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Research over the past decades has
shown that bacteria communicate with
each other with small signal molecules
in a process that has been termed
quorum sensing, and the list of bacter-
ial quorum-sensing molecules is still
growing.

The virulence of many bacterial patho-
gens of plants, animals, and humans is
controlled by quorum sensing, and
quorum-sensing-interference is one
of the most intensively studied strate-
gies for controlling disease caused by
The development of novel therapies to control diseases caused by antibiotic-
resistant pathogens is one of the major challenges we are currently facing.
Many important plant, animal, and human pathogens regulate virulence by
quorum sensing, bacterial cell-to-cell communication with small signal mole-
cules. Consequently, a significant research effort is being undertaken to iden-
tify and use quorum-sensing-interfering agents in order to control diseases
caused by these pathogens. In this review, an overview of our current knowl-
edge of quorum-sensing systems of Gram-negative model pathogens is pre-
sented as well as the link with virulence of these pathogens, and recent
advances and challenges in the development of quorum-sensing-interfering
therapies are discussed.
antibiotic-resistant bacteria.

Various quorum-sensing-interfering
agents have been described in recent
years, including natural and synthetic
compounds, enzymes, and antibo-
dies, and these agents have been pro-
ven to attenuate bacterial disease in
animal and plant models.
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Targeting Virulence to Control Bacterial Infections
Antibiotics are still critically important for the treatment of bacterial diseases, both in human
and veterinary medicine. The modes of action of all currently available antibiotics are
variations on a single theme, bacterial eradication, and this implies that very strong selective
pressures are imposed on bacterial communities that come into contact with these drugs [1].
Because antibiotic resistance confers a very strong selective advantage over susceptible
competitors in the presence of antibiotics, resistance often spreads rapidly, and bacteria
showing clinically relevant resistance to antibiotics consistently appear within as little as a few
years after their first use [2]. Moreover, very few novel classes of antibiotics have been
discovered in the past 50 years, and the pipeline of agents under development is very limited
[3]. As a result of the development and spread of antibiotic resistance, diseases caused by
antibiotic-resistant bacteria are currently a major cause of death worldwide, and this situation
is predicted to become even more precarious in the near future if no adequate measures are
undertaken [4].

Bacterial pathogens synthesise different compounds and structures that enable them to
colonise and damage their host, that is, virulence factors (Box 1). As virulence factors are
required for infection, preventing pathogens from producing them constitutes an important
alternative strategy for the control of bacterial diseases, that is, antivirulence therapy. Rather
than killing, antivirulence therapy aims at ‘disarming’ the pathogens, thereby preventing them
from attacking their host [2,13,14].

The production of virulence factors is metabolically costly, and therefore, the expression of
virulence genes is usually controlled by a complex regulatory network (Box 2). Inhibition of
specific virulence factors, such as pili or secretion systems, is possible [21]. However, the
alternative approach of interfering with virulence regulatory mechanisms in order to interfere
with multiple virulence factors, has received more attention.
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Box 1. Virulence Factors in Bacterial Pathogens

Motility, Chemotaxis, and Adhesion

Flagella are rotating propulsion organelles, produced by a variety of bacteria, that act as helical propellers [5]. Flagellar
motility is thought to enhance the initial interaction of a bacterium with a surface by enabling the cell to overcome
negative electrostatic forces. All bacteria in which motility has been studied seem to perform chemotaxis, a process in
which bacteria move either towards favourable or away from unfavourable environments [6]. This might enable bacteria
to move towards target host tissues (e.g., chemotaxis for mucus components). Another group of structures involved in
adhesion are pili, fiber-like structures composed of many pilin subunits packed tightly into a helical array [7]. The
adhesins located at the tip of the pilus bind surface carbohydrates on host cells, and some pili (e.g., type IV pili) are able
to retract through the bacterial cell wall while the tip remains firmly attached to the surface.

Production of Extracellular Polysaccharides and Biofilm Formation

Capsular polysaccharides are high-molecular-weight polysaccharides that form a dense coat surrounding the bacterial
cells. This capsule is involved in attachment to host cells and plays an important role in immune evasion [8]. Another
group of extracellular polysaccharides, the exopolysaccharides, form a loose slime outside the cell that is a major
constituent of the intercellular matrix in biofilms. The biofilm matrix provides protection from detergents, antimicrobials,
phagocytic cells, and drying [9].

Production of Lytic Enzymes

Lytic enzymes are produced by many pathogenic bacteria and often play a central role in pathogenesis [10]. These
enzymes cause damage to host tissues, thereby allowing the pathogen to obtain nutrients and to spread through
tissues. The most well-known lytic enzymes include haemolysins, proteases, and lipases.

Siderophores

The bioavailability of iron is limited during infection of a host, and in order to overcome this, many pathogenic bacteria
can acquire iron by means of siderophores, secreted low-molecular-weight iron-binding compounds [11]. Many
different siderophores (with a high variety in chemical structures) have been reported.

