current partial assignment for decisiariablesy. Two re-
plenishment cycle&™, R™*! are consecutive if the last period Bf* is g and the
first period of ™! is g + 1. A replenishment cyclé* over periods{s, ..., j}
can be identified by a full assignment ovgr...,d;.; whered;, J,4, are set
to 1 andd;4q,...,0; are set tod (Functionl i st Cycl es()). The opening-
inventory-levelS! for the first replenishment cycle! covering periodg1, ..., j}
can be easily computed 353311+...+dj (a). In what follows we will describe a re-
cursivescenario-based approadhl] to compute the opening-inventory-levgl
required in replenishment cyclee {1,..., M}. We will assume that opening-
inventory-levels forRk!, ..., R’~! are known (Algorithm 1, line 8) and we will
use a generalized version of Condition 2.19 to compute swethue (Algorithm
1, lines 19 to 21). A generalized version of Eq. 2.19 for theecaf M re-
plenishment cycles can be introduced by observing fiatj € {1,..., M},
the opening-inventory-level for opening-inventory-lef@ replenishment cycle
R7, is affected only by former replenishment cycle®’, ..., R}, wherei =
min{v e {1,...,7}H(S" > SHA...A (S > S*"H}. If i = j no former
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replenishment cycle affect8’. Now since we know the distribution of the de-
mand in replenishment cycldg:’, . . ., R’} and under the assumption that former
opening-inventory-level§S’, . .., S~} have been already set, it is easy to recur-
sively compute the expected service level for replenishrogecle R/ by using a
scenario based approachVe can therefore extend Condition 2.19 to com#iite
for R7 given that{ R?, . .., R7~1} are the former periods affecting service level of
RY.

Let P;(S7) be the probability of observing an inventory level$f, that is the
opening-inventory-levek’, at the beginning of’.

Let P;(S7, h) be the probability of observing an inventory levelSsf+ &, that
is i units higher than the opening-inventory-leveli®, at the beginning of?’.

Giveng € Z* U {0} andk € {i,..., M}, the probability associated with the
event “observing a demand less or equaj ia replenishment cyclé&*” can be
easily computed. Such a probability is in fa€§ (q), wheredp: is the demand
distribution in replenishment cyclg*, that is, if R* covers period§m, ..., n},
dpe = dpn + ... + dy. Let Gy, (q) be the element of probabilitg, , () —
Ga,, (¢ —1).

e if 5771 > S7 thenP;(S7) is computed as

P (877 (1 - Ga,,; (971 =87 -1)) +

—577 _ _ (2.21)
Z (87N k) (1= Gayy (ST =S+ k- 1)

that is P;_;(S’~') multiplied by the probability of the event “observing a
demand greater or equal £5-! — S7 in replenishment cyclé’~!", plus
the summation, fok = 1,...,5" — 5771, of P;_1(S7~!, k) multiplied by
the probability of the event “id?’~! we observe a demand greater or equal
to S71 — S 4+ k"
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e if S~ < S7 thenP;(S7) is computed as

—5i-1
Pia(S7h) + Z Py (S k) +
oo (2.22)
Py (877,87 =87 k) - (1- Gy, (k= 1))

k=1
e if S71 > S+ b, thenP;(S7, h) is computed as

Ppoy(877Y) - Gy, (8771 = 87— h)+

Si—5i—1-p ' ‘ (2.23)
> P(SNk) -Gy (ST =S —h+ k)

o if 5771 < S7 4+ h,thenP;(S7, h) is computed as

Si_gi—t

> PSR Gay (k= ST —h+ 8T, (2.24)

k=57 +h—Si~1

Obviously P;(S%) = 1 since, for the wayR’ is chosen, no former replenishment
cycle may affect its order-up-to-levét. By following a dynamic programming
[8] scheme S’ can be computed as the minimum value that satisfies

Si_Si
Pi(87) - Gq,, (S7) + Y (Pi(S, k) - Ga, (S7 +K)) > a. (2.25)
k=1

Since this paper is not focused on efficiency issues, therdignarogramming al-
gorithm developed to implement Eq. 2.25 simply employs ansege code struc-
tured as the functional equation itself. Nevertheless watWwaunderline that the
proposed recursion only aims to describe a correct funatiequation to compute
feasible assignments. As in every dynamic program, effigiean be obtained by
adopting a forward recursion and by trading memory and tovebid computing
the probability of a given scenario more than once. In thanmsge computation
scenarios with negative demands are not considered, thhens€ must normalize
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Figure 2.5: Normalization.

the probabilities of other events in order to ensure that guen covers the whole
space of the possible events. In other words we need to etiirde probability
associated with area A in Fig. 2.5 is one. This is a known aggron inventory
control and it is usually justified since the distortion oduced by this normal-
ization typically does not affect the quality of the soluiso A possible way to
perform this normalization step is to divide the term

Si-S57
Pi(S7) - G, () + > (P, k) - Gy (57 + F))

k=1
in Condition 2.25 by the following normalization term

Si—8i
Pi(S))+ > P k) (2.26)
i=k
in order to guarantee that the sum of all the probabilitiethefevents considered
in stepy is one.

In order to speed up the search for the optimal opening-tovegdevel asso-
ciated with a given replenishment cydi#, recall that opening-inventory-levels
computed as shown in [92] are always greater than or equalttmal opening-
inventory-level satisfying Eq. 2.25. Therefore an effitistrategy (Procedure
set Buf f er For Cycl e() ) for finding optimal opening-inventory-levels is to
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consider sequentially the first/ replenishment cyclesik*, & € {1,..., M},
identified by the current partial assignment for replenishtrdecisions. For
each replenishment cycl¢" an upper-bound for the optimal opening-inventory-
level can be computed e{ﬁ ()] (see [89]). Starting from this upper-bound
we can decrease it and search for the minimum value thafieatisq. 2.25 (Pro-
cedureset Buf f er For Cycl e(), line 4). Opening-inventory-levels computed
as in [89] are close to optimal because probabilities aasediwith negative or-
der quantity scenarios are typically low, therefore thiatsigy requires only a few
steps to reach the optimum levels.

2.4.6 Computing holding cost

In this section we address the problem of computing the cbhelding cost for

a given replenishment cycl& covering periods{i, ..., j} when the expected
closing-inventory-level, for each period € {i, ...} is given. We recall that
fj denotesS’ minus the expected demand in replenishment cycléy;. The
problem of computing the exact holding cost arises from #wt that negative
inventory levels do not contribute to the overall holdingtcdl herefore the term
I, in the objective function of the model presented by Tarim &¢Sman is
not a complete representation of this cost component. Cbpcseknown every
otherly, k € {i,...,j — 1} can be easily computed ds = I; + >7_, ., d

Let h(R, Ij) be the expected holding cost for replenishment cy€leshen the
expected closing-inventory-levé) is given. This cost component is made up of
individual cost components for each period in our replemisht cycleR. Let

us consider a given peridd € {i,...,j}. The opening inventory level faR is

S = I;4+>"7_.d,. We recall that the probability of observing an overall decha
over the time spafy, . .., k} is denoted byﬁdﬁ__ﬂlk(r). By lettingr range from

0 to S* we obtain every possible scenario for which a holding costdarred in
periodk. Therefore the expected holding cost for periodan be expressed as
hZfLO(Si —r)- @di+,,_+dk (r) and the expected holding cost for replenishment
cycle R will be the sum of the contributions from every peribd {i,...,j}.
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Algorithm 1: pr opagat e

14

15

16

17

18
19
20

21
22

23
24

25

input :0,51,...,5N,I~1,...,I~N,a, a, h,dl,...,dN,N
begin

cycles « listCycles(dy, ..., 0N, L, ..., In, N);
n <« # elements inycles;
if n =0then
| return;
cost «— a-n;
condition < true,
for each element in cycles do
let{s,...,j} be the span covered lay
if no decision variabld;, . . ., I; is assignedhen
L condition «— false;
else if3k | decision variabld,, i < k < j is assignedhen
St « cycle opening inventory level af, linearly dependent on
fk;
holdingCost < cycle holding cost o with opening inventory
level S* (Eq. 2.27);
| cost «— cost + holdingClost,;
if condition then
L C' « cost;
else
set Buf fer ForCycle(cycles,dy, . .., dy, );
let e be the last element ity cles, a replenishment cycle over
{i,..., 7} )
S* « cycle opening inventory level ef, linearly dependent ofy;
holdingCost < cycle holding cost oé with opening inventory
level S* (Eq. 2.27);
cost «— cost + holdingCost,
| Inf(C) « cost,

end
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Procedureset Buf f er For Cycl e( cycles, dy, ..., dy, a)

1
2

input: cycles,dy, ..., dy,«

begin

let R be the last element irycles, a replenishment cycle over
{i,....7}h

S [Golh ha, ()3

decreasé to the min value that satisfies Eq. 2.25, with former cycles
as listed incycles;

I —x—di—..—dj
end

Function | i st Oycl es(d,....0x,11...,In,N)

N o o b~ WN P

(ee]

10
11

12
13
14
15

16
17
18
19

input 201, .,0Nn, N
output: cycles

begin

cycles — {};

lastCycle «— null;

pointer «— 1,

for eachd;, i =2,..., N do

if §; is not assignedhen
L returncycles;

else iflastCycle # null then
let{s,...,j} be the span covered ystCycle;
if no variablel;, .. ., I; is assignedhen

| returncycles;

if §; is assigned td then
lastCycle «— areplenishment cycle ovépointer, ...,i — 1};
addlastCycle to cycles;
pointer «— i,

lastCycle < a replenishment cycle ovépointer, ..., N };
addlastCycle to cycles;

returncycles;

end
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2.4.7 Computing the objective function

In order to compute the expected total cost for a given regienent plan, or a
lower bound for such a cost associated with a given partsigament for re-
plenishment decisiong we look again for the firsdl/ consecutive replenishment
cycles identified by the current partial assignment for sieaivariables. There-
fore we will assume thak', ..., RM are known (Algorithm 1, line 8) and we will
follow a reasoning similar to the one developed to satistyalance-constraints.

The expected holding cost for replenishment cygle j € {1,..., M}, is
affected only by former replenishment cycleg’, ..., R}, wherei = min
{ve{l,....5} (S > SHA...A(S" > SN} If i = j no former replen-
ishment cycle affectd?’”. Now since we know the distribution of the demand
in replenishment cycle$§r’, ..., R’} and since we assume that former opening-
inventory-levels{S®, ..., S7~!} have been already set, it is easy to recursively
compute the expected holding cost for replenishment cildy using asce-
nario based approach

The expected holding costH(C) for R’ given that{R¢,..., R~} are the
earlier periods affectindg’ can be computed as

Si—8i
E{HCp} = P(S7) - MR, T)+ Y (Pj(sj, k) h(R9, I, + i)) . (.27)
k=1
Also in this case, since negative demands are not considertbeé summation,
event probabilities must be normalized accordingly ushmgterm given in Eq.
2.26 as shown before.

A valid lower bound (Algorithm 1, line 24) for the expecteddabcost of a
given partial assignment involving decision variables- tight when the assign-
ment is complete (Algorithm 1, line 17) — can be computed bgsidering a
fixed ordering cost for each replenishment cyBteidentified by the assignment
(Algorithm 1, line 6), plus the expected holding cost for fivet M/ consecu-
tive replenishment cycleg!, ..., RM computed as explained above (Algorithm
1, lines 14 and 22).
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2.4.8 Cost-based filtering

In order to improve the search process we employed a costifidtering method
similar to the one proposed in [87]. We will not describe irtailethe whole

method. We will rather try to give a high level descriptioniofThe reader may
refer to [87] for further details.

Firstly we recall that, in Tarim and Kingsman’s model [89pper bounds for
decision variable$;, i = {1,..., N} can be computed by considering a single re-
plenishment cycle covering the whole planning horizon. Biiger stock required
to guarantee the required service leveb(is, V), as defined in Eq. 2.13. Since
b(i, 7) is an increasing function [92], it directly follows that theaximum value
for the domain off  is obviouslyb(1, V) and that for every other decision variable
I;,i={1,..., N —1} the maximum value in the domainfiél, N) + fo:m dy.
These bounds are still valid in our model. In fact the effdatxa@ess stocks from
former periods may only decrease a buffer stock needed tad&ra given service
level.

A lower bound for the cost of an optimal policy associatecdhwigiven partial
assignment can be computed as shown in [87]. In this work kigoas solve in
polynomial time, by using a shortest path algorithm, a rafex of the original
problem where inventory conservation constraints betvgedsequent replenish-
ment cycles are relaxed. This means that negative ordetitjaamre allowed in
this relaxed model. The bound is dynamically computed dutite search pro-
cess and it takes into account partial assignments for bettsidn variables;,
and inventory leveld,, by respectively forbidding or forcing stated nodes in the
optimal path to reflect assignments fpwvariables, and by modifying costs in the
connection matrix to reflect assignments fpvariables.

A similar approach can be adopted in our case by noticing Thetn and
Kingsman’s approach underestimates holding cost in eathdpd=irstly because
it considers the contribution of negative inventory lewaishe holding cost. Sec-
ondly because it does not consider the effect of excessstomk former periods
not only in the service level computation, but also in thet cosnputation. This
means that Tarim and Kingsman’s model always computes dlaatss less than
or equal to the actual cost associated with a given policyth@rother hand, as
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seen, such a model overestimates buffer stocks.

In our cost-based filtering approach we relax not only theimoery conserva-
tion constraints, as in [87], but also the constraints thetd buffer stocks at the
end of each replenishment cycle. Therefore we simply sobet@rministic pro-
duction planning problem under fixed ordering cost and liredding cost. The
same algorithm proposed in [87] can be employed to effigrestlve this prob-
lem. Since we do not take into account buffer stocks, and treormer consid-
erations on the cost structure, this relaxed Tarim and Kiragsmodel provides
a lower bound for the cost provided by our exact model. Alsouncost-based
filtering approach this bound is dynamically computed dytime search process
and it takes into account partial assignments for both detigariables); and
inventory levels/, as discussed above.

2.5 Comparison with Tarim & Kingsman'’s approach

In this section we compare the results obtained by the appnogesented in [87]
with the exact solutions provided by the new model.

The following assumptions are valid for the rest of this gect We assume
that the demand in each period is normally distributed alloaitforecast value
with the same coefficient of variation Thus the standard deviation of demand
in periodt is o, = 7 - d,. In all cases, initial inventory levels, delivery lead-&m
and salvage values are set to zero.

All experiments here presented were performed on an Ink&@trino(TM)
CPU 1.50GHz with 500Mb RAM. The solver used for our test is @hfb8], an
open-source solver developed in Java.

Firstly we consider a decreasing demand pattern oygyexiod planning hori-
zon. The planning horizon considered is short since thisashehpattern is partic-
ularly hard to treat.

The forecasts for the demand in each period are given in Talle As in-
put parameters we considerede {1,100,200}, 7 € {0.15,0.25} anda €
{0.95,0.75}. The holding cost is fixed and equal td for all the instances, since
replenishment decisions are affected only by the ratio betwordering cost and
holding cost. In Table 2.2 experimental results are presenfor each instance
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Period 1 2 3 4 5
dy 400 130 150 60 35

DecreasinJ

Table 2.1: Expected values for a decreasing demand pattern.

Total Cost
parameters T&K Exact

a T a | E{TC} | E{TC} | gap(%) | sec | E{TC} | gap(%) | sec
1 1| 0.25 | 0.95 324 370 12.4 1 358 3.35 | 469
2 100 | 0.25 | 0.95 773 814 5.04 1 799 1.88 | 254
3 200 | 0.25 | 0.95 1152 1189 3.11 1 1176 1.11 | 165
4 1| 0.15 | 0.95 197 205 3.90 1 200 2.50 | 372
5 100 | 0.15 | 0.95 637 644 1.09 1 640 0.63 | 249
6 200 | 0.15 | 0.95 984 990 0.61 1 985 0.51 30
7 1| 025 | 0.75 135 178 24.1 1 172 3.49 | 219
8 100 | 0.25 | 0.75 573 613 6.53 1 607 0.99 | 161
9 200 | 0.25 | 0.75 886 910 2.64 1 907 0.33 22
10 1| 0.15 | 0.75 83 101 17.8 1 100 1.00 | 282
11 | 100 | 0.15 | 0.75 517 535 3.36 1 534 0.19 | 181
12 | 200 | 0.15 | 0.75 797 810 1.60 1 809 0.12 8

Table 2.2: Decreasing demand pattern. Colunfi§FC'}” are the expected total
cost computed by Tarim and Kingsman'’s approximate appr¢a&) and by
our exact approach (Exact). In order to compute TRKT'C'} we employed the
efficient CP approach proposed in [87]. In columns “sec” werg in seconds,
the time performance for each model. Since T&K provides gr@pmate ex-
pected total cost, in columnZ{T'C'}” we report the actual expected total cost of
such a solution, which is computed by simulating demandsrdatg to the given
distribution in each period and by observing the realizadltoost over10000
runs. The two columns “gap” for T&K and Exact report respesii: the differ-
ence between T&KE{T'C'} and T&K E{T'C}, in percentage on T&KE{T'C'},
and the difference between T&K{TC} and ExactE{TC} in percentage on
ExactE{T'C'}. Holding costh is set tol for every instance.

considered “ExacE{T'C'}" is the expected total cost of the optimal solution (i.e.
set of policy parameters: replenishment cycle lengths addraip-to-levels) ob-
tained using the complete approach we presented. “FK'C'}” is the approx-
imate expected total cost of the solution obtained by usiegrodel proposed in
[87], which adopts Tarim & Kingsman'’s approach. “T&K{TC}" is the actual
expected total cost of the solution obtained using the mpidglosed in [87]. This
actual expected total cost has been computed by simuldiiotice that for some
parameter configurations the solution obtained with the@ggh in [92] differs
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from the optimal one, while for other cases the approximafg@ach produces
a solution close to the optimal one. The reasons are diffetepending on the
particular parameter configuration.

Instance (1) has a low ordering castherefore we expect to order frequently.
The expected total holding cost and the buffer stock levedmired to provide
service levely are affected by the negative trend of the demand and by excess
stocks carried from former replenishment cycle as a coresempiof this trend
(Fig. 2.6). Since the model in [87] does not take into accdbhese effects the
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Figure 2.6: Comparison between inventory levels compuyetthé exact and the
approximate approach.

expected total cost of the optimal solution it provides (T@{TC}) differs from
the actual optimum (Exadt{7T'C'}).

Instances (10), (11) and (12) have a low service levahd coefficient of vari-
ation. In this case the policy parameters computed by the approd&7] are
optimal, in fact T&K E{T'C} is close to ExactZ{T'C’}. The effect of excess
stocks is so low that it can actually be ignored, but the axiprate expected total
cost computed by the approach in [87] (T&K{T'C'}) differs from the exact one
(T&K E{TC’}) by respectivelyl 7.8%, 3.36% and1.60%, since negative inven-
tory levels affect the expected total cost of the policy. sTiellows from the fact
that we require a low service level and we keep low bufferlstecels, therefore
the probability of ending up with negative inventory leveecomes high and the
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Period 1 2 3 4 5 6 7 8

Seasonal c{t 50 75 90 75 50 25 10 25
Life cycle C{t 20 25 30 35 40 25 20 10
Erratic dy 50 30 70 15 60 10 30 15

Table 2.3: Expected values for Seasonal, Life Cycle andiEmlamand patterns.

effect of negative inventory levels on the expected holdiagt increases as the
length of the replenishment cycles decreases.

It should be noted that the computational effort requiredinyexact approach
to compute policy parameters is directly affected by the pemnof replenishment
cycles in our plan. This is the reason why we observe highetirmes when the
ratio between ordering cost and holding cost is low. Thigue in general also
for the instances that will be considered below.

We will now consider three other demand patterns that tylpieaise in prac-
tice. These patterns were originally proposed by Berry @] [@nd they were
also adopted for the experiments in [89]. The patterns agsgmted in Table
2.3. We did not consider a constant demand pattern, whictstead included in
Berry’s test bed, since it is obvious that for this pattem $blutions provided by
our approach would not differ from the ones provided by Tariamd Kingsman
approach. In these cases as input parameters we considered1, 50,100},

7 € {0.2,0.3} anda € {0.95,0.75}. In Table 2.4 experimental results for these
three further demand patterns are presented. Similaraeragions to those just
introduced indicate why also for these demand patternsrimestases the results
provided by our exact approach may differ substantiallynftbose obtained with
the approximate one. Typically such a difference is due eéacttimbined effect of
excess stocks and/or negative inventory levels as alreadyssed.

From our experiments it is clear that the approximate exquetcital cost com-
puted by Tarim & Kingsman’s model (T&K{T'C'}) may substantially underesti-
mate the exact expected total cost (T@{TC}) associated with a given solution,
which can be easily computed by simulation or by using oucexeodel. This is
particularly evident in the erratic demand case, whererfstainced3 and46 the
approximate expected total cost predicted by Tarim & Kingsisimodel (T&K
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Total Cost
parameters T&K Exact

a T a | E{TC} | E{TC} | gap(%) | sec | E{TC} | gap(%) sec
13 11|03 095 205 213 3.76 1 207 2.90 | 2774
14 50 | 0.3 | 0.95 566 570 0.70 1 564 1.06 478
15 | 100 | 0.3 | 0.95 858 864 0.69 1 859 0.58 104
16 1 (02| 095 139 140 0.71 1 139 0.72 | 1412
17 50 | 0.2 | 0.95 498 499 0.20 1 498 0.20 180
18 | 100 | 0.2 | 0.95 771 772 0.13 1 766 0.78 66
19 1|03 ]| 0.7 88 108 18.5 1 106 1.89 908
20 50 | 0.3 | 0.75 440 458 3.93 1 458 0.00 165
21 | 100 | 0.3 | 0.75 696 710 1.97 1 709 0.14 56
22 1102|075 61 73 16.4 1 72 1.39 603
23 50 | 0.2 | 0.75 411 422 2.61 1 420 0.48 109
24 | 100 | 0.2 | 0.75 658 666 1.20 1 665 0.15 51
25 11|03 095 109 110 0.91 1 110 0.00 48
26 50 | 0.3 | 0.95 441 443 0.45 1 438 1.14 8
27 | 100 | 0.3 | 0.95 634 634 0.00 1 630 0.63 4
28 11|02 095 76 77 1.30 1 77 0.00 34
29 50 | 0.2 | 0.95 393 393 0.00 1 392 0.26 6
30 | 100 | 0.2 | 0.95 574 574 0.00 1 570 0.70 4
31 1|03 0.7 49 58 15.5 1 56 3.57 30
32 50 | 0.3 | 0.75 355 362 1.93 1 357 1.40 6
33 | 100 | 0.3 | 0.75 529 535 1.12 1 531 0.75 4
34 1|02 0.7 35 41 14.6 1 40 2.50 27
35 50 | 0.2 | 0.75 333 338 1.48 1 334 1.20 6
36 | 100 | 0.2 | 0.75 503 507 0.79 1 503 0.80 4
37 11|03 095 175 195 10.2 1 188 3.72 554
38 50 | 0.3 | 0.95 492 494 0.40 1 489 1.02 33
39 | 100 | 0.3 | 0.95 692 692 0.00 1 689 0.44 14
40 11|02 095 110 122 9.84 1 119 2.52 381
41 50 | 0.2 | 0.95 418 418 0.00 1 417 0.24 25
42 | 100 | 0.2 | 0.95 618 619 0.16 1 617 0.32 10
43 1|03 0.7 64 90 28.8 1 85 5.88 277
44 50 | 0.3 | 0.75 360 370 2.70 1 369 0.27 18
45 | 100 | 0.3 | 0.75 560 570 1.75 1 569 0.18 9
46 1|02 0.7 45 59 23.7 1 56 5.36 225
47 50 | 0.2 | 0.75 332 339 2.06 1 339 0.00 19
48 | 100 | 0.2 | 0.75 532 539 1.30 1 536 0.56 8

Table 2.4: Experimental results for Seasonal (. ., 24), Life Cycle @25, . . ., 36)
and Erratic 87, . . ., 48) demand patterns.

E{TC?}) is respectivel28.8% and23.7% less costly than the exact expected total
cost associated with the policy parameter configuratiohéréspective solution
(T&K E{TC}). Although Tarim & Kingsman’s model underestimates cost —
T&K E{TC} is on averagé.26% lower than T&K E{T'C’} — over the whole
test bed the average difference between TRKI'C'} and ExactE{T'C'} is only
1.25%. This means that the approximate approach in [89] actualymutes near-
optimal parameters fori{",S™) policy, reorder points and the respective order-up-
to-levels, regardless of the underestimated cost. Neslegh for some instances,
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i.e. (29), (30), (31) etc., T&KE{T'C'} is equal to T&KE{TC}, which means that
for these instances the assumptions adopted by Tarim amg$kian are valid. In
summary these results suggest that Tarim & Kingsman’s neatehctually com-
pute near-optimal policy parameters, although the apprate expected total cost
predicted can often differ significantly from the actual egged total cost associ-
ated with these reorder points and respective order-uevels.

As we may notice from the run-times reported in columns “st#@ approach
proposed in [87] always outperforms our exact method and afficiently for
every instance considered. Further results presented7insi@ygest that such
an approach can efficiently handle large scale instancese Siur results sug-
gest that the exact solution in the average case differsgiglgtly from the one
provided by Tarim and Kingsman’s approximate approach,nadféiciency is an
issue, their approach remains a valid alternative to ouctexadel.

2.6 Conclusions

We identified two sources of approximation in Tarim & Kingstisamodel for
computing (",5™) policy parameters under service level constraint. We pro-
posed an exacttochastic constraint programmirgpproach based on a novel
concept —global chance-constraints— which extends the original stochastic
constraint programming framework proposed by Walsh. Werilesd a dedi-
cated global chance-constraint that computes optimahioveg levels to meet the
required service level and the expect total cost assoctedhem. We analyzed
the accuracy of the approximate solutions provided by thdehdeveloped by
Tarim & Kingsman over four different demand patterns and ceveral different
input parameter configurations. We also provided insigftts fior which kind of
instances the assumptions adopted by Tarim & Kingsman nfagtdahe quality
of the solution provided by their model. Our results suggest their modeling
strategy is a good trade-off between quality of the solutind efficiency of the
search process.
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Chapter 3

Paper Il: Computing Replenishment
Cycle Policy under Non-stationary
Stochastic Lead Time

R. Rossi, S. A. Tarim, B. Hnich and S. Prestwich

Abstract

In this paper we address the general multi-period prodnétieentory problem
with non-stationary stochastic demand and supplier lead tinder service-level
constraints. A replenishment cycle polidy(,5™) is modeled, wher&"™ is then-

th replenishment cycle length asd is the respective order-up-to-level. Initially,
we extend an existing formulation for this policy in such aywa incorporate a
dynamic deterministic lead time allowing order-crossevefFollowing this, we
extend the model to incorporate a non-stationary stoahbesd time. Within a
constraint programming framework, a dedicated constraipkementing a hybrid
approach is proposed to compute replenishment cycle ppdicgmeters.
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3.1 Introduction

Inventory theory provides methods for managing invensorre different envi-
ronments. An interesting class of production/inventorgitoal problems is the
one that considers the single location, single product caser non-stationary
stochastic demand. In contrast to the production planniobglpm under deter-
ministic demand (Wagner and Whitin [96]), different inveryt control policies
can be adopted to cope with the stochastic version.

A policy states the rules to decide when orders have to beegland how to
compute the replenishment lot-size for each order. For@dgon on inventory
control policies see Silver et al. [81]. One of the well-knopolicies that can be
adopted in inventory control is the replenishment cyclegyp(R,S). Under the
non-stationary demand assumption this policy takes themyo form (R",5™)
whereR™ denotes the length of theh replenishment cycle, arft* the order-up-
to-level value for theuth replenishment.

It is a known result (Scarf [76]) that such a policy is not ol in term of
cost minimization, since non-stationary’(S™) always dominates it even when
a delivery lag is considered (Kaplan [55]). However, asussed in Tarim and
Kingsman [89]( R, S) provides an effective means of dampening the planning in-
stability. Furthermore, itis particularly appealing whtams are ordered from the
same supplier or require resource sharing. In such a cagenad in a coordinated
group can be given the same replenishment period. Periediew also allows
a reasonable prediction of the level of the workload on th# stvolved and is
particularly suitable for advanced planning environmerisr these reasons, as
stated by Silver et al. [81],R, S) is a popular inventory policy.

Due to its combinatorial natureR(,S™) policy — even in the absence of
stochastic lead time — presents a difficult problem to sadveptimality (Tarim
and Kingsman [89]). Early work in the area have been carrigdroAskin [3],
Silver [80] and a heuristic procedure was proposed by Baualdyi and Tan [15].
Although many works in inventory control assume a penaltst garameter for
penalizing stock-outs, in all the works cited here the ceshinimized under a
service level constraint, which is in practice a very popui@asure, since it has
been widely recognized that penalty costs, and in partidhka cost of loosing
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customer goodwill, are usually difficult to assess (BashgaohFu [6]).

A common assumption, in practice very restrictive, in adgl works is the
absence of delivery lag. A work on stochastic lead time intioolous-time in-
ventory models was presented in Zipkin [101]. Kaplan [S54reltterized the
optimal policy for a dynamic inventory problem where theditag in delivery of
an item is a discrete random variable with known distributiS8ince tracking all
the outstanding orders by means of dynamic programmingnexja large multi-
dimensional state vector, Kaplan assumes that orders doogs in time and that
supplier lead time probabilities are independent of the/sizmber of outstanding
orders (for details on order-crossover see Hayya et al).[4B]der these assump-
tions he was able to provide a solution method for the proldachto derive the
optimal policy. The first assumption is valid for systems vehgupplier’'s produc-
tion system has a single-server queue structure operatiey @ FIFO policy. In
Bashyam and Fu [6] a similar problem — operating under) policy, having a
service level constraint and allowing orders to cross iretin is described and
solved by means of a simulation based approach. To the bestrd&nowledge,
there is no complete approach in the literature that addsetbe (",5™) policy
under stochastic supplier lead time.

In this paper, we use a “stochastic constraint programmapgroach to ad-
dress R",S™) policy under stochastic supplier lead time. Computingroat pol-
icy parameters under these assumptions is a hard problemarmomputational
point of view. We build on the work of Eppen and Martin [27] afadlowing a
similar approach we develosaenario based meth¢til, 91] for solving R",S™)
under stochastic demand and supplier lead time. Efficiethods for computing
(R™,S™) policy parameters based on Constraint Programming wengoged in
Tarim et al. [87,92]. In this paper, under the same assumptive develop a
dedicatecconstraintthat realizes a deterministic equivalent modeling of cleanc
constraints [18] by employing a scenario based approadh fOtonstraint pro-
gramming(CP) [1] model is proposed and an example is given where amtovy
control problem is solved to optimality under a given disergtochastic supplier
lead time with known distribution.

The paper is organized as follows. In Section 3.2 we provataesformal
background related to the modeling techniques employeSettion 3.3 we pro-
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vide a formal definition for the general multi-period protdan/inventory problem
with non-stationary stochastic demand and lead time. Ini@e8.4 we extend
Tarim and Kingsman'’s [89] model for the replenishment cymdicy in order to
consider a dynamic deterministic supplier lead time, wkasBumes that orders
may cross in time. In Section 3.5 former results are embentd@dcenario based
approach to solve the problem when a stochastic supplidrtisge with known
probability mass function is given. In Section 3.6 a CP maslpfoposed, which
incorporates former results in a dedicated constraint tbtynamically enforce
the given service level constraint during search. Furtloeenra demonstrative ex-
ample is given in this section to clarify the approach. Intle&c3.7 an instance is
solved under deterministic and stochastic supplier leaédi solutions are then
discussed. In Section 3.8 results are summarized andidimedor future research
are given.

