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In this research, three different techniques for melt
impregnation of glass fiber bundles with polyamide 12 are
assessed with the aim of creating a high strength and
modulus material suitable for extrusion based additive
manufacturing. Impregnation quality of three production
techniques: “Pultrusion”, “PassivePin”, and “ActivePin”
were analyzed using three methods: matrix material mass
fraction (Mm) determination, scanning electron micros-
copy of composite fracture surfaces and optical micros-
copy of polished composite cross sections. Pultrusion
material has an overall poor impregnation degree (Di) and
fiber distribution and dispersion, the specimens lack
mechanical strength and show fiber pull-out due to the
excessive voids in the matrix. The PassivePin material has
a significantly higher Di and a better fiber distribution,
which results in less voids in the matrix and limited fiber
pull-out. Finally, the ActivePin material scores significantly
higher in Di and shows an excellent fiber distribution. As a
consequence, very limited voids are observed and an
even fracture surface without fiber pull-out is obtained. It
is concluded that the ActivePin technique would be a
great choice for application in an extrusion-based AM
process, this method could allow for production of high
strength and stiffness objects. POLYM. ENG. SCI., 58:601–608,
2018. VC 2017 Society of Plastics Engineers

INTRODUCTION

Additive manufacturing (AM) and more specifically extru-

sion based fused deposition modeling is an interesting technique

that has taken a giant leap forward during the last quarter-

century. Despite its popularity, the lack of materials adapted to

the processing methods has been an inhibitor for the advance-

ment of the technology, especially to create high strength and

high modulus objects.

A first solution consisted in adding short reinforcement fibers

to thermoplastic materials for higher strength, stiffness and ther-

mal stability and was researched by Gray et al. [1] Ning et al.

[2], Tekinalp et al. [3], Karsli et al. [4], Zhong et al. [5], Fu

et al. [6], Bijsterbosch et al. [7], and Compton et al. [8]. None-

theless, the addition of short fibers to those materials tends to

increase its brittleness [6, 7, 9]. The addition of continuous

fibers to thermoplastic materials could be an advanced solution

to enhance the mechanical properties of these short fiber rein-

forced thermoplastics [10, 11]. However, due to the high melt

viscosity of thermoplastic polymers, the impregnation of fiber

bundles with thermoplastic polymers requires a thoughtful

approach.

Multiple methods exist for impregnating continuous fiber

bundles with a thermoplastic polymer. Two main techniques can

be distinguished. On the one hand, there are those that impreg-

nate fiber bundles by submersion or pultrusion in a liquid matrix

medium that is, a polymer melt, a solution or a monomer pre-

cursor. On the other hand, there are impregnation techniques

that start from a solid matrix that is, thermoplastic polymer

powders or spun fibers, followed by a mechanical infiltration

process of the polymer into a fiber bundle and a sintering pro-

cess to produce a pre-impregnated material, also referred to as

“prepreg”.

In 2015, a patent for an AM apparatus extruding thermoplas-

tic prepregs was filed [12] by Mark et al. This technique

strongly resembles automated fiber placement (AFP) and auto-

mated tape laying (ATL), where continuous fiber prepregs are

deposited onto a mold [13, 14], but Mark’s apparatus typically

creates objects on a much smaller scale. Van Der Klift et al.

[15] and Melenka et al. [16] performed mechanical tests on

respectively continuous carbon fiber and aramid fiber filled

polyamide tensile specimens created by this apparatus and

showed that the technique is able to produce high strength parts,

when compared with regular thermoplastic AM parts. Yet, fiber

volume fraction Vf was reported to be only 34.5% [15], which

is rather low compared with typical volume fractions of �55%–

60% for unidirectional AFP and ATL produced material [17,

18] or �60%–80% for traditionally compression molded unidi-

rectional composites [19].

Matsuzaki et al. [20], Nanya et al. [21], and Tian et al. [22]

proposed an extrusion-based process in which a continuous car-

bon fiber bundle is impregnated with polylactic acid (PLA) by

pushing it through a melt chamber right before its deposition.

Mori et al. [23] developed a similar process to coextrude carbon

fibers in an acrylonitrile butadiene styrene (ABS) matrix. An

overview of matrix and fiber materials and according fiber vol-

ume fractions Vf for mentioned research is given in Table 1.