Secretion Systems

Nearly all bacterial virulence factors are located on the bacterial surface or are extracellular. Hence, the bacteria need
specific systems to transport virulence factors out of the cells. In Gram-negative bacteria, a classification of the secretion
pathways into types I–VI was based on the characteristics of the secretion mechanism [12].
Quorum-Sensing Systems and Their Impact on the Virulence of Bacterial
Pathogens
A key regulatory hub for virulence is quorum sensing, bacterial cell-to-cell communication, and
this is one of the most intensively studied targets for antivirulence therapy [22]. In the quorum-
sensing process, bacteria coordinate the expression of certain genes in response to the
presence of small signal molecules, and it was first discovered to control bioluminescence
in the marine bacterium Vibrio fischeri. Since then, many other Gram-negative bacteria have
been found to contain a similar quorum-sensing system, based on the production and
detection of acylated homoserine lactones (AHLs; Figure 1). In its simplest form, such a system
consists of a homolog of Vibrio fischeri LuxI that produces the AHL, and a homolog of Vibrio
fischeri LuxR that detects the AHL and subsequently binds to the promoter of the quorum-
sensing target genes, in this way affecting expression of these genes [22]. AHLs of different
species differ in the acyl side chain, which usually contains between 4 and 18 carbons and can
have an oxo or a hydroxyl substitution at the third position.

Research over the past 40 years has shown that the production of several virulence factors in
bacterial pathogens of plants, animals, and humans is controlled by quorum sensing (Table 1).
In addition to AHLs, many more signal molecules with different chemical structures have been
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Box 2. Constituents of the Virulence Regulatory Network in Bacterial Pathogens

In addition to quorum sensing, several other regulatory mechanisms have been found to control the production of
virulence factors in bacterial pathogens. These regulatory mechanisms are often interconnected, forming a complex
regulatory network [15].

Regulatory RNAs

Regulatory RNAs are effective regulators that can influence protein expression and function in response to external cues
such as temperature, pH, and metabolite levels [16]. Regulatory RNAs include 50 untranslated regions (UTRs), 30 UTRs,
cis-acting antisense RNAs and trans-acting RNAs. The RNA chaperone protein Hfq is often required to facilitate a stable
trans-acting sRNA–mRNA interaction, especially if the level of complementarity between the trans-acting sRNA and the
target mRNA is low [17]. A major advantage of regulation by RNA structures is the speed at which it can occur (no
translation needed).

Second Messengers

Second-messenger molecules are involved in relaying external signals from membrane receptors to one or more targets
within the cell. The cyclic nucleotide cyclic AMP (cAMP) is generated from ATP by adenylyl cyclases, and phospho-
diesterases catalyse its hydrolytic degradation [18]. In bacteria, transcription factors of the cAMP-receptor protein (CRP)
family are activated by direct binding of cAMP. cAMP has central roles in regulating biofilm formation, type III secretion,
carbon metabolism, and virulence gene regulation in many pathogens. Cyclic-di-GMP (c-di-GMP) is produced from two
molecules of GTP by diguanylate cyclases and is broken down by specific phosphodiesterases [18]. In general, c-di-
GMP stimulates biofilm formation and inhibits various forms of motility [19]. Diguanylate cyclases and phosphodies-
terases respond, for example, to oxygen and redox conditions, light, starvation, and various extracellular substances
[18].

Alternative Sigma Factors

Sigma factors are proteins that form essential subunits of prokaryotic RNA polymerase, thereby affecting gene
expression [20]. They provide promoter recognition specificity to the RNA polymerase enzyme. The association of
a certain sigma factor with core RNA polymerase enables the cells to express a particular set of genes under the
appropriate conditions [20]. As the regulon of a single sigma factor can comprise hundreds of genes, sigma factors
provide effective mechanisms for simultaneously regulating large numbers of genes. RpoS and RpoN are two examples
of sigma factors that have been implied in the regulation of virulence.
discovered in Gram-negative pathogens, including autoinducer-2 (AI-2) [35], quinolones [36],
indole [37], pyrones [38], and dialkylresorcinols [30]. Furthermore, it is becoming evident that
bacteria usually do not rely on only one signal molecule, and different quorum-sensing-system
architectures have been described (including both hierarchical and parallell configurations)
[22,39]. In the following paragraphs, examples of such configurations are discussed as well as
their impact on the virulence of model Gram-negative pathogens. We have previously hypoth-
esised that the use of different signal molecules enables bacteria to rely on their quorum-
sensing systems under various environmental conditions (with varying stabilities of the signal
molecules) [31]. Indeed, different subunits of a complex quorum-sensing network can have a
different impact on virulence in different hosts. In addition to this, Even-Tov et al. have shown
that the presence of multiple quorum-sensing systems can evolve as a result of social
exploitation as a strain that has acquired an additional quorum-sensing system can exploit
its ancestor without this additional system [40].

