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Abstract. We present a new regression method called geodesic least
squares (GLS), which is particularly robust against data and model un-
certainty. It is based on minimization of the Rao geodesic distance on a
probabilistic manifold. We apply GLS to Tully-Fisher scaling of the total
baryonic mass vs. the rotation velocity in disk galaxies and we show the
excellent robustness properties of GLS for estimating the coefficients and
the tightness of the scaling.
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1 Introduction

Many natural phenomena can be described by means of scaling laws, often in
the form of a power law, e.g. in astrophysics, fluid and plasma dynamics, biology,
geology, climatology and finance. However, in many application fields relatively
simple or outdated statistical techniques are frequently used to estimate power
laws. In the vast majority of cases, ordinary least squares (OLS) is applied to
estimate the exponents (coefficients) of the power law on a logarithmic scale,
despite its often poor performance in all but the simplest regression problems.
Indeed, in more realistic settings, particularly when the goal is extrapolation
of the scaling law, robustness is at least as important a quality compared to
goodness-of-fit. This can become an issue in the presence of model uncertainty,
heterogeneous data, atypical measurements (outliers) and skewed likelihoods [1].

Astrophysical data are often relatively complex from the statistical perspec-
tive and it has long been recognized that various assumptions of ordinary least
squares regression are not valid in many applications in the field. Accordingly,
several techniques from the domains of frequentist statistics and Bayesian prob-
ability theory have been applied to address the shortcomings of OLS. However,
presently most techniques are designed to address one or a few shortcomings
of OLS, but not all. In addition, judicious application of these techniques may
require considerable expertise from the practitioner in statistics or probabil-
ity theory, which can be an issue in various physics-centered application fields.
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Presently, in many application domains there is a need for a robust general-
purpose regression technique for estimating scaling laws.

For these reasons we have developed a new, robust regression method that is
simple to implement, called geodesic least squares regression (GLS). It is based on
minimization of the Rao geodesic distance between, on the one hand, the prob-
ability distribution of the response variable predicted by the regression model,
and, on the other hand, a more data-driven distribution model of the response
variable. GLS has recently been tested and applied in the field of magnetic con-
finement fusion [2, 3], showing its enhanced robustness over various traditional
methods.

In this contribution, we apply GLS regression to estimate a key scaling law
in astrophysics: the baryonic Tully-Fisher relation. This is a remarkably tight
relation between the total baryonic mass of disk galaxies and their rotational
velocity, of great practical and theoretical significance in astrophysics and cos-
mology.

2 Geodesic least squares regression

2.1 Principles of GLS

We here provide a brief overview of the GLS regression method. A more detailed
description can be found in [1]. Implicitly, GLS performs regression on a prob-
abilistic manifold characterized by the Fisher information. However, it is not
directly based on a manifold regression technique like geodesic regression [4],
where the relation between a manifold-valued response variable and a scalar
predictor variable is modeled as a geodesic curve on the manifold. Rather, the
idea behind GLS is to consider two different proposals for the distribution of
a real-valued response variable y, conditional on the real-valued predictor vari-
ables, all of which can be affected by uncertainty. On the one hand, there is the
distribution that one would expect if all assumptions were correct regarding the
deterministic component of the regression model (regression function) and the
stochastic component. We call this the modeled distribution. On the other hand,
we try to capture the conditional distribution of y by relying as little as possible
on the model assumptions, and much more on the actual measurements of y. For
this we will use the term observed distribution. In this sense, GLS is similar to
minimum distance estimation (MDE), where the Hellinger distance is a popular
similarity measure [5], but there are several differences. First and foremost, GLS
calculates the geodesic distance between each individual pair of modeled and
observed distributions of the response variable. This often corresponds to an in-
dividual measurement point, together with an estimate of its error bar, provided
by the experimentalist. The error bar estimate may have been obtained from
previous experiments, or from a time series obtained at fixed (or stationary)
values of the predictor variables. As such, each single data point is replaced by
a probability density function describing the distribution of the response vari-
able under fixed measured values of the predictor variables. In contrast, MDE



usually considers a distance between a kernel density estimate of the distribu-
tion of residuals on the one hand, and the parametric model on the other hand,
but based on the entire data sample. Secondly, we explicitly model all param-
eters of the modeled distribution, similar to the idea behind the link function
in the generalized linear model. In the present work this will be accomplished
by explicitly modeling both the mean and standard deviation of the Gaussian
modeled distribution. A final difference is that we use the Rao geodesic distance
as a similarity measure.