3.2 Constraint Programming

A Constraint Satisfaction ProblefCSP) [1,17,62] is a tripléV, C, D), where

V is a set of decision variable$) is a function mapping each elementiéfto a
domain of potential values, arid is a set of constraints stating allowed combina-
tions of values for subsets of variablesiin A solutionto a CSP is simply a set of
values of the variables such that the values are in the dawéathe variables and
all of the constraints are satisfied. We may also be intettestinding a feasible
solution that minimizes (maximizes) the value of a giverechye function over a
subset of the variables. Alternatively, we can define a caimgtas a mathematical
function: f : Dy x Dy x ... x D,, — {0,1} such thatf (zy, z, ..., x,) = 1ifand
only if C'(zq,xo, ..., x,) is satisfied. Using this functional notation, we can then
define a constraint satisfaction problem (CSP) as follows @so [1]): givem
domainsDy, D, ..., D,, andm constraintsf, fa, ..., fin find z, zo, .. ., z,, such
that

<k <m (3.1)
<j<n. (3.2)

fk(xlax% cee 7xn) = 17

Ilfj c Dj,
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The problem is only a feasibility problem, and no objectivadtion is defined.
Nevertheless, CSPs are also an important class of combalatptimization
problems. Here the functiong. do not necessarily have closed mathematical
forms (for example, functional representations) and casdbe@ed simply by pro-
viding the setS described above.

For key concepts in Constraint Programming (CP) such adreonisfiltering
algorithm, constraint propagation and arc-consistene){5&7].

In [98] and [91] astochastic constraint satisfaction probléstochastic CSP)
is defined as a 6-tuple V, S, D, P,C,0 >. V is a set of decision variables and
S'is a set of stochastic variableB.is a function mapping each elementiofand
each element of to a domain of potential values. A decision variablé/iris
assigneda value from its domainP is a function mapping each element®to
a probability distribution for its associated domaifi.is a set of constraints. A
constrainth € C that constrains at least one variableSins achance-constraint
6, is a threshold value in the intervil, 1], indicating the minimum satisfaction
probability for chance-constraihnt Note that a chance-constraint with a threshold
of 1 is equivalent to a hard constraint.

In [98] a policy based view of stochastic constraint progsasrproposed. The
semantics is based on a tree of decisions. Each path in g pepcesents a dif-
ferent possible scenario (set of values for the stochaatiables), and the values
assigned to decision variables in this scenario. To findfyatig policies, back-
tracking and forward checking algorithms, which exploites implicit AND/OR
graph, are presented. Such an approach has been furthstigated in [5]. An
alternative semantics for stochastic constraint programsch suggests an al-
ternative solution method, comes from a scenario-based Mig¢]. In [91] the
authors outline this solution method, which consists inegating a scenario-tree
that incorporates all possible realizations of discreteloen variables into the
model explicitly. The great advantage of such an approathaisconventional
constraint solvers can be used to solve stochastic CSP.uddeathere is a price
to pay in this approach, as the number of scenarios growshexpially with the
number of stages and such a growth is particularly affecyedabdom variables
that contain a wide range of values in their domain.
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3.3 Problem Definition

We consider a finite planning horizon 6f periods and a demand for each pe-
riodt € {1,..., N}, which is a random variable with probability density fuiocti
g:(d;). We assume that the demand occurs instantaneously at tirenimegof
each time period. The demand we consider is non-statiotialyjs it can vary
from period to period, and we also assume that demands iereliff periods are
independent.

In the following sections we will consider two different egs respectively: a
deterministic lead time of length, for an order placed in periode {1,..., N}
and a stochastic lead time with probability mass functiory;(l;) for an order
placed in period € {1, ..., N}. Note that{/,} are mutually independent and each
of them is also independent of the respective order quartifixed delivery cost
a is incurred for each order and a variable unit cestA linear holding cost:
is incurred for each unit of product carried in stock from @agiod to the next.
We assume that it is not possible to sell back excess itenmsetodndor at the
end of a period and that negative orders are not allowed aaftiine actual stock
exceeds the order-up-to-level for that review, this exstssk is carried forward
and not returned to the supply source. However, such ocmeseare regarded
as rare events and accordingly the cost of carrying exceskssaind the positive
effect on the service level of subsequent periods is ignofesla service level
constraint we require the probability that at the end of esmwth every period the
net inventory will not be negative set to be at least a givédne/a. Our aim is to
minimize the expected total cost, which is composed of andezosts, unit costs
and holding costs, over thg-period planning horizon, satisfying the service level
constraints.

The actual sequence of ordering and delivery to be conslaene be arbitrary
as Kaplan notices in [55]. In the following we will adopt thense sequence of
action he describes, since it handles all the deliveriesnsgtmcally and allows
for some delay in the arrival deliveries at the beginning péeod. The sequence
is therefore as follows. At the beginning of a period, thesmwory on hand after
all the demands from previous periods have been realizenowik. Since we are
assuming complete backlogging, this quantity may be negafillso known are

97



orders placed in previous periods which have not been detivget. On the basis
of this information, an ordering decision is made for thereat period. All the
deliveries that are to be made during a period are assumes toalde immedi-
ately after this ordering decision and hence are on handeabéginning of the
period. A further discussion that states the convenientei®tequence of events
can be found in Kaplan [55]. To summarize there are threeessoge events at
the beginning of each period. First, stock on hand and qudstg orders are de-
termined. Second, an ordering decision is made on the bagigsonformation.
Third, all supplier deliveries for the current period, iding possibly the most
recent orders, are received.

3.4 Dynamic Deterministic Lead Time

In this section we focus on the general multi-period proiunéinventory prob-
lem with stochastic demands and dynamic deterministic tead. The reader
may also refer to [42] about this topic. This problem can benfidated as finding
the timing of the stock reviews and the size of the respectrenegative replen-
ishment ordersy, in periodt, with the objective of minimizing the expected total
cost E{T'C'} over a finite planning horizon oV periods. Since a dynamic de-
terministic lead time.; > 0 is considered in each periad= 1,..., N, an order
placed in period will be received only at period+ L;. Depending on the values
assigned td.; it may be obviously not possible to provide the required iserv
level for some initial periods. In general we will be able toyde the required
service levek starting from the period for which the value + L; is minimum.
Let M be this period. Notice also that it will never be optimal taqg# any order in
a periodt such that+ L, > N, since such an order will not be received within the
given planning horizon. The problem can be formulated asaa@t-constrained
programming model (see Bookbinder and Tan [15]),

min E{TC} = /d /d L /dN ; (ad; + vX; + h - max(1y,0)) 63
Xgl(dl)gg(dg) .. gN(dN)d(dl)d(dg) C d(dN)
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subject to,

1, if X;>0
§=14 0 Ot t=1,..N (3.4
0, otherwise

L=L+ Y  Xi—) d t=1,..,N (3.5)
{i|i>1,L;+i<t} i=1

Pr{l, >0} >« t=M, .. N (3.6)

]t € Z, Xt Z 0, 6t € {O, 1} t = ]_, ,N (37)

where we comply with the notation used in [15],

dy

: the demand in periot] a random variable with probability density

function, g,(d,),

: the fixed ordering cost (incurred when an order is placed),

: the proportional stock holding cost,

: the unit variable cost of an item,

: the deterministic delivery lead time in periodL; > 0

: a{0,1} variable that takes the value of 1 if a replenishment occurs i

periodt and O otherwise,

: the inventory level (stock on hand minus back-orders) aetid of

periodt,

: the initial inventory,
: the size of the replenishment order placed in petijad; > 0,

(received in period + L).

Let us denote the inventory position (the total amount oflstan hand plus out-
standing orders minus back-orders) at the end of perasd’;. It directly follows

that

{i|1<i<t,Li+i>t}
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whereP, is the inventory position in periotland it is assumed, = I,. We now
reformulate the model using the inventory position,

min E{TC} =

N
/// Z ad; + vX; + h - max(P, — Z X;,0)
dy Jds AN 4—1

{i|1<i<t,Li+i>t}

X g1(d1)ga(dz) . .. gn(dn)d(dr)d(dz) . .. d(dn)

(3.9)
subject to,
1, if X;>0
§=14 0 0t t=1,...N (3.10)
0, otherwise
t
Po=1I+ ) (X;—d) t=1,.,.N (3.11)
i=1
Pr{P, > > X} >a t=M,..N (3.12)
{i|1<i<t, Li+i>t}
PeZ, X,>0, 6 €{0,1} t=1,..,N. (3.13)

By using the expectation operatél-}, since{d,} are assumed to be mutually
independent, we may rewrite the objective function as

N
min E{TC’}:Z h- E { max(P; — Z Xi,0) p+a-0+v- Xy
t=1 {il1<i<t,Li+i>t}

(3.14)
When a stock-out occurs, all demand is back-ordered and &esoon as an ade-
quate supply arrives. However, the probability that neeémery will not be nega-
tive is set normally quite high by the management, so thattis¢ of back-orders
can be ignored in the model. Moreover, Bookbinder and Tatudssthat the term
E{max(I;,0)} may be approximated bi{/;}, in view of these remarks. There-
fore in our model we approximate the teft{max(F — i1 <i<t 1,050 Xi) 0)}
with the termE{ P, — 3" oy 1 pinsy Xi}-
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The general chance constrained programming formulatiengabove can be
modified to incorporate the inventory control policy adaptdn this paper we
adopt the “replenishment cycle policy”, which is equivdlemBookbinder-Tan’s
“static-dynamic uncertainty strategy”. The replenishitmcle policy (ie,(R, S)
policy) is static in the sense that the replenishment periods are determime o
and for all at the beginning of the planning horizon, afyhamicas the order
guantities are decided only after observing the realizedashel. In what follows
—based on [89], in which lead times are ignored— we formutaeaeplenishment
cycle policy under dynamic deterministic lead timés,

Consider a review schedule, which hasreviews over theV period plan-
ning horizon with orders placed &fy,75,...,7,.}, whereT, > T, 1, T,, <
N — L. For convenienc#; is defined as the start of the planning horizon and
T..+1 = N + 1 as the period immediately after the end of the planning boriz
The review schedule may be generalized to consider the chsee®;, > 1, if
the opening stock, is sufficient to cover the immediate needs at the start of the
planning horizon. The associated stock reviews will taleeglat the beginning
of periodsT;, i = 1, ..., m. In the considered dynamic review and replenishment
policy clearly the orders(; are all equal to zero except at replenishment periods
T, Ts,...,T,. The inventory level, carried from period to periodt + 1 is the
opening stock plus any orders that have arrived up to anddint) period: less
the total demand to date. Hence is given by

t
L=I+ Y Xgp—> dy t=1...,N (3.15)
1

{i| Ly, +Ti<t} k=
Let us define
p(t) =max {i|Vj,j <i,Tj+ Ly, <t, i=1,...,m}. (3.16)

The inventory level; at the end of period (Eg. 3.15) can be expressed as

p(t) t
L=h+Y Xn+ Y Xn-Ndy t=1,..,N (317)
i=1 {ili>p(t),LT,+Ti <t} k=1
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We now want to reformulate the constraints of the chancetamined model

in terms of a new set of decision variableg, i = 1, ..., m. We define
t
Po=Rp— Y dy, T1<t<Tiy, i=1...,m (3.18)
k=T;

where Ry, can be interpreted as an order-up-to-position which stbclulsl be
raised after placing an order at titk review periodl;, and Ry, — ZZ:TZ- dy is the
end of period inventory position. We can now express the e/inobdel in term
of these new decision variablés. , which are related to the inventory position in
period7;. The new problem is therefore to determine the number oéves;im,
theT;, and the associateld,, fori =1,...,m.

If there is no replenishment scheduled for peripthenR; equals the opening
inventory position in period. It follows that the variabld?, must be equal t@;_,
if no order is placed in periotland equal to the order-up-to-position if there is a
review in periodt. We can express this using the following constraints

R, = P, +d,, t=1,....N (3.19)
Rt ZPt—:[) t= 1,...,N (320)
Rt>Pt_1:>5t:1, tzl,,N (321)

The values for the order-up-to-position variabl&s, are then those that give the
minimum expected total cogt{7'C’}. The desired opening stock positions, as
required for the solution to the problem, will then be thoakies ofR;, for which

0; = 1. It is now clear that Constraints 3.4 and 3.5 can be replagdgigb 3.19,
3.21 and 3.20.

Let us now express Eq. 3.17 usiflyg, as decision variables

t
I;=Rr,, + > (Rp, = R, +dr, +.. . +dpa) — > dy,
t=1,...,N.
(3.22)
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As already mentioned is the desired minimum probability that the net inventory
level in any time period will be non-negativé/ is by definition the first period
at which the inventory can be controlled. Keeping this in dnive require

Pr{l,>0}>a, t=M,...,N. (3.23)

Y

which implies, by substituting, with the right term in Eq. 3.22,

GS RTp(t) + Z (RTz - RTifl) > a,
{ili>p(t), L, +T; <t} (3.24)

t=M,...,N.
whereS = ZZ:TM dy, — Z{“bp(t)’LTi vr<n(dr,_, +...+dr,—1) and, as givenin
[15], G4, +dys .. +a,(.) is the cumulative distribution function db(t) = d; + ds +
oot dy.

We now express the whole model in terms of the new set of Vasal,.
Since we consider expectatioﬁ’s andd;, it follows that R; = P, + d; and also
that the termX; in the objective function can be expressedras— P_,. We
replace the service level constraint 3.6 using the new ftatian in Eq. 3.24. We
should note that Ef’zl (Rt — Pt_l) in the objective function can be rewritten as

v, d; +v - Py, where3"" | d, is obviously a constant of the problem. The
resulting model is as follows,

E{TC} =
N ~ ~ ~ ~
v di+min | > b |- > (Bi—Po)|+a-b|+v-Py
t=1 t=1 {i|1<i<t,Li+i>t}

(3.25)

103



subject to,

(T1,... Tt ={te{l,... N} =1}

Eq. 3.24, t=M,...,N
R >P_ =6 =1, t=1,...,N (3.26)
R, > Py, t=1,...,N (3.27)
Rt:pt+dt7 tzl,,N (328)
R, >0, P>0, 6¢€{0,1} t=1,...,N (3.29)

So far we treated the replenishment cycle policy formutatitthe production/inventory
problem under non-stationary stochastic demalhdand dynamic deterministic
lead time,L;. We now recall that a deterministic equivalent formulatadrthis
problem under the same policy, non-stationary stochasticashdd;, and deter-
ministic but constant lead timd,, was proposed in [86]. According to this for-
mulation and from the results presented here, when the ieedi$ deterministic

and constant, it is easy to see that Eq. 3.24 becomes

GdTp(t)+dTp(t)+1+"'+dt <RTp(t)) 2 Q, t = L + 1’ cee N (330)

We adopt the following change of variablé; = T,). Since the lead time is
deterministic and constaitt will be equal toT,, for everyt such thatl; + L <
t < T;.1 + L. It directly follows that

GdTi+dTi+1+-.-+dt (RTL) Z «, T‘z + L S t < Cri-i—l + L. (331)
By definingk = t — L we can rewrite the former expression as

GdTi+dTi+1+---+dk+L (RTL) Z Q, 7—‘7/ S k < E-l—l (332)
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and therefore, sincg, = Ry, — >_r_,. dn, it follows,

k
P> Gy) (@)=Y doy Ti<k<Ty (333

dr;+dr 41+ +det L

G~'is an "inverse function”, such thai,,, (@) = u meansa = Gp)(u) =
Pr{D(t) < u}. We assume thaf is strictly increasing, hencé~! is uniquely
defined. The right-hand side of Eq. 3.33 can be calculatelineffand memorized
in a table once the form af;(-) is selected. Let

j ~
() =) dg. (3.34)

k=i

(I)[Z’]] = Gl;%i-di+1+...+dj+L
By employing the table presented in Eg. 3.34, the whole modééer determin-
istic and constant lead timé,, can be easily expressed using a CP formulation
similar to the one presented in [92]. The whole model is

E{TC} =
N _ N ~ t ~ ~
deH—min [Z <h-<Pt— Z (Ri—B_1)>+a-5t>+v-PN]
t=1 t=1 i=t—L+1
(3.35)
subject to,
R >P_1=0=1 t=1,...,N  (3.36)
R, > P, t=1,...,N  (3.37)
P, > & max {j-6;},1] t=1,...,N—L  (3.38)
je{l..t}
Rt:pt+d~t7 tzl,,N (339)
R, >0, P,>0, 0 €{01} t=1,...,N  (3.40)

where elements in matrik are indexed using thel enent constraint [45]. Ob-
viously if we want to invert the cumulative distribution fction in Eq. 3.24 as
in the constant lead time case, the dimension of the tableeathe buffer stock
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levels are stored has to increase, since many decisiorblesitake part in the
computation of the stock-out probability. Instead of buntgthis matrix, it may
be therefore convenient to develop a dedicateaistraintfor the CP formulation
of the model. In fact, in CP relations between decision Wdescan be expressed
by means of dedicated constraints that may include custmhailgorithms to gen-
erate parameters and verify complex conditions like Eq4.318 this constraint
we simply wait for a partial assignment of decision variab]é,} and, by us-
ing Eqg. 3.24, we dynamically generate during the searchrmtestic equivalent
constraints in a way similar to the one presented in the el@aipve. These de-
terministic constraints are enforced to guarantee theinedjgervice level under
the given partial replenishment plan.

3.5 Non-stationary Stochastic Lead Time

We now consider the general multi-period production/irteen problem with
non-stationary stochastic demand and lead time. As in EppenMartin [27],
we consider a discrete stochastic lead time with probghitiass functionf;(-)
in each period = 1,...,N. This means that an order placed in periodill
be received aftek periods with probabilityf;(k). Since f;(k) is discrete we
shall assume that there is a maximum lead timéor which 3"1_ fi(k) = 1,

i = 1,...,N. The probability of observing any lead time length> L will be
always0. Therefore the possible lead time lengths are limited te {0,..., L}
and the probability mass function is defined on the finiteSsddepending on the
probabilities assigned to each lead time length by the fnitibamass function, it
may not be possible to provide the required service levetdone initial periods.
In general, reasoning in a worst case scenario, it will ab\@gy/possible to provide
the required service level starting from period. + 1. The chance-constrained
programming model is given below,

min E{TC}:/dl.../dN;...ZZT:(U-Xt%—a-&H—h.It)

In t=1 (3.41)
fl(ll)fg(lg) e fN(lN) X gl(dl)gg(dg) .. gN(dN)d(dl)d(dQ) e d(dN)
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subject to,
It - I(] + Z Xz - dt

(ifi> 1L <t—i}

5 — 1, if X;>0
- 0, otherwise

Pr{l; >0} > «
LeZf, X, >0, &¢e{0,1)

where

t=1,.
t=1,.

t=L+1,...
t=1,...

I; :the lead time length of the order placed in peripd discrete
random variable with probability mass functigt-).

We now reformulate the model using the inventory position,

min E{TC} =

[ Z...zi(aat+vxt+h. (Pt >

{i[1<i<t,l;>t—i}

dn I Iy t=1

(3.42)

(3.43)

(3.44)
(3.45)

J

fl(ll)fg(lg) e fN(lN) X gl(dl)gg(dg) .. gN(dN)d(dl)d(dg) e d(dN)

subject to,

5 — 1, if X;>0
. 0, otherwise

t
i=1
P{R,> Y  X}>a

{i|1<i<t,l;>t—i}

PeZ:, X,>0, 6 €{0,1}
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t=1,.

t=1,.
t=1L+1,

t=1,

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)



Let us define the cumulative distribution functiét(k) = ZI;:O filp), & > 0.
Given the probability mass functiof(/;) and sincé,; is a discrete random variable
it directly follows

Zﬂ(t —)X; = Z fi(p)X; t=1,...,N. (3.51)

By recalling that{d, } are assumed to be mutually independent, we may rewrite
the objective function as

min E{TC} =

> (h-E{(Pt - iu —Fl-(t—z'))XZ-> —G—U-Xt} +a-5t> (3.52)

t=1 =1

Also in this case we want to adopt a replenishment cycle palnd we want
to express the whole model in terms of the new set of variak]eso that order
quantities have to be decided only after the demand in thedobperiods have
been realized. The analysis developed in the former sefdidhe replenishment
condition (Eq. 3.43) and inventory conservation constsafiq. 3.42) still holds,
since it refers to the opening-inventory-position, whighdefinition is not af-
fected by the lead time length. So it is clear that these caimé$ can be replaced
by Eq. 3.19, 3.21 and 3.20. Since we are considering expatsathe term¥X;, in
the objective function can be expressedias- P, ;. As we did in the dynamic
deterministic lead time case, we now have to express thécedewxel constraint
as a relation between the opening-inventory-positionk st the overall service
level provided at the end of each period is at leastin order to express this
service level constraint we propose a scenario based agpomeer the discrete
random variableg,i = 1,..., N. Let us recall that in a scenario based approach
[11,91], a scenario tree is generated which incorporatg®asible realization of
discrete random variables into the model explicitly. A patim the root to an
extremity of the event tree represents a scenaro (), where( is the set of all
possible scenarios. To each scenario a given probabilégssciated. Ib; is the
ith random variable on a path from the root to the leaf reptasgacenarias and
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a; is the value given t®; in theith stage of this scenario, then the probability of
this scenario is given byr{w} = [, Pr(S; = a;). Within each scenario, we have
a conventional (non-stochastic) constraint program teesoAll we have to do is
replacing the stochastic variables by the values takendarstienario and ensure
that the values found for the decision variables are ca@T#isicross scenarios as
certain decision variables are shared across scenarios.

In our problem we can divide random variables into two séis:discrete ran-
dom variables{/;} which represent lead times and the continuous random vari-
ables{d;} which represent demands. We deal with each set in a sepastie,
by employing a scenario based approach for the discretenanariables and
a deterministic equivalent modeling approach for the cadus random vari-
ables. This is possible since, as we have already remarkddy a given scenario
w discrete random variables are treated as deterministiesalThe problem is
then reduced to the general multi-period production/itwgnproblem with dy-
namic deterministic lead time and stochastic demand, faclhwve have already
presented in the former section a deterministic equivalemdel that is able to
represent the chance-constraints involving continuoonda® variablegd; }.

Consider a review schedulg, which hasm reviews over the N period plan-
ning horizon with orders placed &¥}, 75, ...,7,,}, whereT; > T, 1, T,, < N.
For conveniencd is defined as the start of the planning horizon dhd, =
N +1 as the period immediately after the end of the planning looriZ he review
schedule may be generalized to consider the case Where 1, if the opening
stock/j is sufficient to cover the immediate needs at the start of dn@ning hori-
zon. The associated stock reviews will take place at theninégg of periodsl;,

i =1,...,m. Inthe considered dynamic review and replenishment paclegrly

the ordersX; are all equal to zero except at replenishment perigdss, ..., 7,,,.

The inventory levell; carried from period to periodt + 1 is the opening stock
plus any orders that have arrived up to and including perleds the total demand
to date. A scenariay, is a possible lead time realization for all the orders placed
up to periodt in the given review schedulg. Let (), be the set of all the possible
scenariosw;. The first observation we need is related to the definitiop(of (Eq.
3.16). We have defined,, as the latest period before perioth the planning
horizon, for which we are sure that all the former ordersluding the one placed
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in T, if there is any, have been delivered within pertodUnder the assumption
that the probability mass functiofy(-) is defined on a finite se&t, p(¢) provides a
bound for the scenario tree size. In fact if the possible tead lengths inS are
0,...,L, the earliest order that is delivered in periodith probability 1 under
every possible scenarig is the latest placed in the span ...t — L. Therefore
since each scenario, identifies the orders that have been received before or in
periodt, it directly follows that the number of scenarios in the ttieat is needed
to compute the buffer stocks for periotls- L, ..., ¢t under any possible review
scheduleZ is at most2?, when we place. + 1 orders in period$ — L, ..., t,
but it may be lower if less reviews are planned. Under a giesew schedule
Z and a scenaria, the service level constraint for a periogtan be easily ex-
pressed by means of Eq. 3.24. It follows that the servicd tastraint is always
a relation between at most+ 1 decision variable#’; that represent the closing-
inventory-position (or equivalently®; which are the order-up-to-position) of the
replenishment cycles covering the span L,... t. Letp,(t) be the value of
p(t) under a given scenario, when a review schedul8 is considered. In order
to satisfy the service level constraints in our original mipdve require that the
overall service level under all the possible scenarios &heset of at most + 1
decision variables is at leastor equivalently, by using Eq. 3.24

Z Pr{wt} . Gs Rpr(t) -+ Z (RTz - RTiﬂ) >

wiE {ili>pu (8), (I, lwr) <t—T3}

a?
(3.53)
t=L+1,... N,

t
whereS =3 ¢ o Ak = fifispu (o)t loo<t-1} A1y + - - -+ dr,—1). Therefore
the complete model under the replenishment cycle policybeagexpressed as

E{TC} =

vE}Mmm[ZX?(#—E}LfML%M&—EAO+a@>+%é4

= t=1
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subject to,

(T1,... Tt ={te{1,... N} =1}

Eq. 3.53, t=L+1,...,N
R>P_1=6=1 t=1,...,N (3.55)
R, > P, t=1,...,N (3.56)
Rt:pt—‘—Czt tzl,,N (357)
R, >0, P>0, 6¢€{0,1} t=1,...,N. (3.58)

3.6 Stochastic Lead Time: a CP Implementation

In this section we present a CP formulation for tR& (S™) problem under stochas-
tic lead time. Results from the former section will be emgldyn the CP formu-
lation. In order to model the service level constraint (E§33we presented in the
former section, a new constraserviceLevél) will be defined. Such a constraint
is needed to dynamically compute the correct buffer stoditjpms on the basis
of the current replenishment plan, thaf{i} assignments. Without loss of gen-
erality we will consider here a different and simpler obieetfunction. In such
a function we will charge a holding cost at the end of eachgoebased on the
current inventory position, rather than the current ineepntevel. This will reflect
the fact that we charge interests not only on the actual abafutems we have
in stock, but also on outstanding orders. It should be ndtatit is possible to
build a CP model that considers the original objective fiorct We chose not to
implement this function in our tool. In fact, in the reseaprbject carried out for
a leading international telecommunications company thatvated this research
we were explicitly required to charge holding cost on theemwry position and
not on the inventory level. Doing so often make sense sinogpamies may as-
sess holding cost on their total invested capital and noplyion items in stock.
A further and detailed justification for this can be found48] .

fIn this work the author considers a holding cost based onnyentory position rather than
on-hand inventory in their order-up-to policy. He undegbrhow a holding cost based on inventory
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The CP model that incorporates our dedicated chance corisdrad the ob-
jective function discussed is therefore

N

min E{TC} =Y <a S+ h- Pt) tu- Py (3.59)
t=1
subject to,

P+d—P_,>0=6=1 t=1,...,N (3.60)
6,=0=P+d,—P_,=0 t=1,...,N (3.61)
P+d,—P_1>0 t=1,...,N (3.62)

serviceLevel(d1,. .., 0N,
Py, ..., Py, 369

g1(da), .., gn(dn),

f().a)
P, >0, 6 €{0,1} t=1,...,N. (3.64)

It must be noted that the domain size value for thevariables, exactly as in the
zero lead time case, is limited and more precisely it is etmahe amount of

stock required to satisfy subsequent demands till the ettaegblanning horizon,

meeting the required service level when only a single replenent is scheduled
at the beginning of the planning horizon. In what follows vescribe the signature
of the new constraint we have introducederviceLevél) describes a relation
between all the decision variables in the model. It also ptscas parameters the

position provides a simple and more accurate expressiomfentory holding costs in the com-
bined manufacturing and warehouse divisions. In fact heiesl that the order of a part initiates
a succession of charges which are incurred throughout#oltil@e (direct material cost, direct la-
bor cost and overheard cost). Certain inventory carryirsgcare based on these charges — interest
on investment and risk of obsolescence — and they are actmradhe time an order is placed to
the manufacturing division. On the other hand other invgntarrying costs are accrued from the
time the finished part is delivered to the warehouse (warghgicosts). The author suggests that
a precise expression for the inventory carrying costs wieélected all these consideration would
be very complex. Therefore, when interest and risk of olseslece comprise a large portion of
the total carrying cost, using a model which incurs carrydogt from the time an order is placed
rather then from the time is delivered may be the correctazhoi
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distribution of the demand in each period; the probabiligssifunction of the lead
time, which is assumed to be the same for all the periods;tencequired service
level. In order to enforce this constraint we consider exgoup of consecutive
replenishment cycles that cover at least 1 periods (that is the one of interest
plus L former periods). Each group must have the smallest possalptinality in
term of replenishment cycle number. Obviously, to identifis group of cycles,
we have to wait that a subset of consecutiverariables is assigned. Then, in
order to verify if the service level constraint is satisfied the last period in this
group, we check that for each replenishment cycle in thegrdentified at least
one decision variabl@, is assigned. If this is the case the partial policy for the
span is completely defined and, by recalling tRat= P, + d,, its feasibility can
be checked by using the condition in Eqg. 3.53. If the conditgonot satisfied we
backtrack. Notice that such a condition involves only thequs we identified
in the group defined, this means that our constraint is abtietect infeasibility
of partial assignments. A high level pseudo-code for thg@agation logic of the
global chance-constraint described is presented in Algord. Note that to keep
the description of the algorithm simple we assume here ahattic lead time
[ with probability mass functiorf (/) in every period. The maximum lead time
length isL. It should be also emphasized that, during the search, argolver
will be able to exploit constraint propagation and detetgasible or suboptimal
assignments with respect to other constraints in the moetthermore many
infeasible or suboptimal solutions may be pruned by usisgeetively dedicated
forward checkingechniques like the one described in [98Jomist-based filtering
methods [31, 87].

Example 3.6.1.We assume an initial null inventory level and a normally dis-
tributed demand with a coefficient of variatiom/cit = 0.3 for each period €
{1,...,5}. The expected values for the demand in each period{a&:28, 42,

33, 30}. The other parameters atie= 1, h = 1, v = 0, &« = 0.95(z4—0.05 =
1.645). We consider for every perioflin the planning horizon the following
lead time probability mass functiofy(t) = {0.3,0.2,0.5}, which means that we
receive an order placed in periedaftert € {0,...,2} periods with the given
probability (0 periods: 30%:;l period: 20%;2 periods: 50%). It is obvious that
in this case we will always receive the order at most attg@eriods. In Table
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Algorithm 4: pr opagat e
input :51,...,6N,p1,...,p]\[,Oz,dl,...,dN,l,L,N
begin

cycles — {};

pointer «— 1,

periods < 0;

for each periodiin 2,..., N do
if §; is not assignethen
cycles — {};
periods «+— 0
| pointer = —1,

else ifo; is assigned tol then
if pointer # —1 then
cycle < a replenishment cycle ovépointer, ...,i — 1};
L addcycle to cycles;
if periods > L then
| checkBuffers();
pointer «— i,
| periods < periods + 1;
else
| periods < periods + 1;

if pointer # —1 then
cycle — areplenishment cycle ovépointer, ..., N'};
| addcycle to cycles;

if periods > L then
| checkBuffers();

end

3.1 (Fig. 3.1) we show the optimal solution found when ourndgaconstraint
is used to dynamically generate buffer stock levels. We nantwo show that
order-up-to-positions computed in this example by usingddmn 3.53 satisfy
every service level constraint in the model. We assume drdhé first2 periods
no service level constraint is enforced, since it is not fmbsgo fully control the
inventory in the first 2 periods. Therefore we enforce thainegl service level
on period3, 4 and>5, that is constraint 3.53 far= 3,..., N. Let us verify that
the given order-up-to levels satisfy this condition for lea these three periods.
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ProcedurecheckBuf f er s

begin
cycle «— the last element inycles, a replenishment cycle over
{i,...,7} ) )
if no decision variable P, . . ., P; is assigned then
| return;

counter «— 1;

for each period¢ covered bycycle do

formerCycles < cycles;

removecycle from formerCycles;

coveredPeriods < the number of periods covered by cycles in
formerCuycles;

head « first element informerCycles;

headLength < periods covered b¥ead;

if counter < L then

while coveredPeriods — headLength 4+ counter > L do
\; removehead from formerCycles;

head « first element informerCycles;
headLength < periods covered b¥ead,;

else
| formerCycles — {};

condition «— true;

for each cyclecin formerCycles do

let {m, ..., n} be the periods covered lay

if no decision variable P,,. . . ., P, is assigned then
| condition «— false;

if_conditionthen
if Eq. 3.53 for period t in cycle and former replenishment

cycles in formerCycles is not satisfied then
| backtrack();

counter < counter + 1,

end

Since we know the probability mass functigft) for each period in the planning
horizon we can easily compute the probability(w;) for each scenaria; € €.
We have four of these scenarios for each petiod {3,..., N}, since we are
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Figure 3.1: Optimal policy under stochastic lead tirfi¢t) = {0.3,0.2,0.5}.