The advantage of combining impregnation and deposition in

one process, compared with two discrete processes in ATL,

AFP and Mark’s technique, is threefold. First, avoiding an extra

production step has an economic advantage. In addition, melt

impregnation will result in a more even temperature distribution

over the cross section of the impregnated fiber bundle during

the deposition process. This minimizes thermally induced
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stresses and deformations upon solidifying of the deposited

composite material. Finally, only limited to no external heating

(e.g., hot air or nitrogen) for melting is necessary, unlike pro-

cesses that start from thermoplastic prepregs. This ensures mini-

mal degradation at the surface of the pultruded composite.

This in situ melt impregnation approach requires a proper

fiber bundle impregnation technique to be able to obtain a

mechanically stiff and strong material [7, 24], with no or limited

voids. For this reason, this research focusses on the impregna-

tion of glass fiber bundles with a polyamide 12 (PA 12) using

three different melt impregnation techniques.

A first experimental setup “Pultrusion” consists of pultruding

a glass fiber bundle through a PA 12 melt chamber without fur-

ther manipulations. In a second method “PassivePin”, a pressure

is generated between the fiber bundle and a spreader pin in the

melt chamber. This pressure will be the driving force for a

proper polymer melt impregnation. In order to avoid the occur-

rence of “dry contact” [25, 26] between the fiber bundle and a

spreader pin, an active impregnation pin can be used. This

active impregnation pin injects liquid polymer between the

cylindrical contact surface of the spreader pin and the fiber bun-

dle and is an advanced version of a design described by Unger

in U.S. Patent 5,158,608 [27]. The effect of this feature on the

impregnation quality is studied as a third technique “ActivePin”.

This research will compare the impregnation quality of com-

posite materials produced with the three described techniques.

Therefore, matrix material mass fractions Mm of the three differ-

ent composites will be determined as an estimator for degree of

impregnation. Also, using scanning electron microscope (SEM)

images of the impregnated fiber bundles’ fractured cross sec-

tions will be made and a fracture analysis will be performed to

gain insight into the relation of impregnation quality and

observed failure mechanisms. Further, optical microscopy of

polished composite cross sections will not only give the oppor-

tunity to study the degree of impregnation, but also gives infor-

mation about dispersion and distribution of the fibers in the

matrix. The results of different test methods will be compared

and will be used to draw some important conclusions.

MATERIALS AND METHODS

Matrix and Reinforcement Material

Rilsamid AMN O TLD from Arkema, a PA 12, was used as

the matrix material for the composite. The melt flow index was

determined according to ISO 1133-1:2005 with a Zwick 4100

apparatus as 51.61 6 2.04 g/10 min (confidence level 95%),

measured at 2308C, 2.16 kg.

As fiber reinforcement material, a StarRov LFTplus Direct

Roving 853 continuous glass fiber from Johns Manville was

used. Linear density was measured according to ISO 1889:2009

and has a value of 1,179.29 6 5.48 tex (confidence level 95%).

Pressure Build-up with Spreader Pins

Thermoplastic polymers have a high melt viscosity compared

with their thermoset counterparts. For this reason, fiber impreg-

nation with thermoplastics often occurs at high temperature and

under high pressure (e.g., compression molding). With the aid

of spreader pins in the melt chamber though, a local high

pressure can be generated in a low-pressure environment, which

eliminates the need for high strength and heavy tooling.

By wrapping a tensioned fiber bundle (dashed line on Fig. 1)

over a cylindrical surface, over a certain contact angle h, a nor-

mal force is generated between both surfaces, which will result

in a pressure px at point X between the fiber bundle and the sur-

face. When the fiber bundle is pulled over the spreader pin, a

continuous flow of polymer will be drawn between fiber bundle

and surface. The pressure build-up will induce an outward radial

flow of molten polymer through the fiber bundle. For low fiber

velocities, the pressure (1), (2) can be approximated by tension

force T1, drag forces Td,1 and Td,2, the dynamic friction coeffi-

cient ld of the fiber bundle on the cylindrical surface (wet or

dry contact), radius r of the impregnation pin and fiber bundle

contact width w [28]. The necessary pulling force T2 for a con-

stant pultrusion velocity v, can be calculated as (3). As an extra

advantage, the process with spreader pins induces high shear in

the melt [11, 26, 29], which reduces the viscosity of the poly-

mer, since it has shear-thinning characteristics. This effect will

also promote impregnation [29, 30].