2.2 The GLS algorithm

We start from a parametric multiple regression model between m predictor vari-
ables ξj (j = 1, . . . ,m) and a single response variable η, all assumed to be
infinitely precise. For n realizations of these variables, the regression model can
be written as follows:

ηi = f(ξi1, . . . , ξim, β1, . . . , βp) ≡ f({ξij}, {βk}), ∀i = 1, . . . , n. (1)

Here, f is the regression model function, in general nonlinear and characterized
by p parameters βk (k = 1, . . . , p). In regression analysis within the astronomy
community, it is customary to add a noise variable to the idealized relation (1).
This so-called intrinsic scatter serves to model the intrinsic uncertainty on the
theoretical relation, i.e. uncertainty not related to the measurement process. We
take another route for capturing model uncertainty, however.

In any realistic situation, we have no access to the quantities ηi and ξij .
Instead, a series of noisy measurements xij , resp. yi is acquired for the predictor
and response variables:

yi = ηi + εy,i, εy,i ∼ N
(
0, σ2

y,i

)
,

xij = ξij + εx,ij , εx,ij ∼ N
(
0, σ2

x,ij

)
.

We have assumed independent Gaussian noise, but this can be generalized to
any distribution. Also, in general the standard deviations are different for each
point. For instance, in many real-world situations, such as the one discussed in
this paper, there is a constant relative error on the measurements, so the standard
deviation can be modeled to be proportional to the measurement itself.

Under this model, the distribution of the variable y, conditional on measured
values xij of the m predictor variables (fixed i), as well as the parameters βk, is
given by

pmod(y|{xij}, {βk}) =
1√

2πσmod,i

exp

−1

2

[
yi − f

(
{xij}, {βk}

)]2
σ2
mod,i

 . (2)

This is the modeled distribution, where we suppose that estimates of the stan-
dard deviations σx,ij and σy,i are available. The uncertainty on the predictor



variables propagates through the function f and adds to the conditional uncer-
tainty on the response variable, determined by σmod,i. We use standard Gaussian
error propagation theory as a practical solution for this purpose. For example,
referring to f

(
{xij}, {βk}

)
as the modeled mean µmod,i, for a linear model we

have (with relabeled βk):

µmod,i ≡ β0 + β1xi1 + . . .+ βmxim,

σ2
mod,i ≡ σ2

y,i + β2
1σ

2
x,i1 + . . .+ β2

mσ
2
x,im.

Relying on the maximum likelihood method, one would proceed to estimate
the parameters βk by maximizing (2), or, under the assumption of symmetry
of the likelihood distribution and homoscedasticity, by minimizing the sum of
squared differences (Euclidean distances) between each measured yi and pre-
dicted µmod,i. However, this assumes that the model is exact, specifically that
σmod,i is the only source of data variability. In order to take into account ad-
ditional uncertainty sources, in particular model uncertainty, we therefore also
consider the observed distribution of y, relying on as few assumptions as possible
regarding the regression model. Specifically, we replace each data point yi by a
distribution pobs(y|yi). In the context of the GLM, this is known as the satu-
rated model. In the present application, we choose again the normal distribution,
but centered on each data point: N

(
yi, σ

2
obs,i

)
, where σobs,i is to be estimated

from the data. The extra parameters σobs,i give the method added flexibility,
since they are not a priori required to equal σmod,i. As a result, GLS is less
sensitive to incorrect model assumptions. Choosing a Gaussian form for both
the modeled and observed distribution offers a computational advantage, since
the corresponding expression for the GD has a closed form [6]. Also, in principle,
σobs,i can be different for each point, although in practice it is clear that we will
need to introduce some sort of regularization to render the model identifiable.
In this paper we either assume σobs,i a constant sobs, or proportional to the
response variable, σobs,i = robs|ȳi|. The parameters sobs or robs have to be esti-
mated from the data. More complicated (parametrized) relations between σobs,i
and the response variable or other data would be possible too, but one should be
careful not to put too many restrictions on pobs, thereby defeating its purpose.