Policy cost:356

Period () 1 2 3 4 5
d, 36 28 42 33 30
R, 125 124 129 87 55
0y 1 1 1 1 1
Shortage probability — — 5% 5% 5%

Table 3.1: Optimal solution.

placing an order in every period:

e Sy, Pr{Si} = 0.15 = (0.3 + 0.2)0.3; in this scenario at period all the
orders placed are received. Thatis the order placed ingherid is received
immediately (probability0.3), or after one period (probabilit§.2), while
the order placed in periadis received immediately (probability.3)

o Sy, Pr{S;} = 0.35 = (0.3 + 0.2)(0.2 + 0.5); in this scenario at period
we don't receive the last order placed in periodrhat is the order placed
in periodt — 1 is received immediately (probability3), or after one period
(probability0.2), while the order placed in periads not received immedi-
ately, therefore it is received after one period (probabili2), or after two
periods (probability.5)

e S3, Pr{S3;} = 0.35 = 0.5(0.2 4+ 0.5); in this scenario at periotlwe don't
receive the last two orders placed in periegsdt — 1. That is the order
placed in period — 1 is received after two periods (probability), and the
order placed in periodis not received immediately, therefore it is received
after one period (probability.2), or after two periods (probability.5)
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e 54, Pr{S,} =0.15=0.5-0.3; in this scenario at periodwe don't receive
the order placed in periad— 1 and we observe order-crossover. That is the
order placed in period — 1 is received after two periods (probabiliiys),
and the order placed in periads received immediately (probability3)

In the described scenarios every possible configuratioarisidered. We do this
without any loss in generality. In fact if some of the confafimns are unrealistic
(for instance if we assume that order-crossover may notpédae) we just need
to set the probability of the respective scenario to zerov N@s possible to write
condition 3.53 for each periade {3,..., N}. Let us consider periost

129 — 42 124 — (28 + 42))
Pr{Si} G [ =) + Pr{S:} - G
H5 (0.3\/422) r5) <0.3\/282+422
125 — (36 + 28 + 42))
Pr{S;} - G + (365
1) (0.3\/362+282+422 (3.63)

125 + (129 — 124) — (36 + 42))
Pr{S,} - G — 04.60% = 95%
1S ( 0.3v/362 + 422 ’ !

whereG(-) is the standard normal distribution function. This mearas the com-
bined effect of order delivery delays in our policy, all pids scenarios taken
into account, gives a no stock-out probability of abdgft; for period3. Let us
consider period:

87 — 33 129 — (42 + 33))
Pr{S,}- G L Pr{S) -G
Hsi (0.3\/332) v} <0.3\/422+332

(3.66)

124 — (28 + 42
Pr{sg}-a< (28 + +33))
0.31/282 4 422 4 332
124 + (87 — 129) — (28 + 33)
0.3v/282 + 332
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Period() 1 2 3 4 5 6 7 8
d, 15 18 13 33 30 18 23 15

Table 3.2: Forecasts of period demands.

Let us consider period

55 — 30 87 — (33+30))
Pr{S:} -G + Pr{S} -G
H5 <0.3\/302) 15 <0.3\/332 + 30
129 — (42433 + 30))
Pr{S3} -G 3.67
H5) (0.3\/422 + 332 + 307 (3.67)
129 + (55 — 87) — (42 + 30))
Pr{Ss} - G = 94.53% = 95%.
s ( 0.3v/422 + 302 R
We showed that the given solution satisfies the requiredcsefevel for every
periodt € {3,...,N}. o

3.7 Experiments

In this section we will solve to optimality an 8-period intery problem under
stochastic demand and lead time. Different lead time cordigans are con-
sidered. The stochastic, deterministic and zero lead tiases are compared.
As in the previous example we assume an initial null inventevel and a nor-
mally distributed demand with a coefficient of variatiop/cit = (.3 for each
periodt € {1,...,8}. The expected value§d,} for the demand in each pe-
riod are listed in Table 3.2. The other parametersaare 30, h = 1, v = 0,

a = 0.95(z4=005 = 1.645). Initially we consider the problem under stochastic
demand and no lead time, an efficient CP approach to find padicymeters in this
case was presented in [87, 92]. Obviously our approach isrgeand can provide
solutions for this case as well, although less efficientlye Bptimal solution for
the instance considered is presented in Fig. 3.2, detadigtabe optimal policy
are reported in Table 3.3. We obsebveeplenishment cycles, policy parameters
are: cycle lengths [1,2,1, 2, 2] and order-up-to-positions [72, 42, 49, 65, 52].
The shortage probability is at mos¥, therefore the service level is met in ev-

118



NG
o o
P

Inventory position
N w
o o
> 1

o o
N

Figure 3.2: Optimal policy under no lead time.

E{TC}: 303 Average Inventory Levell8.5

Period () 1 2 3 4 5 6 7 8
R, 22 42 24 49 65 35 52 29
0 1 1 o 1 1 0 1 0
Shortage probability 5% 0% 5% 5% 0% 5% 0% 5%

Table 3.3: Optimal policy under no lead time.

ery period. TheE{TC} is 303 and the average inventory level for the policy,
computed by simulating demands and lead times accordirgetgiven probabil-

ity distribution function and probability mass functiorspectively, isl8.5 units.
Since we will consider a lead time of at m@gteriods in our examples, in order to
make comparisons meaningful between different instarfoeshe deterministic
lead time cases we computed the average inventory level6operiods starting
from periodL + 1, whereL is the lead time length, for the stochastic lead time
cases we computed again the average inventory level6operiods, but starting
from periodL + 1, whereL is the average lead time length.

We now consider the same instance, but with a determinietid kime of
one period. The optimal solution is presented in Fig. 3.3aileabout the
optimal policy are reported in Table 3.4. We observe now ahhgplenish-
ment cycles, policy parameters are: cycle lengths, 1,2, 3] and order-up-to-
positions= [59, 64, 105, 72]. Again the shortage probability is at ma@st in every
period, which means that the service level constraint is Mee E{T'C'} is 456
and the average inventory level for the policis7 units. Therefore we observe
now an expected total cost that’i8.5% higher than the zero lead time case. The
replenishment plan is significantly affected by the leadetiboth in term of re-
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Figure 3.3: Optimal policy under deterministic one periedd time.

E{TC}: 456 Average Inventory Level25.7

Period () 1 2 3 4 5 6 7 8
Ry 59 44 64 105 72 72 54 31
0y 1 0 1 1 0 1 0 0

Shortage probability

— 0% 5% 5% 0% 5% 0% 5%

Table 3.4: Optimal policy under deterministic one perioaddime, notice that
the service level in the first period can obviously not be auled.

plenishment cycle lengths and order-up-to-positions. 8lerage inventory level
observed is higher than the one in the zero lead time case.

When a deterministic lead time of two periods is considessdthe reader
may expect, we observe again higher costs and a differetgnishment pol-
icy. The optimal solution is presented in Fig. 3.4, detall®w@ the optimal
policy are reported in Table 3.5. The number of replenishnogales is now
againb, policy parameters are: cycle lengths[1,1,2,1,3] and order-up-to-
positions= [59,84, 119,92, 72]. The service level constraint is met in every pe-
riod. The E{T'C'} is 602 and the average inventory level for the policy2is2

Inventory position

Figure 3.4: Optimal policy under deterministic two peridelad time.
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E{TC}: 602 Average Inventory Level23.2

Period ) 1 2 3 4 5 6 7 8
Ry 29 84 119 106 92 72 54 31
0y 1 1 1 0 1 1 0 0
Shortage probability — — 5% 5% 0% 5% 5% 5%

Table 3.5: Optimal policy under deterministic two periodad time.

Lead Time I  E{TC}

0 18.5 261.0
1 25.7 2742
2 23.2 289.2

Table 3.6: Deterministic lead time. Average inventory |levand respective ex-
pected total cost.

units. This means that we observe a cast6% and32.0% higher than respec-
tively the zero lead time case and the one period lead tinee ddee replenishment
plan is again completely modified as a consequence of theileadength. The
average inventory level observed is slightly lower tharhi@ tormer cases. This
is due to the fact that in this replenishment plan we sche@atders, while in the
optimal replenishment plan under a deterministic lead tifinene period onlyt
orders are planned.

In Table 3.6 we report the expected total chA${7'C'} computed with respect
to the average inventory levélfor the three cases presented so far.

We now concentrate on two instances where a stochasticiteadd consid-
ered and we compare results with the former cases. Firsthnalyze a stochastic
lead time with probability mass functiofi(t) = {0.2(0),0.6(1),0.2(2)}. That
is an order is received immediately with probability2, after one period with
probability 0.6, and after two periods with probability2. The optimal solution
is presented in Fig. 3.5, details about the optimal poliey r@ported in Table
3.7. The number of replenishment cycles is agams in the two period lead
time case, policy parameters are: cycle lengths, 1,2, 1, 3] and order-up-to-

positions= [50, 72, 101, 79, 72]. Therefore we see that the number and the length

of replenishment cycles does not change from the detertiaitvgo period lead
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Figure 3.5: Optimal policy under stochastic lead timef;(t) =
{0.2(0),0.6(1),0.2(2)}.

E{TC}: 532 Average Inventory Level32.8

Period () 1 2 3 4 5 6 7 8
Ry 50 72 101 88 79 T2 54 31
0y 1 1 1 0 1 1 0 0
Shortage probability — — 5% 5% 3% 5% 5% 5%

Table 3.7:  Optimal policy under stochastic lead timef;(t) =
{0.2(0),0.6(1),0.2(2)}, in periods{1, 2} the inventory cannot be controlled.

time case, although we observe lower order-up-to-positas we may expect
since the lead time is in average one period therefore lokgar tn the former
case. Also the cost reflects this, in fact itlis6% lower than in the two period
deterministic lead time case. On the other hand we observadezage inventory
level of 32.8, obviously affected by the uncertainty now associated tiglead
time. It should be noted that the uncertainty of the lead tolag's a significant
role, in fact although the average lead time is one periagsthucture of the pol-
icy resembles much more the one under a two period detetticitgad time than
the one under a deterministic one period lead time. Moretheexpected total
cost is16.6% higher than in this latter case.

We finally consider a different probability mass function fbe lead time:
fi(t) = {0.5(0),0.0(1),0.5(2)}, which means that we maintain the same aver-
age lead time of one period, but we increase its variance. opltienal solution
is presented in Fig. 3.6, details about the optimal poliey r@ported in Table
3.8. The number of replenishment cycles is $tilpolicy parameters are: cycle
lengths= [1, 1,2, 1, 3] and order-up-to-positiors [50, 72, 101, 79, 72]. Although
the average lead time is still one period, order-up-to{mss are slightly higher
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Figure 3.6: Optimal policy under stochastic lead timef(t) =
{0.5(0),0.0(1),0.5(2)}.

E{TC}: 562 Average Inventory Level35.5

Period () 1 2 3 4 5 6 7 8
Ry 53 79 107 94 87 72 54 31
0y 1 1 1 0 1 1 0 0
Shortage probability — — 5% 5% 0% 5% 5% 5%

Table 3.8: Optimal policy under stochastic lead timef(t) =
{0.5(0),0.0(1),0.5(2)}.

Lead Time I EH{TC}
fi(t) = {0.2(0),0.6(1),0.2(2)} 32.8 346.8
f;(t) = {0.5(0),0.0(1),0.5(2)} 35.5 363.0

Table 3.9: Stochastic lead time. Average inventory levetsr@spective expected
total cost.

than in the former case where the variance of the lead timelovesr. Also
the cost reflects this, in fact it 5.6% higher than in the former case, but still
lower than the expected total cost of the two period detestdlead time case.
Moreover we observed an average inventory level$, again affected by the
uncertainty associated with the lead time.

In Table 3.9 we report the expected total cAg${7'C'} computed with respect
to the average inventory levéfor the two cases where the lead time is stochastic.

To summarize, in our experiments we saw that supplier lead tincertainty
may significantly affect the structure of the optima&"(S™) policy. Comput-
ing optimal policy parameters constitutes a hard compartatiand theoretical

123



challenge. Under different degrees of lead time uncestawiien other input pa-
rameters for the problem remain fixed, order-up-to-pas#tiand reorder points in
the optimal policy change significantly. Realizing what tpgimal decisions are
for certain input parameters is a counterintuitive taskr @aproach provides a
systematic way to compute these optimal policy parameters.

3.7.1 Analyzing the cost associated with a set of optimal poly
parameters

From the experiments presented interesting insights casbtaned by observ-
ing the behavior of the expected total cost and of the averagatory level for
different lead time configurations. Let us firstly observaevhtie expected to-
tal cost changes when the lead time changes. For a detetimieizd time, as
we increase its value, the cost increases significantly winewobjective function
considers the expected inventory position. Intuitivelig tis due to the fact that
every replenishment cycle covering periads ., j has to cope not only with the
uncertainty associated with periods. ., j, but also with the variability of the de-
mand overj +1,...,j+ L — 1, whereL is the lead time length. In fact the order
placed in period + 1 will be received only aftel. periods. When the expected
inventory level is considered, the increase ratio is lowarce we only pay the
cost of the uncertainty associated with the increased tsuffied we do not charge
holding cost on the outstanding orders. When the lead tirs®hastic and the
expected inventory position is considered, the optimaicgatost is affected by
the expected value of the lead time and by its variabilityfalet in the last two
examples presented the stochastic lead time has the sametexkwalue of one
period, but in the second example the variability is obviphgyher. This directly
translates into a cost difference where the lead time witbaility mass function
{0.5(0),0(1),0.5(2) } results>.6% more costly than the one with probability mass
function{0.2(0),0.6(1),0.2(2) }. Nevertheless in both the cases the cost observed
is lower than the one observed when the lead time is detestiwrand its value
is two. This can be explained by the fact that the buffersireqguo guarantee a
given service level under a deterministic two period leatetrepresent a worst
case scenario for every instance where the lead time isattichand its length
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can be at most two periods. More formally this directly falofrom Eq. 3.24,

which determines the minimum expected inventory positexuired at the end
of each replenishment cycle to guarantee the given semwet. IAlthough, when

holding cost is charged on the expected inventory positio&,behavior of the
expected total cost is quite intuitive and it easily follofrem the formulas pre-
sented, a dedicated reasoning must be given to explain baioe of the average
inventory level and of the expected total cost when holdivgt ¢s charged on the
expected inventory level.

In the examples presented the reader may observe that astoedead time
distributed as follows{0.2(0),0.6(1),0.2(2)}, produces an expected total cost
E{TC} lower than the one produced by a deterministic lead time ofgieriods.

In contrast, the average inventory level— as well as the respective expected
total costE;{T'C'} — associated with the optimal policy computed for such a
stochastic lead time is higher than the one obtained for erahétistic lead time

of two periods. The reason for this is that, when we consilderexpected in-
ventory level, under a deterministic lead time we keep higfieo stocks, but
we do not charge holding cost on outstanding orders, ther¢fi@ impact on the
holding cost will be limited to the increase in the requiredfér stocks. Under

a stochastic lead time, the expected inventory level iscedte by the increased
buffer stocks in a similar manner, but it is also directlyeated by the lead time
expected value and by its variability. In fact, whenever ateo has associated
a short lead time, this will produce a high inventory levelrigal over to next
periods. These scenarios may obviously affect the averagatory level of the
optimal policy, while their effect on the expected invegt@osition is limited

to the increased buffer stock levels, since the holding ito8tis case is always
charged also on outstanding orders. For instance a stoclesst time distributed
as follows,{0.5(0),0(1), 0.5(2) }, produces the highest average inventory level —
and expected total cost;{7'C'} — among all the instances we considered in our
set of examples. This can be explained by noticing that uadeore variable lead
time we will keep higher buffer stocks, and often, when tredized lead time is
low, a high inventory level is accumulated and carried owarext periods before
being consumed by the demand.

In conclusion we emphasize that, given a certain lead tirege(chinistic or
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stochastic), it may be relevant for certain firms to optintieeholding cost on the
expected inventory position rather than on the expecteehitory level. Never-
theless if we are interested in comparing the optimal palist for different lead
time lengths and lead time probability mass functions, tvershould note that
the costs obtained with these two formulations do not follbessame trend, and
itis necessary to compare optimal costs obtained with theip formulation we
wish to analyze. For instance if we optimize in terms of thpested inventory
position (F{7'C'}) the instance with a deterministic lead time of two periodd a
the one with a stochastic lead time distributed as follof@s;(0), 0(1),0.5(2)},
our model suggests that a deterministic lead time of twoopleris more costly.
In contrast, since both the optimal policies place the sanmeher of orders, by
analyzing the average inventory level computed for the tvetainces, it is easy to
notice that, when the cost is computed with respect to thearp inventory level
(E{TC}), then the stochastic lead time results more costly.

3.8 Conclusions

A novel approach to computer(,S™) policy parameters under stochastic lead
time has been presented. We have also showed how to modehspucblem
when a dynamic deterministic lead time is considered. Tiseraptions under
which we developed our approach for the stochastic lead ¢ase proved to be
less restrictive than those commonly adopted in the liteeaftor complete meth-
ods. In particular we faced the problem of order-crossavbich is a very active
research topic as Riezebos show in [68] and [69]. Our approaerged well
known concepts such as deterministic equivalent modelirmfp@ance-constraints
[18] and scenario based approach [91] in order to producdfaatige way of
solving (R™,S™) policy under stochastic lead time. Since we are employiRgaC
implement our approach we may benefit from special purposst@nt propa-
gation techniques and cost based filtering methods thateréairdy speed up the
search process. Therefore in our future research we aimvagespecific filter-
ing algorithms able to significantly speed up the searchHerdptimal ",5™)
policy parameters under stochastic lead time.

126



Chapter 4

Paper lll: Cost-based filtering for
stochastic constraint programming

R. Rossi, S. A. Tarim, B. Hnich and S. Prestwich

Abstract

Cost-based filtering is a novel approach that combines tgaba from Operations
Research (OR) and Constraint Programming (CP) to filter fdewcision variable

domains values that do not lead to better solutions [32].cl&tstic Constraint
Programming is a framework for modeling combinatorial optiation problems
that involve uncertainty [98]. In this work, we show how tarfoem cost-based
filtering for certain classes of stochastic constraint prags. Our approach is
based on a set of known inequalities borrowed from stoah@stigramming —

a branch of OR concerned with modeling and solving problemslving uncer-

tainty. We discuss bound generation and cost-based doritannfj procedures
for a well known problem in the stochastic programming &tere, the static
stochastic knapsack problem. We also apply our technique dtochastic se-
quencing problem. Our results clearly show the value of tlop@sed approach
over a pure scenario based stochastic constraint progragrformulation both in

terms of explored nodes and run times.
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4.1 Introduction

Constraint Programming (CP) [1] has been recognized as a&nhawool for
modeling and solving combinatorial optimization problen®® provides global
constraints offering concise and declarative modelingabdpies and efficient
domain filtering algorithms. These algorithms remove corations of values
which cannot appear in any consistent solution. Cost-bfisexing is an elegant
way of combining techniques from CP and Operations Resd@Bf) [32]. OR-
based optimization techniques are used to remove fromblargomains values
that cannot lead to better solutions. This type of domaierfilg can be combined
with the usual CP-based filtering methods and branchingstes, yielding pow-
erful hybrid search algorithms. Cost-based filtering is aehtechnique that has
been the subject of significant recent research.

Stochastic constraint programming (SCP) [98] is an extensf CP, in which
there is a distinction between decision variables, whichaneefree to set, and
stochastic (or observed) variables, which follow some gbality distribution.
SCP is meant to deal with problems where uncertainty contesplay. Uncer-
tainty may take different forms: data about events in the pes/ not be known
exactly due to measuring or difficulties in sampling, datawdlevents in the future
may simply not be known with certainty.

In this work we propose a novel approach to perform costsbékering for
certain classes of stochastic constraint programs. Oumapbp is based on a
well known inequality borrowed from stochastic programgjfl], a branch of
OR that is concerned with modeling constraint satisfadtiptimization problems
under uncertainty. We implemented this approach for twdlgras in which
uncertainty plays a role. In both cases we obtained significaprovements with
respect to a pure stochastic constraint programming fataum both in terms of
explored nodes and run-times.

The rest of the paper is structured as follows. In Sectionwk2give the
necessary formal background. In Section 4.3 we review aglemequalities for
stochastic programming. In Section 4.4, we introduce dlopamization chance
constraints. We describe our empirical results in Sectiéna#d review related
works in Section 4.6. We conclude and outline our future worgection 4.7.
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4.2 Formal Background

A Constraint Satisfaction ProblefCSP) [1] is a triple(V, C, D), whereV =
{V1,...,V,} is a set of decision variable®), is a function mapping each element
of V' to a domain of potential values, andis a set of constraints stating allowed
combinations of values for subsets of variabled/inA solutionto a CSP is an
assignment to every variable of a value in its domain, sueh @l of the con-
straints are satisfied. We may also be interested in findiegsille solution that
maximizes (minimizes) the value of a given objective fumctover a subset of the
variables. With no loss of generality, we restrict our dssian to maximization
problems.

Optimization-oriented global constraingsnbed an optimization component,
representing a proper relaxation of the constraint itseth a global constraint
[32]. This component provides three pieces of informati@):the optimal solu-
tion of the relaxed problem; (b) the optimal value of thisugi@n representing an
upper bound on the original problem objective function; g@radient function
grad(V,v), which returns for each couple variable-vallig«) an optimistic eval-
uation of the profit obtained if is assigned td’". These pieces of information are
exploited both for propagation purposes and for guidingstreerch.

In [98], astochastic CSks defined as a 6-tuplg’, S, D, P, C, 0), whereV is
a set of decision variables arttlis a set of stochastic variableB, is a function
mapping each element &f and each element ¢f to a domain of potential val-
ues. A decision variable il is assignedx value from its domainP is a function
mapping each element 6fto a probability distribution for its associated domain.
C'is a set of constraints. A constrailate C' that constrains at least one variable
in S is achance-constrain®}, is a threshold value in the interv@l, 1], indicating
the minimum satisfaction probability for chance-consttai Note that a chance-
constraint with a threshold of (or without any explicit threshold specified) is
equivalent to a hard constraint. A stochastic CSP consistmamber ofdecision
stages A decision stage is a paii;, S;), whereV; is a set of decision variables
and.S; is a set of stochastic variables. Inanstage stochastic CSP, and S are
partitioned into disjoint setd/;,...,V,, andS;, ..., S,,, and we consider multi-
ple stages({V1, S1), (Va, S2), ..., (Vin, Sm). To solve anm-stage stochastic CSP
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an assignment to the variableslinmust be found such that, given random values
for S;, assignments can be found fidr such that, given random values {8y, ...,
assignments can be found fo}, so that, given random values 6y, the hard
constraints are satisfied and the chance constraints aséeshin the specified
fraction of all possible scenarios. The solution ofrarstage stochastic CSP is
represented by means ofpalicy tree[91]. A policy tree is a set of decisions
where each path represents a different possible scenatitharvalues assigned
to decision variables in this scenario. L®&denote the space of policy trees rep-
resenting all the solutions of a stochastic CSP. We may leeasted in finding a
feasible solution, i.e. a policy tree € S, that maximizes the value of a given
objective functionf(-) over the stochastic variablés(edges of the policy tree)
and over a subsét C V of the decision variables (nodes in the policy tree). A
Stochastic CORs then defined in general asaxcs f(s). In [98] a policy based
view of stochastic constraint programs is proposed. Suchpanoach has been
further investigated in [5]. An alternative semantics ftrchastic constraint pro-
grams comes from a scenario-based view [11, 91]: this swiutiethod consists
in generating a scenario-tree that incorporates all ptesglalizations of discrete
stochastic variables into the model explicitly.

4.3 Value of Stochastic Solutions

Let = be a discrete stochastic (vector) variable whose readizattorrespond to
the various scenarios. Recall that in the policy based vitstachastic CP a
scenario is a set of edges in the policy tree connecting thitoa leaf. Define

P = max z(z, §)

z€eS

as the optimization problem associated to one particulsmastos € =, whereS
is afinite set, and:(z, &) is a real valued function of two (vector) variablesand
¢. Note that in what follows the discussion is dual for miniation problems. In
order to simplify the notation used we will here use the saatation for referring
to a problem and to the value of its optimal solution. The arthe other meaning
will be made clear by the context.
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The functionz(z, £) can be seen as a payoff table that for a given decision
x provides the profit with respect to a given scengrftaving probabilityPr{¢}.
We may be then interested in computing the optimal solutaduesto theecourse
problem[11] RP(P)= max,cs > = Pr{¢}z(x,&). This can be expressed, by using
the expectation operatdl, as

RP(P) = rgezg(Ez(x, =),
with an optimal solutiorn:*.

Theexpected value problerthe deterministic problem obtained by replacing
all the stochastic (vector) variables by their expectedes|is defined as

EV(P) = max z(z, E[Z)]).

Let us denote by an optimal solution of the expected value problem, called
the expected value solutionAnyone familiar with stochastic programming or
realizing that uncertainty is a fact of life would feel alktinsecure about taking
decisionz. Indeed, unless such a decision is independeht tiiere is no reason
to believe that this decision is in any way close to the opitiszdution of the
recourse problem.

For any stochastic maximization (minimization) programger the assump-
tions that (i)z(x, Z), the profit function, is a concavéconvex) function ofs and
(i) max,eg z(z, Z) (mingegs 2z(x, Z)) exists for all=,

PROPOSITION 1. EV(P) - RP(P)> 0 (EV(P) - RP(PX 0).
Proof. A proof is given in [4]. O

It directly follows that EV(P)> RP(P) (EV(P)X RP(P)). On this inequality we
will base our cost-based filtering strategieAssumption (i) restricts the form of
the cost function. Many real life applications exhibit si@chehavior in the profit

A real-valued functiory is convexf for any z;, z» in the domain and any € [0, 1], A f (z1)+
(1 =XN)f(z2) > f(Az1 + (1 — N)z2) [16]. f is concavef — f is convex.

fOther inequalities are discussed in [11], pp. 140-141.dffe relaxations can be also built
on these other inequalities.
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(cost) function. Nevertheless, often it is possible to emter stochastic con-
straint programs whose objective exhibits a generalizedaumvex dependence
on the stochastic variables. Note that, although the dak3ensen (Proposition
1) and Edmundson-Madansky type bounds [11], which we wilplemin the
following sections, or their extensions are generally naiilable for such prob-
lems, tight bounds may still be constructed under mild ragiyl conditions as
discussed in [57]. Assumption (ii) states that Proposificzan be applied only
when a feasible solution exists and its existence is nottteby the distribution
of the stochastic variables. As suggested in [11], alsodksimption is realis-
tic. In fact, in stochastic programs people usually tendseoaiate a high cost,
rather than an infeasibility to decisions that are poor wépect to the random
outcomes. Assumption (i) is typically not respected inkgpems where chance-
constraints appear. We will not discuss how to handle gemdance-constraints
and how to produce deterministic equivalent reformulaitr them in EV(P),
the reader may refer to [19]. In this work we will consideryrikamples on
stochastic COPs that satisfy assumptions (i) and (ii). htiqaar, to comply with
assumption (ii), we will consider problems for which a fédaisolution always
exists and for which the chance-constraints are “hafid=(1). Note that “hard”
chance-constraints in RP(P) become deterministic in EV(P)

4.4 Global optimization chance-constraints

Solving stochastic constraint programs is computatigrealthallenging task. In
[98], the computational complexity — membership in PSPACE#these mod-
els is discussed. In [91], the authors proposed a standar@ix@mpiling down
these models into conventional (non-stochastic) comgtgbgramming models
that can be solved by any available commercial softwares @pproach employs
a scenario-based [11] modelling strategy for represerstiochastic variables. Of
course this approach has a price since the number of scerthabneed to be
considered in order to fully represent the problem growsoeeptially with the
number of decision stages in the problem. A possible way &yamme this dif-
ficulty is to reduce the number of scenarios considered bypBagithem, but
this obviously affects the completeness of the model. Aeogossibility con-
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sists instead in developing specialized and efficient iiltestrategies. For this
purposeglobal chance-constraintsave been proposed in [75]. These constraints
differ from conventional global constraints in the facttttiey represent relations
among a non-fixed number of decision variables and stochaatiables.

In this work, by creating a parallel with [32], we preseptimization-oriented
global chance-constraintas a way to enhance the solving process of stochas-
tic constraint programs. Conventional optimization-otesl global constraints
perform cost-based filtering by encapsulating in globalst@ints optimization
components representing suitable relaxations of the @insitself. Similarly
optimization-oriented global chance-constraints alscapsulate suitable relax-
ations of the constraint considered, but in contrast to entignal optimization-
oriented global constraints this relaxation may involaxhkastic variables.

A global optimization chance-constraiptovides the same three pieces of
information provided by optimization-oriented global straints. What differs is
the fact that in a global optimization chance-constrainfine two stages of relax-
ations. At the first stage of relaxation, we are mainly inealwith the stochastic
variables and we exploit well known inequalities such asoiire in Proposition 1
to replace stochastic variables in our stochastic progweithsdeterministic quan-
tities and to yield a valid relaxation that is a determimigtioblem. This determin-
istic problem, however, may still be computationally vehaltenging (NP-Hard
in general). Therefore, a second stage of relaxation mayebdead to produce a
further relaxation that is computationally more tractabtenally, as we will see,
a global optimization chance-constraint may also providelal, and possibly
good, solution at each node of the search tree.

In this section and in the following ones we will refer to a mimg example
and we will employ the following problem to better understahe concepts ex-
plained. Consider th8tatic Stochastic Knapsack ProbléBSKP) [56]: a subset
of k£ items has to be chosen, given a knapsack of ginéo which to fit the items.
Each itemi has an expected rewardof The size/V; of each item is not known at
the time the decision has to be made, but we assume that tiseotenaker has an
estimate of the probability distribution & = (W, ..., W,). A per unit penalty
of ¢ has to be paid for exceeding the capacity of the knapsack. @&jefimg this
problem as a one-stage Stochastic COP, the recourse pr&#¢8E5KP) can be
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Objective:
+
max {Zle r; X; — cE [Zle W X; — q] }
Decision variables:
L  X;e{0,1} Viel,..., k
Stochastic variables:
W; — item1 weight

Figure 4.1: RP(SSKP). Note thaf]* = max{y,0}. E denotes the expectation
operator.

formulated as shown in Fig. 4.1. The objective function mazes the trade off
between the reward brought by the objects selected in thpskca (those for
which the binary decision variabl¥; is set tol) and the expected penalty paid
for buying additional capacity units in those scenariosnetiiee low cost capacity
q is not sufficient.

Example 4.4.1.Consider5 items, item rewards; are {10, 15,20,5,25}. The
discrete probability distribution functiong) for the weight of itemi = 1,....5
are respectivelyf(1) = {10(0.5),8(0.5)}, f(2) = {10(0.5),12(0.5)}, f(3) =
{9(0.5),13(0.5)}, f(4) = {4(0.5),6(0.5)}, f(5) = {12(0.5),15(0.5)}. The fig-
ures in parenthesis represent the probability that an ikmsta certain weight.
The other problem parameters are= 2, ¢ = 30. The optimal solution of the
recourse problem selects iteq1s 3,5} and has a value of RP(SSKP)=49. o

This solution can be obtained by solving a deterministicieadent conven-
tional constraint program obtained by employing a scenaased representation
[91]. Let W’ be the realized weight of objeé¢tin scenarioj. We hand-crafted
a deterministic equivalent model DetEquiv(RP(SSKP)) f&(&SKP) following
the guidelines in [91]. This model is shown in Fig. 4.2. Coaisit (1) states that
Z;, total excess weight in scenaripmust be greater than the sum of the weights
of the objects selected in this scenario minus the low cqsaty q. Constraint
(2) declares the decision variabl&ss. X; is equal tal iff item i is selected in the
knapsack. Constraint (3) fixes an upper bound4grthis upper bound is the sum
of the weights of all thé objects in scenarig. The objective function maximizes
the trade off between the total reward brought by the obgalected and the sum
of penalty costs — weighted by the respective scenario fibtya— paid for
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Objective:
max {Z?:o riX; —c [Z;zl Zj Pr{j}} }

Constraints:
(1) Z; >k WIX;—q viel,..., n
Decision variables:
2 X; € {0,1} Viel,. .., k
©) Z; e 0,8, W) Viel,...,n

Figure 4.2: DetEquiv(RP(SSKP)Pr{;} is the probability of scenarig €
{1,...,n}. Note thaty ", Pr{j} = 1.

those scenarios where the low cost capagitynot sufficient.