Tx5 T11Td;1

� �
ehx �ld (1)

px5
Tx

r � w (2)

T25 T11Td;1

� �
eh�ld 1Td;2 (3)

A common problem reported in fiber bundle impregnation

literature is the forming of a dry contact zone between fiber and

spreader pin for large wrapping angles. This phenomenon can

be explained as follows: due to the polymer melt drag flow

around the fiber bundle, a thin polymer film is formed between

the fiber bundle and the pin. The pressure will cause the melt

film to migrate through the fiber bundle. For high pressures or

long wrapping angles, this polymer film could get depleted

before the end of the contact zone, so there will be no extra

gain in impregnation quality when exceeding a certain contact

angle. Therefore, it can be useful to create a cascade of different

spreader pins that have lower individual contact angles.

An alternative for the passive spreader pin is an active

impregnation pin, in which liquid polymer is continuously added

in the convex shaped contact region through small radial holes

(Fig. 2) to prevent dry contact between pin and fiber. This

design is an in-house developed, advanced version of a design

described in US Patent 5,158,608 [27]. The developed device

will be discussed in “Melt impregnation devices” Section.

TABLE 1. overview of recently researched continuous fiber AM materials

and their fiber volume fractions.

Research Fiber material Matrix material Vf (%)

Mark carbon polyamide 34.5a

Matsuzaki carbon PLA 6.6

Matsuzaki jute PLA 6.2

Nanya carbon PLA 34

Tian et al. carbon PLA 27

Mori carbon ABS 0.2–1.6

aPreliminary result, further research needed on maximum volume frac-

tions for different types of fibers.
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Melt Impregnation Devices

Within this research, two melt impregnation devices suitable

for processing PA 12 and glass fiber, were developed. A regular

pultrusion melt impregnation device as shown in Fig. 3, was

developed to create the Pultrusion material. The glass fiber bun-

dle (dashed line on Fig. 3) is pulled through an entrance die

(No. 1 on Fig. 3), through the melt chamber (No. 3 on Fig. 3)

and through the exit die (No. 4 on Fig. 3). Molten polymer

material is added from No. 2 on Fig. 3.

Second, a spreader pin melt impregnation device to create

the PassivePin and ActivePin material was developed (Fig. 2).

The glass fiber bundle (presented by a dashed line on Fig. 2) is

pulled through the entrance die (No. 0 on Fig. 2), which pre-

vents the polymer melt from flowing out of the melt chamber,

since the chamber is fully filled with molten polymer. After

being guided by pin No. 1 (Fig. 2) to prevent the fiber bundle

from contact with the die mold wall, the fiber bundle can be

guided between or over spreader pins No. 2 and 3 (Fig. 2),

which are mounted on an indexable drum to be able to adjust

the contact angle. In Fig. 2, the drum is indexed so that there is

no contact with the fiber bundle. Following is an active impreg-

nation pin No. 4 (Fig. 2a) which can be rotated to position its

seven injection holes away from the fiber bundle to become a

passive spreader pin. The holes have a diameter of 1.5 mm and

are located at every 308 of the cross section. Through these

holes, polymer can be injected. Further, the fiber bundle passes

through spreader pins No. 5 and 6 (Fig. 2), which have the

same functionality as pins No. 2 and 3 (Fig. 2). Finally, the bun-

dle is guided over pin No. 7 (Fig. 2) before exiting the spreader

pin device through the pultrusion die (No. 8 on Fig. 2), which,

in this case, has a diameter of 1.1 mm and wipes the excess PA

12 off the pultruded strand.

Composite Production Process

An in house developed extruder with screw diameter 10 mm,

a compression ratio of 1.8 and an l/d ratio of 10 was connected

to both impregnation devices and is able to inject molten poly-

mer in the melt chamber of both melt impregnation devices.