Regulation of the Virulence of Pseudomonas aeruginosa by a Hierarchical Quorum-Sensing
System
Pseudomonas aeruginosa is an opportunistic human pathogen capable of causing severe, often
multiple antibiotic-resistant infections [41]. Quorum sensing plays a key role in the virulence
of this bacterium, and given its importance as a human pathogen, P. aeruginosa has become
one of the model organisms in quorum-sensing research [25]. The quorum-sensing system of
Trends in Microbiology, April 2018, Vol. 26, No. 4 315
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Figure 1. Chemical Structures of Selected Quorum-Sensing Signal Molecules. (A) Acylhomoserine lactones (AHLs). From left to right: general structure of an
AHL; N-butanoyl-L-homoserine lactone (BHL) and N-(3-oxo-dodecanoyl)-L-homoserine lactone (OdDHL), the AHLs produced by Pseudomonas aeruginosa; N-(3-oxo-
butanoyl)-L-homoserine lactone (OH-BHL), the AHL produced by Vibrio harveyi. (B) Autoinducer-2 (AI-2) produced by vibrios and enterobacteria, and their precursor
4,5-dihydroxy-2,3-pentanedione (DPD). (C) Cholerae autoinducer-1 (CAI-1) produced by V. harveyi and Vibrio cholerae. (D) Pseudomonas quinolone signal (PQS)
produced by P. aeruginosa. (E) Integrated quorum-sensing signal (IQS) produced by P. aeruginosa. (F) Indole and indole-3-acetic acid. (G) Diffusible signal factor (DSF)
and Burkholderia diffusible signal factor (BDSF).
P. aeruginosa consists of four subunits (LasI/LasR, RhlI/RhlR, pqs, and iqs) that each use a
specific signal (N-oxododecanoyl-L-homoserine lactone (OdDHL), N-butanoyl-L-homoserine
lactone (BHL), the Pseudomonas quinolone signal (PQS), and the integrated quorum sensing
signal (IQS), respectively; Figure 1) and that are organised in a hierarchical manner, with the
LasI/LasR system at the top of the hierarchy (Figure 2A, Key Figure).

Transcriptomic studies have revealed that the LasI/LasR and RhlI/RhlR systems control the
expression of nearly 10% of the P. aeruginosa genome, with 254 genes (including several
316 Trends in Microbiology, April 2018, Vol. 26, No. 4



Table 1. Examples of Quorum-Sensing-Regulated Virulence Factors in Bacterial Pathogens of Humans,
Animals, and Plantsa

Pathogen Signal molecule Selected phenotypes Refs

Human pathogens

Escherichia coli O157:H7 indole Biofilm formation, motility [23]

Helicobacter pylori AI-2 Motility [24]

Pseudomonas aeruginosa OdDHL, BHL, PQS Elastase, protease, hemolysin,
rhamnolipids, virulence

[25]

indole Biofilm formation, motility [26]

Vibrio cholerae AI-2, CAI-1 Biofilm formation, protease [27]

indole Biofilm formation, motility [28]

Animal pathogens

Aeromonas hydrophila BHL Protease, virulence [29]

Photorhabdus luminescens dialkylresorcinols Virulence [30]

Vibrio harveyi OH-BHL, AI-2, CAI-1 Protease, type III secretion,
siderophore, virulence

[31]

indole Biofilm formation, motility, virulence [32]

Plant pathogens

Pectobacterium carotovorum HHL, OHHL, OOHL Extracellular cell wall-degrading enzymes [33]

Pseudomonas syringae OHHL Extracellular polysaccharides, motility, virulence [33]

Xanthomonas campestris DSF Extracellular polysaccharides,
biofilm formation, virulence

[34]

aAbbreviations: AI-2, autoinducer-2; OdDHL, N-(3-oxododecanoyl)-L-homoserine lactone; BHL, N-butanoyl-L-homoser-
ine lactone; PQS, Pseudomonas quinolone signal; CAI-1, cholerae autoinducer-1; OH-BHL, N-(3-hydroxybutanoyl)-L-
homoserine lactone; HHL, N-hexanoyl-L-homoserine lactone; OHHL, N-(3-oxohexanoyl)-L-homoserine lactone; OOHL,
N-(3-oxo-octanoyl)-L-homoserine lactone; DSF, diffusible signal factor.
virulence genes) being induced by AHLs [42,43]. Some of the genes respond to both OdDHL
and BHL, and some to only one of these signals. Virulence factors that are affected by the
quorum-sensing signals of P. aeruginosa include the LasA protease (disrupting the epithelial
barrier; OdDHL-controlled), the LasB elastase (degrading matrix proteins such as collagen;
OdDHL- and BHL-controlled), alkaline protease (degrading host defense proteins; OdDHL-
controlled), rhamnolipids (causing necrosis of immune cells; BHL-controlled), pyocyanin
(involved in immune evasion; OdDHL-, BHL- and PQS-controlled), and LecA lectin (enhancing
colonisation; PQS-controlled) [25]. The quorum-sensing system of P. aeruginosa is required for
full virulence in various hosts, including zebrafish, fruitflies, nematodes, and mice (burn wound,
pneumonia, and chronic lung infection models) [25,44]. Furthermore, both OdDHL and PQS
have a direct effect on the host by modulating the immune response and apoptosis of different
eukaryotic cell types, including epithelial cells and macrophages [45].