4.4.1 Expectation-based relaxation for stochastic varidbs

The first step in our cost-based filtering strategy consisgpplying a relaxation
involving the stochastic variables. By applying Propasitil, if the profit (re-
spectively cost for minimization problems) function shdis the two assumptions
discussed, an upper (lower) bound for the cost of an optimlatisn to RP(P)
can be obtained by solving EV(P), that is the deterministdbfem where all the
stochastic variables are replaced by their respectivectagealues.

Lemma 4.4.1. The profit function folz P(SS K P) is concave inV.

Proof. When proving concavity w.r.8A) we can ignore the constant te@f:1 ri X;.
N — _ +
Whatremainsig(W) = —cE [WT - X — q] , Where “”is the inner product and

W' is vectorV transposed. We now prove thaff (W) = cE [WT X — q} s
convex in)y. By recalling that a maximum of convex functions is conveg][1
this function is clearly convex w.r.t. each element of vedtd and it is therefore
convex in. This implies that- f is concave inV. O

Obviously, in RP(SSKP), it is always possible to find a fekesdssignment
for decision variables, therefore both the assumptionsatisfied for this prob-
lem. The expected value problem EV(SSKP) can be obtaineddgcing every
random variabléV; in RP(SSKP) with the respective expected vailj®/;|, thus
obtaining a fully deterministic model.
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Example 4.4.2.\We here solve the problem where the weights of the objects
are deterministic and equal to the respective expectedhteig E[f(1)]| = 9,
[ELf(2))] = 11, [E[f(3)]] = 11, [E[f(9)]] = 5, [E[f(5)]] = 13. This prob-
lem provides the first two pieces of information needed byomst-based filtering
method, that is (a) the optimal solution of the relaxed peablnd (b) the opti-
mal value of this solution, which represents, accordingrapBsition 1, an upper
bound for the original problem objective function. In ounning example this
solution selects item3, 4, 5 and has a value of EV(SSKR)50. o

4.4.2 Relaxing the expected value problem

It should be noted that, although the expected value proldegasier than the
recourse problem, it may still be difficult to solve (NP-Hpar&or this reason we
can further relax the expected value problem in order toiolaaalid bound by
solving an easier problem. Let R(EV(P)) be a generic relaraif EV(P), then in
a maximization problem EV(R) R(EV(P)), therefore R(EV(P)) provides a valid
bound for the recourse problem.

In SSKP, for instance, instead of solving to optimality tlegestministic (NP-
Complete) knapsack problem obtained for the expected gakmario, we may in-
stead solve in linear time its continuous relaxation, thatgsiming Dantzig’s upper
bound, DUB(EV(SSKP)), for it [63]. DUB(EV(SSKP)} EV(SSKP) and there-
fore DUB(EV(SSKP))> RP(SSKP). DUB(EV(SSKP)) is a valid upper bound for
our recourse problem.

Example 4.4.3.To obtain DUB(EV(SSKP)) we order items for profit over ex-
pected weight:{25/13,20/11,15/11,10/9,5/5}, and we insert items until the
first that does not fit completely into the remaining knapseagacity. Of this
last item we take a fraction of the profit proportional to tlaacity available.
Therefore DUB(EV(SSKP)} 25 + 20 + (6 15/11) = 53.18. o

Obviously now at any node of the search tree it is possibleohesthe ex-
pected value problem taking into account decision vargaaleady assigned and

§Since the problem is here a maximization one, the expectéghtvef each object is rounded
down to the nearest integelr () in order to keep optimistic the bound provided by the refimxa
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exploit this new bound obtained in order to exclude part ef tiiee that cannot
lead to a better solution.

In [32] the authors discuss filtering strategies based onaedl costs (RC).
As we shall see in the next section a similar technique cardbptad for SSKP
as well, provided that an efficient way of obtaining boundavailable for the
expected value problem.

4.4.3 Cost-based filtering

In order to perform cost-based filtering, as in RC-basedifige we need gra-
dient functiongrad(V/,v), which returns for each couple variable-vald&«) an
optimistic evaluation of the profit obtainedifis assigned td’.

This function is obviously problem dependent, but regaslief the strategy
adopted in the former section — i.e. whenever we are usingaxagon for
the expected value problem or we are solving this problenptorality — it is
possible to specify it and use it to filter provably subopftinsues.

In what follows we present a gradient function for SSKP. Atleaode of the
search tree, in order to compute this function, we use amootis relaxation on
the expected value problem similar to the one proposed byzidpfor the well
known 0-1 Knapsack Problem [63]. We will now define the gratlieinction
for SSKP by reasoning on the expected value problem. Asshateat partial
assignment for decision variables is given. Eebe the set of all the items in the
problem,| K| = k. Let S be the set of items for which a decision has been fixed,
with |S| < k. Let¢* be the sum of the expected weights of the elements in
that are part of the knapsack. The prafiissociated to this assignment is equal
to the sum of the profits of the items in the knapsack minusbateal expected
penalty cost(q* —q), if ¢g—q¢* is negative. Now we consider an elemenrt K/S.
There are two possible options: taking it or not into the lgaak. If we take it,
we increase the profit by, minus any eventual expected penalty cost we pay if
the expected residual capacity is already or becomes megdiinally for every
other element in< /S we check if the balance between its profit and the eventual
expected penalty gives an overall positive profit and, ifvge,include it into the
knapsack. This procedure requires at mogt) steps for each element for which
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a decision has not been taken yet, therefore it can be apglieach node of the
search tree to compute a valid upper bound associated toaanceecision on an
item, which therefore may be filtered if suboptimal.

Example 4.4.4.We now consider the case in which iterdasand 3 have been
selected in the knapsack and itenis not selected. We still have to decide on
items1 and5. The total capacity used i = 11 + 11 = 22. The profit7
brought by item< and3 is 35. We consider the set of the remaining items for
which a decision must be takek;/S = {1,5}. Let us reason on iter: this

is a critical item, in fact if taken in the knapsack it will usgore capacity than
the residuaB0 — 22 = 8 units. If we consider the option of taking this item,
then the expected profitis = 10 — 2 % (30 — 22 — 9) = 8, there is no more
residual capacity and itemis therefore excluded in the bound computation since
25 — 4% 13 < 0. The computed bound 8 + 8 = 43. The reasoning is similar
for item 5. If we consider the option of taking this item, then the expdgrofit
is75 = 25 — 2% (30 — 22 — 13) = 15, there is no more residual capacity and
item 1 is therefore excluded in the bound computation sitite- 4 x 9 < 0. The
computed bound i85 + 15 = 50. Assume now that the current best solution has
a value of46, corresponding to a knapsack that contains elentedtand5: then
elementl can be excluded from the knapsack. o

Obviously, as discussed in [32] the information providedh®yrelaxed model
(expected value problem), i.e. expected weights, gradliection etc., can be also
used to define search strategies. For instance in SSKP wernaraghon variables
according to a decreasing profit over expected weight heyr selecting the
one for which the chosen gradient function gives the mosnsing value.

4.4.4 Finding good feasible solutions

In CP, it is critical, in order to achieve efficiency, to quiglobtain a good feasi-
ble solution so that cost-based filtering can prune provabboptimal nodes as
early as possible. In Stochastic COPs the EV(P) solutiorbeaoften used as a
good starting solution in the search process. If such aisolig feasible with
respect to RP(P) — in our examples assumption (ii) guararttde — we can
easily compute EEV(P), that the expected result of using the EV(P) solution in
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the recourse problem RP(Prurthermore, at every node of the search tree it is
possible to adopt a variable fixing strategy and compute tW&JEsolution with
respect to such a node, that is the best possible EV(P) eoluntcorporating the
partial decisions represented by the given node of the lseésge. This provides

a full assignment for decision variables in RP(P) at eachtpufithe search. By
using this assignment, we can again easily compute EEu{RHid case EEV(P)

is the cost of a feasible, and possibly good, solution forFRR{corporating the
partial assignment identified by the current node explandte search tree.

Example 4.4.5.In our SSKP example the solution of the expected value pnople
EV(SSKP), selects item$ 4 and5 in the optimum knapsack. This solution is
clearly feasible for RP(SSKP). We can therefore compute (8SKP)= 46. This
is, of course, a good lower bound for the objective functialug. o

4.5 Experimental results

In this section we report our computational experience andme-stage stochastic
COPs, the SSKP and the Stochastic Sequencing with Releasss EBnd Dead-
lines (SSEQ). In our experiments we used Choco 1.2, an opercessolver
written in Java [58]. We ran our experiments on an Intel(Rht@eo(TM) CPU
1.50GHz with 2Gb of RAM.

4.5.1 Static Stochastic Knapsack Problem

We created a Choco CP model for DetEquiv(RP(SSKP)), and wkemmented for

it a global optimization chance-constraint incorporating filtering discussed in
the former sections. To recall, within this constraint atteaode of the search tree
the stochastic variables are replaced by their respectipected values. Then,
after fixing decision variables according to the partiaugoh associated to the
given search tree node, EV(SSKP) is solved and the boundhelitss used to
prune suboptimal parts of the search tree. Furthermorebassd filtering is per-
formed as explained in Section 4.4.3. Finally EEV(P), ¢élxpected result of us-
ing the EV(P) solution in the recourse probleis computed at each node of the
search tree and used as a valid lower bound (profit of a feasidution). In
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fact RP(SSKP) satisfies assumption (ii) for Propositiorhgrefore the solution
of EV(SSKP) is feasible for RP(SSKP).

In our experiments we adopted a randomly generated testitmédrsto the
one proposed in [56]. There are three sets of instancesdmyesi: the first set has
k = 10, the second set has= 15 and the third hag = 20 items. For all the
instances, item random weightg};, from which scenarios are generated, are inde-
pendent and normally distributed with probability distttilon functionN (p;, ;).
The expected weightgy;, are generated from the uniform (20,30) distribution,
and the weight standard deviations, are generated from the uniform (5,10) dis-
tribution. Rewards-; are generated from the uniform (10,20) distribution. The
per unit penalty is: = 4, while the available low cost capacity gs= 250 for
20 items,q = 187 for 15 items, andg = 125 for 10 items. We randomly gen-
erated, using simple random sampling, sets of scenariaadaifferent sizes:
{100, 300, 500, 1000}. Scenarios are equally likely in terms of probability. The
variable selection heuristic branches first on items witheloprofit over expected
weight ratio. The value selection tries first not to inseritam into the knapsack.
In Table 4.1 we report our computational results. In all th&ances considered
our approach outperforms a pure SCP model in terms of exploydes: the max-
imum improvement reaches a factor of 576.5. Run times acesdisrter in our
approach for almost all the instances. An exception is oeskfor the smallest
instance, where the cost of filtering domains is not comgenday the payoff in
terms of reduction of the search space. The maximum speetiagrved for run
times reaches a factor of 90.5.

4.5.2 Stochastic sequencing with release times and deads

We consider a specific sequencing problem similar to the onsidered by Hooker
et. al [47]. Garey and Johnson [37] also mention this probiertheir list of
NP-Hard problems and they refer to it as “Sequencing witte&s# Times and
Deadlines” (SSEQ). An optimization version of this schéulyproblem was also
described in [50]. The problem consists in finding a feas#isleedule to process
a setl of £ orders (or jobs) using a sét/ of n parallel machines. Processing
an orderi € I can only begin after the release dateand must be completed at
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Instance Time Nodes

k Scenarios|| SCP | SCP-OO| SCP SCP-00
10 100 0.4 0.5 916 100
10 300 1.3 0.5 2630 59

10 500 2.4 0.2 4237 8

10 1000 7.2 2.4 6227 120
15 100 2.5 0.3 4577 11

15 300 15 2.3 10408 252

15 500 33 1.1 9982 75

15 1000 150 6.3 16957 222

20 100 70 10 | 102878 1024
20 300 250 13 85073 953

20 500 860 9.5 | 129715 225

20 1000 || 3200 240 | 134230 7962

Table 4.1: Experimental results for SSKP. Comparison betwaepure SCP ap-
proach (SCP) and an SCP model enhanced with optimizatiented global-

chance constraints (SCP-0OQ), times are in seconds. In @ahve indicated

in bold the best performance in terms of run time and exploates.

the latest by the due datk. Order: can be processed on any of the machines.
The processing time of ordeére I on machinen € M is P,,,. The model just
described is fully deterministic, but we will now consideg@neralization of this
problem to the case where some inputs are uncertain. Foenmnce we will
just consider uncertain processing tinfes, for orderi € I on machinen € M.
Instead of simply finding a feasible plan we now aim to minienike expected
total tardiness of the plan (the deterministic version @ groblem is known as
“Sequencing to minimize weighted tardiness” [37] and it iB-Nard). A solu-
tion for our SSEQ problem consists in an assignment for the gm the machines
and in a total order between jobs on the same machine. In spténaa job
will be processed on its release date if no other previoussjshll processing, or
as soon as the previous job terminates. The recourse prdd{BRSEQ) can be
formulated as a one-stage Stochastic COP. This is showigiriE3.

Decision variableX;,, takes value 1 iff joh is processed on machine, deci-
sion variableS,, takes valud iff job « is processed before jab Constraints (1)
and (2) enforce a total order among jobs on the same machorest@int (3) en-
forces that each job must be processed on one and only onermaacionstraint
(4) states that the (stochastic) completion tidyepf a jobi minus its (stochastic)
durationP;,, on the machine on which it is processed must be greater thequait
to its release date;, whereC; is an auxiliary variable used for simplifying nota-
tion. Letl,, = {Jim. Fom, - - -, Tym} C I be the ordered set of jobs assigned to

141



Objective:
min {Zle E[C; — diﬁ}
Constraints:

1) Sep+Spe <1 Va,bel,...,k,a#b
(2 Xam + Xom < Sap + Spe + 1 Va,bel,...,k,a#bV¥Ymel,...,n
B X" Xim=1 Viel,... k
@ Ci—=>r i PimXim > Viel,...,k
5) Sap=1—0Cp ZCGJ"ZZiL:l,Pmebm Va,be1,...,k,a#b
Decision variables:
(6) Xim €{0,1} Viel,...,k,Vmel,...,n
(7)  Sap€{0,1} Va,be1,...,k,a#b
Stochastic variables:

Pim: processing time of job on machinen
Auxiliary variables:
C;: stochastic completion time of jab

Figure 4.3: RP(SSEQ). Note thgf™ = max{y,0}. E denotes the expectation
operator.

machinem. Cy,,, is defined recursively &;,,, = max{rz,,,Cz, ...} + P7ynm>
andC,,, = 0. Constraint (5) states that if two jolasandb are processed on the
same machine andfis processed beforg that isS,;, = 1, then the (stochastic)
completion time of jolu plus the (stochastic) duration of j@gbon the machine
on which it is processed must be less or equal to the (stachasmpletion time
of job b. Finally, the objective function minimizes the sum of thepegted tardi-
ness of each job. The tardiness is definethas{0,C; — d;}. The cost function
that has to be minimized can be easily proved to be convexearrahdom job
durations. The expected total tardiness is in fact minichize n» machines. Job
completion times on different machines are independestethre if we prove
convexity for machinen € M, then it directly follows that the cost function of
the problem is also conv&x The cost function for machine can be expressed

asE [, (Ci—d;)*].

Lemma 4.5.1. The expected total tardiness for machines convex in the uncer-
tain processing timeg;,,,.

Proof. Maximum of convex functions is conve&, = r7, +P7,. m IS cOnvex:
it follows thatC; for any: € I,, is convex, since functionriax” is a convex
function. Therefore the objective function is convex. O

YNote that the sum of convex functions is convex [16].
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Objective:
min { S5, S0, Priw} [cp — 4] T}

Constraints:
Q) Sap + Spa <1 Ya,bel,..., k,a#b
(2) Xam + Xpm < Sab + Spa + 1 Va,bel,..., k,a#bVmel,..., n
A" Xim =1 Viel,..., k
andvv € 1,..., w
@Cy —r _ PE Tim > T4 Vi€l,... k
(B)Sap=1—C¢ > CY+ 3 m_ 1 PP Xom Va,b€l,....k,a#b
Decision variables:
(6) Xim € {0,1} viel,..., k,Vmel,..., n
(7) Sap € {0,1} Va,bel,..., k,a#b
(8)CY € {0, max;j—1,.. k7i+

Ele(maxm:1 ,,,,, nTim)} Viel, ..., kVYvel, ..., w

Figure 4.4: DetEquiv(RP(SSEQ)). Note tHal™ = max{y,0}. Pr{v} is the
probability of scenario € {1,...,w}. Note thaty """, Pr{v} = 1.

In RP(SSEQ) a feasible solution can be found for any giverokstochas-
tic job lengths, therefore both the assumptions are satig@ie this problem.
We hand-crafted a deterministic equivalent model DetHERIM{SSEQ)) shown
in Fig. 4.4 for the RP(SSEQ) following the guidelines of saeo-based approach
described in [91]. In this modeR} . is the deterministic length of jobon ma-
chinem in scenariov and C} is the deterministic completion time of jabin
scenario.

Finally, as discussed for SSKP, we can obtain the expectkek yaoblem
EV(SSEQ) by replacing every stochastic variaBlg, in RP(SSEQ) with the re-
spective expected vallgP;,,]. Since all the chance-constraints in RP(SSEQ) are
“hard”, they are retained in EV(SSEQ) and they become detestic.

We implemented DetEquiv(RP(SSEQ)) in Choco and we codegimization-
oriented global chance-constraint which exploits the etguévalue problem both
in order to generate valid bounds at each node of the searehatrd to filter
provably suboptimal values from decision variable domaitseach node of the
search tree, we consider the associated partial assigrioregeecision variables
X:m and Sy, and we fix decision variables in EV(SSEQ) according to it. Mhe
we solve EV(SSEQ) with respect to the remaining decisiomatées that have
not been assigned. This provides a lower bound for the casti@fally optimal
solution associated to the node considered. This bound earsdd for pruning
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Instance Time Nodes

Jobs  Machines| Scenarios|| SCP SCP-O0| SCP SCP-0O0
3 2 10 0.3 0.3 203 48
3 2 30 1.3 0.6 701 133
3 2 50 3.2 1.1 927 418
3 2 100 12 35 1809 838
7 3 10 180 866 57688 1723
7 3 30 1800 880 | 186257 5293
7 3 50 3300 1100 | 212887 6586
7 3 100 || 14000 1200 | 277804 8862

Table 4.2: Experimental Results for SSEQ. Comparison batveepure SCP ap-
proach (SCP) and an SCP model enhanced with optimizatiemted global-

chance constraints (SCP-0OQ), times are in seconds. In @ahve indicated

in bold the best performance in terms of run time and exploztes.

suboptimal nodes. Furthermore at any given node, afteopeihg variable fixing

in EV(SSEQ) for every variabl&;,,, andS,, already assigned, all the remaining
binary variablesX;,, that have not been assigned yet can be forward checked one
by one by fixing the respective value to 1, by solving EV(SSE@h this new
decision fixed, and by employing the new bound provided.

In order to generate instances for our experiments, we adaptease times,
deadlines and deterministic processing times from thetfwrst*hard” instances
proposed in [47], the one with 3 jobs and 2 machines and thevdh& jobs and 3
machines. In each scenario, we generated processing timfesnly distributed
in [1,2 x J;,), whereJ,,, is the deterministic processing time required for job
on machinem for the instance considered. We considered different nurabe
scenarios if{ 10, 30, 50, 100}. Scenarios are equally likely in terms of probability.
The variable selection heuristic branches first on binagisien variables. The
value selection tries increasing values in the domain. l€rd.2 we report the
results observed with and without the improvement brougholr cost-based
filtering approach.

It should be noted that in this case, in contrast to the agpreanployed for
SSKP, we only relax stochastic variables and we do not emgpl@taxation for
the deterministic equivalent problem, which therefore asra NP-Hard. Recall
that in SSKP we adopted Dantzig’s relaxation to efficientiyain a bound for the
deterministic equivalent problem. A direct consequencthisfis that, while in
the SSKP example the improvement is significant both in texihegplored nodes
and run times for all the instances, in this example the me tmprovement starts
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to be significant (a factor of 11.6) only for the largest imst&a (7 jobs and 3 ma-
chines) and for a high number of scenarios (100 scenarids3.ig due to the fact
that at every node of the search tree we solve a difficult pralfalthough far eas-
ier than the original stochastic constraint program) t@aobbounds and perform
cost-based filtering. In terms of explored nodes, howevemhbtain a significant
improvement for every instance considered — the maximunrargiment factor
is of 32.3 — since the bounds generated are tight.

4.6 Related works

This paper extends the original work by Focacci et al. [32]optimization-
oriented global constraints. It also extends the origidahi of global chance-
constraints [75] to optimization problems. It should beaubthat dedicated cost-
based filtering techniques for stochastic combinatoriihtigation problems have
been presented in [88], but these techniques are spedidtizénventory control
problems, while those here presented can be applied to a wlaks of stochastic
constraint programs. On the other hand this work also bwifdsnown inequali-
ties borrowed from stochastic programming [4, 11] usualiyleited for relaxing
specific classes of stochastic programs and obtaining gowads or approximate
solutions. Nevertheless stochastic programming modelsyaically formulated
as dynamic programs or MIP models. In both cases these bavadst exploited
for filtering decision variable domains as in our approadhthey cannot be used
for guiding the search.

4.7 Conclusions

We proposed a novel strategy to perform cost-based filtéoingertain classes of
stochastic constraint programs, under the assumptioh§ttlae objective func-
tion is concave or convex in the stochastic variables, ahdh@ existence of a
feasible solution is not affected by the distribution of h@chastic variables. This
strategy is based on a known inequality borrowed from ststaharogramming.
We applied this technique to two combinatorial optimizatgroblem involving
uncertainty from the literature. Our results confirm thateys-of-magnitude im-
provements in terms of explored nodes and run times can bevach In the
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future, we aim to apply cost-based filtering to multi-stagecBastic COPs, de-
fine strategies to handle generic chance-constraints,hwdmnie currently ruled
out by our assumptions, extend the approach to other vatiqualities such as
Edmundson-Madansky [11] or to suitable inequalities fon-convex problems
[57]. Finally, we plan to exploit the information provided bptimization-oriented
global chance-constraints to define search strategies.
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Chapter 5

Paper IV: Cost-based Filtering
Techniques for Stochastic Inventory
Control under Service Level
Constraints

S. A. Tarim, B. Hnich, R. Rossi and S. Prestwich

Abstract

This paper considers a single product and a single stocB@agibn production/inventory
control problem given a non-stationary stochastic demahaler a widely-used
control policy for this type of inventory system, the objeets to find the optimal
number of replenishments, their timings and their respeatrder-up-to-levels

that meet customer demands to a required service level. Wada known CP
approach for this problem using three cost-based filteriathods. Our approach

can solve to optimality instances of realistic size muchergfficiently than pre-

vious approaches, often with no search effort at all.

tThis paper is an extended version of the work presented i [87
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5.1 Introduction

Inventory theory provides methods for managing and caimigplnventories un-

der different constraints and environments. An intergstiass of production/inventory
control problems is the one that considers the single{lmeasingle-product case
under non-stationary stochastic demand. Such a probleingmswidely studied
because of its key role in practice.

We consider the following inputs: a planning horizon [§f periods and a
demand/, for each period € {1, ..., N}, which is a random variable with prob-
ability density functiong,(d;). In the following sections we will assume without
loss of generality that these variables are normally distedd. We assume that the
demand occurs instantaneously at the beginning of eachpiémed. The demand
we consider is non-stationary, that is it can vary from peteperiod, and we also
assume that demands in different periods are independdixed\delivery cost
is considered for each order and also a linear holding/c@stonsidered for each
unit of product carried in stock from one period to the nexéniands occurring
when the system is out of stock are assumed to be back-ordackdatisfied as
soon as the next replenishment order arrives. We assumig ighabt possible to
sell back excess items to the vendor at the end of a period.ai@urs to find a
replenishment plan that minimizes the expected total edsith is composed of
ordering costs and holding costs, over fiigeriod planning horizon, satisfying
the service level constraints. As a service level condtiaerequire that, with a
probability of at least a given valug, at the end of each period the net inventory
will be non-negative.

We decided to ignore in this model the linear production gostcurred for
each unit produced. The logic behind this simplificationref problem is as fol-
lows. In the deterministic production planning problenmcs all the demand has
necessarily to be met, any optimal solution is independkthieogiven production
cost. The production cost is therefore a constant of thelgnobThis is also true
for the stochastic production planning problem under itditiorizon, provided
that demands occurring when the system is out of stock aledraered and sat-
isfied as soon as the next replenishment order arrives. Abaifustification is
that when time tends to infinity, under a demand back-ordeagsumption, all the
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realized demand will be necessarily satisfied and the ptaducost will become
a constant of the problem. When the planning horizon is firdtein our case,
the production cost may have an impact on the structure ofpéimal solution,
as in an optimal solution we will tend to clear up stocks whenapproach the
end of the planning horizon. This may therefore affect timgie of some replen-
ishment cycles at the end of the planning horizon. In fact vag hmave a shorter
final cycle in order to keep less buffer stocks at the very pestod, especially
if the production cost is high. On the other hand the propaesedel has to be
considered within the more general picture of inventorytadn Typically a finite
planning horizon assumption is made because forecaststdaok too far ahead
in time. This does not mean that production will stop at the ehthe planning
horizon: rather, a new optimization will often occur at thatnt, which considers
new forecast information that has become available. Thisgss is common in
inventory control and it is known asralling horizon[81] approach. It is obvious
that, under a rolling horizon approach and a demand baokriogl assumption,
again in the long run we will tend to satisfy all the realizeshthnd and the pro-
duction cost will again become a constant of the problem #seiinfinite horizon
case. Moreover it should be noted that in this case conaglerproduction cost
p may even lead to suboptimal solutions, in fact we may scleeahalre replenish-
ment cycles than strictly needed in order to keep unsoldkstlmw at the end of
the given finite horizon. But since the production does nop stt the end of the
finite horizon this will give no real cost benefit and will iesd increase the total
fixed delivery cost in the long run. For this reason we ignharehsa cost compo-
nent as Bookbinder and Tan do in their heuristic approach [26 the other hand
extending the results in this paper to consider a productistp is easy, and in
Appendix 5.7.1 we will describe how this can be done. Diff¢i@ventory con-
trol policies can be adopted for the described problem. Acpditates the rules
to decide when orders have to be placed and how to computephenishment
lot-size for each order. For a discussion of inventory aargolicies see [81].

One of the possible policies that can be adopted is the risple@nt cycle
policy, (R, S).

Under the non-stationary demand assumption this poliast#ie form R", S™)
whereR" denotes the length of theh replenishment cycle antf* the order-up-
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b(i,j)

—_————

Rn-l Rn

Figure 5.1: R",S™) policy. R™ denotes the set of periods covered by title
replenishment cycle§™ is the order-up-to-level for this cyclé), is the expected
order quantityyl; + d;11 + ... + d; is the expected demandl;i, j) is the buffer
stock required to guarantee the required service level

to-level for replenishment (Fig. 5.1). In this policy a waitd-see strategy is
adopted, under which the actual order quantity for replenishment cycle is
determined only after the demand in former periods has besdized. The order
guantity@,, is computed as the amount of stock required to raise thengost
ventory level of replenishment cycle— 1 up to levelS™. In order to provide a
solution for our problem under thgk™, S™) policy we must populate both the sets
R™andS" forn = {1,...,N}.

There is a large literature on deterministic productiomplag. This problem
has been mentioned by Garey and Johnson [37]. In [30] Fl@iamal. gave an
overview for the complexity of this problem. In particuldrely established NP-
hardness for this problem under production cost (compotadired cost and a
variable unit cost), zero-holding cost and arbitrary picithn capacity constraint.
They also extended this result by considering other passibst functions and
capacity constraints. Polynomial algorithms are disatliss¢he same paper for
a few specific cases. Among these they cited Wagner and V¢higii] work,
where the infinite capacity deterministic production plagrproblem is solved in
polynomial time.

In contrast the respective stochastic formulation for fiigblem has been
solved to optimality only recently, due to the complexityaived in the model-
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ing of uncertainty and of the policy-of-response. Early kgin this area adopted
heuristic strategies such as those proposed by Silver f8Kin [3] and Book-
binder & Tan [15]. Under some mild assumptions the first catglkolution
method for this problem was introduced by Tarim & Kingsma#][8vho pro-
posed aleterministic equivalern¥lixed Integer Programming (MIP) formulation
for computing(R", S™) policy parameters. Empirical results showed that such
a model is unable to solve large instances, but Tarim & Sn@#j [ntroduced
a more compact and efficient Constraint Programming (CRhditation of the
same problem that showed a significant computational inggn@nt over the MIP
formulation. Astochastic constraint programmirj§1] approach for computing
(R"™, S™) policy parameters is proposed in [75]. In this work the atghdyop the
mild assumptions originally introduced by Tarim & Kingsmand compute op-
timal (R", S™) policy parameters. Of course there is a price to pay for drapp
Tarim & Kingsman’s assumptions, in fact this latter appirosdess efficient than
the one in [92].

This paper extends Tarim & Smith’s work, which builds on Wa& Kings-
man’s assumptions. We retain their model and we augment auncbdel with
threecost-based filteringnethods to enhance domain pruning. One of these tech-
niques, based on a relaxation proposed by Tarim [86] anceddby means of
dynamic programming, has been already presented in [8hisrwork we pro-
vide two additional cost-based filtering techniques and wteral the discussion
on Tarim’s relaxation and on the implementation of the reipe cost-based fil-
tering method.

Cost-based filtering is an elegant way of combining techesdgutom CP and
Operations Research (OR) [28, 31]. OR-based optimizagohrtiques are used
to remove values from variable domains that cannot leadtterbsolutions. This
type of domain filtering can be combined with the usual CReddstering meth-
ods and branching heuristics, yielding powerful hybridrekalgorithms. Cost-
based filtering is a novel technique that has been the subjesignificant re-
cent research, but to the best of our knowledge it has notqusly been applied
to stochastic inventory control. In the following sections will show that it
can bring a significant improvement when combined with tlagesof-the-art CP
model for stochastic inventory control. It should be noteat ivhile the technique
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based on Tarim’s relaxation can easily be recognized asaictast-based filter-

ing method, the two additional techniques here presented atmsed on bounds
obtained through a relaxation. Instead, as we will see, éx@joit reasoning on

the problem cost structure to prune values in the domains@$ibn variables that
cannot lead to optimal solutions. Our experimental reslitsv the efficiency ob-
tained by the combined used of these three filtering teclesigiuring the search
for an optimal solution.

The paper is organized as follows. Section 5.2 describe€henodel and
the pre-processing techniques introduced by Tarim & Snftection 5.3 firstly
extends one of Tarim and Smith’s pre-processing technimpuasst-based filtering
method, allowing it to be applied at every search tree nodeoi&dly it proposes a
general approach for applying any sound pre-processihgigce at every search
tree node in a cost-based filtering fashion. Section 5.4ritesca relaxation that
can be efficiently solved by means of a shortest path algorimd produces tight
lower bounds for the original problem which is used to parféurther cost-based
filtering. Section 5.5 evaluates our methods. Section Sa@sliconclusions and
discusses future extensions.

5.2 A CP model

In this section we review the CP formulation for thg™, S™) policy proposed
by Tarim & Smith [92]. First we provide some formal backgrdurelated to
stochastic programming.

Stochastic programminf1] is a well known modeling technique that deals
with problems where uncertainty comes into play. Problefrgotimization un-
der uncertainty are characterized by the necessity of rgatt@tisions without
knowing what their full effect will be. Such problems appeamany area of ap-
plication and present many interesting conceptual and atetipnal challenges.
Stochastic programming needs to represent uncertain eteroé the problem.
Typically random variables are employed to model this utagety to which prob-
ability theory can be applied. For this purpose such unceel@ments must have
a known probability distribution. The typical requiremémsstochastic programs
is to maintain certain constraints, calletdlance constraint§l8], satisfied at a
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prescribed level of probability. The objective is typigalélated to the minimiza-
tion/maximization of some expectation on the problem co3tsere are several
different approaches to tackle stochastic programs. Arfiethod dealing with
stochastic parameters in stochastic programming is thealked expected value
model[11], which optimizes the expected objective function sgbjto some
expected constraints. Another methathance-constrained programmingas
pioneered by Charnes and Cooper [18] as a means of handlreytamty by
specifying a confidence level at which it is desired that tioelsastic constraint
holds. Chance-constrained programming models can be iedvato determin-
istic equivalents for some special cases, and then solvedrg solution methods
of deterministic mathematical programming. A typical exdefor this technique
is given by the Newsvendor problem [81]. However it is almiagpossible to
do this for complex chance-constrained programming mod&lgird approach
employs scenarios, which are particular representatibhew the future might
unfold. Each scenario is assigned a probability value, ihds likelihood. An
appropriate probabilistic model or simulation is used toagate a batch of such
scenarios. The challenge then, is how to make good use o seEnarios in
coming up with an effective decision.