The rotational speed of the extruder screw was set at 10 rpm

and the barrel was set at 908C in the feed zone, increasing to

2208C in the metering zone. The temperature of the impregna-

tion devices’ housing was set at 2208C. Velocity of the glass

fiber pultrusion was set at 600 mm/min. Three tests were con-

ducted, starting from a virgin glass fiber bundle. Composite

“Pultrusion” was produced in the regular pultrusion melt

FIG. 2. Spreader pin melt impregnation device, (a) PassivePin, (b) Active-

Pin, dimensions in mm.

FIG. 3. Regular pultrusion melt impregnation device, dimensions in mm.

FIG. 1. Fiber bundle (dashed line) wrapped around spreader pin.
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impregnation device as seen on Fig. 3. “PassivePin” was pro-

duced in the spreader pin melt impregnation device as seen on

Fig. 2a with spreader pins Nos. 2–3 and 5–6 disabled and with

the polymer channels of the active impregnation pin faced away

from the fiber bundle. Composite “ActivePin” was produced on

the spreader pin melt impregnation device with spreader pins

Nos. 2–3 and 5–6 disabled and with the polymer channels of

the active impregnation pin faced to the glass fiber bundle (Fig.

2b), which allows them to extrude polymer between the convex

surface of the impregnation pin and the fiber bundle. It should

be noted that the path length of the fiber bundle inside the regu-

lar Pultrusion device was chosen just as long as the path length

of the fiber bundle in PassivePin and ActivePin configurations

of the spreader pin device. All other parameters such as temper-

atures, pultrusion die diameter, fiber bundle tensions, pressures,

and so on. were kept constant. This also implies that possible

excess polymer leakage through the pultrusion die would be

equal in all production processes.

Quantifying Impregnation Quality by Matrix Mass Fraction
Determination

The mass fraction of the matrix material Mm will provide a

quantification of the impregnation quality of the pultruded com-

posite; a better impregnation will result in a larger Mm, provid-

ing there was no fiber fraction lost during the pultrusion process

and there was no polymer leakage through the pultrusion die.

The maximal obtainable matrix mass fraction Mm,max of the

composite material can be calculated from the linear density of

the fiber bundle L, density of matrix qm and fiber material qf,

composite mass mc, matrix mass mm, fiber mass mf, matrix vol-

ume fraction Vm and fiber volume fraction Vf and inside diame-

ter of the pultrusion die dd (4). For this setup, a theoretical

Mm,max of 0.291 g/g was found, which is equivalent to a Vf of

49.3%. The degree of impregnation Di can be calculated by (5),

on the condition there is no polymer leakage between the pultru-

sion die wall and the wetted fiber bundle. Since there is a possi-

bility of polymer leakage in this setup, no formal conclusions

are drawn concerning the absolute degree of impregnation. In

this research, the obtained data are used to relatively compare

three production methods. An absolute determination of degree

of impregnation can be done using micro tomography or by cal-

culating the mean value of the void to void 1 matrix area ratio,

measured in different cross sections of a specimen.

Vf5
4 � L

p � qf � d2
d

Vm512Vf

Mm;max5
Vm � qm

Vm � qm1Vf � qf

8>>>>><
>>>>>:

(4)

Di5
Mm

Mm;max

(5)

Mm5
mm

mc

5
mc 2 mf

mc

(6)

Before material sampling, the first and last 500 mm of the pul-

truded strands were discarded. In order to get a statistically sig-

nificant result for the Mm values, for each material sample, 20

composite specimens with a length of 100 6 1 mm were

collected with a distance of 50 6 1 mm between subsequent

specimens on the pultruded strand. Those shorter parts were

used during the optical and SEM microscopy analyses. The

distance between specimens was kept low on purpose to

reduce the possible effect of fiber mass loss due to fiber fail-

ure in the pultrusion die. This phenomenon could be falsely

interpreted as an increase in Mm, thus would wrongly overes-

timate impregnation quality. To be able to exclude fiber fail-

ure in the melt chamber during production of the three

samples, the content of the melt chamber was incinerated

after production. In the rare case that fibers were found in the

residual fraction, all specimens of that specific production run

were discarded and produced anew.