Remarkably, clinical isolates of P. aeruginosa from chronic infections often have mutations in
lasR, and although based on research with laboratory strains, it was hypothesised that such
mutants would have a quorum-sensing-nonresponsive phenotype, recent research revealed
that some of these mutant isolates retained LasR activity, whereas others had uncoupled the
RhlI/RhlR system from the LasI/LasR system [46]. Furthermore, environmental factors, such as
phosphate and iron limitation, have a major impact on the hierarchy of the system as the RhlI/
RhlR and the iqs system drive virulence factor production under phosphate or iron limitation
[47,48]. Finally, Mukherjee et al. recently demonstrated that RhlR is able to control virulence
Trends in Microbiology, April 2018, Vol. 26, No. 4 317
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LuxM, LuxS and CqsA are the synthases of the signal molecules HAI-1, AI-2, and CAI-1, respectively. These signal molecules are detected at the cell surface by the
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Phosphorylated LuxO is active, and together with s54 it activates the production of five small regulatory RNAs (sRNAs). The sRNAs promote and inhibit translation of the
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phosphatases, resulting in dephosphorylation of LuxO. Dephosphorylated LuxO is inactive and, therefore, the sRNAs are not formed, AphA is not translated, and LuxR
is translated. In addition to the three signal molecules, nitric oxide (NO) is also able to dephosphorylate LuxU. (C) Diffusible signal factor (DSF) signaling in Xanthomonas
campestris. The DSF signal molecule is produced by the RpfF protein and sensed by the two-component receptor protein RpfC. In the presence of high levels of DSF,
RpfC transfers phosphate to RpfG, leading to activation of its c-di-GMP phosphodiesterase activity. See Figure 1 for the chemical structures of the signal molecules.
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factors independently of BHL, probably by responding to another (thus far unknown) ligand
[49]. Hence, a quorum-sensing system consisting of several subunits with a flexible hierarchy
might enable P. aeruginosa to maintain quorum-sensing control under varying environmental
conditions. Indeed, mathematical modeling revealed that the use of multiple signal molecules
with distinct half-lives enables P. aeruginosa to effectively express secreted factors under the
appropriate conditions [50]. As a consequence, when studying the impact of quorum sensing
on the virulence of a pathogen, it is highly important to include clinical strains in the study and to
investigate quorum-sensing regulation of virulence under different environmental conditions
(preferably also including in vivo studies with a relevant host).

Regulation of the Virulence of Vibrio harveyi by a Multichannel Quorum-Sensing System
Vibrio harveyi is a major pathogen of aquatic animals, causing significant losses in the
aquaculture industry worldwide [51,52]. V. harveyi BB120 (= ATCC BAA-1116) is a quo-
rum-sensing model organism [27]. V. harveyi contains a three-channel quorum-sensing sys-
tem, with three different types of signal molecule (harveyi autoinducer-1 (HAI-1), autoinducer-2
(AI-2), and cholerae autoinducer-1 (CAI-1); Figure 1) feeding a shared signal transduction
cascade that controls the production of the master regulators LuxR and AphA (Figure 2B).
Similar multichannel quorum-sensing systems are found in other vibrios, including the human
pathogen Vibrio cholerae [53,54]. In addition to the three signal molecules mentioned above,
nitric oxide (NO) is also able to dephosphorylate LuxO through an NO-responsive channel that
also feeds into the quorum-sensing system at LuxU [55]. This channel is composed of a
cytoplasmic H-NOX type NO receptor and an H-NOX-associated kinase (HqsK). It has been
hypothesised that NO might enable V. harveyi to sense the host environment [55], and this is
consistent with our previous observations that the bacterium showed a 200-fold higher
maximal quorum-sensing-regulated bioluminescence when associated with a host than when
free-living, and that the expression of the type III secretion system is >1000-fold higher in
shrimp-associated vibrios than in vibrios grown in the absence of a host [56,57].

Microarray analyses have revealed that the quorum-sensing master regulators AphA and LuxR
regulate 167 and 625 genes, respectively, and they coregulate 77 genes [58]. In addition to
bioluminescence, the three-channel quorum-sensing system of V. harveyi controls the expres-
sion of different virulence-related phenotypes, including a type III secretion system [57], side-
rophore [59], chitinase [60], phospholipases [61], vhp metalloprotease [62], and flagellar motility
[63]. The system is required for full virulence towards different hosts [64], and activity of the
quorum-sensing system during infection of a host is proportional to the virulence to that host
[56]. Interestingly, although the information provided by the different signal molecules is
transferred through one shared signal transduction cascade, V. harveyi seems to be able
to distinguish between them. Indeed, the different signal molecules have a different impact on
virulence of the pathogen in different host organisms [64]. This might be related to a different
stability of the signal molecules in different (host) environments, and to asymmetric regulation of
the production of receptors, leading to higher sensitivity of the system to one of the signal
molecules, as shown for the HAI-1 receptor in V. harveyi [65] and recently also for the CAI-1
receptor in V. cholerae [66]. Furthermore, Lorenz et al. recently reported that the signal
molecule receptors show differences in copy numbers per cell and in cellular localisation
[67], which might also contribute to different impacts of the different signal molecules. Finally,
additional signal transduction cascades might exist that are only controlled by one of the signal
molecules, as we observed AI-2-specific regulation of the V. harveyi vhh hemolysin gene that
was independent of LuxO [62].
Trends in Microbiology, April 2018, Vol. 26, No. 4 319



It is often assumed that activation of the quorum-sensing system results in a collective response
in all members of the population [39]. However, using V. harveyi quorum sensing as a model,
Anetzberger et al. demonstrated that the response in fact is not homogeneous as biolumines-
cence and other quorum-sensing-regulated genes are heterogeneously expressed in pop-
ulations of wild-type V. harveyi [68]. High-level induction of both the luminescence gene luxC
and the vhp metalloprotease gene was very rare since only 0.5% of the cells activated both
genes at the same time. A similar phenomenon has been observed for various other species of
bacteria (including Pseudomonas and Xanthomonas [69]), indicating that we need to recon-
sider our view of how cells in a population of bacteria respond to quorum-sensing signals.