GLS now proceeds by minimizing the total GD between, on the one hand, the
joint observed distribution of the n realizations of the variable y and, on the other
hand, the joint modeled distribution. Owing to the independence assumption
in this example, we can write this in terms of products of the corresponding
marginal distributions (including all dependencies and with γobs either sobs or
robs)):



{
β̂k, γ̂obs

}
= argmin
βk,γobs∈R

GD2

[
n∏
i=1

pobs (y|yi, γobs) ,
n∏
i=1

pmod

(
y|{xij}, {βk}, σyi , {σxij

}
)]

= argmin
βk,γobs∈R

n∑
n=1

GD2
[
pobs (y|yi, γobs) , pmod

(
y|{xij}, {βk}, σyi , {σxij

}
) ]
. (3)

Note that the parameters βk occur both in the mean and the variance of the mod-
eled distribution. The last equality in (3) entails a considerable simplification,
owing to the property that the squared GD between products of distributions
can be written as the sum of squared GDs between the corresponding factors [6].
Hence, the optimization procedure involves, on the level of each measurement,
matching not only yi with µmod,i, but also σobs,i with σmod,i, in a way dictated
by the geometry of the likelihood distribution. As will be shown in the exper-
iments, the result is that GLS is relatively insensitive to uncertainties in both
the stochastic and deterministic components of the regression model. The same
quality renders the method also robust against outliers.

In the experiments below, we employed a classic active-set algorithm to carry
out the optimization [7]. Furthermore, presently the GLS method does not di-
rectly offer confidence (or credible) intervals on the estimated quantities. Future
work will address this issue in more detail, but for now error estimates were de-
rived by a bootstrap procedure. The bootstrapping involved creating, from the
measured data set, 100 artificial data sets of the same size, by resampling with
replacement. The regression analysis was then carried out on each of the data
sets and the mean and standard deviation, over all data sets, of each estimated
regression parameter and of the predicted quantities were used as estimates of
the parameter or prediction value and its error bar, respectively. This scheme
typically results in rather conservative error bars, which could possibly be nar-
rowed down using more sophisticated methods.

Incidentally, forcing σobs,i ≡ σmod,i in (3), ∀ i, would take us back to standard
maximum likelihood estimation, since the Rao GD between two Gaussians p1 and
p2 with means yi, resp. f

(
{xij}, {βk}

)
, but with identical standard deviations

σi (fixed along the geodesic path), is precisely the Mahalanobis distance [8]:

GD(p1, p2) =

∣∣yi − f({xij}, {βk})∣∣
σi

.

3 Application of GLS to Tully-Fisher scaling

3.1 The baryonic Tully-Fisher relation

The baryonic Tully-Fisher relation (BTFR) between the total (stellar + gaseous)
baryonic mass Mb of disk galaxies and their rotational velocity Vf is of funda-
mental importance in astrophysics and cosmology [9]. It is a remarkably simple



(a) (b)

Fig. 1: Baryonic mass Mb vs. rotation velocity Vf for 47 gas-rich galaxies and
the fitted BTFR using various methods. (a) On the logarithmic scale and (b) on
the original scale.

and tight empirical relation of the form

Mb = β0V
β1

f . (4)

The BTFR serves as a tool for determining cosmic distances, provides constraints
on galaxy formation and evolution models, and serves as a test for the Lambda
cold dark matter paradigm (ΛCDM) in cosmology. In this scaling problem, we
use data from 47 gas-rich galaxies, as detailed in [9]. The data also contain es-
timates of the observational errors, which we treat here as a single standard
deviation. Figure 2 shows a scatter plot of σmod,i, which is almost entirely de-
termined by σMb

, vs. Mb for the 47 galaxies in the database. This suggests a
measurement error on the response variable proportional to Mb, about 38%, i.e.
a constant error bar on the logarithmic scale.