The specimens of the produced composites were dried at

808C for 8 h and were weighed using a Precisa XR 205SM-DR

apparatus. Then, the specimens were incinerated for 15 minutes

at a temperature of 5508C in a Nabertherm P300 oven. Subse-

quently, the residual mass of the specimens was weighed using

previously mentioned Precisa apparatus and corresponds to the

fiber mass mf. The mass loss during incineration corresponds

with mm. Mm was calculated by formula (6), with mc the initial

mass of the composite specimen before incineration. Due to the

relatively low density of entrapped gasses in the samples com-

pared with the matrix and fiber density, the mass fraction of the

voids Mv was neglected.

To check whether there is a statistically significant influence

of the three production techniques on the impregnation quality

and thus on Mm, a one way ANOVA test was conducted to

compare the Mm of composites Pultrusion (produced using a

regular pultrusion process), PassivePin (produced with passive

spreader pin) and ActivePin (produced with active impregnation

pin) at a 95% confidence level.

Visual Evaluation of Impregnation Quality by Fracture Analysis

A visual evaluation of the fiber bundles’ impregnation qual-

ity was done using SEM of fractured composite specimens. To

this end, specimens were fully submersed in liquid nitrogen for

60 s and broken perpendicular to the fiber direction immediately

afterwards. It was impossible to obtain fully brittle fracture sur-

faces due to the ductile behavior of the PA 12 matrix material,

even at extremely low temperatures (boiling point of liquid

nitrogen is 21968C).

Before imaging, the specimens were gold sputtered during

60 s with a current of 25 mA. An accelerating voltage of 5 kV,

working distances between 11 and 13 mm and magnifications of

250 were used on a Jeol JSM-7600F apparatus in secondary

electron imaging mode for visualizing the fracture surface.

Inspecting Impregnation Quality Using Optical Microscopy

The composite specimens of the three different production

methods were embedded using a cold curing epoxy Epofix

from Struers. Specimens were ground and polished to reveal

the cross section of the impregnated bundle. The cross sec-

tions of three different composites were visualized using a

Keyence VHX-500F Digital optical microscope. Optical

microscopy at magnifications of 200 allowed for visualizing

features such as fiber distribution and dispersion, location of

the voids, etc.
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RESULTS AND DISCUSSION

Matrix Mass Fraction Determination Results

Table 2 shows the mean values and standard deviations of the

Mm for the three produced composites. A statistically significant

difference in Mm was measured for Pultrusion, PassivePin and

ActivePin as determined by one-way ANOVA (F[2,57] 5 163.46,

p 5 0.000). It is concluded that the use of a passive (Mm 5 0.269 6

0.0241 g/g) or an active impregnation pin (Mm 5 0.285 6 0.0241 g/

g) drastically improves the Mm compared with the pultrusion pro-

duction technique (Mm 5 0.217 6 0.0255 g/g). The use of an active

impregnation pin rather than a passive spreader pin further improves

Mm and related impregnation quality.

A bar chart with the mean Mm of three composites can be found

in Fig. 4. The theoretical maximum mass fraction Mm,max for the

described machine configuration (“Melt impregnation devices”

and “Composite production process” Section) was calculated by

Eq. 4, has a value of 0.291 g/g and is displayed as a horizontal line

on Fig. 4. The three mean Mm values are below this maximum

value, some ActivePin Mm measurements exceeded the theoretical

maximum value. Two possible explanations for this phenomenon

can be found: the 1 mg error of the used Precisa balance translates

in an error of 6 2% in impregnation degree, another possibility is

that there was a limited amount of polymer leaking between die

walls and impregnated fiber bundle. It is concluded that mass frac-

tion measurements are a good way of showing relative differences

in impregnation quality; however, they should be combined with

visual tests to draw conclusions on the absolute impregnation

degree and fiber dispersion in the matrix.

Scanning Electron Microscopy Results

Fracture surfaces of the composite material samples Pultru-

sion (Fig. 5), PassivePin (Fig. 6), and ActivePin (Fig. 7) were

visualized with SEM. Comparison of the samples shows impor-

tant differences in fracture surface topographies.

A micrograph of the sample Pultrusion can be seen on Fig.

5. Peaks of loose fibers and locations of fiber-pull out can be

observed. This phenomenon is caused by axially oriented voids

inside the matrix that form stress concentrators and mainly

reduce shear moduli G1,2 and G1,3 [24]. These axially oriented

voids situated between adjacent fibers initiate plastic shear while

fracturing a specimen during specimen preparation. Tensile or

compression forces on fibers close to voids will create high fiber

stresses, since the matrix’s ability for stress distribution is lim-

ited there. When individual fiber tensile strength is reached, the

fiber will break; stresses will be redistributed in the specimen,

which will eventually lead to a cascade effect of failing fibers.