Regulation of the Virulence of Xanthomonas campestris by DSF Signaling
Pathovars of Xanthomonas campestris cause diseases of agronomic importance in various
crops throughout the world [70]. A particular type of quorum-sensing molecule, the diffusible
signal factor (DSF; Figure 1), was originally identified in X. campestris pv. campestris [71], and
DSF is perceived by the bacterium through a two-component system (Figure 2C). The
presence of DSF is translated into phenotypic changes via the second messenger c-di-
GMP (Box 2). A natural DSF turnover mechanism has recently been identified in X. campestris
which enables efficient termination of DSF signaling [72]. In addition to Xanthomonas species,
DSF-type signals are also produced by other bacteria, such as Burkholderia and Pseudomonas
species [73]. Comparison of the expression profiles of wild-type X. campestris and a deletion
mutant of the DSF synthase RpfF revealed 165 DSF-dependent genes, among which >80%
are activated by DSF [74]. DSF signaling has been associated with the regulation of virulence
factors such as motility, biofilm formation, iron uptake, extracellular polysaccharide and
extracellular enzyme production, and virulence to plant hosts [34]. Recently, Deng et al.
reported that X. campestris RpfF is responsible for the production of six different, but structur-
ally related, DSF-type signals, and that deletion of RpfF decreases the competitive fitness of the
bacterium against Bacillus thuringiensis by interfering with cell division and sporulation [75].
These findings indicate that quorum-sensing systems can be important for the interaction
between different species of bacteria.

Virulence Regulation by the Interspecies Signals Autoinducer-2 and Indole
Many quorum-sensing signal molecules (such as AHLs) are produced only by a particular
species (or a narrow range of closely related species), whereas others are produced by multiple
species [22]. The best known example is AI-2, which in fact refers to a group of molecules that
are in equilibrium with each other and with their precursor, 4,5-dihydroxy-2,3-pentanedione
(DPD) (Figure 1). DPD is produced by the LuxS enzyme, and AI-2 and/or LuxS have been
documented in many different bacteria (both Gram-negative and Gram-positive), leading
scientists to hypothesise that AI-2 might serve as an interspecies signal [76]. Three types
of AI-2 receptors have been identified thus far: LuxP in vibrios, LsrB in enteric bacteria, and
RbsB in Haemophilus influenzae [35]. AI-2 regulates the production of virulence factors and
virulence in host models of various pathogens, including enterohemorrhagic Escherichia coli, H.
influenzae, Helicobacter pylori, Streptococcus pneumoniae, and V. cholerae [35]. This sug-
gests that virulence inhibitors targeting AI-2 signaling might have a relatively broad spectrum.
On the other hand, the fact that LuxS also has a metabolic function in the activated methyl cycle
often confounds the interpretation of results, and there still is no consensus as to whether AI-2
can really be considered as a signal molecule in all bacteria that produce it, or whether it is rather
a metabolic by-product that only in some cases (e.g., vibrios) serves as a true signal molecule
[77]. Interestingly, Ismail et al. recently reported that mammalian epithelial cells produce a mimic
of AI-2 in response to a secreted bacterial component and tight-junction disruption [78]. The
mimic was able to stimulate AI-2-regulated phenotypes in both V. harveyi and Salmonella
320 Trends in Microbiology, April 2018, Vol. 26, No. 4



enterica serovar Typhimurium. This suggests that, on the one hand, a host can steer AI-2-
controlled behaviours in its associated microbiota, and on the other hand that the host-
associated microbiota can force the host to induce AI-2-controlled phenotypes by producing
the mimic.

Indole is another molecule that has recently gained more attention as an interspecies signaling
molecule. Indole has been known for quite some time to be synthesised from tryptophan by
tryptophanase (TnaA) in many different bacteria, both Gram-negative and Gram-positive [79],
and enteric bacteria can produce copious amounts of indole (up to mM levels) in the mamma-
lian gut [37]. However, the appreciation of its role as a signal molecule is of relatively recent
origin. Indole has been reported to control various virulence-related phenotypes (most notably
biofilm formation and motility) and virulence in human, animal, and plant pathogens [37].
Despite the fact that indole seems to have a signaling function in several bacteria, thus far,
an indole receptor has not been definitively identified for any bacterium [80]. In V. harveyi, indole
signaling decreases the activity of the three-channel quorum-sensing system [32]. Further-
more, indole signaling and the stress sigma factor RpoS are connected in vibrios, and a
transcriptomic analysis indicated that indole might serve as a starvation signal in these bacteria
[32,81]. The use of indole thus might increase the fitness of the bacteria in stress conditions by
enabling them to sense and respond to ecological competition [82]. Finally, in addition to its
impact on bacteria, indole also has a direct effect on the host as, for example, it increases the
resistance of tight-junctions in epithelial cells [83].