The stochastic programming formulation for the generaltiapgriod produc-
tion/inventory problem with stochastic demand can be esqwé as finding the
timing of the stock reviews and the size of the respectivemegative replenish-
ment orders with the objective of minimizing the expectaditoostE{TC'} over
a finite planning horizon oV periods. The model is given below,

N
min E{TC}:/dl /d2 dN;(a6t+h-ma><(It,0)) 5.1)

gl(dl)gg(dg) P gN(dN)d(dl)d(dg) P d(dN)
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subjectto, for =1... N

5t:{ 1, if Q>0 5.2)

0, otherwise

L=1I+) (Qi—d) (5.3)
=1

PH{l, >0} >« (5.4)

LezZ Q>0 ¢ €{0,1}. (5.5)

Each decision variablg represents the inventory level at the end of petiothe
binary decision variable§; state whether a replenishment is fixed for period
(6; = 1) or not ), = 0). If an order is placed in period constraint (5.2), decision
variable; denotes the size of the respective non-negative repleeisharder.
Chance constraint (5.4) enforces the required servicé, lihat is the probability
« that the net inventory will not be negative at the end of eacle period. The
objective function (5.1) minimizes the expected total @ar the given planning
horizon.

In [89] the authors assume that negative orders are notedlpso that if the
actual stock exceeds the order-up-to-level for that petlud excess stock is car-
ried forward and not returned to the supply source. Howestgsh occurrences
are regarded as rare events and accordingly the cost ofruathe excess stock
and its effect on the service level of subsequent periodgnisred. Under these
assumptions the chance-constrained problem can be eggregsneans of de-
terministic equivalentnodel where buffer stocks for each possible replenishment
cycle are computed independently.

We now recall some basic notions abaanstraint programming A Con-
straint Satisfaction ProblerfCSP) [1,17] is a tripl§V, C, D), whereV is a set
of decision variables each with a discrete domain of valli€g,), andC' is a
set of constraints stating allowed combinations of valwestibsets of variables
in V. Finding a solution to a CSP means assigning values to Yasdiom the
domains without violating any constraint@ We may also be interested in find-
ing a feasible solution that minimizes (maximizes) the gadfia given objective
function over a subset of the variables. Constraint soltygtally explore par-
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tial assignments enforcing a local consistency propelitygusither specialized or
general purpose propagation algorithms. Such propagalimmithms in general
exploit some structure of the problem to prune decisioralde domains in more
efficient ways.

The following CP formulation of th&eterministic equivalernodel for the
(R, S™) policy is proposed in [92]:

N
min E{TC} =Y (aét + hft> (5.6)

t=1

subjectto,for =1... N

Li+d— 1,1 >0 (5.7)

jt+6it—l~t_1>0:>5t:1 (58)

I,>b < max j @-,t) (5.9)
Jje{1,...,t}

I, ezt U{0}, 6, €{0,1}, (5.10)

whereb(i, 7) is defined by

J
D) = Galiareva (@) = D di.

k=i

Constraint (5.9), originally proposed by Tarim and Smitm be implemented by
means of the following set of constraints, foe 1... N

Y, >j-6; j=1,...,t (5.11)

element (Y, b(-,t), Hy) (5.12)
I, > H, (5.13)
I,H, eZ*u{0}, 6 €{0,1}, Y,e{l,...,N}. (5.14)

The element(X, list[],Y) constraint [45] enforces a relation such that variable
Y represents the value of element at positionn the given list. Gy, 1a,,,+...44;
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is the cumulative probability distribution function a@f + d;11 + ... + d;. Itis
assumed thaf is strictly increasing, hena&~! is uniquely defined.

Each decision variabl® represents the expected inventory level at the end of
periodt. Eachd, represents the expected value of the demand in a given period
according to its probability density functign(d;). The binary decision variables
0, state whether a replenishment is fixed for perigd = 1) or not (5, = 0). The
objective function (5.6) minimizes the expected total anar the given planning
horizon. The two terms that contribute to the expected tatsi are ordering costs
and inventory holding costs. Constraint (5.7) enforces-®ungback condition,
which means that received goods cannot be returned to thiesupAs a conse-
qguence of this the expected inventory level at the end obdeérmust be no less
than the expected inventory level at the end of petied1 minus the expected
demand in period. Constraint (5.8) expresses the replenishment conditida.
have a replenishment if the expected inventory level atildeoé period: is greater
than the expected inventory level at the end of petied1 minus the expected
demand in period. This means that we received some extra goods as a conse-
qguence of an order. Constraints (5.9) enforce the requerdce levela. This is
done by specifying the minimum buffer stock required forreperiodt in order
to assure that, at the end of each and every time period, tfs@bpility that the net
inventory will not be negative is at least These buffer stocks, which are stored
in matrix b(-, -), are pre-computed following the approach suggested in [B9]
this approach the authors transformed a chance-consinaiodel, that is a model
where constraints on some random variables have to be nmadtat prescribed
levels of probability, in a completely deterministic oneor Further details about
chance-constrained programming see [18].

5.2.1 Domain pre-processing

In [92] the authors showed that a CP formulation for commuéptimal(R™, S™)
policies provides a more natural way of modeling the problemctontrast to the
equivalent MIP formulation the CP model requires fewer tx@msts and provides
a neater formulation. However, the CP model has two majavioiaaks. Firstly, in
order to improve the search process and quickly prove ofityyigght bounds on
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the objective function are needed. Secondly, even wherpitssible to compute
a priori the maximum values that such variables can be assignecete tralues
(and therefore the domain sizes of thevariables) are large. The domain size
value is equal to the amount of stock required to satisfy esgissnt demands till
the end of the planning horizon, meeting the required serigeel when only a
single replenishment is scheduled at the beginning of taenhg horizon.

To address the domain size issue, Tarim & Smith proposed tesppcessing
methods in order to reduce the size of the domains beforéngiahe search
process, by exploiting properties of the given model anchef(2", S™) policy.
Method | computes a cost-based upper bound for the lengthatf possible re-
plenishment cycld’(i, j), starting in period, for all i, € {1,...,N}, i < j.
Note that7'(i, j) denotes the time span between two consecutive replenishmen
periodsi andj + 1. Method | therefore identifies sub-optimal replenishmgute
lengths allowing a proactive off-line pruning, which elimates all the expected
inventory levels that refer to longer sub-optimal replament cycles. Method
Il employs a dynamic programming approach, by consideraxheeriod in an
iterative fashion and by taking into account in each steppassible courses of
action: either an order with an expected size greater themigeplaced, or no
order (equivalently an order with a null expected size) &pt in the considered
period within our planning horizon. The effects of thesegualge actions in each
step are reflected in the decision variable domains by remyoxalues that are not
produced by any course of action.

5.3 From pre-processing to cost-based filtering

In the previous section we described a CP formulation foi( ftieS™) policy. In
[92] the authors discussed the advantages of such a foiomhabhen it is com-
pared to the MIP formulation proposed in [89]. CP not onlyfpens faster than
MIP and provides a neater formulation, it also allows us titddodedicated filter-
ing algorithms for pruning infeasible and/or suboptimdlres for the domains of
decision variables during the search.

In Section 5.3.1 we extend the first of the two pre-processietghods pro-
posed in [92] in order to exploit partial assignments of dieei variables in the
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model to prune suboptimal values from the domains of the r&@ingadecision
variables still unassigned at any point of the search peoces

In Section 5.3.2, we describe a generic approach to apppregrocessing
techniques not only in a proactive way, before the searcbhgastarts, but also
during the search, by exploiting partial information whibérives from the cur-
rent decision variable assignments. We emphasize thappi®ach may be used
in conjunction with any sound pre-processing method dgezdor our inven-
tory/production problem and it is not limited to the two grecessing methods
proposed in [92].

A running example is given to show that the two methods pregase incom-
parable in term of domain reduction achieved.

5.3.1 Tighter upper bounds for optimal replenishment cycle
lengths

We now present a filtering method that is a natural extensigire>processing
method | in [92]. This method prunes variable domains, whpar#ial solution is
given, by enforcing tighter upper bounds for optimal rebment cycle lengths
than those proposed by Tarim and Smith. When no partialisolig provided this
filtering method realizes the same domain reduction perdriyy the respective
pre-processing method.

Firstly let R(4, j) = b(i,5) + S.7_, d, be the required minimum opening in-
ventory level in period, i € {1,..., N}, to meet demand until perigd+ 1. The
cycle coste(i, j), when a variable holding cost (¢t € {1,..., N}) is considered,
can be expressed as

J Jj—1 J
clij) =a+ Y hb(i,j)+> h Y dy (5.15)
t=1 t=1 k=t+1

The cost (5.15) of a replenishment cycle is the sum of two comepts. A fixed
ordering costu, that is charged at the beginning of the cycle when an order is
placed, and a variable holding cdst charged at the end of each time period
within the replenishment cycle and proportional to the amtai stocks held in
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inventory. In [92], for each period € {1,..., N} over the planning horizon
N, an upper bound for the length of an optimal replenishmedlec(i, p)* that
starts in such a period is proposed. The authors congptéori this bound for
every periodi and derive from it a superset of all candidate opening-itvgn
levels for any period in the planning horizon. Let us refethis bound as3 (Fig.
5.2 - a), and lefj = i + B. Then the last periog of an optimal replenishment
cycleT'(i,p)* satisfies < p < j. j = i + B can be computed as the minimum

(a)

hS]
A A
ST
B
~

B+1 B+1

B+l

Figure 5.2: Bound tightening when a partial solution is givéa) since it is not
optimal to cover more tha® + 1 periods with a single replenishmentinthe
optimal policy lies in the gray area; (b) the bouBdcan be tightened t®’ when
an order is scheduled in periad+ 1,i < k < j

j satisfying the following conditions described in [92], whiformally identify
boundB
c(i,k)+clk+1,5) > c(i,j) Vbli,k) > R(k+1,7) (5.16)

forallk € {i,...,j — 1}, and
c(i,k)+eck+1,j+1) <c(i,j+1)Ab(i,k) <R(k+1,7+1) (5.17)
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for somek € {i,...,j}, giventhatvp € {j + 2,..., N} such ak satisfies

— Zp: (k+1—=d)d+ (p—k)bk+1,p)— (G —k+Dbk+1,j+1) <
(p—1+4+1)b(i,p) — (j —i+2)b(i,j +1).
(5.18)

A proof for these conditions is given in Appendix 5.7.2.
When a partial solutiord is given, it is possible to tighten the bourii by
using the following observations:

e if §; is assigned tO then no replenishment cycle starts in period

e if 0; is not assigned t6 and3k € {i,...,i + B — 1} such thaty,,; = 1,
then B can be tightened to the smallgest : value B’ (Fig. 5.2 - b)

In order to compute the tighter bour! for a given period € {1, ..., N} when
a partial solutiort' is given we introduce the following Lemma.

Lemma 5.3.1.1f there exists some € S such that),,.; = 1 andi < k < j, then
B can be tightened t&’ = ;' — i where

j’zmin({k| Sei=Lke{i...i-11} | {j}).

Proof. Trivially the replenishment scheduled in peribd- 1 rules out the chance
of covering periods, . . . , j wherej > k with a single cycle. 0

By means of the described tighter bouRd we can now obtain smaller su-
persets of all candidate opening-inventory-levels thays¢hdescribed in [92].
For convenience in what follows we will refer to the expeatémksing-inventory-
levels, that is opening-inventory-level minus expectechded in the period con-
sidered.

A first reduction in the size of the super-sets is due to the tfzat if §; is
assigned to zero, no replenishment cycle starts in périotherefore no value
that is a candidate expected closing-inventory-level for @eplenishment cycle
starting in period is feasible with respect to the given partial solution. @thise
candidate values can be computed as described in the faljowi
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Lemma 5.3.2. Whend; is not assigned t0, a sufficient but not necessary condi-
tion that identifies candidate expected closing-inventewel values imDom(1,,),
m € T(i,7") for a replenishment cycle starting in periads defined as follows

(see Fig. 5.3):

Dom(I,,) 2 {7‘ T = R(i,1) — idt, le{m,...,5'} } : (5.19)

Proof. As shown in [92], equation (5.19) considersitom(1,,) for eachm €
T(1,7') every value that is feasible if there is a replenishmentecgtarting in
period:. In fact if p denotes the final period of the optimum length replenishment
cycle for periodi, 6, = 0, k = {i + 1,...,p}, the optimum expected closing
inventory level for periodn, wherei < m < p, is R(i, p) — 31" d,. The domain

of possible values is therefore obtained by lettimgnge fromm to j. Tightening

j to j' is correct because, when a partial solution is given, thi®igs values
related to every infeasible replenishment cycl&s, ), where;’ < r < j and
0,41 = 1, if any exists. d

B+l

Figure 5.3: Subset of candidate optimal expected closiagrtory-levels for pe-
riod m, m € {i,...,7'}. These values can be computed as stated in Lemma
5.3.2. The whole set of candidate levels shown in the piahag be computed

by rangingm fromi to j’

The former condition is only sufficient because there magtether candidate

values that should be iom(1,,) as we did not take into accounégative order
quantityscenarios. Such situations arise when for seme 7'(7, j'), c¢(i, m) +
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c(m+1,7") < c(i,j') andb(i,m) > R(m+1, j') (Fig. 5.4 - a). In this case, since

a c
(®) 5;#0 8,1 %0 ©
' . ' ' ' ' ' '

.

Figure 5.4: (a) Negative order quantity scenario. Addgiovalues, computed
by Lemma 5.3.3, to be considered in the subset of candiddimalpexpected
closing-inventory-levels for each perigdwhen (b) an order with expected size
greater than zero is scheduled in perind- 1,p € {m + 1,...,h'}, (c) an order
with expected size zero is scheduled in petiogt 1, p € {m+1,...,w}. In both
case9,,.1 # 0 since it must be possible to schedule an order in period 1

the replenishment policy expects a negative order and e&asgilble, an optimal
policy can be either the one that schedules a new order ingeri+ 1 with an
expected lot-size greater than zero (Fig. 5.4 - b) or an dggddot-size of zero
(Fig. 5.4 - ¢). Lemma 5.3.3 and 5.3.4 characterize whichtaudil values have
to be considered when a negative order quantity scenasesari

Lemma5.3.3.1f §,,.1 = 0, Eq. (5.19) is a necessary and sufficient condition that

identifies candidate expected closing-inventory-levélesin Dom(1l,,), m €
T(i,j") for a replenishment cycle starting in period

Proof. In [92] it is stated that, if is a replenishment period and we want to cover
subsequent periods up to, in a feasible policy a replenishment should then be
scheduled inn + 1. Sinced,,,; = 0, it is not feasible to cover periods frofno
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m With a single order in because to do so we would need an additional order in
periodm + 1 that is ruled out by the partial assignment. O

Lemma 5.3.4.1f §,,.1 is not assigned to zero, every further candidate expected
closing-inventory-level value for a replenishment cytseteng in period: can be
identified by considering two possible courses of action:

e a new order is scheduled for period + 1 and its expected size is greater
than zero, (Fig. 5.4 - b). In this casejif # 1 fork = {m +2,...,v}, we
also consider the following candidate expected closinvgimory levels

Dom(I,) D {7‘

T = R(m-i—l,v) - Z Czt} ) (5-20)

t=m-+1
forn = {m+1,...,v}, wherev = min {l ‘b(m +1,0)+ Zizmﬂ d; > b(i,m) }

e anew order is scheduled for peried+ 1 and its expected size is zero, (Fig.
5.4 - ¢). In this case we also consider the following candidetpected
closing-inventory levels

Dom(I,) D {7‘

T=bim — Jt}, (5.21)

t=m+1

forne {m+1,...,w}, where

w:max{l

Proof. As shown in [92], equation (5.20) adds Bwm(1,,) every further feasible
values by considering the option of placing an order whogeeted lot-size is
bigger than zero. In fact if we assume that the high levelspgiing inventory
carried from periodn satisfy the service-level constraint for the following- 1

consecutive periods, then the remaining inventory is nough to satisfy this
constraint for period.. To comply with the service level constraint in period
the order quantity must be at ledgin + 1,v) + >, ., dy — b(i,m). Hence

dge{m+1,...,1},b(q, 1) + Z thb(i,m)}.

t=m-+1
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this replenishment covers the periods until the end, atherev = min{l|b(m +
1,1) + Zizmﬂ d, > b(i,m)}. If an order has been scheduled for a period
{m +2,..., v}, then by definition the remaining inventory at the end of eri
m is enough to satisfy demands in peridds + 1, ..., t}, therefore the optimal
expected order quantity for period + 1 is zero.

Equation (5.21) adds t®om(1,) every further feasible values by consider-
ing the option of placing an order whose expected lot-sizzer®. In this case,
since the replenishment expects a zero order quantityxitese stock may affect
subsequent periods regardless of the orders placed. dhenst look forward
in the planning horizon up to the point where no followinglegppshment cycle
may be affected by the excess stock carried on from the dusren Hence, the

farthest period that may be affectediis= max{i|3q € {m +1,...,1},b(q,1) +
>t de < b(i,m)}. O

Theorem 5.3.1.When a patrtial solution is given, by rangindrom1 to NV, equa-
tions (5.19, 5.20, 5.21) identify the feasible subset ofiemlwithin the current
Dom(I), fork € {1,...,N}.

Proof. Directly follows from Lemmas 5.3.1, 5.3.2, 5.3.3 and 5.3.4. O

Example 5.3.1.We now present a running example where the planning horizon
is N = 24 periods and the initial stock level is equal to zero. The dwinia
normally distributed in each periade {1, ..., N} with a constant coefficient of
variationat/cit = 1/3, whereo, is the standard deviation of the demand in period
t. The demand forecasts (mean value for each period) ard Iisteable 5.1. The
other parameters for the problem ase= 200, h = 1, « = 0.95. The optimal so-
lution for the CP model when former inputs are consideretidsvé in Table 5.2.
The (R", S™) policy parameters, that is replenishment cycle lengthsaddr-
up-to-levels, for this instance can be easily computed filoersolution of the CP
model. We applied the described filtering method withoutstdering a given
partial solution, the domain reduction achieved is theeetmuivalent to the one
performed by pre-processing method I introduced in [92]sTWay we computed
the reduced domainSom(1,) for the decision variableg, ¢ € {1, ..., N}. These
reduced domains are shown in Table 5.3. We now consider ttialpgolution
shown in Table 5.4. Table 5.5 shows the reduced domainsnatavhen we en-
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i 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Ji 73 0 128 116 92 180 28 164 28 161 37 57 181 62
i 15 16 17 18 19 20 21 22 23 24
Ji 34 161 2 10 40 192 17 190 163 32
Table 5.1: Demand forecasts
) 1 2 4 5 6 7 8 9 10 11 12 13 14
o; 1 0 1 1 0 1 0 1 0 1 1 0 1 1
fi 40 40 70 173 81 128 100 119 91 8 94 37 99 73
) 15 16 17 18 19 20 21 22 23 24
o; 0 1 1 0 0 1 0 1 1 0
~Z 39 88 &6 76 36 123 106 104 123 91
Table 5.2: Optimal solution
i Dom(I;) i Dom(I;)
1| {40} 13 | {99,167}
2 | {0,40,198} 14 | {34,37,73,105}
3 | {70,211} 15 | {19,39}
4 | {64,95,173} 16 | {88,90,100, 143}
5 | {50,81} 17 | {1,16,73,86,88,98, 141,350}
6 | {99,128} 18 | {5,6,63,76,78,88,131,340}
7 | {15,71,100} 19 | {22,23,36,38,91,300}
8 | {90,119} 20 | {105,108,123}
9 | {15,62,91} 21 | {9,88,106}
10 | {88,128} 22 | {104}
11 | {20,51,91,94} | 23 | {89,123}
12 | {31,37} 24 | {18,57,91}

Table 5.3: Reduced domains after applying our filtering rm@tiwhen no partial
solution is given. The reduction achieved is equivalent® ¢ne provided by
pre-processing method | in [92]. Underlined figures areinpiventory levels

of the optimal policy

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14
&4 1 0 1 - 0 1 0 1 0 — — 0 1 -
% 15 16 17 18 19 20 21 22 23 24
&i 0 1 1 0 0 1 0 1 - 0

Table 5.4: Partial solution. A "= means that the variabls hat been assigned

yet

force tighter upper bounds for optimal replenishment cyefegths considering
the partial solution in Table 5.4. From Theorem 5.3.1 it clisefollows that the
filtering is performed by removing from decision variablesrdhins (Table 5.3)
values that do not appear in Table 5.5, which contains thepated reduced do-
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mains with respect to the partial solution given.

We shall now see in details how feasible expected closingrtory-levels in
the reduced domains (Table 5.5) are computed for thesfpstriods. In the given
partial solution we place an order in periadout not in period2. An order is
placed in period therefore a replenishment cycle over perigds2} is uniquely
defined. BoundB’ for period1 is 2 periods. The demand in the first period is
73 while in the second i8. The buffer stock required at the end of peribts
70 - 1.645 - 0.3 ~ 40. By iterating Lemma 5.3.2 over periods, 2} we obtain
an expected closing-inventory-level 4§ for period1 and again oft0 for period
2. Negative order quantity scenarios do not arise siace 0. We do not iterate
Lemma 5.3.2 for period, sinced, = 0 and no replenishment cycle may start in
this period. In perio® a replenishment is scheduled. The replenishment decision
in period4 is still unassigned while in periodl no replenishment is scheduled.
We apply Lemma 5.3.2 to periotl The boundB’ is 2 periods. Therefore ei-
ther we may cover only the current period with a replenishimehich yields a
closing inventory level of 0, or we may cover both the periods with a single re-
plenishment, in which case the required expected closingrtory-level is211
in period3 and95 in period4. Negative order quantity scenarios do not arise. In
period4 the boundB’ is again2. Therefore we may cover only one period with an
expected closing-inventory-level 6#, or we may cover two periods by keeping
respectively an expected closing-inventory-level 63 at the end of period and
of 81 at the end of period. Negative order quantity scenario again do not arise.
05 is assigned tO therefore no replenishment cycle starts in this period.

We now consider a set of periods where negative order gyactharios arise.
We refer to periodg10,11,12}. In period10, B’ is 2 periods. Therefore the
two candidate expected closing inventory levels computetidimma 5.3.2 are
{88,128}. 88 is the expected closing-inventory-level required if onfyegeriod
is covered by the replenishment scheduled in petiad 28 is the level required
to cover period 0 and11 with a single replenishment. In this case the respective
expected closing-inventory-level at the end of peribds 91. If an order is placed
in period10 and also in period 1 the overall cost is higher than that incurred by
covering both the periods with a single replenishment. Gndther hand the
order-up-to-level for period1 in this case is lower than the expected closing-
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i Dom(I;) i Dom(I;)

T | {40 13 | {99,167}
2 | {10} 14 | {34,37,73,105}
3 | {70,211} 15 | {39}

4 | {64,95,173} | 16 | {88}

5| {81} 17 | {1,16,73, 86}
6 | {99,128} 18 | {6,63,76)
7 | {100} 19 | {23,36}

8 | {90,119} 20 | {105,123}
9 | {01} 21 | {106}

10 | {88,128} 22 | {104}

11 | {20,51,91,94} | 23 | {89,123}

12 | {37) 24 | {91}

Table 5.5: Enforcing tighter upper bounds for optimal regbment cycle lengths
- Partial solution in Table 5.4, underlined figures are eigsnventory levels of
the optimal policy

inventory-level in periodl0. This generates a negative order quantity scenario.
As stated in Lemma 5.3.4, either we cover periadnly by scheduling an order
with expected size zero. In this case the candidate |gvek 88 — 37 must

be considered for periotll. Otherwise we try to cover more periods with the
candidate leved4. By doing so we will cover subsequent periodstil| therefore

we add the candidate lev&l = 94 — 57 to period12. The other value in the table
for period11 is 20 that refers instead to the case in which we order in this gerio
and we cover onlyl period with the order. This value is computed by applying
Lemma 5.3.2 to this period. Sinég, = 0 no replenishment cycle may start in
this period. o

5.3.2 Merging adjacent non-replenishment periods

One of the limits of the domain reduction methods propos¢@dhis that they can
only be applied before the search process starts. Therdfeyedo not take into
account information regarding partial assignments forgi@c variables that may
become available during the search process. In this seetoaim to overcome
this limitation with a general approach that may be applcedrty pre-processing
method.
We consider a given partial solution in which some decisinables); are set

to zero. The key idea is to transform the original problentanse into a smaller
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one by merging adjacent non-replenishment periods intoglesnew period with
new expected demand and variance values. Since the demaagdhrperiod is
assumed to be independent from the previous and the folipdémands, these
new characteristics for the demand distribution in the nesvgad time span can
be easily computed by exploiting properties of the chosebatility distribution.
Once we have the smaller instance fully defined, we can applysaund pre-
processing methods, for instance one of those present&@]jindnd then we can
reflect the pruning achieved in the smaller instance back tr original one.
It should be noted that the following reasoning can be agpleany reduction
method for the presented CP model, and it is not limited tee¢horesented in
[92]. We propose a three-step procedure to apply any preepsing method not
only at the root node, but at every node of the search tree.

Step 1 By considering a partial solutiofi for the original problem instancg,
we construct a reduced problem instarice R will be described by a list of
M < N expected demand values and standard deviations and itevilLit as
follows. If 6, = Oforallk € {i+1,...,j} andd; = 1 or ¢; is unassigned, then
instead of period$:, ..., j} we introduce a new periok that represents such a
span with an expected demand of

J

g =34,

t=1

and a standard deviation of

These two expressions are well known properties of the niadfisiibution. The
holding cost for period* can be expressed as(j—i+1)]k*+2{:i+l(l—z’)cil, and
since the second term is constant the new holding cost ceetfiwill be hy- =
h-(j—i+1). For any other period if? we introduce a duplicate period 72 with
the same expected demand, variance and holding cost. Td emnfusion, we
will refer to the decision variables denoting the closingeintory level at period
i in problemR as/’;, to the binary variables a%, for alli € {1,..., M} and to
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the demands a#, foralli € {1,..., M}.

Step 2 In this step we apply a sound pre-processing method to theeedorob-
lem instanceR defined in the previous step.

Step 3 In this step we reflect the pruning done in the reduced insthack to
the original instance. For each peripd= {1,..., M} of R that is the result of
merging adjacent periods, . .., j}, i < j of P, we can update the domains bf
forall: <t < j by enforcing the following constraints:

. I ift=j,
L=4r T (5.22)
I;—l-dj—'—dj_l—'—...—'—dt_l |f’L§t<].

For any other periog € R that does not represent merged periods and its corre-

sponding period in P, we enforce that

I, = ;’)_ (5.23)

These three steps compose the core of our algorithm. Theniolg Theorem
shows that such a filtering algorithm is sound.

Theorem 5.3.2.We are given a problem instangeand a partial solutions for it,
wheredo;, i € {1,..., N} such thaty, = 0. By applying a sound pre-processing
method (Step 2) to the reduced problem instaRgeobtained as described in
Step 1, and by computing feasible values for decision viegah in the original
problem?P, as stated in Step 3, no value that is part of any optimal smhu$*
with respect to the given partial assignmentsSifis pruned in the domain af,,
te{l,...,N}.

Proof. We will now show that, under the given partial solutiéh the reduced
problem instanc& is equivalent to the original proble and that the reduction
in the number of decision variables and constraints is acdcensequence of
the linear dependencies induced by the current partiajassnt for), variables.
This will establish the fact that any sound pre-processiathod applied t& will
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produce a sound domain reductiorRfrwhen reflected by means of the proposed
mapping that is built on these linear dependencies.

Let us consider the model above for our problBrthat is defined by Egs. 5.6,
5.7,5.8,5.9and 5.10.

ConsiderP and a partial solution wherék € {1,...,N} s.t. ¢, is set to
0. Let us consider the implications of this assignment in oedei P. This
assignment affects thaventory conservation constraing7 and obviously the
replenishment decisioris8, theconstraints that enforce buffer stock® and the
objective functiorb.6.

Effects on the replenishment decision and on the inventoryanservation
constraints. Sinced, = 0, constraint 5.7 for = k can be tightened because of
Eq. 5.8 as follows:

I+ dy — I_1 = 0, (5.24)

then, by using,_; + dj_1 — I_» > 0 (that is constraint 5.7 far = k& — 1) and
Eq. 5.24, we have
I+ dy+diy — Ir_s > 0. (5.25)

Notice that constraint 5.8 fer= k is now redundant, since we assume that 0.
Furthermore by following a reasoning similar to the one usederive Eq. 5.25,
Eq. 5.8 fort = k£ — 1 can be replaced by the following constraint

jk -+ Jk + Jk—l — jk_g >0— 01 = 1. (526)

Effects on the constraints that enforce buffer stocks Let us consider now
the implications of constraint 5.24 on the buffer stock lsv&/hent = k£ — 1 in
constraint 5.9 we can write

ik+dk Zb( max j~5j,]{3—1> . (5.27)

Ge{l, . k—1}

Also notice that for = k&

I, >b ( max j -@-,k) (5.28)



and since), = 0, Eq. 5.28 can be rewritten as
I >b < max j- 6, k:) . (5.29)
je

Since the buffer stock levéli, j) is an increasing function of the number of peri-
ods as shown in [92], it is easy to see that

szb( maxl}j-éj,k:)zb< max j-éj,k:—l), (5.30)

it follows that Eq. 5.27 (that is constraint 5.9 foe k£ — 1) becomes redundant.

Effects on the objective function We now consider the implications of con-
straint 5.24 on the objective function. Singe= 0 the fixed ordering cost com-
ponent for period: is zero. By applying constraint 5.24 we obtain the following
new objective function

N N
min E{TC}= > ad+ Y hl+h(I;+dy). (5.31)
t=1,t£k t=1,t£k—1

We can see that we no longer have a holding cost componenefarddk — 1,
while the holding cost for periofl is now doubled, since we can ignore the con-
stant termh - dj.

Every implication of Eq. 5.24 in the whole model has been wered, there-
fore we can rewrite

N N
hdy +min E{TC}= Y ad+ > hl+hly (5.32)
t=1,t#k t=1,t#k—1
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subject to,

L+d—1,,>0 t=1,...,Nit£k—1:t+k
(5.33)
jk—FCZk—FCZk_l —jk_g >0 (534)
jt+dt_jt—1>oz>5t:1 tzl,,N7t%]€—1,t%k
(5.35)
ik+dk+czk_1 —ik_g > O:>(5k_1 =1 (536)
ft2b<maxj-6j,t) t=1,...,N;t£k—1 (5.37)
je{l..t}
I, e Z- U {0} t=1,...,N;t#k—1 (5.38)
5, € {0,1} t=1,...,Nit+k. (5.39)

To summarize, we showed that constraint 5.7tfer k — 1 andt = k£ can be
expressed by Eq. 5.25, and similarly constraint 5.8 ferk — 1 andt = k can be
expressed by Eg. 5.26. Both these new constraints (5.2),&r2 independent of
I,_,. Constraint 5.9 fot = & — 1 becomes redundant. The new objective function
(Eq. 5.31) reflects the consequences of constraint 5.24 samtlépendent of
decision variabld,_,. Therefore the whole model is now independent of decision
variablel,_,, whose value is a function df, (Eq. 5.24).