Table 1: Regression estimates for the BTFR parameters using loglinear and
nonlinear OLS and GLS, and a robust Bayesian method in the loglinear case.

Loglinear β̂0 β̂1

OLS 310 3.56
Bayes 160 3.72
GLS 110 3.81

Nonlinear β̂0 β̂1

OLS 0.063 5.37
Bayes 91 3.80
GLS 79 3.83



3.2 Regression analysis

Owing to the power law character of most scaling laws, they are often estimated
by linear regression on a logarithmic scale. However, it is known that this may
lead to unreliable estimates, as the logarithm (heavily) distorts the distribution
of the data [1]. This is in particular the case if the estimation is done using
simple OLS or if there are outliers in the data. In contrast, we will show that
GLS regression produces consistent results on both the logarithmic and original
scales, demonstrating its robustness.

In view of the proportional error on Mb, the observed standard deviation in
GLS is modeled here as σobs,i = robsMb, with robs an unknown scale factor to
be estimated from the data using the optimization routine.

We compare the results of GLS regression with OLS and a standard Bayesian
method. For the latter we choose the likelihood given in (2), but we use an un-
known standard deviation σu instead of σmod, again assumed to be proportional
to Mb through a scale factor ru, to be estimated from the data. In addition, we
use uninformative prior distributions for the regression parameters and a Jeffreys
prior for ru. This factor is then marginalized out of the posterior, which comes
down to fitting a t-distribution to the data (shifted to sample mean zero). The
t-distribution has heavier tails than a Gaussian, hence accommodating outliers.

The scalings obtained using OLS and GLS, are shown in Figure 1a for the
case of linear regression on the logarithmic scale, and in Figure 1b for power-law
regression on the original scale. In the loglinear case the result from the Bayesian
analysis is also added, although it is very similar to the result of OLS. The
coefficient estimates are given in Table 1. It is clear that GLS yields estimates
that are much more consistent compared to OLS. In particular, whereas the data
point corresponding to the largest Vf and Mb does not have the characteristics of
an outlier on the logarithmic scale, it may be considered as such on the original
scale. The nonlinear OLS estimate for the exponent β1 is heavily influenced by
this point, causing the discrepancy with the estimate on the logarithmic scale.

Next, 100 bootstrap samples were created from the data, yielding average
parameter estimates and 95% confidence intervals on the basis of the OLS and
GLS results, shown in Table 2. Again, the enhanced robustness of GLS compared
to OLS stands out.

Finally, Figure 2 shows the plot of robsMb, with the scale factor robs (observed
relative error) amounting to 63%. This is considerably larger than the value of
38% predicted by the model, possibly indicating that the scatter on the scaling
law is not due to measurement error alone. This will be an important area
of further investigation, as it may provide evidence for the ΛCDM vs. MOND
cosmological models.

4 Conclusion

We have introduced geodesic least squares, a versatile and robust regression
method based on regression between probability distributions. Part of the strength



Table 2: Average regression estimates and 95% confidence intervals for the BTFR
using loglinear and nonlinear OLS and GLS, obtained from 100 bootstrap sam-
ples.

Loglinear β̂0 β̂1

OLS 360 ± 220 3.57 ± 0.15
Bayes 220 ± 220 3.72 ± 0.19
GLS 140 ± 82 3.80 ± 0.16

Nonlinear β̂0 β̂1

(3.6 ± 6.2) × 103 4.56 ± 1.19
Bayes 130 ± 160 3.80 ± 0.21
KLD 560 ± 470 3.78 ± 0.19
GLS 390 ± 280 3.85 ± 0.18

Fig. 2: Plot of σMb
(≈ σmod) and robsMb (= σobs) vs. Mb, as estimated by GLS.



of the method is its simplicity, allowing straightforward application by users in
various application fields, without the need for parameter tuning. We have ap-
plied GLS to baryonic Tully-Fisher scaling, thereby demonstrating the robust-
ness of the method and providing an alternative means for testing cosmological
models based on the estimated intrinsic scatter.
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