Advances and Challenges in the Development of Quorum-Sensing-
Interfering Therapies
Types of Quorum-Sensing-Interfering Agent
Because of the importance of quorum sensing in pathogenesis, there has been much investi-
gation into interference with quorum sensing, and many potential agents have been put forth.
For a comprehensive overview of reported quorum-sensing-interfering agents, I refer the reader
to the excellent reviews on this topic that have recently been published [22,84–89]. Depending
on the type of regulation (i.e., whether quorum sensing induces or represses virulence), the
agents will need to either inhibit or stimulate quorum sensing-regulated gene expression. The
latter is the case, for instance, for the human pathogen V. cholerae, in which quorum sensing
represses biofilm formation and virulence factor production [27]. Quorum-sensing-interfering
agents can be either natural or synthetic compounds acting as inhibitors or agonists of signal
molecule biosynthesis, signal molecule detection, or signal transduction, or enzymes that
inactivate the signal molecules, or antibodies that sequester signal molecules and induce an
immune response (Table 2).

In addition to the development of clinical applications, quorum-sensing inhibitors are also
valuable as research tools as they can lead to insights with respect to the functioning of
quorum-sensing systems that are unnoticed in a classical genetic (gene knockout) approach,
where the inactivation of a gene within a complex network does not just inactivate the specific
target but can also affect other components of the network. In this respect, Welsh et al.
observed an unexpected effect of compounds that interfere with RhlR on pyocyanin production
in P. aeruginosa, and this was related to suppression of the pqs system by RhlR agonism,
which is abolished by knockout of RhlR (thus leading to different results when using RhlR
deletion mutants versus RhlR antagonists) [107]. Furthermore, the use of inhibitors enables us
to screen the impact of quorum sensing on the virulence of multiple strains (laboratory strains as
well as clinical isolates), which will result in a broader and more relevant picture of the impact of
quorum-sensing-interference as a new strategy to control disease than we could obtain by
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Table 2. Examples of Quorum-Sensing-Interfering Agents

Agent Target bacterium Molecular target Activity Refs

Natural compounds

Ajoene Pseudomonas aeruginosa,
Staphylococcus aureus

Small regulatory RNAs Inhibitory [90,91]

Citrus limonoids Vibrio harveyi Signal transduction Inhibitory [92]

Flavonoids Pseudomonas aeruginosa AHL receptor Inhibitory [93]

Indole-3-acetic acid Vibrio harveyi Indole signaling Agonistic [32]

Naringenin Pseudomonas aeruginosa AHL production and detection Inhibitory [94]

Five compounds identified via
high- throughput screening

Pseudomonas aeruginosa AHL receptor Inhibitory [95]

Synthetic compounds

Brominated thiophenones Vibrio harveyi Signal transduction Inhibitory [96]

Five compounds identified via
high- throughput screening

Burkholderia mallei, Yersinia pestis AHL biosynthesis Inhibitory [97]

Thiazolidinediones and
dioxazaborocanes

Vibrio harveyi AI-2 receptor Inhibitory [98]

3-acylpyrroles Vibrio cholerae CAI-1 receptor Agonistic [99]

Enzymes

Achromobacter xylosoxidans strain Q19 Pseudomonas aeruginosa PQS signal molecules Degradation [100]

Bacillus sp. strain NFMI-C Vibrio harveyi AHL signal molecules Degradation [101]

Five bacterial strains from plants Xanthomonas campestris DSF signal molecules Degradation [102]

Four bacterial strains from plants Xanthomonas citri DSF signal molecules Degradation [103]

Lactonase from Bacillus sp. strain QSI-1 Aeromonas hydrophila AHL signal molecules Degradation [104]

Modified acylase PvdQ Burkholderia cenocepacia AHL signal molecules Degradation [105]

Antibodies

MAb HSL-2 and HSL-4 Pseudomonas aeruginosa AHL signal molecules Immune activation [106]
genetic studies involving only one (laboratory) strain. Indeed, in addition to decreased virulence
factor production, many of the papers on quorum sensing-interfering agents also documented
that these agents are capable of attenuating disease in various plant and animal models
[32,42,96,101–105,108]. Together, these studies can be considered as a proof-of-concept,
demonstrating the effectiveness of using quorum-sensing-interfering agents to control bacte-
rial diseases in humans and animals as well as for crop protection.

Reliable Identification of Quorum-Sensing Inhibitors
Candidate quorum-sensing inhibitors are usually identified based on their impact on signal-
molecule reporter strains that have a particular phenotype (such as green fluorescent protein,
luminescence, or b-galactosidase activity) in response to quorum-sensing molecules. An
important limitation of the use of these reporter strains is that such a phenotype is often
codependent on other factors and/or the metabolic activity of the cells. As a consequence,
compounds claimed to be quorum-sensing inhibitors based solely on this kind of experiment,
might end up as false positives after further study [109,110]. Hence, adequate control experi-
ments are needed to further substantiate true quorum-sensing inhibition by candidate com-
pounds identified on the basis of their impact on signal molecule reporter strains. The most
straightforward control experiment involves verifying the impact of a putative inhibitor on the
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reporter phenotype independent of quorum sensing (i.e., under the control of a constitutive or
inducible promoter). We recently proposed a new parameter, AQSI (specific quorum sensing-
disrupting activity), to determine the specificity of putative quorum-sensing inhibitors using this
kind of reporter assay [96]. At a given concentration of a putative inhibitor, AQSI is defined as the
ratio of the percentage inhibition of the reporter phenotype when controlled by quorum sensing
relative to the percentage inhibition of the same phenotype when it is independent of quorum
sensing. AQSI values need to be interpreted together with the actual impact on the quorum-
sensing reporter, and the best candidates for drug development should show both high
inhibition of the quorum-sensing reporter and a high AQSI value, implying that they are both
strong and specific inhibitors [111].