Since the last model is independentfqgil andd,, we now reduce it to an
(N —1)-period modelR through a change of variables, by merging peribdsl
and k and realizing the whole demanty. = d;. + d;_, in the new periodk*,
wherek* covers the spafik — 1, k}. In such a new modeR the demand?, in
the other periods € {1,....k* — 1,k* +1,..., N — 1} is mapped as follows:

P dy, te{l,. . k—2}
"\ de, tef{k,..,N—1}

Since the demand in periodsandk — 1 of P is assumed to be normally dis-
tributed, the variance for the demand in the new pekibdf R is

I 2 2
Opx =1/ 0 T 01_1-
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Iy« in R, that is the closing inventory levels in the new model, camdbated to
the respective closing inventory levels of periadsndk — 1 in P usingl), = I’

andl,_; = I’y + d, which follow from Eq. 5.24 and the definition &f. The
other closing inventory levels are mapped as follows:

7, — ]t te{l,...k—2}
Ly, ted{k,...,N—1}.

Notice that we only assume{g = 0, soN — 1 binary decision variables are still
unassigned. Therefore we hajfe = §,_, (Eq. 5.26) and the following mapping
for the remaining variables:

5 - o, te{l,....k—2}
! 61, tef{k,..,N—1},

whered; are the binary decision variablesi Eq. 5.31 states that in order to get
a model equivalent to the initial one, we must apply a holdiagt of2A for the
new periodk™ in the objective function.

The last model presented can be therefore rewritten in tefrtiee new deci-
sion variables defined by this mapping. The resulting problestance iR

N-1 N-1

E{TC} = hdy +min > ad,+ Y hl'y+ hl'y (5.40)
t=1 t=1
subject to
I'i+dy—1T 1 >0 t=1,...,.N—1 (5.41)
I'i+d, =Ty >0=0=1 t=1,....N—1 (5.42)
iftzb(maxj-ag,Q t=1,...,N—1 (5.43)
je{l..t}
I'veztu{o}, o e{0,1} t=1,...,N—1. (5.44)

It is trivial to recursively extend this reasoning to theea$ consecutive pe-
riods with g, set to zero. This process necessarily ends when we reachk:an
whered; = 1 or§; € {0,1}. Furthermore); = 1, since without loss of gener-
ality we assume an initial null inventory and an initial demdayreater than zero,
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t 1 2 3 4 5 6 7 8 9
i,...,] 1,2 3 4,5 6,7 8,9 10 | 11,12 13 | 14,15
d¢ 73 128 208 208 192 88 94 181 96
ot 24.3 42.6 49.3 | 60.6 55.4 | 29.3 22.5 | 60.3 23.5
h 2 1 2 2 2 1 2 1 2
t 10 11 12 13 14
R 16 | 17,18,19 | 20,21 22 | 23,24
d¢ 88 52 209 190 195
ot 29.3 13.7 64.2 | 63.3 55.3
hy 1 3 2 1 2

Table 5.6: Reduced problem instance built as describedm5tFor every period

t in the new instanc®, i, . . ., j denotes the span covered in the original problem

P

Table 5.7: Effect of pre-processing method | in [92] on thealen instance with
merged periods, underlined figures are closing inventorglseof the optimal

policy

therefore we always fix a replenishment in the first period.

Example 5.3.2.We now refer to the same instance analyzed for the example in
Section 5.3.1. When the partial solution given in Table § gbinsidered, a reduced
problem instance can be built as described in Step 1. Thiarins is shown in
Table 5.6. We applied pre-processing method | in [92] to imssance as stated

in Step 2. Note that this is equivalent to applying our castda filtering method
presented in Section 5.3.1 when in the given partial satutio decision variable
has been assigned to a value. The reduced domains are shoalnléb.7. From

the reduced domains in Table 5.7, by applying Step 3, we capuate the reduced
domain for the original problem instance. These domainsiaogvn in Table 5.8.
The two presented methods are incomparable, in fact thisadgbrunes more

i Dom(I';) | i Dom(I';)
TR E70) S R 1) 5 {13 1997

2: {3} | {10} 9:{14,15 | {39}
3:{a5 | {81} 10 {16} (88, 143}
4:{6,7} {100} 11:{17,18,19} | {23,36,91}
5:{8,9) | {91} 12:{20,21} | {106}
6:{10} | {3} 13 {22) {104}
7:{11,12} | {37} 14 : {23, 24} {01}

values in period 6 while the former one prunes more valuegiiog 16.
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i Dom(I;) | i Dom(I;)
Ty 3] {99

2 | {10} | 14| {73}

3| fop |15 | {39}

4 | {173} 16 | {88,143}
5 | {81) 17 | {73,86, 141}
6 | {128y |18 | {63,76,131)
7 | {100} | 19 | {23,36,91}
s | {19} | 20 | {123}

o | {ory |21 | {106}

10| {88} |22 {104

| {o1 | 23| {123

2| 31y | 24| {o1}

Table 5.8: Reduced domains of the original instance obdaiheugh the map-
ping proposed, underlined figures are closing inventorgliewf the optimal pol-

icy

5.4 Cost-based filtering by relaxation

The CP model as described so far suffers from a lack of tighthtde on the ob-
jective function. In this section we recall a relaxation @mr model originally
proposed by Tarim in [86]. By means of this relaxation we wittoduce a novel
approach to compute a locally optimal solution or a validdowound at each
node of the search tree.

It should be noted that the relaxation as presented in [86% ¢t take into
account a given partial solution if this is available. As wid show this exten-
sion is not trivial, especially if we aim to take into accoanpartial assignment
involving bothd, andI, decision variables.

Given a problem instance, Tarim’s approach adopts a grekgyithm to
solve a relaxed problem instance. This way a replenishnmant(pssignment for
the ), and; variables) is generated. Once this replenishment plaraitade, it
Is possible to characterize if it is also feasible with respe the original problem.
If so, the respective computed cost is optimal for the odbpmoblem. Otherwise,
if the replenishment plan is infeasible with respect to thiginal problem, the
computed cost is a valid lower bound for the optimal solutiost of the original
problem.
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5.4.1 Tarim’s relaxation

We shall now describe Tarim’s relaxation in details. Theecobservation con-
sists in the fact that the CP model proposed in Section 5.2beareduced to a
shortest path problemif we relax inventory conservation constraints (5.7,5.8)
for replenishment periods only. That is for each possible @iareplenishment
cycles(T'(i,k — 1),T(k, 7)) wherei, j,k € {1,...,N} andi < k& < j, we do
not consider the relationship between the opening invgriéwel of 7'(k, j) and
the closing inventory level of (i, k — 1). This corresponds to allowing negative
replenishments (Fig. 5.4 - a), or the ability to sell stocklkoim the supplier. Since
the inventory conservation constraint is now relaxed betweplenishment cy-
cles, each replenishment cycle can be now treated indepéyd@ad its cost can
be computed priori. In fact, given a replenishment cyclg, j), we recall that
b(i,j), as defined above, denotes the minimum buffer stock leveinedto sat-
isfy a given service level constraint during the replenishitncycleT'(i, 7). It
directly follows thatl; = b(4, j). Furthermore for each periade {i,...,j — 1}
the expected closing-inventory-level is = b(i, j) + Z{C:m dy. Since all the
I, fort e {i,...,j} are known it is easy to compute the expected total cost for
T(i, j), which is by definition the sum of the ordering cost and of thkelimg cost
componentsy 4+ A 3_7_. I,. We now have a s& of N(N + 1)/2 possible differ-
ent replenishment cycles and the respective costs. Our rabiem is to find an
optimal setS* C S of consecutive disjoint replenishment cycles that coveirs o
planning horizon at the minimum cost.

It should be noted that, from the characterization of thénogitpolicy for the
deterministic inventory/production problem given by Wagmand Whitin [96],
the optimal solution of this relaxation is always feasilde the original problem
if buffer stocks are all zero and therefore we are solvingtarda@nistic problem.

In fact we recall that, as stated in [96] in the search for thineal policy for the
deterministic production/inventory problem it is sufficido consider programs

in which at period one does not both place an order and bring in inventory (i.e.
zero-inventory ordering property). It directly followsahevery relaxed inventory
conservation constraint is trivially satisfied under a detaistic setting, as in an
optimal solution the closing inventory level at the end affeeeplenishment cycle
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must be zero.

5.4.2 Tarim’s relaxation as a shortest path problem

We shall now show that the optimal solution to this relaxati® given by the
shortest path in a graph from a given initial node to a finalenathere each arc
represents a replenishment cycle costNIfs the number of periods in the plan-
ning horizon of the original problem, we introdusét 1 nodes. Since we assume,
without loss of generality, that an order is always placegkesitod1, we take node
1, which represents the beginning of the planning horizonthasinitial node.
NodeN + 1 represents the end of the planning horizon. For each pessplen-
ishment cycleél’(i, j — 1) such that, j € {1,..., N+ 1} andi < j, we introduce
an arc(i, 7) with associated cos{i, j — 1). Since we are dealing with a one-way
temporal feasibility problem [96], when> j, we introduce no arc. The connec-
tion matrix for such a graph, of sizZ€ x (/N + 1), can be built as shown in Table
5.9. By construction the cost of the shortest path from nottenode N + 1 in

T 2 .. ; . N+l
1= ¢1,1) ... ¢1,7—1) ... ¢(1,N)
il - = =1 N
o el

Table 5.9: Shortest Path Problem Connection matrix

the given graph is a valid lower bound for the original probj&s it is a solution
of the relaxed problem.

Solution mapping. It is easy to map the optimal solution for the relaxed prob-
lem, that is the set of arcs participating to the shortedt,gata solution for the
original problem by noting that each aft j) represents a replenishment cycle
T(i,j—1). By the definition of replenishment cycl&i, j—1), §; = 1 andd; = 0,
fort =i+ 1,...,7 — 1. The set of arcs in the optimal path uniquely identifies a
set of disjoint replenishment cycles, that is a replenigitrpéan (assignment for
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o, decision variables). Furthermore for each period {i,...,j — 1} in cycle
T(i,j — 1) we already showed that all the expected closing-inveniergis I;,

t € {i,...,j — 1}, are known. This produces a complete assignment for deci-
sion variables in our model. The feasibility of such an assignt with respect

to the original problem can be checked by verifying that iis$&s every relaxed
constraint, that is no negative expected order quantitghieguled.

Shortest path algorithm. To find a shortest path in the given graph we use
a modified Dijkstra’s algorithm that finds a shortest pattOim?) time, where
n is the number of nodes in the graph. Details on efficient iriglietations of
Dijkstra’s algorithm can be found in [77]. Usually Dijks®algorithm [77] does
not apply any specific rule for labeling when ties are encengtt in sub-path
lengths. This non-deterministic labeling may produce a lfsoptimal solutions
if decision variable domains are pre-processed as descinb®2]. In fact pre-
processing Method | in [92] relies upon an upper-bound foinag@l replenishment
cycle length. When a replenishment period {1, ..., N} is considered, it looks
for the lowestj € {i,..., N} after which it is no longer optimal to schedule the
next replenishment. This means that, if more policies thatesthe same expected
cost exist, only the one that has shorter, and obviously pnepéenishment cycles
will be preserved by Method I. Therefore, when the algoriiteimplemented in
this filtering approach, we need to introduce a specific ratenbde selection in
order to make sure that, when more optimal policies existpmdified algorithm
will always find the one that has the highest possible numbeemenishment
cycles (i.e. the shortest path with the highest possiblebaurof arcs). Since there
is a complete order among nodes, we can easily implementidkis the labeling
action by always choosing as ancestor the node that minsntieedistance from
the source and that has the highest index. The pseudo-codkefg@roposed
modified Dijkstra’s algorithm can be found in Appendix 5.7.3

5.4.3 Cost-based filtering

So far we described a known possible way to relax the CP madgloged in
Section 5.2. We also proposed a novel Dijkstra’s algorithmplementation that
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makes the relaxation in [86] compatible with the pre-preogs methods in [92].

The relaxation described can be seen as a state spaceieianditere we define a
new problem with a number of states polynomially boundedhéndriginal prob-

lem input. A lower bound for the optimal solution cost is thedrtained by solving

a Shortest Path Problem in the state space graph. We will how a novel ap-

proach to exploit this lower bound in aptimization oriented global constraint
A detailed discussion on state space relaxation and ogtioiz oriented global
constraints can be found in [33].

Partial assignments ford, decision variables

0r = 0: Let us consider the graph built as described in Tarim’s agiar. If in

a given partial solution a decision varialdlg & € {1,..., N} has been already
set to0, then we can remove from the graph every inbound arc to rioded
every outbound arc from node This prevents nodé from being part of the
shortest path, and hence prevents petidm being a replenishment period. By
applying Dijkstra’s algorithm to this modified graph the tosthe shortest path
will provide a valid lower bound for the cost of an optimalstdn incorporating
the decisionj, = 0. Furthermore, as seen above, Dijkstra’s algorithm wilbals
provide an assignment for decision variables. If this assignt is feasible for the
original problem, then it is optimal with the respect to tleeidions, = 0.

0 = 1. On the other hand, if in a given partial solution a decisionalde ¢y,
k € {1,...,N} has been already set 1o then we can remove from the graph
every arc connecting a nodéo a nodej, wherei < k£ < j. This forces the short-
est path to pass through notleand hence forces periddto be a replenishment
period. By applying Dijkstra’s algorithm to this modifiedagh the cost of the
shortest path will provide a valid lower bound for the cosanfoptimal solution
incorporating the decisioty, = 1. Furthermore, as seen above, Dijkstra’s algo-
rithm will also provide an assignment for decision variablé this assignment is
feasible for the original problem, then it is optimal witletrespect to the decision
o = 1.

We have shown how to act when each of the possible cases| ando, = 0,
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is encountered. It is now possible at any point of the seartha decision tree to
apply this relaxation and compute a valid lower bound or atgwh that is optimal
with respect to the given partial assignment.

Partial assignments for I, decision variables

It is also possible to extend this cost-based filtering me:titnp considering not
only thed, variable assignments, but also thevariable assignments. In fact,
when the cost of a given replenishment cy€lg, j — 1) (arc(z, j) in the matrix)

Is computed, it is also possible to consider the currengassents for the closing
inventory levelsl, in the periods of this cycle. Since all the closing inventory
levels of the periods within a replenishment cycle are lilyedependentd, =

0 — I, + dx — I,_;=0), given an assignment for a decision variahlave can
easily compute all the other closing inventory levels inapele by using/, — d), —
I,_, = 0, which is the inventory conservation constraint when nceord placed
in periodk. When the closing inventory levels in a replenishment c§gle j — 1)
are known it is easy to compute the overall cost associatétigaycle as seen
above. We can therefore associate to (@rg¢) the highest cost that is produced
by a current assignment for the closing inventory levglst € {i,...,5 — 1}.

If no variable has been assigned yet, we simply use the mmipaossible cost
(1,7 — 1) which we defined above.

5.5 Experimental results

This section is organized as follows. Firstly we will coreich particularly hard
instance built by adding random elements on a seasonal demae will use

this instance to gauge the effectiveness of each filterinthogewe proposed.
Furthermore we will also analyze how the proposed methodsipe when they

are combined together. Secondly we will compare our methibd te state-

of-the-art results presented in [92]. Thirdly we will prasextensive tests to
show the effectiveness of our domain filtering methods wébpect to a pure
CP approach enhanced with the pre-processing methodspddsy Tarim and
Smith.

180



All experiments presented here were performed on an Ink&@Rtrino(TM)
CPU 1.50GHz with 500Mb RAM. The solver used for our test is @hfb8], an
open-source solver developed in Java.

The heuristic used for the selection of the variable is thausin-domain/max-
degree heuristic. Decision variables have different gres in the heuristic: the
&, have higher priority than thé,. The value selection heuristic chooses values
in increasing order of size.

In what follows we will refer to the filtering methods preseatas follows:
Method | (Section 5.3.1), Method Il (Section 5.3.2), MethHtld(Section 5.4).
Since Method Il can be in principle applied in conjunctiortwany sound do-
main reduction method, in all the experiments here predahie domain reduc-
tion applied with Method Il is pre-processing method Il gnet®d in Tarim and
Smith [92]. We only apply one pre-processing method singegmentally no
improvement was noticed in term of explored nodes and rgntiine when both
the methods were used in conjunction as shown in [92].

5.5.1 Effectiveness of filtering methods

A single problem is considered and the period demands desllis Figure 5.5.
In each test we assume an initial null inventory level and mmadly distributed

120 -
100 -
80 |
60 1-----
a0 10 --B--
20 Q---B--

expected demand

0

period

Figure 5.5: Expected demand values

demand for every period with a coefficient of variatioryd, = 1/3 for each

t € {1,..., N}, whereN is the length of the planning horizon considered. The
ordering cost ranges in the following sgt0, 80, 160, 320}. The holding cost is

1. Our tests consider two different service levals= 0.95 (z4—095 = 1.645)
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No Filt. Method | Method Il Method IlI Combined

a | a Nod Sec Nod Sec| Nod Sec | Nod Sec| Nod Sec
o 40 127 1.85 9% 1.64 9 1.43 120 1.30 70  1.12
g 80 2994 30 1449 16 | 2586 23 82  1.02 63 0.97
160 - - - - - - | 133 1.81 108 1.65
320 - — - — - — 4 0.09 4 0.09

o 40 261 3.27 198 4.24 202 2.52 253 2.84 165 2.57
g 80 1234 11 611 7.54 | 1138 10.7 317  2.66 221 2.61
160 - - - - - - 168 2.15 84 1.31
320 - - - - - - 1 0.09 1 0.10

Table 5.10: Filtering methods compared in terms of exploredes (“Nod”) and
run time in seconds (“Sec”). Symbol “—” means that an optis@iition has not
be found within the given limit 060 secs

anda = 0.99 (z4—090 = 2.326). In Table 5.10 we compare the effectiveness
of each filtering method, when used to augment the CP modelneell by the
pre-processing methods in [92]. The performances achieyeade CP approach
enhanced with the pre-processing methods are shown in ooltdim Filt.”. The
performances achieved when the filtering methods are a#gtitithe model are
shown in column “Combined”. In the presented table we cantisaeMethod |
and Method Il do not perform well when they are used alones Thagain due
to the lack of good bounds during the search process. Methatstead is very
effective even when it is used alone and especially for higlelang costs, when
the contribution of the filtering due to the computed boursdsritical. Neverthe-
less when the three methods are combined for all the eigtdarines presented
performances are improved both in terms of running time aptbeed nodes.

5.5.2 Comparison with state-of-the-art results

In this section we compare results obtained with our appredth the state-of-
the-art results presented in [92].

A single problem is considered and the period demands arergiea from
seasonal data with no trend; = 50[1 + sin(r¢/6)]. In addition to the “no trend”
case (P1) we also consider three others:

(P2) positive trend casé; = 50[1 + sin(rt/6)] + t
(P3) negative trend casé, = 501 + sin(xt/6)] + (52 — t)
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a = 400 a = 800
Filt. Tarim & Smith Filt. Tarim & Smith
Horizon || Nod Sec Nod Sec| Nod Sec Nod Sec
50 1 0.30 — — 3 0.10 - -
P1 48 1 0.09 — - 3  0.10 | 30795352 10100
46 1 0.09 | 43721791 12200 3  0.09 8763280 2840
44 1 0.09 | 36976882 9700 3  0.01 6896956 2110
44 1 0.09 — - 4 0.10 - -
P2 42 1 0.09 — — 4 0.10 | 60884565 15600
40 1 0.29 — - 4 0.17 | 22281926 5590
38 1 0.09 | 35848309 6820 4 0.10 7978185 1880
42 1 0.09 - - 3 0.10 - -
P3 40 1 0.09 — — 3  0.10 | 55138095 13300
38 1  0.09 | 61438266 11300 3 0.10 | 19600638 4510
36 1 0.09 | 24256921 4150 3 0.10 6501541 1510
44 1 0.09 - - 4 0.09 - -
P4 42 1 0.10 — - 4 0.11 | 39668737 10700
40 1 0.09 — — 4 0.10 | 18004555 4690
38 1 0.09 | 32076069 6680 4 0.09 6093007 1520

Table 5.11: Comparison with the state-of-the-art resuitd92] (“Tarim &
Smith”). “Filt.” indicates that Tarim & Smith’s model is angented with our
filtering methods. Symbol “—” means that an optimal soluti@s not been found
within the given limit of5 hours

(P4) life-cycle trend casel, = 50[1 + sin(xt/6)] + min(t, 52 — t)

In each test we assume a coefficient of variattighcit = 1/3 for eacht €
{1,..., N}, whereN is the length of the considered planning horizon. As in
Tarim and Smith tests are performed using two different ndecost values

a € {400,900}. The holding cost used in these testgis= 1 per unit per pe-
riod. Our tests consider a service levels- 0.95 (z,—0.05 = 1.645).

In Table 5.11 we can observe the improvement of several ®afanagnitude
brought by our domain filtering techniques. Experiment9] employed OPL
Studio 3.7 (ILOG Solver 6.0, ILOG Cplex 9.0) used with itsal@t settings. Note
that the hardware used for these experiments is compamlie tone used for
ours.

5.5.3 More extensive tests

In this section we show the effectiveness of our approactobyparing the com-
putational performance of the state-of-the-art CP mod# thiat obtained by our
approach.
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We refer again to (P1), (P2), (P3) and (P4) as defined abovepaffermed
tests using four different ordering cost values= {40, 80, 160, 320} and two
differents,/d, € {1/3,1/6}. The planning horizon length takes even values in
the rangd24, 50] when the ordering cost i) or 80 and[14, 24] when the ordering
costisl160 or320. The holding cost used in these tests is 1 per unit per period.
Our tests also consider two different service levels- 0.95 (z,—g95 = 1.645)
anda = 0.99 (z4—0.99 = 2.326).

In our test results a time 6fmeans that the Dijkstra algorithm proved optimal-
ity at the root node. A header “Filt.” means that we are appg\your cost-based
filtering methods, and “No Filt.” means that we solve theanse using only the
CP model and the pre-processing methods. Tables 5.12,%1¥8and 5.15 com-
pare the performance of the state-of-the-art CP model,emphted in Choco,
with that of our new methods.
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ot/di =1/3 ot/di =1/6
a=0.95 a=0.99 a = 0.95 a = 0.99
Filt. No Filt. Filt. No Filt. Filt. No Filt. Filt. No Filt.
a N | Nod Sec| Nod Sec Nod Sec| Nod Sec Nod Sec| Nod Sec Nod Sec| Nod Sec
40 | 28 0.9 | 106 2.9 38 0.8 | 249 6.4 34 0.7 | 574 16 10 0.1 | 192 6.4
42 | 28 0.6 | 95 2.8 38 0.8 | 233 5.9 34 0.7 | 582 14 10 0.1 | 196 5.4
40 44 | 29 0.6 | 133 4.9 47 1.1 | 266 8.3 35 0.7 | 884 25 11 0.2 | 285 9.0
46 | 30 0.6 | 192 7.8 64 1.6 | 484 18 45 1.0 | 3495 120 13 0.2 | 813 30
48 | 43 0.9 444 19 72 2.1 1024 41 53 1.1 5182 190 13 0.2 1208 47
50 | 43 1.0 444 20 72 2.2 1024 44 53 1.2 4850 200 13 0.2 1208 51
40 | 43 0.8 | 1742 78 13 0.2 | 557 15 16 0.2 | 9316 300 16 0.3 | 11276 440
42 | 43 0.9 | 1703 60 13 0.2 | 530 13 17 0.3 | 17973 530 17 0.3 | 22291 690
80 44 | 48 1.1 | 4810 210 14 0.2 | 980 25 19 0.4 | 38751 1400 20 0.4 | 50805 1600
46 | 49 1.3 | 6063 340 16 0.3 | 2122 78 20 0.3 | 103401 4300 20 0.4 | 111295 4100
48 | 67 2.0 | 20670 1400 17 0.3 | 5284 210 21 0.4 | 237112 12000 21 0.5 | 321998 15000
50 | 67 2.2 | 18938 1300 17 0.4 | 5284 230 21 0.4 | 251265 13000 21 0.5 | 358174 17000
14 | 1 0.0 | 141 3.0 23 0.1 | 156 2.5 1 0.0 | 112 2.6 1 0.0 | 116 2.4
16 | 1 0.0 | 277 9.0 35 0.2 | 182 5.1 1 0.0 | 238 6.7 1 0.0 | 235 6.8
160 18 | 1 0.0 | 673 18 41 0.4 | 393 10 1 0.0 | 799 23 1 0.0 | 603 15
20 |1 0.0 | 3008 81 51 0.6 | 1359 21 1 0.0 | 2887 86 1 0.0 | 2820 75
22 |1 0.0 | 10620 260 57 0.6 | 7280 70 1 0.0 | 14125 380 1 0.0 | 10739 270
24 | 1 0.0 | 61100 1500 153 1.8 | 31615 310 1 0.0 | 70996 1800 1 0.0 | 59650 1500
14 1 0.0 149 4.0 1 0.0 181 4.1 1 0.0 109 3.0 1 0.0 128 3.0
16 | 1 0.0 | 335 11 1 0.0 | 361 12 1 0.0 | 246 8.7 1 0.0 | 284 9.3
390 18 | 1 0.0 | 813 27 1 0.0 | 831 27 1 0.0 | 764 26 1 0.0 | 700 24
20 1 0.0 2602 93 1 0.0 2415 81 1 0.0 2114 78 1 0.0 2291 82
22 |1 0.0 | 7434 260 1 0.0 | 7416 260 1 0.0 | 7006 260 1 0.0 | 6608 230
24 |1 0.0 | 49663 1600 1 0.0 | 49299 1500 1 0.0 | 39723 1400 1 0.0 | 43520 1500

Table 5.12: Test set P1
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ot/dy =1/3 ot/dy =1/6
a = 0.95 a = 0.99 a=0.95 a = 0.99
Filt. No Filt. Filt. No Filt. Filt. No Filt. Filt. No Filt.
a N | Nod Sec| Nod Sec Nod Sec| Nod Sec Nod Sec| Nod Sec Nod Sec| Nod Sec
40 | 4 0.1 7 0.1 7 0.1 8 0.1 12 0.2 23 0.4 4 0.1 12 0.2
42 | 4 00 | 7 0.1 7 02 | 8 0.1 12 0.2 | 23 0.4 4 0.1 | 10 0.1
40 44 | 4 0.1 7 0.1 7 0.2 8 0.1 12 0.2 23 0.5 4 0.1 10 0.2
46 | 4 01 |7 0.1 7 03 | 8 0.2 12 0.2 | 23 0.5 4 0.1 | 10 0.2
48 | 4 0.1 7 0.2 7 0.2 8 0.2 12 0.3 23 0.5 4 0.1 10 0.2
50 | 4 01 |7 0.2 7 02 | 8 0.2 12 0.3 | 23 0.6 4 0.1 | 10 0.2
40 | 18 0.3 | 4592 14 15 0.3 | 275 8.3 37 0.7 | 2565 63 32 0.7 | 1711 44
42 | 18 0.4 | 4866 13 15 0.4 | 283 6.7 37 0.8 | 3027 67 32 0.7 | 2043 47
80 44 | 18 0.4 | 5091 15 15 0.4 | 280 7.9 40 0.9 | 6024 160 37 0.9 | 4299 120
46 | 23 0.5 | 5291 45 17 0.5 | 545 16 47 1.3 | 14058 410 39 1.1 | 10311 290
48 | 23 0.6 | 5544 51 17 0.5 | 545 17 47 1.4 | 14058 440 39 1.2 | 10311 310
50 | 23 0.6 | 5850 51 17 0.5 | 545 18 47 1.5 | 14079 470 39 1.3 | 10347 330
14 |1 0.0 | 166 3.6 19 0.1 | 84 1.0 1 0.0 | 148 2.9 1 0.0 | 171 3.4
16 | 30 0.2 | 154 4.3 19 0.1 | 65 1.2 1 0.0 | 329 8.6 1 0.0 | 383 10
160 18 | 58 0.4 | 485 11 34 0.3 | 174 2.9 1 0.0 | 948 23 1 0.0 | 1056 27
20 | 37 0.3 | 2041 35 37 0.4 | 707 7.9 1 0.0 | 4228 110 1 0.0 | 4730 120
22 | 48 0.4 | 9534 120 32 0.3 | 2954 28 1 0.0 | 20438 500 1 0.0 | 23675 530
24 | 65 0.7 | 30502 360 41 0.4 | 7787 87 1 0.0 | 71514 1800 1 0.0 | 83001 1900
14 |1 0.0 | 238 5.6 1 0.0 | 278 6.4 1 0.0 | 166 3.7 1 0.0 | 191 4.5
16 | 1 0.0 | 505 17 1 0.0 | 423 13 1 0.0 | 387 11 1 0.0 | 452 14
390 18 | 1 0.0 | 1447 49 1 0.0 | 1208 40 1 0.0 | 1100 34 1 0.0 | 1268 40
20 | 1 0.0 | 4792 156 1 0.0 | 4219 150 1 0.0 | 3992 130 1 0.0 | 4476 150
22 | 1 0.0 | 20999 660 1 0.0 | 20417 610 1 0.0 | 15983 520 1 0.0 | 18663 600
24 | 1 0.0 | 102158 3200 1 0.0 | 90398 2600 1 0.0 | 75546 2500 1 0.0 | 88602 2800

Table 5.13: Test set P2
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ot/dy =1/3 ot/di =1/6
a =0.95 a=0.99 a = 0.95 a = 0.99
Filt. No Filt. Filt. No Filt. Filt. No Filt. Filt. No Filt.
a N | Nod Sec| Nod Sec Nod Sec| Nod Sec Nod Sec| Nod Sec Nod Sec| Nod Sec
40 | 2 00 | 5 0.0 2 0.0 | 4 0.0 6 019 0.2 2 00 | 5 0.0
42 | 2 00 | 5 0.0 2 0.0 | 4 0.0 6 01 |9 0.2 2 00 | 5 0.0
40 44 | 3 00 | 7 0.1 3 0.0 | 6 0.1 7 0.1 | 14 0.3 3 00 | 7 0.1
46 | 4 0.1 | 15 0.3 6 0.1 | 13 0.3 11 0.2 | 40 1.1 4 0.1 | 14 0.3
48 | 4 0.1 | 15 0.3 6 0.1 | 13 0.3 14 0.3 | 56 1.8 4 0.1 | 25 0.6
50 | 4 0.1 | 15 0.3 6 0.2 | 13 0.3 14 0.4 | 56 1.9 4 0.1 | 25 0.5
40 | 22 0.4 | 349 10 6 0.1 | 55 1.2 19 0.3 | 722 19 9 0.2 | 310 8.7
42 | 22 0.4 | 354 8.6 6 0.1 | 53 1.2 22 0.4 | 1436 35 9 0.2 | 315 7.5
80 44 | 24 0.6 | 571 17 7 0.1 | 88 2.4 27 0.6 | 3461 110 13 0.3 | 1053 31
46 | 29 0.8 | 2787 90 9 0.2 | 258 8.1 36 0.9 | 10612 360 16 0.4 | 2881 94
48 | 38 1.1 | 6803 240 9 0.2 | 385 12 47 1.3 | 28334 1100 22 0.6 | 7790 280
50 | 38 1.1 | 6575 240 9 0.2 | 385 13 47 1.6 | 26280 1100 22 0.6 | 7371 280
14 |7 0.0 | 23 0.2 8 0.0 | 16 0.1 15 0.1 | 53 0.6 9 0.0 | 29 0.3
16 | 7 0.0 | 19 0.2 8 0.0 | 18 0.2 15 0.1 | 52 0.8 9 0.0 | 26 0.4
160 18 | 9 0.1 | 42 0.5 10 0.0 | 30 0.3 21 0.1 | 149 2.2 12 0.1 | 87 1.2
20 | 11 0.1 | 137 1.3 11 0.1 | 70 0.7 25 0.2 | 512 6.1 16 0.2 | 310 3.5
22 | 21 0.2 | 376 4.0 21 0.2 | 221 2.3 31 0.4 | 1848 17 17 0.2 | 938 9.4
24 | 32 0.4 | 995 11 30 0.4 | 543 6.3 43 0.5 | 4784 54 23 0.2 | 2471 30
14 1 0.0 253 4.2 1 0.0 232 3.8 1 0.0 310 4.4 1 0.0 217 3.4
16 | 1 0.0 | 518 10 1 0.0 | 518 10 1 0.0 | 707 13 1 0.0 | 465 8.5
390 18 | 1 0.0 | 1475 35 1 0.0 | 1170 26 1 0.0 | 1995 43 1 0.0 | 1416 33
20 | 1 0.0 | 5342 140 1 0.0 | 4059 95 1 0.0 | 6678 160 1 0.0 | 5232 140
22 | 1 0.0 | 21298 550 1 0.0 | 18065 440 1 0.0 | 25522 640 1 0.0 | 21756 560
24 | 1 0.0 | 86072 2300 1 0.0 | 70969 1800 1 0.0 | 101937 2800 1 0.0 | 91358 2400

Table 5.14: Test set P3
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ot/dy =1/3 ot/dy =1/6
a =0.95 a = 0.99 a=0.95 a = 0.99
Filt. No Filt. Filt. No Filt. Filt. No Filt. Filt. No Filt.
a N | Nod Sec| Nod Sec Nod Sec| Nod Sec Nod Sec| Nod Sec Nod Sec| Nod Sec
40 | 5 0.1 | 21 0.3 10 0.2 | 24 0.5 25 0.5 | 89 1.8 5 0.1 | 33 0.5
42 | 5 0.1 | 18 0.3 10 0.2 | 21 0.4 25 0.5 | 91 2.0 5 0.1 | 31 0.5
40 44 | 6 0.1 | 32 0.7 11 0.2 | 37 0.9 28 0.6 | 152 3.6 6 0.1 | 51 1.0
46 | 7 0.1 | 83 2.0 16 0.4 | 93 2.4 42 1.0 | 474 12 7 0.1 | 126 2.8
48 | 7 0.1 | 83 2.2 16 0.4 | 93 2.6 50 1.2 | 735 20 7 0.2 | 188 4.5
50 | 7 0.1 | 83 2.3 16 0.4 | 93 2.8 50 1.4 | 735 22 7 0.2 | 188 4.9
40 | 39 0.7 | 1372 39 16 0.4 | 433 12 40 0.7 | 5098 130 33 0.7 | 2133 54
42 | 39 0.8 | 1673 39 16 0.4 | 438 10 46 1.0 | 11452 270 33 0.8 | 2513 58
80 44 | 43 1.0 | 2907 74 17 0.5 | 716 22 56 1.4 | 27184 780 46 1.3 | 8776 240
46 | 51 1.3 | 13306 380 21 0.6 | 2178 73 75 1.9 | 77332 2600 55 1.6 | 22582 690
48 | 69 1.8 | 32709 1000 21 0.6 | 3223 120 100 2.8 | 202963 7500 73 2.2 | 60115 2000
50 | 69 1.9 | 31547 1100 21 0.7 | 3223 130 100 2.9 | 191836 7600 73 2.4 | 58171 2100
14 |1 0.0 | 166 3.6 19 0.1 | 84 1.5 1 0.0 | 148 3.0 1 0.0 | 171 3.4
16 | 30 0.2 | 154 4.3 19 0.1 | 65 1.6 1 0.0 | 329 8.7 1 0.0 | 383 10
160 18 | 58 0.4 | 485 11 34 0.3 | 174 4.0 1 0.0 | 948 24 1 0.0 | 1056 27
20 | 37 0.3 | 2041 34 37 0.4 | 707 11 1 0.0 | 4228 110 1 0.0 | 4730 120
22 | 48 0.4 | 9534 120 32 0.3 | 2954 40 1 0.0 | 20438 510 1 0.0 | 23675 540
24 | 65 0.7 | 30502 360 41 0.4 | 7787 130 1 0.0 | 71514 1800 1 0.0 | 83001 1900
14 |1 0.0 | 238 5.5 1 0.0 | 278 8.7 1 0.0 | 166 3.7 1 0.0 | 191 4.5
16 | 1 0.0 | 505 17 1 0.0 | 423 17 1 0.0 | 387 11 1 0.0 | 452 13
390 18 | 1 0.0 | 1447 48 1 0.0 | 1208 57 1 0.0 | 1100 33 1 0.0 | 1268 40
20 |1 0.0 | 4792 160 1 0.0 | 4219 200 1 0.0 | 3992 130 1 0.0 | 4476 150
22 | 1 0.0 | 20999 660 1 0.0 | 20417 860 1 0.0 | 15983 520 1 0.0 | 18663 600
24 | 1 0.0 | 102158 3200 1 0.0 | 90398 3700 1 0.0 | 75546 2700 1 0.0 | 88602 2800

Table 5.15: Test set P4




Whena=320, and often when=160, the Dijkstra algorithm proves optimality
at the root node so the other reduction methods are not ¢gg@lduring search.
This is a direct consequence of the fact that under high orgleost values it
is extremely rare that a solution for the relaxed problentates some inventory
conservation constraint. In fact since placing an ordexpeasive the optimal so-
lution will try to cover several periods with a single ord8uch an order requires a
high order-up-to-level that typically exceeds the expgciesing-inventory-level
of the previous replenishment cycle. Therefore the satubibthe relaxed prob-
lem solved by means of dynamic programming is usually féasiith respect to
the original problem.