The fractured fibers will be pulled out of the matrix and cause

the described topography. Further, locations without impregna-

tion can be remarked. This result is in line with the conclusions

made in the Mm analysis.

It can be seen that specimen PassivePin (Fig. 6) has a frac-

ture surface with peaks of loose fibers (Nos. 1–3 on Fig. 6) and

indentations where fibers were pulled out during specimen frac-

turing (Nos. 4 and 5 on Fig. 6). This effect is caused by the

same phenomenon which occurred also in the Pultrusion

specimen.

Also, several dark spots can be noticed, spread on the frac-

ture surface, which confirms the voids between adjacent fibers.

TABLE 2. Statistical analysis of matrix material mass fraction.

n Mean Mm SD Mean Di SD

Composite material # (g/g) (g/g) (%) (%)

Pultrusion 20 0.217 0.0130 74.5 4.46

PassivePin 20 0.269 0.0123 92.2 4.21

ActivePin 20 0.285 0.0123 98.0 4.21

FIG. 4. Mean matrix material mass fractions for three production techni-

ques (1 SD error bars).

FIG. 5. SEM image of a fractured Pultrusion specimen (3250).

FIG. 6. SEM image of a fractured PassivePin specimen (3250).
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It is concluded that the passive impregnation pins fail to fully

impregnate the fiber bundle.

The fracture surface of sample ActivePin (Fig. 7) shows a

more even topography since there was less to no axial voids

that can propagate shear cracking in planes parallel to the main

fiber direction. This reduces fiber pull-out and results in a

smoother fracture surface. Fibers remain firmly embedded in the

matrix material after fracture.

Note that for the three materials’ surfaces, plastically

deformed parts of the PA 12 matrix can be seen, which implies

that the used specimen preparation method fails to cause a fully

brittle fracture.

Optical Microscopy Results

A micrograph of composite material produced using the reg-

ular pultrusion method can be seen in Fig. 8. After the pultru-

sion process, the original tape like fiber bundle was still as it

was supplied, but was folded round a core of recognizable poly-

mer (No. 1 on Fig. 8). The poor fiber dispersion is attributed to

the lack of manipulation and spreading during pultrusion of the

slightly coagulated fibers. This coagulation is a consequence of

the coating or “sizing” which is applied to fiber bundles during

their manufacturing process. Within the fiber bundle itself, poor

to moderate impregnation was observed. At No. 2 on Fig. 8,

epoxy material from the embedding process was observed in the

fiber bundle, which means it was a void area before embedding.

It is concluded that despite the moderate Mm of the composite,

the inferior fiber distribution and dispersion renders the compos-

ite unsuitable for high mechanical property applications.

When comparing composites produced using Pultrusion (Fig.

8) and PassivePin (Fig. 9), a clear difference in fiber dispersion

and degree of impregnation can be seen. A passive spreader pin

is able to disintegrate the coagulated fiber bundles, enhance the

fiber’s permeability and impregnate them. Nonetheless, some

zones within the fibers were not impregnated with PA 12 during

production; some clear voids can be seen in the micrograph. It

is concluded that by using a passive impregnation pin, a better

quality of impregnation can be achieved, compared with a stan-

dard pultrusion process.

Studying the ActivePin micrograph (Fig. 10) it can be seen

that both fiber dispersion and distribution is reasonably good.

Except for some smaller zones where voids occurred, the degree

of impregnation is sufficient. It is concluded that the ActivePin

FIG. 7. SEM image of a fractured ActivePin specimen (3250).

FIG. 8. Optical microscopy image of a Pultrusion specimen. [Color figure

can be viewed at wileyonlinelibrary.com]

FIG. 9. Optical microscopy image of a PassivePin specimen. [Color figure

can be viewed at wileyonlinelibrary.com]

FIG. 10. Optical microscopy image of an ActivePin specimen. [Color fig-

ure can be viewed at wileyonlinelibrary.com]
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outperforms the Pultrusion and PassivePin process when it

comes to impregnation quality. This result is promising and

indicates that high impregnation quality of PA 12 in glass fiber

bundles can be achieved when using an optimized device.