Other approaches to further substantiate quorum-sensing-inhibition by candidate inhibitors
include the assessment of the impact on other quorum-sensing-regulated phenotypes in
addition to the reporter phenotype [32,42,48,90], transcriptomic and/or proteomic analyses
[90,95], identification of the molecular target of the compound [91–93,98,112,113], and
sensitive toxicity tests [94,109]. It needs to be stressed that toxicity tests need to be very
sensitive in order not to miss subtle toxic effects that have a significant impact on the expression
of the reporter phenotype without affecting growth [110].

Can Pathogens Evolve Resistance to Quorum-Sensing-Interference?
One of the attractive aspects of quorum-sensing-interference is that it does not aim to kill the
pathogens, and therefore it has been thought unlikely to cause harsh selective pressures,
thereby minimizing the risk of resistance development [114]. It is clear that (point) mutations can
arise that confer resistance to quorum-sensing inhibitors [115]. However, whether or not these
mutants would become dominant in a population (and thus whether resistance would spread)
will depend on whether they would have a fitness advantage under quorum-sensing inhibition.
We have argued that the assumption that it is unlikely that resistance will spread might be too
optimistic because it was based on experiments in an environment in which quorum sensing is
not essential for growth (i.e., nutrient-rich growth media) [115]. We also argued that some
antibiotic-resistance mechanisms might confer cross-resistance to quorum-sensing inhibitors.
Only 2 years later, both of these hypotheses were proven correct as Maeda et al. demonstrated
that P. aeruginosa can become resistant to the model quorum-sensing inhibitor furanone C-30,
and that clinical antibiotic-resistant isolates showing an increased expression of a multidrug-
resistant efflux pump were also resistant to the furanone [116].

The quorum-sensing-inhibitor-resistant mutants documented by Maeda et al. were obtained in
a medium containing adenosine as the sole carbon source [116]. Growth on adenosine is
dependent on the quorum-sensing-regulated intracellular nucleoside hydrolase enzyme in P.
aeruginosa. However, Mellbye and Schuster showed that the spread of resistance will depend
on whether quorum sensing affects fitness predominantly via extracellular (public) or via
intracellular (private) products [117]. Indeed, if the impact is mainly on public goods (e.g.,
extracellular protease that determines growth on casein as sole carbon source in P. aeruginosa)
rather than private goods (such as nucleoside hydrolase in P. aeruginosa), then quorum-
sensing-inhibitor-sensitive mutants will take advantage of the quorum-sensing-regulated public
goods produced by resistant mutants (i.e., they will behave as cheats) in the presence of an
inhibitor and, as a consequence, the resistance does not spread [117]. This situation is similar
to cheating by quorum-sensing-nonresponsive mutants on public goods produced by
quorum-sensing-proficient wild types in the absence of an inhibitor. Social cheating by
quorum-sensing-nonresponsive mutants has mainly been studied in P. aeruginosa [15],
although such mutants have recently also been documented to spread as social cheaters
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Outstanding Questions
Are quorum-sensing-interfering agents
able to control disease in real-life (i.e.,
clinical or field) situations?

Does quorum-sensing-interference
have curative properties in addition
to preventive properties?

What are the most appropriate routes
for delivery of quorum-sensing-interfer-
ing agents for practical applications?

What is the impact of quorum-sensing-
interfering agents on beneficial activities
of the host-associated microbiota?

What is the impact of quorum sensing
on the fitness of pathogens in the host
and in the environment?

How quickly do pathogens evolve
resistance to quorum-sensing-interfer-
ing agents?
in V. cholerae [118]. Dandekar et al. reported that the presence of a substrate for quorum-
sensing-regulated private goods (adenosine) can suppress cheating on quorum-sensing-
regulated public goods (extracellular protease) [119]. However, Schuster et al. very recently
argued that this observation might have been biased by other adaptations to the specific
growth environment rather than pleiotropic control of quorum-sensing behavior [120]. Inter-
estingly, given the fact that quorum-sensing-proficient P. aeruginosa is less susceptible to
cyanide than quorum-sensing-deficient mutants, the bacterium is capable of restricting the
spread of cheaters via the quorum-sensing-regulated production of toxic cyanide [121]. In
contrast to P. aeruginosa and V. cholerae, quorum sensing provides resistance against
invasion by a quorum-sensing-nonresponsive mutant in V. harveyi when cocultured in a
medium where growth depends on quorum-sensing-controlled public goods (extracellular
protease) [122]. Hence, in addition to environmental conditions that determine the impact of
public and private goods on fitness, the capability of quorum-sensing-nonresponsive mutants
to spread as cheaters also seems to depend on species-specific characteristics.