Whena € {40,80} Dijkstra is often unable to prove optimality at the root
node, since the solution of the relaxed problem can easilaté inventory con-
servation constraints in the original problem under loweoirty costs. This is due
to the fact that the order-up-to-level for a replenishmguotemay easily be lower
than the buffer stock levels held at the end of the formerecyEhe main contribu-
tion brought by our relaxation in this situation consistsamputing lower bounds
during the search. Therefore in this case the domain remtuatihieved with the
other two filtering methods developed is critical in redgcthe number of fea-
sible values in the domain of expected closing-inventemel decision variables.
As shown in the experiments our approach can easily solvarioss with up to
50 periods, both in terms of explored nodes and run time,Jferyecombination
of parameters we considered. In contrast, for the CP modél the run times
and the number of explored nodes grow exponentially withniln@ber of peri-
ods, and the problem becomes intractable for instancegoifisant size. In all
cases our method explores fewer nodes than the pure CP appraaging from
an improvement of one to several orders of magnitude. Apan fa few trivial
instances on which both methods take a fraction of a sechrsdniprovement is
reflected in the run times.

5.6 Conclusions

It was previously shown [92] that CP is more natural than met#tical program-
ming for expressing constraints for lot-sizing under tk&, S™) policy, and leads
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to more efficient solution methods. This paper further impsothe efficiency of
the CP-based approach by exploiting three forms of costebfisering. The wide
test bed considered shows the effectiveness of our approatdr many different
parameter configurations and demand trends. The improvam&ches several
orders of magnitude in almost every instance we analyzedaMyeow able to
solve to optimality problems of a realistic size, in timedexfs than a second and
often without search, since the bounds produced by our Cagbn proved to
be very tight in a large amount of instances. In future workaie to extend our
model to new features such as lead-time for orders and dggacistraints for the
inventory.

5.7 Appendix

5.7.1 Considering a unit production cosip

The stochastic programming formulation given can be exddnd consider a unit
production cosp as follows

N
min E{T(J}:/d1 /dz... dN;(a6t+h-ma><(It,0)+p.Qt) (5.45)

gl(dl)gg(dg) P gN(dN)d(dl)d(dQ) P d(dN)
subject to Constraint (5.2), (5.3), (5.4) and (5.5), foe 1,..., N. The given
objective function (5.45) can be rewritten as
N

E{TC}:p-K+min//.../ p-[N+Z(a6t+h-max(It,0))
dy Jds dyn =1

gl(dl)gg(dg) P gN(dN)d(dl)d(dg) P d(dN)
(5.46)

whereK = fdl fd2 R de Eivzl dt gl(dl)gg(dg) R gN(dN)d(dl)d(dQ) R d(dN)
For further details on this transformation the reader mésrit® [71, 90], where a
similar transformation is described in details for the kamstic inventory control
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problem under a penalty cost scheme. Intuitively, objedtnction (5.46) shows
that the effect of the unit production cgstan be decomposed in a constant factor
p- K and in a variable factgs- Iy that depends on the very last closing-inventory-
level planned. The deterministic equivalent CP approach is

(5.47)

t=1 t=1

N N
E{TC} :pZJterin [p-fN+Z (aét —i—hft)

subject to Constraint (5.7), (5.8), (5.9) and (5.10), foe 1...N. It directly
follows that the variable effect of the unit production cpss reflected only on
the cost of the very last replenishment cycle scheduled. chs¢-based filter-
ing method presented in Section 5.3.2 is independent ofdhsiderations pre-
sented here. It remains sound under a unit production ctis¢ issociated pre-
processing method can consider this cost. The pre-progpssthods in [92] and
the cost-based filtering method in Section 5.3.1 can be dgtéto consider a unit
production cosp by replacing the definition given in Eq. (5.15) for the cagt ;)
of a replenishment cycl&(i, j) as follows:

o c(i,j) if j#N
1,7) = 5.48
) {p-b(z‘,jwc(m) it j=N. 549

The cost-based filtering in Section 5.4 in a similar manngiliap to the case
where a unit production cogtis considered if, when the connection matrix for
the graph constructed is buitt:, j) is replaced by:(:, j) as just described.

5.7.2 Proof: Replenishment cycle length bound

By using the definition of(i, j) we can rewrite Eq. 5.17 as

k
a+h(k—i+1)b(i k) +hY (t—i)d+a+h(j —k+1b(k+1,5+ 1)+

t=1

j+1 J+1
h (t—k—1d <a+h(j—i+2)b(i,j+1)+h) (t—i)d,
t=k+1 t=i

(5.49)
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which can be simplified to

j+1
— k+1—0)d, < (G—k+1)[bG,j+1)—bk+1,5+1)]+
tzzk;l( i)d; < (j ) [b(i, 5 + 1) — b( j+1)] (5.50)

(k—i+1)[b(i,j+1)—0b(i,k)].

> e

We now want to prove thatif > j + 1, thendk +1 € {i + 1,5} s.t. c(i, k) +
c(k+1,p) <c(i,p) Nb(i, k) < R(k+ 1,p). We can rewrite this condition as we
did before and therefore obtain an expression similar to5Esp, that is

T D7 (ke L)y < (p—k) (i, p) = bk + 1, )]+ (k=i+1) [o(i,p) = G, )]

t=k+1
(5.51)
We now subtract both the left and the right term of Eq. 5.5@fieq. 5.51. Thus
we get

- i(k;+1—z’)Jt+(j—k+1)[b(i,j+1)—b(k+1,j+1)]+

AN (5.52)
(k—i+1)[b(i,j +1) = b(i, k)] < (p—j—1)[b(d,p) — bk + 1,p)] +

(G =k + 1)l p) = bk + 1L,p)l + (k= i+ 1) [b(i,p) — b(s, k)],

by omitting the term— Zf:j+2(l<: + 1 — 4)d, to save space and rearranging the
other terms we obtain

G —k+1)bk+1p) —bk+1,j+1)] < (5.53)
(G —i+2)[b(i,p) = b(i,j + D] + (p—j — 1) [b(i,p) — bk +1,p)],
we change name to the coefficients
A-bk+1,p)—A-blk+1,j+1) <
(k+1,p) = A-b(k+ 1,5+ 1) .50

B-b(i,p) —B-b(i,j+1)+C-b(i,p) —C-b(k+1,p)

and finally
(A+C)-b(k+1,p)—A-b(k+1,7+41) < (B+C)-b(i,p)— B-b(i,j+1), (5.55)
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whereA+ C =p—kandB + C = p — i + 1. Reinserting the omitted term we
obtain Eq. 5.18. Sincé(i, k) < R(k+ 1,5+ 1), it also follows that(i, k) <
R(k+1,p). Therefore, under the given conditions, it is never optito@over the
span{i,...,p}, p > j by using a single replenishment cyd#:, p). Hence the
optimum periodk + 1 for the next replenishment after the one scheduled in period
iliesinthe spar{i+ 1,...,j + 1} and it cannot be after + 1.

5.7.3 Modified Dijkstra’s Shortest Path Algorithm

We will use a modified implementation of Dijkstra’s ShortBsith Algorithm in
order to enhance performances and make our relaxation cinepaith Method

I in [92]. Dijkstra’s strategy relies on the following wellnkwn Shortest Path
Theorem, which holds for any directed acyclic graph

Theorem 5.7.1(Shortest Path Theoremlf P is the shortest path from nodeto
nodev and if P passes through nodg thenP is made up by the shortest paih
fromu to z and by the shortest pat), from z to v.

Since we are solving a problem that implies a one-way tenhpemaibility, as
Wagner and Whitin notice in [96], half of our connection nratill be set tooc.
Therefore any instance of siZé can be solved inV(V + 1)/2 steps taking this
fact into account during the computation as we will see.

Let G be a directed acyclic grap{V, A), whereV is a set of N numbered
vertices{v, ..., uy } and A is a set of arcs among these nodes. lllebe a square
matrix representing the cost related to each arc that appeat. Letv; be the
source we are computing shortest paths from. dlef be a label for any vertex
v; € V, anda|v;] the index of the ancestor of nodge V' in the shortest path. At
the end of the computatiof{v;| represents the shortest distance from the source
v1 to the vertexy;. Itis also possible to find every vertex in the shortest pathf
v; to v; following in a recursive fashion the chain of indexes thattstwitha[v;].

In particular we will be interested in the shortest path fragto v, which is the
one that covers our planning horizon. The complete codeag/shin Algorithm
6. In order to reduce steps 16( N + 1)/2 we introduced; > i as a precondition
for the execution of Procedutgelax(v;,v;,1V). Notice also that in order to make
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the algorithm compatible with filtering methods in [92] sowteecks on vertex
indexes have been introduced. In particular in Procedisiex(v;,v;,W) when
two or more paths exist with the same distance frgnwe always choose the
ancestow; that has the highest indeéxThe reason we do this is related to the way
pre-processing Method | in [92] filters values in decisiomialles domain. In
fact, when a replenishment period € {1,..., N} is considered, such a method
looks for the lowesj s.t. j > i after which it is not longer optimal to schedule the
next replenishment. This means that, if more policies thatesthe same expected
cost exist, only the one that has shorter, and obviously pnepéenishment cycles
will be preserved by Method I, while values that are feasialé respect to other
policies equally costly may be pruned. So we introduced #sedbed checks on
vertex indexes in order to make sure that, when more optiwladips exist, our
modified algorithm will always find the one that has the higlpessible number
of replenishment cycles (i.e. the shortest path with thbdsgpossible number of
arcs).
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Algorithm 6 : Modified Shortest Path Algorithm

input : G, W, v,
output: d, a

begin
Initialize(G, vy)
Let d[v;] be the shortest path from to v,
Insert all vertices irGG in a priority queue)
while @ is not emptydo
extracty; S.t. d[v;] is minimum
for each vertex; adjacent tov; s.t. j > i do
| Relax(vi,vj, W)

end

Procedurel niti ali ze( G,vy)

begin
for each vertex; in G do
setd[v;| to W (vy, v;)
L setafv;| to 1
setd[v,| to 0
end

ProcedureRel ax( v;,v;,IW)

begin
if d[Uj] > d[’UZ] + W(UZ', ’Uj) then
setd[v,] equal tod[v;] + W (v;, v;)
| seta[v;] equal toi
else
if dv;] == d[v;] + W (v;,v;) AND @ > afv;] then
| setafv;] equaltoi

end
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Chapter 6

Paper V. Constraint Programming
for Stochastic Inventory Systems
under Shortage Cost

R. Rossi, S. A. Tarim, B. Hnich and S. Prestwich

Abstract

One of the most important policies adopted in inventory ans the (R,S) pol-
icy (also known as the “replenishment cycle” policy). Undlee non-stationary
demand assumption th&(S) policy takes the formR,,,S,) where R,, denotes
the length of thex" replenishment cycle, ansi, the corresponding order-up-to-
level. Such a policy provides an effective means of damplagrmpng instability
and coping with demand uncertainty. In this paper we devalopnstraint pro-
gramming approach able to compute optima), (S,,) policy parameters under
stochastic demand, ordering, holding and shortage costusé/the optimal so-
lutions to analyze the quality of the solutions provided hyeaisting approximate
mixed integer programming approach that exploits a pieseWimear approxima-
tion for the cost function. Furthermore we show how in our elats possible to
exploit the convexity of the cost-function during the séat@ dynamically com-
pute bounds during the search and perform cost-basedrfiteri

tThis paper is an extended version of the work presented in [71
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6.1 Introduction

Much of the inventory control literature concerns the cotapian of optimal re-
plenishment policies under demand uncertainty. One of th& important poli-
cies adopted is the(,S) policy (also known as theeplenishment cyclpolicy). A
detailed discussion on the characteristics®fY) can be found in (de Kok [22]).
In this policy a replenishment is placed eveRyperiods to raise the inventory
position to the order-up-to-levél. This provides an effective means of damping
planning instability — deviations in planned orders, alsown asnervousnes@le
Kok and Inderfurth [23], Heisig [44]) — and coping with dendasncertainty. As
pointed out by (Silver et al. [81], pp. 236-237R,0) is particularly appealing
when items are ordered from the same supplier or requirairessharing. In
these cases all items in a coordinated group can be givemthe geplenishment
period. In (Janssen and de Kok [51]) a two-supplier periodiciel is discussed
where one supplier delivers a fixed quantity while the amalglivered by the
other is governed by arR(S) policy. In (Smits et al. [82]) a production-inventory
problem with compound renewal item demand is considered.nbdel consists
of stock-points, one for each item, controlled accordin@fi@)-policies and one
machine which replenishes them. Periodic review also allmweasonable predic-
tion of the level of the workload on the staff involved, angh&sticularly suitable
for advanced planning environments and risk managemeng([Bb]). For these
reasonsR,S) is a popular inventory policy.

As pointed in (Graves [40]) one major theme in the continudegelopment
of inventory theory is to incorporate more realistic asstioms about product de-
mand into inventory models. In most industrial contextsnded is uncertain and
hard to forecast. Many demand histories behave like randatkswhat evolve
over time with frequent changes in their directions andsrafegrowth or decline.
Furthermore, as product life cycles get shorter, the ramdm®and unpredictabil-
ity of these demand processes have become even greateacticey for such de-
mand processes, inventory managers often rely on fordeasésl on a time series
of prior demand, such as a weighted moving average. Typittedlse forecasts are
predicated on a belief that the most recent demand obsengadre the best pre-
dictors for future demand. An important class of stochgstodluction/inventory

197



control problems therefore assumes a non-stationary dépraess. Under this
assumption thekK,S) policy takes the non-stationary fornk(,S,,) whereR,, de-
notes the length of the'" replenishment cycle anél, the corresponding order-
up-to-level (Fig. 6.1). To compute timearoptimal policy parameters, (Tarim and
Kingsman [90]) propose a mixed integer programming (MIP)rfolation using a
piecewise linear approximation to a complex cost function.

This paper focuses on the work of Tarim and Kingsman, in wiadimite-
horizon, single-installation, single-itenkf,S,,) policy is addressed. They assume
a fixed procurement cost each time a replenishment ordeace@) whatever the
size of the order, and a linear holding cost on any unit cdroeer in inventory
from one period to the next. Instead of employing a servigelleonstraint —
the probability that at the end of every time period the neemory will not be
negative is at least a certain value (see Bookbinder andIEnTarim and Kings-
man [89] for (R,,S,) under a service level constraint) — their model employs
a penalty cost scheme. They propose a certainty-equivedemulation of the
above problem in the form of a mixed integer programming (Mtfddel. So far
no constraint programming (CP) approach has been proposéa.f,S,,) under a
penalty cost. In fact, as shown in (Tarim and Kingsman [90p,cost structure is
complex in this case and it differs significantly from the amgler a service level
constraint. (Tarim and Smith [92]) proposed a CP model urdservice level
constraint. In this paper it was shown that not only CP is &blgrovide a more
compact formulation than the MIP one, but that it is also ablperform faster
and to take advantage of dedicated pre-processing tedwmibat reduce the size
of decision variable domains. Moreover dedicated cosedéittering techniques
were proposed in (Tarim et al. [87]) for the same model, theseniques are able
to improve performances of several orders of magnitude.

In this paper, we give aaxactformulation of the {,,,S,,) inventory control
problem via constraint programming, instead of employipiegewise linear ap-
proximation to the total expected cost function. This ex@etformulation pro-
vides an optimal solution toH,S) policy. Our contribution is two-fold: we can
now obtain provably optimal solutions, and we can gauge tloeiracy of the
piecewise linear approximation proposed by Tarim and Kimgys. Furthermore
we propose a dedicatedst-based filteringnethod (Focacci and Milano [31]) to

198



improve performances of the search. The experiments pgexsshow the effec-
tiveness of our approach.

6.2 Problem definition and(R,, S,,) policy

The demandi, in periodt is considered to be a normally distributed random
variable with known probability density function (PDE)d,), and is assumed to
occur instantaneously at the beginning of each period. Témnmate of demand
may vary from period to period. Demands in different timeip#gs are assumed
to be independent. A fixed holding ca'stis incurred on any unit carried over
in inventory from one period to the next. Demands occurririggmwthe system
IS out of stock are assumed to be back-ordered and satisfigobasas the next
replenishment order arrives. A fixed shortage cosst incurred for each unit of
demand that is back-ordered. A fixed procurement (ordenrggtup) cost: is
incurred each time a replenishment order is placed, whategesize of the order.
In addition to the fixed ordering cost, a proportional dirgetn costv is incurred.
For convenience, and without loss of generality, the ihitigentory level is set
to zero and the delivery lead-time is not incorporated. #ssumed that negative
orders are not allowed, so that if the actual stock exceexsrtter-up-to-level for
that review, this excess stock is carried forward and doésatorn to the supply
source. However, such occurrences are regarded as rares ewehaccordingly
the cost of carrying the excess stock is ignored. The abaagsions hold for
the rest of this paper.

The general multi-period production/inventory problenthastochastic de-
mands can be formulated as finding the timing of the stoclereviand the size of
non-negative replenishment ordels, in period¢, minimizing the expected total
cost over a finite planning horizon of periods:

min E{TC} =

/d/d/d > (ad + vXy + hIF + sI7) gi(da) . .. gy (dy)d(dy) . .. d(dy)

N t=1

(6.1)
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subject to

Xi>0=90=1 (6.2)
t

I =) (Xi—d) (6.3)
i=1

I} = max(0, I;) (6.4)

I;7 = —min(0, I) (6.5)

X, I, 17 eztu{0}, L eZ 6 €{0,1} (6.6)

fort=1...N, where

d, :the demand in periot] a normal random variable with PDf(d,),

a : the fixed ordering cost,

v : the proportional direct item cost,

h : the proportional stock holding cost,

s :the proportional shortage cost,

0; :a{0,1} variable that takes the value of 1 if a replenishment occurs i
periodt and O otherwise,

I; :the inventory level at the end of periog—oco < I; < +00, I =0

It : the excess inventory at the end of periazhrried over to the next period,
0< I,

I; : the shortages at the end of perig@r magnitude of negative inventory
0< 1,

X, : the replenishment order placed and received in petiod > 0.

The proposed non-stationari,(S) policy consists of a series of review times
and associated order-up-to-levels. Consider a reviewdsdbevhich hasn re-
views over the N period planning horizon with orders arriyat{7}, s, ..., T,.},

T; > T;_,. For conveniencé&; = 1 is defined as the start of the planning hori-
zon and7;,.; = N + 1 the period immediately after the end of the horizon. In
(Tarim and Kingsman [90]), the decision variable, is expressed in terms of a
new variableS; € 7Z, whereS; may be interpreted as the opening stock level for
periodt, if there is no replenishment in this period (i T; and X, = 0) and
the order-up-to-level for théth review periodr; if there is a replenishment (i.e.
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t =T, andX; > 0). According to this transformation the expected cost fiomgt
Eq. (6.1), is written as the summatiomefintervals,T; to 7, fori = 1,...,m,
definingD,, ,, = 3.2, d;:

Jj=t1

m Tit1—-1
min E{TC} =) _ (aén + > E{CTi,t}> +
=1 t=T;

UIN + v Dl,N X g(Dl,N)d(Dl,N)a
Dy N

(6.7)

The termv fDl N Dy n x g(Dy n)d(Dy n) is constant and can therefore be ignored
in the optimization modelE{Cr, ;} of Eq. (6.7) is defined as:

o

51,
/ W (St — Dr,) 9(Dp,)d(Dr,) — / 5 (S1, = Dr,0) 9(Dr0)d(Dr.).

[es) ST,

(6.8)

As stated in (Tarim and Kingsman [90]%{Cr, .} is the expected cost function
of a single-period inventory problem where the single-pedemand isDy, ;.
SinceSt, may be interpreted as the order-up-to-level forifle review period!;
andSt, — Dr, . is the end of period inventory for the “single-period” witardand
Dr. ., the expected total subcodt§ Cr, , } are the sums of single-period inventory
costs where the demands are the cumulative demands oveasnug periods.

By dropping thel; andt subscripts in Eq. (6.8) we obtain the following well-
known expression for the expected total cost of a singleederewsvendor prob-
lem:

S

e}

(S~ D)g(D)A(D) - / (S - D)g(D)A(D)  (6.9)

B{TCY} = h /
where we consider two cost components: holding cost on tegiy®end of pe-
riod inventory and shortage cost for any back-ordered deméet GG(-) be the
cumulative distribution function of the demand in our seygleriod newsvendor
problem. A known result in inventory theory (Hadley and Vithid1]) is con-
vexity of Eq. (6.9). The so-calle@ritical Ratio, .75, can be seen as the service
level 3 (i.e. probability that at the end of the period the inventlayel is non-
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negative) provided when we fix the order-up-to-leggeto the optimal values*
that minimizes expected holding and shortage costs (E@))(6By assuming
G(-) to be strictly increasing, we can compute the optimal orgete-level as
9F = G—l ( s )

s+h

6.2.1 Stochastic cost component in single-period newsvesrd

We now aim to characterize the cost of the policy that ord€rsinits to meet
the demand in our single-period newsvendor problem. Sudiblagem has been
widely studied in the inventory control literature (Silver al. [81]). Since the
demandD is assumed to be normal with mearand standard deviation, then

we can writeD = p + oZ, where Z is a standard normal random variable. Let
®(z) = Pr(Z < z) be the cumulative distribution function of the standardmair
random variable. Sinc@(-) is strictly increasing®—(-) is uniquely defined. Let

25 = (), sincePr(D < p+2z50) = ®(23) = 3, it follows thatS* = u+zs0.
The quantityz; is known as the safety factor astf — ;o = 230 is known as the
safety stock. It can be shown (Hadley and Whitin [41]) that

/ (5" =D)g(D)d(D) = E{D =S} = 0 E{Z =23} " = 0[¢(25) — (1—3) 2]

) (6.10)
whereg(-) is the PDF of the standard normal random variable. .g$*— D}* =
[%_(S = D)g(D)d(D), it follows

E{TC(S")} =h-FE{S*—D}*+s-FE{D - S"}"T =
h-(S*—p)+ (h+s)E{D - 5"} =
hzgo + (h+ s)o E{Z — 25} " = (6.11)
hzgo + (h+ s)alp(zp) — (1 — B)zs] =
(h+5)0p(zp)

The last expressiofh + s)o¢(z5) holds only for the optimal order-up-to-levet

that provides the service levgl= (th) computed from theritical ratio (CR).
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Instead, expression
hzao + (h+ s)o[p(za) — (1 — ) z4) (6.12)

can be used to compute the expected total cost for any giwveh $esuch that
a=> (%) In Fig. 6.2 we plot this cost for a particular instance asrecfion
of the opening inventory leve.

6.2.2 Stochastic cost component in multiple-period newswue
dor

The considerations in the former sections refer to a sipgh&sd problem, but
they can be easily extended to a replenishment ci¢le;j) that covers the pe-
riod spani,...,j. In (Levi et al. [59]) it is possible to find a discussion on
multi-period newsvendor problems and a sampling-baseddtieuapproach to
find near-optimal solutions. In contrast the approach we@se is exact. The de-
mand in each period is normally distributed with PR, ), .. ., g;(d;). The cost
for the multiple periods’ replenishment cycle, when ordgrcosts are neglected,
can be expressed as

E{TC} =

S (0 [ 5 -ttt -5 [ - duatdiein)

k=i % S

(6.13)

Since demands are independent and normally distributealdin period, the term
g:.;(d; ;) (that is the p.d.f. for the overall demand over the periodspa . ., j})
can be easily computed (Fortuin [34]) once the demand in padbdd;, . . ., d;
are known. It is easy to apply the same rule as before and dentipet second
derivative of this expression:

SGE(TCY =3 (b gis(8) + 5 9ua(S) (6.14)
k=i
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Figure 6.1: ®,,5,) policy. d; + di11 + ... + d; is the expected demand ov&f;
I, =5, —d;+di+1 + ...+ d;is the expected closing inventory level far.

cost

Figure 6.2: Single-period holding and shortage cost as etifum of the opening
inventory level S. The demand is normally distributed withan200 and standard
deviation20. Holding cost isl, shortage cost i$0.
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which is again a positive function &, sinceg; ;(S) are PDFs and both hold-
ing and shortage cost are assumed to be positive. The edpamieof a single
replenishment cycle therefore remains conve iregardless of the periods cov-
ered. Unfortunately it is not possible to compute the CR #&srbeusing a simple
algebraic expression to obtain the optinfsalwhich minimizes the expected cost.
But since the cost function is convex, it is still possibletmputeS* efficiently.
Eq. (6.12) can be extended in the following way to computectist for the re-
plenishment cycld?(i, 7) as a function of the opening inventory level

j
Z (hzaiwoik + (h+ 8)0; k[@(Zagp) — (1 — (i, k) Zagk)]) (6.15)
k=i
whereG, ,(S) = a(i, k) andz,( x) = ' (a(i, k)). Therefore we haveg — i + 1
cost components: the holding and shortage cost at the eregiotip, i +1, . . ., j.
In Fig. 6.3 we plot this cost for a particular instance as @fiam of the opening in-
ventory levelS. For each possible replenishment cycle we can efficientiyprge

cost
Il

Figure 6.3: Three periods holding and shortage cost as didunaf the opening
inventory level S. The demand is normally distributed infreperiod with mean
respectivelyl 50, 100, 200, the coefficient of variation i8.1. Holding cost isl,
shortage cost i$0.

the optimalS™* that minimizes such a cost function, using gradient basetiods
for convex optimization such as Newton’s method. Notice tha complete ex-
pression for the cost of replenishment cycles that starenod: € {1,..., N}
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and end in periodV is

N
Z (hza(i,k)gi,k + (h+ s)oik [¢(Zoz(i,k:)) — (1 —af(i, k))za(i,k)D +
k=i (6.16)

(2

In fact for this set of replenishment cycles we must also idmnsthe unit cost
component. Oncé&™ is known, by subtracting the expected demand over the
replenishment cycle we obtain the optimal expected buffezkslevelb(i, j) re-
quired for such a replenishment cycle in order to minimizklimgy and shortage
cost. Notice that every other choice for buffer stock levél produce a higher
expected total cost faR(z, j).

6.2.3 Upper-bound for opening inventory levels

We now propose anpper boundor the value of the opening inventory level in
each period € {1, ..., N}. Firstly we ignore the direct item cost in fact from
Eq. (6.7) it is trivial to see that may only decrease the opening inventory level
for the last replenishment cycle scheduled. We considenglesreplenishment
cycle covering the whole planning horizon. If we relax thigioral problem for-
mulation and we ignore holding and shortage cost comporanie end of each
periodt € {1, ..., N —1}, the resulting model will reflect a single period newsven-
dor problem. In this problem we incur holding and shortaget coly at the end
of the last periodV and the stochastic demand is given by the sum of the de-
mand distributions in each period of our planning horizorhe Dptimal buffer
stockd(1, N) required to optimize the convex cost for this problem candsily
computed, as seen, by means of the critical ratio. It is easgé¢ that, since we
relaxed holding and shortage costs for each petied{1, ..., N — 1}, then for
each period € {1,..., N}, max(S;) = 3.V d,+b(1, N). In fact, since we assume
a shortage cost higher than holding cost, opening inver¢wosts for this replen-
ishment cycle may only be decreased by the additional caspoaents in the
original model. Moreover the upper bounds computed arkevstid if the plan-

206



ning horizon is covered by more than a single replenishmgeiec The reason
is the following. If the planning horizon is covered by a nwmnlof replenish-
ment cycles, again it is possible to apply a similar reaspaind it is possible to
reduce each replenishment cydkg covering periodgi,...,j} to a single pe-
riod newsvendor problem, by ignoring holding and shortaggscfor each period
t € {i,...,j—1} and by considering only the cost component of the last period
Then for each replenishment cydig we will easily obtain a buffer stocl(i, j),
by means of the critical ratio. Sinééi, j) is increasing, that i&(:, j) < b(i, j+1),
as shown in (Tarim and Smith [92]), obviously opening ineepievels computed
in this case will be lower than those computed for the fornaseovhere a single
replenishment cycle covers the whole planning horizon.tHfeumore we recall
that also in this case opening inventory levels may only leeedesed when the ad-
ditional holding and shortage cost components for otheogsrare reintroduced
in the model. It directly follows that the upper bounds coteglare valid for the
original model.