CONCLUSIONS

This research assessed three techniques for melt impregnation

of continuous glass fiber bundles with polyamide 12. Therefore,

three materials were produced; one using the process

“Pultrusion”, one using “PassivePin” and a third using process

“ActivePin”.

Impregnation quality was analyzed using three methods: Mm

determination, SEM of composite fracture surfaces and optical

microscopy of polished composite cross sections.

Process Pultrusion resulted in a Mm of 0.217 6 0.0255 g/g,

PassivePin in 0.269 6 0.0241 g/g and the ActivePin process in

0.285 6 0.0241 g/g, where the theoretical maximum value for

Mm was 0.291 g/g. It was concluded that both PassivePin and

ActivePin perform significantly better than Pultrusion. Also,

The ActivePin process significantly outperformed PassivePin.

These results can be used as a relative comparison between the

three production methods, but should be combined with optical

results of composite cross sections to draw final conclusions

about fiber distribution and dispersion.

SEM analysis of fractured composites specimens showed that

voids were predominant in Pultrusion samples and fiber pull-out

was initiated by the axially oriented voids. PassivePin only

showed small voids and a limited amount of fiber pull-out at

the void locations. In the fracture surface of ActivePin, fibers

remained firmly embedded in the matrix;there was a good stress

distribution during fracturing, which led to a smooth fracture

topography.

During optical microscopy of the Pultrusion specimens, it

was seen that the fiber bundle was wrapped around a polymer

core and impregnation of the bundle was poor. In PassivePin

specimens, the original shape of the fiber bundle was still recog-

nizable but there was a better fiber distribution and dispersion

compared with Pultrusion material. An excellent fiber dispersion

of the fibers in the matrix and only a very limited of matrix

voids were obtained with the ActivePin technique.

When comparing the analyses, it is clear that their conclu-

sions are parallel. Pultrusion material has an overall poor

impregnation degree, fiber distribution and dispersion, the speci-

mens lack mechanical strength and show fiber pull-out due to

the excessive voids in the matrix. PassivePin material has a

higher impregnation degree and a better fiber distribution, which

results in less voids in the matrix and limited fiber pull-out.

Finally, the ActivePin material scores significantly higher in

impregnation degree and shows an excellent fiber distribution.

As a consequence, very limited voids are observed and an even

fracture surface without fiber pull-out is obtained.

It is clear that the ActivePin technique would be a great

choice for application in an extrusion-based AM process, this

method could allow for production of high strength and stiffness

objects.

In future research, it would be interesting to study whether

the findings of this research can be extrapolated to other fiber

and matrix materials. Further, it has to be researched whether

the findings above correlate with the mechanical properties of

AM manufactured continuous fiber reinforced material, and how

these properties relate to conventionally produced thermoplastic

composites.
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NOMENCLATURE

ABS Aminonitrile butadiene styrene

AFP Automated fiber placement

AM Additive manufacturing

ATL Automated tape laying

dd Diameter of a pultrusion die

Di Degree of impregnation

FDM Fused deposition modeling

G1,2 and G1,3 Shear moduli in a plane parallel to fiber direc-

tion in a uniaxially reinforced composite

L Linear density of a fiber bundle

mc Mass of a composite material

mf Mass of a fiber material

mm Mass of a matrix material

Mf Mass fraction of fibers in a composite

MFI Melt flow index

Mm Mass fraction of matrix in a composite

Mm,max Maximum obtainable matrix mass fraction

Mv Mass fraction of voids in a composite

ld Dynamic friction coefficient

n Amount of specimens

PA 12 Polyamide 12

PLA Polylactic acid

px Pressure at location x

R Radius of a spreader/impregnation pin

qf Density of a fiber material

qm Density of a matrix material

SEM Scanning electron microscopy

Ti Tensile force number i

Td,i Drag force number i

Tx Tensile force at location x

h Total contact angle

hx Contact angle at location x

v Pultrusion velocity

Vf Volume fraction of fibers in a composite

Vm Volume fraction of matrix in a composite

w Fiber bundle contact width

X Location x
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