Because most of the known quorum-sensing-regulated phenotypes are extracellular, quorum
sensing is often considered to mainly control the production of public goods (including various
virulence factors, e.g., lytic enzymes and toxins) [120]. However, several private goods that can
significantly affect the fitness of bacteria have recently been reported to be controlled by
quorum sensing. These include flagellar motility in V. harveyi [63], resistance to oxidative stress
in P. aeruginosa [123], resistance to osmotic stress in V. harveyi [124], resistance to phages in
P. aeruginosa [125,126], Vibrio anguillarum [127], and V. cholerae [128], and resistance to
predation by protozoa in P. aeruginosa [129]. Interestingly, the bacterial adaptive immune
system CRISPR-Cas is also controlled by quorum sensing in P. aeruginosa, resulting in
maximal CRISPR-Cas function at high cell density, that is, when the risk of phage infection
is highest [130]. Hence, the question still remains as to the net effect of quorum-sensing-
regulated expression of both public and private goods in a host environment. Rather than using
in vitro systems with defined media containing different ratios of substrates for private and
public goods, a better approach would be to investigate the evolution of resistance in a host
model [131].

Concluding Remarks and Further Perspectives
During recent decades we have started to appreciate that the production of several virulence
factors in bacterial pathogens of plants, animals, and humans is controlled by a still growing list
of quorum-sensing systems. Because antibiotic resistance is becoming more and more
problematic in human and veterinary medicine, the development of alternative therapies is
one of the major societal challenges we are facing at this moment, and antivirulence therapy by
using agents that interfere with quorum sensing in bacterial pathogens currently is an intensively
studied strategy. Many quorum-sensing-interfering agents have been identified, and they have
been shown to be capable of attenuating disease in various plant and animal models in the
laboratory. Thus far, these agents have mainly been tested against pure cultures of pathogens.
However, there are some indications that other members of mixed communities can affect the
outcome of quorum-sensing-interference [132]. Moreover, quorum sensing can have an
impact on the competitive fitness of bacteria in mixed communities [75]. Finally, in real
infections, different species can cooperate to enhance virulence and increase tolerance to
the immune defense or to antimicrobials [133]. Hence, it will be of significant interest to
investigate the impact of candidate quorum-sensing inhibitors on virulence of (clinical isolates
of) target pathogens in mixed communities in clinical or field trials (see Outstanding Questions).
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Despite the promising results obtained with various quorum-sensing inhibitors in laboratory
studies, it will probably take many more years before these agents will be used in the clinic. The
reason for this is that many regulatory hurdles need to be overcome before a new drug can be
released on the market [89]. Although many compounds have been claimed as quorum-
sensing inhibitors, at this moment, only for a few of them has the molecular target been
identified [91–93,98,112,113]. Furthermore, this kind of agent has usually been tested in
preventive set-ups (i.e., by adding them before an infection was established), and conse-
quently, it still is not clear to what extent quorum-sensing-interference would also have curative
properties. Moreover, many of the virulence factors that are controlled by quorum sensing (e.g.,
motility, biofilm formation, type III secretion) probably have the strongest impact during early
stages of infection. Therapeutic use of quorum-sensing-interfering agents as a single treatment
in human medicine therefore seems less conceivable than utilisation in combination with other
drugs (e.g., antibiotics) [87]. They might, however, be valuable in order to prevent infections
from spreading in animal and plant production.

An approach that will save significant amounts of time and money is the use of already available
drugs that were originally developed and used in the clinic for other purposes, that is, drug
repurposing [134]. Some compounds have already been proven to interfere with quorum
sensing in this respect, including the anticancer drug 5-fluorouracil [135], the anthelmintic drug
niclosamide [136], and the antimycotic drug flucytosine [137]. Of these, 5-fluorouracil has also
been shown to prevent biofilm formation on catheters in large-scale clinical trials [138].

One of the major obstacles with respect to practical applications of quorum-sensing-interfering
agents will be to find adequate formulations and routes for delivery. Delivery via nanocarriers
has been routinely used in other fields of medicine, and this might also be an effective method
for the delivery of quorum-sensing-interfering agents [139]. This has been demonstrated, for
instance, for delivery of niclosamide in in vitro experiments [140] and for CAI-1, the major
quorum-sensing signal molecule in V. cholerae, in a mouse model [141].

Quorum-sensing-interfering agents have long been considered to have fewer side effects
towards nontarget organisms than conventional antibiotics, and to include a low risk for
resistance development. However, thus far, any definitive proof of these assumptions is still
lacking. Hence, further research is needed to investigate the impact of quorum-sensing-
interfering agents on beneficial activities of nontarget bacteria in the host microbiome. The
interactions between a host and its associated microbiota are fairly complex and are only
beginning to be understood (mainly in mammals). The major beneficial effects of the microbiota
include contributions to nutrition and metabolism, and immunomodulation [142]. Quorum-
sensing-interfering agents might affect these activities as well as the colonisation of the host by
beneficial bacteria. This is especially relevant with respect to compounds targeting systems that
are present in a broad range of bacteria. This is the case, for instance, for the AI-2 synthase
LuxS, which has a significant impact on growth and biofilm formation of beneficial bacteria such
as Lactobacillus spp. and Bifidobacterium spp. [143,144], and as a consequence, broad-
spectrum LuxS inhibitors might have a negative impact on the fitness of these bacteria in the
intestinal tract.
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