6.2.4 Lower-bound for expected closing inventory levels

A lower boundor the value of the expected closing inventory level in eaetiod

t € {1,..., N}, that is opening inventory level minus expected demand,bean
computed by considering every possible buffer stagk;) required to optimize
the convex cost of a single replenishment cy€le, 7), independently of the other
cycles that are planned. The lower bound will be the minimatae among all
these possible buffer values fpe {1, ..., N} andi € {1, ..., j}.

6.3 Deterministic equivalent CP formulation

Building on the considerations above it is easy to consaueterministic equiv-
alentCP formulation for the non-stationafy,,, S,,) policy under stochastic de-
mand, ordering cost, holding and shortage cost. (For alddtdiscussion on
deterministic equivalent modeling in stochastic prograngnsee Birge and Lou-
veaux [11]).

In order to correctly compute the expected total cost fopéerashment cycle
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R(3, j) with opening inventory leve$;, we must build a special-purpose constraint
objConstraint(-) that dynamically computes such a cost by means of an extended
version of Eq. (6.15)

J
C(Si,i,j) = a+ Z (hza(ipy Tk + (h+ 8)0ik[D(Zatir) — (1 — (i, k) zan))

k=i

(6.17)
that considers the ordering cost. Then the expected tosafaoa certain replen-
ishment plan will be computed as the sum of all the expectdi¢osts for replen-
ishment cycles in the solution, plus the respective orderosts objConstraint(-)
also computes the optimal expected buffer stock léuelj) for every replenish-
ment cycleR(i, j) identified by a partial assignment féfc(, . ny variables. A
deterministic equivaler@P formulation is

.....

min E{TC} =C (6.18)
subject to
objConstraint (C, Ly Iy 00 O das o dy, b, s) (6.19)
andfort=1... N
Li+d,—1,_,>0 (6.20)
jt —|— dNt - jt—l > 0 = 6t — 1 (621)
IL,eZ, 6 €{0,1} (6.22)

Each decision variablé, represents the expected closing inventory level at the
end of periodt; bounds for the domains of these variables can be computed as
explained above. Each represents the expected value of the demand in a given
periodt according to its PDF; (d,). The binary decision variablégstate whether

a replenishment is fixed for periadd; = 1) or not (§; = 0).

Eq. (6.20) enforces a no-buy-back condition, which meaaisrdteived goods
cannot be returned to the supplier. As a consequence ohthexpected inventory
level at the end of perioimust be no less than the expected inventory level at the
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end of period — 1 minus the expected demand in periodq. (6.21) expresses
the replenishment condition. We have a replenishment ietpected inventory
level at the end of periotis greater than the expected inventory level at the end of
periodt — 1 minus the expected demand in pertod his means that we received
some extra goods as a consequence of an order.

The objective function (6.18) minimizes the expected totet over the given
planning horizon.objConstraint(-) dynamically computes buffer stocks and it
assigns ta”' the expected total cost related to a given assignment foemisgh-
ment decisions, depending on the demand distribution ih padod and on the
given combination for problem parameters:, s. In order to propagate this con-
straint we wait for a partial assignment involvingt = 1,..., N variables. In
particular we look for an assignment where there exists sosed; = 1, some
j >1is.t.d;41 = 1and foreveryk, i < k < j, 6, = 0. This will uniquely iden-
tify a replenishment cyclé(i, j) (Fig. 6.4). There may be more replenishment

R(ij)
—_—
i . o . .
0=l — —— ; =1
Ote fit1,..7y~ 0

Figure 6.4: A replenishment cycl(i, j) is identified by the current partial as-
signment for; variables.

cycles associated with a partial assignment. If we congidehR(i, j) identified
by the current assignment, it is easy to minimize the conesk function already
discussed, and to find the optimal expected buffer stockj) for this particular
replenishment cycle independently on the others. By ddirgyfor every replen-
ishment cycle identified, two possible situations may arike buffer stock con-
figuration obtained satisfies every inventory conservatmmstraint (Eq. (6.20)),
or for some couple of subsequent replenishment cycles d¢imistiaint is violated
(Fig. 6.5). Therefore we observe an expected negative guiettity. If the latter
situation arises we can adopt a fast convex optimizationguiore to compute a
feasible buffer stock configuration with minimum cost. They kdea is to iden-
tify two possible limit situations: we increase the openimgentory level of the
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stocks

— [
7'71'_/('_']_"__;period )
E{TC} R(ik) E{TC} R(k+1j)
__\\\_/___ ‘__}_\_'o_/__
b(ik) b(k+1,)

Figure 6.5: The expected total cost of both replenishmeriesyis minimized, but
the inventory conservation constraint is violated betwBén k) andR(k + 1, j)

second cycle, thus incurring a higher overall cost for ipteserve optimality of
the first cycle (Fig. 6.6 - a). Or we decrease the buffer stdakefirst replen-
ishment cycle, thus incurring a higher overall cost for dat,preserve optimality
of the second cycle cost (Fig. 6.6 - b). A key observation &,ttvhen negative

stocks a stocks b

Lk J ' period

period

& E{TC} L E{TC} E(TC} ‘ \\‘R/(ky )

b(ik) b(k+1,) b(ik) b(k+1))

E{TC}

Figure 6.6: Feasible limit situations when negative ordeargity scenarios arise

order quantity scenarios arise, at optimality the expeckesing inventory levels
of the first and the second cycle lie in the interval delimivgdhe two situations
described. This directly follows from the convexity of bdtie cost functions.
Moreover the expected closing inventory level of the firstleynust be equal to
the opening inventory level of the second cycle. In facthiEtdoes not hold,
then either the first cycle has an expected closing inveriéwsl higher than the
opening inventory level of the second cycle and the solusamot feasible (Fig.
6.7 - a), or the first cycle has an expected closing inventrglismaller than the
opening inventory level of the second cycle. In the lattesecare can obviously
decrease the overall cost by choosing a smaller openingitomelevel for the
second cycle (Fig. 6.7 - b). The algorithm for computing wati buffer stock
configurations in presence of negative order quantity scenaimply exploits

210



stocks a stocks b

period period

| Rk+1),

E{TC} E{TC}‘ \\-\ﬁ”z/) E{TC} E{TC}{ \\-‘/

b(ik) b(k+1j) b(ik) b(k+1,j)

Figure 6.7: Infeasible (a) and suboptimal (b) plans redléen the opening
inventory level of the second cycle doesn't equate the e@rpedosing inventory
level of the first cycle

the linear dependency between the opening inventory ldvdeosecond cycle
and the expected closing inventory level of the first cyclaeb this dependency
the overall cost is still convex it(i, k) (or equivalently inb(k + 1, j), since they
are linearly dependent) and we can apply any convex opttraizéechnique to
find the optimal buffer stock configuration. Notice that treasoning still holds
in a recursive process. Therefore we can optimize buffekdtr two subsequent
replenishment cycles, then we can treat these as a new sapigmishment cycle,
since their buffer stocks are linearly dependent, and tepegrocess in order to
consider the next replenishment cycle if a negative ordantity scenario arises.

Once buffer stocks are known we can apply Eqg. (6.17) to theiogenven-
tory levelS; = d; + ... + d; + b(i, /) and compute the cost(S;, 4, j) associated
with a given replenishment cycle. Since the cost functioBgn (6.17) is convex
and we handle negative order quantity scenarios, a lowendtar the expected
total cost associated with the current partial assignnani,ft = 1,..., N vari-
ables is now given by the sum of all the cost componéftts;, 7, j), for each
replenishment cycl&(i, j) identified by the assignment. Furthermore this bound
is tight if all the ¢, variables have been assigned;jConstraint(-) exploits this
property in order to incrementally compute a lower boundlffercost of the cur-
rent partial assignment fay variables. When every, variable is ground, since
such a lower bound becomes tight, buffer stocks computeekfcin replenishment
cycle identified can be assigned to the respedtiwariables. Finally, in order to
consider the unit variable costwe must add the term - I to the cycle cost
C(S;,i,N) fori € {1,..., N}. Therefore the complete expression for the cost of
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Period 1 2 3 4 5 6 7 8
d¢ 200 100 70 200 300 120 50 100

Table 6.1: Expected demand values

replenishment cycles that start in period {1, ..., N} and end in perioaV is:
N
C(Sii,N) =a+ > (hza@mois + (h+ 8)0ir[d(zaip) — (1= ali, k) Zagm))

k=1 N
+v (SZ — Z dk>
k=1

(6.23)

6.4 Comparison of the CP and MIP approaches

(Tarim and Kingsman [90]) proposed a piecewise linear appration of the cost
function for the single-period newsvendor type model uradding and shortage
costs, which we analyzed above. Thus they were able to biMéPamodel ap-
proximating an optimal solution for the multi-period stastic lot-sizing under
fixed ordering, holding and shortage costs. They gave a famples to show
the effect of higher noise levels (uncertainty in the demfamecasts) on the or-
der schedule. Using the same examples we shall compare libeep@btained
using our exact CP approach with their approximation. Ddp&non the num-
ber of segments used in the piecewise approximation, thigyjaathe solutions
obtained can be improved. We shall consider approximatiotistwo and seven
segments. The forecast of demand in each period are givesbile .1. We as-
sume that the demand in each period is normally distribubeditathe forecast
value with the same coefficient of variation Thus the standard deviation of
demand in period is o, = 7 - d;. In all cases, initial inventory levels, delivery
lead-times and salvage values are set to zero.

In Fig. 6.8—6.12 optimal replenishment policies obtaindthwur CP ap-
proach are compared for four different instances, witheesior, v, a ands, with
the policies provided by the 2-segment (PW-2) and 7-seg(f&Ht7) approxima-
tions. For each instance we compare the expected total mstipd by the exact
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method with the expected total cost provided by the polifbesd using approx-
imate MIP models. Since the cost provided by PW-2 and PW-7 eggoroxima-
tion, it often differs significantly from the real expectedal cost related to policy
parameters found by these models. It is therefore not mghuito compare the
cost provided by the MIP model with that of the optimal polatytained with our
CP model. To obtain a meaningful comparison we computeddhkaxpected
total cost by applying the exact cost function (Egs. 6.123%discussed above to
the (R,,S,) policy parameters obtained through PW-2 and PW-7. It is phessi-
ble to assess the accuracy of approximations in (Tarim anddtnan [90]). Fig.

500

400 \\ \\

Inventory
] oo
= =
fu] fu ]
L~

\

Periods

Figure 6.8:h = 1, a = 250, s = 10,v = 0,7 = 0.0

6.8 shows the optimal replenishment policy for the deteistimcase £ = 0.0).

The direct item cost) is taken as zero. Four replenishment cycles are planned.
The (R,,S,) policy parameters ar® = [3, 1,3, 1] andS = [370, 200, 470, 100].

The total cost for this policy i$460. Fig. 6.9 shows an instance where we con-
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Figure 6.9:h = 1,a = 250, s = 10,v = 0,7 = 0.1
sider low levels of forecast uncertainty & 0.1). In this case both PW-2 and
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PW-7 perform well compared to our exact CP solutions. Sicecdast uncer-
tainty must be considered, all the models introduce butiecks. The optimal
(R.,S,) policy parameters found by our CP approach Bre= [3,1,2,2] and
S = [384, 227,449, 160]. The PW-2 solution i3.75% more costly than the exact
solution, while the PW-7 solution is slightly more costhaththe exact solution.
Fig. 6.10 shows that as the level of forecast uncertaintseesess = 0.2), the
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Figure 6.10:h = 1, a = 250, s = 10,v = 0,7 = 0.2

quality of the PW-2 solution deteriorates, in fact it is nd\#2% more costly than
the exact solution. The optimaky(,S,,) policy parameters found by our CP ap-
proach areR = [3,1,2,2] andS = [401,253,479,170]. In contrast the PW-7
solution is still only slightly more costly than the exactigmn. As noted in

600 N
500
£ 400 \ A Exact- 3467
£ \ \ \ ——PW 73503
£ 300 \ \ \ \ \ ,,,,,,, Py 2 - 3598
100 \ : M
0

Periods

Figure 6.11:h =1, a = 350, s = 50,v = 0,7 = 0.3

(Tarim and Kingsman [90]) the quality of the approximaticeceases for high
ratioss/h. In Fig. 6.11 we consides/h = 50 and a different demand pattern.
The forecast of demand in each period are given in Table 6 &v te PW-2
solution is6.66% more costly than the exact approach, while the PW-7 solution
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Period 1 2 3 4 5 6 7 8
dt 200 100 70 200 300 120 200 300

Table 6.2: Expected demand values

is 1.03% more costly. The optimalX,,,S,,) policy parameters found by our CP
approach aré&? = [3,1,2,1, 1] andS = [483, 324,592, 324, 486]. In Fig. 6.12 we
consider the same instance but a direct item cost is nowrned = 15). The
buffer stock held in the last replenishment cycle is affédig this parameter, and
is decreased fron&6 to 63. The PW-7 policy is novd.84% more costly than the
exact one. For these instances seven segments usuallge@savisolution with a

\ \ —Bxact- 5105
300 \ \ \ \ \ — PW7-5148
200

Inventory

Periods

Figure 6.12:h = 1, a = 350, s = 50, v = 15,7 = 0.3

cost reasonably close to optimal. In terms of running tinf@sall these instances
both the MIP approximations and the CP model perform vergldui In our
experiments we used ILOG OPL Studio 3.7 to solve the MIP neodé&(Tarim
and Kingsman [90]), and Choco ([58] an open source solvettemrin Java) to
implement our CP model. All experiments were performed oimngel Centrino
1.5 GHz with 500Mb RAM. Since the planning horizon is shorpgiods), we
were able to solve any instance in less than a second. As @maiph horizon
length increases the pure CP model becomes slower than emd. This is due
both to the size of decision variable domains and to the laglod bounds in the
search.

In the following sections we will discuss how it is possibdeihcorporate in
our CP model a dedicated cost-based filtering method (FoaadcMilano [31])
based on aynamic programming relaxatiofTarim [86]) that is able to generate
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good bounds during the search. Such a technique has beedyakenployed
under a service level constraint (Tarim et al. [87]). It slddoe noted that due
to the non-linearity of the cost function induced by the shge cost scheme, the
version of the problem we consider is significantly more cbhoaped than the one
under a service level constraint. Nevertheless, desptadh-linearity of the cost
function, we will see that the convexity of the cost functican be exploited to
define a relaxation similar to the one proposed in (Tarim.€fiBa]).

6.4.1 Cost-based filtering by relaxation

Cost-based filtering is an elegant way of combining techesguom CP and Op-
erations Research (OR) (Fahle and Sellmann [28], Focaddéiano [31]). OR-
based optimization techniques are used to remove values\asiable domains
that cannot lead to better solutions. This type of domaierfilg can be combined
with the usual CP-based filtering methods and branchingstes, yielding pow-
erful hybrid search algorithms.

In (Tarim et al. [87]) the authors adopt a relaxation propidsge (Tarim [86])
for the CP model that compute&/(,S,,) policy parameters under service level
constraints. When the relaxed model is solved it providesidamounds for the
original problem. Furthermore the relaxed problem is a f&sbrPath Problem
that can be solved in polynomial time. Therefore it is easyittain good bounds
at each node of the search tree. In the same work the autlsorsxgblain how it
is possible to take into account a partial assignment fdergghment decisions
01, ...,0y and for expected closing inventory Ievélls. . I when the relaxed
problem is constructed, so that the effect of these assigtemereflected on the
bound that is obtained by solving the relaxed problem. Aswvshim (Tarim et
al. [87]), the CP model proposed for computirig},(S,,) policy parameters under
service level constraints can be reduced to a Shortest Palitebh if the inven-
tory conservation constraint and the replenishment cmmditonstraint, that is
constraint 6.20 and 6.21 in our model under shortage cosnsehare relaxed
for replenishment periods. That is for each possible paiepfenishment cycles
(R(i,k —1),R(k,j)) wherei, 5,k € {1,..., N} andi < k < j, the relationship
between the opening inventory level Bfk, j) and the expect closing inventory
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level of R(i, k — 1) is not considered. The same approach can be translated to the
CP model for R,,,S,,) under shortage cost scheme.

In the former sections we provided a general functigf, j, /;) to compute
the expected total cost of replenishment cyglg, j), when an expected closing
inventory Ievel]} is held in period;j. Furthermore we proved that this function
IS convex infj (Fig. 6.13). If we consider each replenishment cyglg, j) in-
dependently, we can efficiently compute the optimal expmkctesing inventory
level that minimizes the expected total cost associatell suth a cycle using
gradient based methods for convex optimization. This wayftain a setS of
N(N +1)/2 possible replenishment cycles and respective order-lgvtds. Our
new problem is to find an optimal s&t C S of consecutive disjoint replenish-
ment cycles that covers our planning horizon at the minimost.cin (Tarim et
al. [87]) it was shown that the optimal solution to this reltign is given by the
shortest path in a graph from a given initial node to a finalenathere each arc
represents a specific cost. We now adapt their approach to@del that employs
a shortage cost scheme.

If NV is the number of periods in the planning horizon of the oagjproblem,
we introduceN + 1 nodes. Since we assume, without loss of generality, that an
order is always placed at periagdwe take nodé, which represents the beginning
of the planning horizon, as the initial one. Nodle+ 1 represents the end of the
planning horizon. For each possible replenishment cyile ; — 1) such that
i,je{l,...,N+1} andi < j, we introduce an ar(i, j) with associated cost

Q(i,j) = C(i,j — 1,I;_)), (24)

Wherefj_1 is the expected closing inventory level that minimizes thevex cost

of replenishment cycl&(i, 7 — 1). Since we are dealing with a one-way temporal
feasibility problem (Wagner and Whitin [96]), when> j, we introduce no arc.
The connection matrix for such a graph, of si¥ex (N + 1), can be built as
shown in Table 6.3.

The cost of the shortest path from notdéo node/N + 1 in the given graph
is a valid lower bound for the original problem, as it is a $ioln of the relaxed
problem. In fact the expected total cost function for eaglereishment cycle is
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expected inventory level

R periods

Figure 6.13: Convexity of the expected total cost assodiaiéh a given replen-
ishment cycle, covering periodgs, . . ., j}. The expected total costis a function
of the expected closing inventory levkl

expected inventory level

J Ipeﬁods

n-1 n

Figure 6.14: The optimal expected closing inventory legetéplenishment cycle
R, considered alone ig, this minimizes the convex cost associated with replen-
ishment cycleR,. In order to meet the inventory conservation constrainttier
stocks carried over from cycl®&,,_;, the minimum expected closing inventory
level required i$. Such a value produces a higher expected total cosk for
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1 2 .. . N+1
1- Q1,2 ... QL,j) ... QU,N+1)

il - = 06 ... QN+

Nl— - - L QINN+1)

Table 6.3: Shortest Path Problem Connection matrix

convex in the expected closing inventory level held at tree@frthe cycle. There-
fore in order to meet the violated inventory conservatiomstrints, if any exists,
we will incur an overall higher expected total cost for a givgroup of replen-
ishment cycles (Fig. 6.14). Furthermore it is easy to mapotbténal solution
for the relaxed problem, that is the set of arcs particigatonthe shortest path,
to a solution for the original problem by noting that each @rg) represents a
replenishment cyclé?(i, j — 1). The feasibility of such a solution with respect
to the original problem can be checked by verifying that iisfes every relaxed
constraint. If no inventory conservation constraint idaied, it is easy to see that
the computed cost is optimal for the given replenishment.pla

We will now show how to exploit thikower boundn anoptimization oriented
global constraint able to dynamically produce good bounukswa partial solution
is provided. A detailed discussion on optimization orielgéobal constraints can
be found in (Focacci and Milano [33]).

Cost-based filtering can be performed by simply noticing the costs stored
in the connection matrix can be adjusted to reflect the cupartial assignment
for decision variables; and I, exactly the way shown for the service level con-
strained model (Tarim et al. [87]). More specifically:

0 = 0: Ifin a given partial solution a decision variablg £ € {1,..., N} has
been already set t0, then we can remove from the graph every inbound arc to
nodek and every outbound arc from node This prevents nodé from being
part of the shortest path, and hence prevents périodm being a replenishment
period. In this modified graph, the cost of the shortest pathpnovide a valid
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lower bound for the cost of an optimal solution incorporgtine decisiord, = 0.
Furthermore, an assignment for decision variables is &gsocwith the shortest
path. If this assignment is feasible for the original proi)¢éhen it is optimal with
the respect to the decisiop = 0.

0r = 1. On the other hand, if in a given partial solution a decisionalde ¢y,

k € {1,...,N} has been already set 10 then we can remove from the graph
every arc connecting a nod¢o a nodej, wherei < k < j. This forces the short-
est path to pass through nokleand hence forces periddto be a replenishment
period. In this modified graph, the cost of the shortest pathprnovide a valid
lower bound for the cost of an optimal solution incorporgtine decisiorn, = 1.
Furthermore, an assignment for decision variables is &gsocwith the shortest
path. If this assignment is feasible for the original prof)¢hen it is optimal with
the respect to the decisiop = 1.

I, assigned: If a givenl,, ¢ € {i,...,j — 1}, is assigned a value, the expected
closing inventory IeveIL_l) for the replenishment cyclg(i, j—1), which covers
periodt, is uniquely determined and therefore the expected totl foo such a
replenishment cycle — that is the cost of &icj) — can be directly computed
fromC(i,5 — 1, fj_l), provided that the current partial assignmentfodecision
variables uniquely identifieB(i, j — 1).

6.5 Experimental Results

In this section we show the effectiveness of our approachndieproblem is con-
sidered and the period demands are generated from seastaalith no trend:

d; = 50[1 + sin(wt/6)]. In addition to the “no trend” case (P1) we also consider
three others:

(P2) positive trend casé; = 50[1 + sin(rt/6)] + ¢
(P3) negative trend casé, = 50[1 + sin(xt/6)] + (52 — t)
(P4) life-cycle trend cas@l, = 50[1 + sin(rt/6)] + min(t, 52 — t)
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In each test we assume an initial null inventory level andravadiy distributed de-
mand for every period with a coefficient of variatiery d, for eacht € {1,..., N},
whereN is the length of the considered planning horizon. We peréatests us-
ing four different ordering cost values< {50, 100, 150, 200} and two different
o,/d, € {1/3,1/6}. The planning horizon length takes even values in the range
[20, 38]. The holding cost used in these testsiis= 1 per unit per period. Our
tests also consider two different shortage cost values 15 ands = 25. Di-
rect item cost iy = 2 per unit produced. All the experiments were performed
on an Intel(R) Centrino(TM) CPU 1.50GHz with 500Mb RAM. Thelser used

is Choco [58], an open-source solver developed in Java. ®hebased filter-
ing techniques presented are implemented as dedicatettaiatswithin Choco.
The same variable and value selection heuristics usediim{&tal. [87]) are em-
ployed. Tables 6.4 and 6.5 show the performance (in secaridgs)r CP model
enhanced with the cost-based filtering described in thedosaction. In our test
results ~—" means that within the time limit 0§ seconds the CP approach could
not find an optimal solution. When the cost-based filteringjroeé we proposed is
not used, the pure CP approach is never able to provide amagolution within
the given running time limit for every instance. Finally hauld be also noted
that the worst case running time of our approach over theevest bed was, 77
minutes. Therefore even in the few cases where an optimatisolis not found

in a less than a second, our cost-based filtering techniquegdps a reasonable
running time.

6.6 Conclusions

We presented a CP approach that finds optifigl{,,) policies under non-stationary
demands. Using our approach it is now possible to evaluatguhlity of a pre-
viously published MIP-based approximation method. Usirsgteof problem in-
stances we showed that a piecewise approximation with sssgments usually
provides good quality solutions, while using only two segisecan yield solu-
tions that differ significantly from the optimal. Furtherreave exploited convex-
ity of the cost function to dynamically generate bounds myithe search. The
cost-based filtering technique we presented is able to sgedte search for opti-
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Test Set P1 Test Set P2
O’t/dtzl/g O’t/dtzl/ﬁ Ut/dt:1/3 Ut/dt:1/6

a N s=15 | s=25 s=15 | s=25 s=15 | s=25 s=15 | s =25
20 | 0,150 0,030 0,020 0,020 0,030 0, 040 0,050 0, 050

22 | —— —— 0,020 0,030 0,040 0,030 0,060 0, 060

24 | 0,031 0,040 0,030 0,030 0, 060 0,040 0,080 0,070

26 | 0,040 0,070 0,040 0,040 0, 060 0, 050 0,120 0,120

50 28 | 0,050 0,080 0,060 0,050 0,070 0, 060 0,170 0,121
30 | 0,080 0,090 0,060 0,050 0,080 0,081 0,161 0,161

32 | 0,100 0,090 0,070 0,081 0,120 0,141 0,180 0,150

34 | —— —— 0,060 0,070 0,140 0, 080 0,180 0,160

36 | 0,210 0,111 0,080 0,081 0,161 0,090 0,230 0, 180

38 | 0,171 0,100 0,090 0,080 0,140 0,120 0,210 0,241

20 | 0,030 5,949 0,020 0,030 0,040 0, 030 0,020 0,020

22 | 0,030 0,030 0,030 0,030 0,040 0,030 0,031 0,030

24 | 0,030 0,040 0,040 0,030 0,040 0,041 0,040 0,030

26 | 0,040 0,040 0,040 0,040 0,080 0, 050 0,050 0, 050

100 28 | 0,060 0,070 0,050 0,050 0, 060 0,071 0,060 0,051
30 | 0,061 0, 060 0,060 0,060 0,071 0, 080 0,061 0, 080

32 | 0,080 —— 0,070 0,070 0,081 0,090 0,071 0,070

34 | 0,070 0, 060 0,070 0,070 0,090 0, 080 0,231 0,070

36 | 0,080 0,101 0,071 0,071 0,101 0,100 0,090 0,090

38 | 0,080 0,101 0,090 0,091 0,110 0,120 0,100 0,101

20 | 0,020 0,020 0,030 0,021 0,030 0,020 0,020 0,030

22 | 0,030 0,030 0,030 0,020 0,030 0,030 0,030 0,030

24 | 0,040 0,040 0,030 0,030 0,040 0,040 0,040 0,030

26 | 0,040 0,040 0,040 0,040 0,040 0, 050 0,050 0,061

150 28 | 0,050 0,050 0,050 0,041 0, 060 0,061 0,050 0, 050
30 | 0,070 0,071 0,050 0,061 0,070 0,070 0,060 0,070

32 | 0,070 4,306 0,060 0,071 0,080 0, 080 0,070 0,070

34 | 0,070 0,070 0,060 0,070 0,100 0, 080 0,070 0,071

36 | 0,080 0,080 0,070 0,080 0,090 0,110 0,080 0,090

38 | 0,090 0,100 0,100 0,080 0,110 0,120 0,110 0,121

20 | 0,030 0,030 0,030 0,020 0,031 0,040 0,030 0,020

22 | 0,030 0,220 0,030 0,030 0,030 0,041 0,030 0,030

24 | 0,030 0,040 0,030 0,040 0,040 0,040 0,030 0,041

26 | 0,040 0,040 0,040 0,040 0,050 0,051 0,041 0, 050

200 28 | 0,050 0,050 0,051 0, 060 0,080 0, 060 0,060 0, 050
30 | 0,070 0, 060 0,060 0,060 0,070 0,070 0,070 0,070

32 | 0,080 0,080 0,060 0, 060 0,080 0,090 0,070 0,070

34 | 0,070 —— 0,070 0,070 0,090 0, 080 0,080 0,081

36 | 0,080 0,081 0,070 0,070 0,110 0,101 0,090 0,110

38 | 0,100 0,090 0,091 0,090 0,121 0,100 0,110 0,110

Table 6.4: Test Set P1, P2.

mal (R,, S,) policy parameters under a shortage cost scheme. Our exg@em
results prove that such a technique brings a significantasgment in the ef-
ficiency of the pure CP approach for this problem. We are nols &b solve

problems over a planning horizon up to forty periods, tyjhyca a fraction of a

second and in the worst case in a few minutes. This meansuhapproach can
be now applied to problems of a realistic size.
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Test Set P3 Test Set P4
O’t/dtzl/g O’t/dtzl/ﬁ Ut/dt:1/3 Ut/dt:1/6

a N s=15 | s=25 s=15 | s=25 s=15 | s=25 s=15 | s =25
20 | 0,321 0,170 0,330 0,160 0,070 0,030 0,050 0,061

22 | 0,480 0, 300 0,370 0,341 0,030 0,040 0,060 0, 060

24 | 0,581 0,310 0,531 0,421 0,050 0,040 0,110 0,071

26 | 1,222 0,501 0,791 0,531 0,070 0, 060 0,090 0,090

50 28 | 2,224 0,661 1,142 0,741 0,140 0,070 0,120 0,160
30 | 2,013 0,722 1,052 0,751 0,100 0, 060 0,130 0,170

32 | 1,812 0,941 1,182 0,801 0,121 0, 080 0,180 0, 140

34 | 1,883 0, 862 1,312 0,952 0,120 0,090 0,190 0, 150

36 | 2,093 0,981 1,472 1,152 0,121 0,110 0,210 0,180

38 | 3,636 1,131 1,803 1,512 0,120 0,100 0,251 0,200

20 | 0,030 0,040 0,060 0,070 0,040 0,030 0,030 0,020

22 | 0,040 0,040 0,070 0,071 0,040 0,030 0,030 0,030

24 | 0,040 0,050 0,090 0,080 0,050 0,030 0,040 0,040

26 | 0,050 0,281 0,100 0,100 0,050 0, 050 0,050 0,040

100 28 | 0,070 0,070 0,131 0,120 0,061 0, 060 0,060 0, 060
30 | 0,070 0,070 0,140 0,130 0,070 0,070 0,070 0, 060

32 | 0,080 0,080 0,150 0,160 0,080 0, 080 0,070 0,070

34 | 0,090 0,090 0,161 0,210 0,090 0,081 0,080 0,070

36 | 0,100 0,110 0,240 0,180 0,090 0,090 0,090 0, 080

38 | 0,141 0,130 0,211 0,250 0,100 0,100 0,110 0,100

20 | 0,040 0,030 0,060 0,060 0,030 0,030 0,030 0,030

22 | 0,040 0,040 0,071 0,070 0,030 0,030 0,030 0, 030

24 | 0,050 0,041 0,140 0,080 0,040 0,030 0,040 0,030

26 | 0,060 0,050 0,100 0,160 0, 060 0,040 0,050 0,040

150 28 | 0,070 0,070 0,120 0,170 0, 060 0, 060 0,060 0, 050
30 | 0,070 0,070 0,130 0,140 0,070 0, 060 0,070 0, 060

32 | 0,090 0,090 0,160 0,220 0,080 0, 080 0,070 0,070

34 | 0,091 0,090 0,171 0,170 0,080 0,090 0,080 0, 080

36 | 0,100 0,110 0,181 0,250 0,100 0,100 0,090 0,090

38 | 0,140 0,120 0,220 0,260 0,100 0,101 0,100 0,100

20 | 0,071 0,030 0,060 0,070 0,040 0,030 0,030 0,030

22 | 0,090 0,070 0,070 0,120 0,030 0, 030 0,030 0, 030

24 | 0,090 0,130 0,080 0,080 0,050 0,040 0,030 0, 040

26 | 0,110 0,110 0,100 0,171 0,050 0, 050 0,051 0, 050

200 28 | 0,130 0,170 0,181 0,130 0,070 0,070 0,060 0, 050
30 | 0,210 0,150 0,150 0,151 0, 060 0,070 0,070 0, 060

32 | 0,210 0,090 0,150 0,221 0,070 0,070 0,070 0, 080

34 | 0,210 0,241 0,180 0,160 0,080 0, 080 0,080 0,081

36 | 0,250 0,210 0,241 0,190 0,090 0,100 0,080 0,090

38 | 0,221 0,271 0, 260 0,210 0,140 0,110 0,100 0,131

Table 6.5: Test Set P3, P4.
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