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Abstract

Reinforcement learning is a proven technique for
an agent to learn a task. However, when learn-
ing a task using reinforcement learning, the agent
cannot distinguish the characteristics of the en-
vironment from those of the task. This makes it
harder to transfer skills between tasks in the same
environment. Furthermore, this does not reduce
risk when training for a new task. In this paper,
we introduce an approach to decouple the en-
vironment characteristics from the task-specific
ones, allowing an agent to develop a sense of sur-
vival. We evaluate our approach in an environ-
ment where an agent must learn a sequence of
collection tasks, and show that decoupled learn-
ing allows for a safer utilization of prior knowl-
edge.

1. Introduction

When using traditional reinforcement learning to train an
agent for a specific task in an environment, the agent does
not differentiate between the characteristics of the environ-
ment, and those of the task. This does not allow for an easy
transfer of skills between tasks.

The above behavior can be problematic in real-world sce-
narios, where gathering experience is both costly and dan-
gerous. Consider a warehouse for example, where au-
tonomous drones are deployed. During training of the
drones’ policy, many have been lost due to crashes (Gandhi
et al., 2017). Having to lose another series of drones when
the objective changes would be far from optimal.

A better approach would be for the drones to have a no-
tion of safety, or survival skills, regardless of their current
task. In this paper, we introduce an approach to learn these
survival skills independent of a task, by decoupling the en-
vironment characteristics from the task-specific ones when
learning said task. We show that an agent that retains these
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skills between tasks exhibits a safer behavior than an agent
that does not.

2. Reinforcement learning

In the reinforcement learning framework (Sutton & Barto,
1998), an agent interacts with its environment in a sequence
of observations, actions and rewards. At each time-step t,
the agent follows its policy 7 to take an action a;, with
respect to the observed state s; of the environment. This
results in a reward r; and a new state sy for the next time-
step.

The objective of the reinforcement learning framework is to
find a policy that maximizes the expected discounted return
Ry

Rt =Tt +’yrt+1 +72Tt+2+... (1)

where v is a discount factor between 0 and 1. Formally,
this means finding a policy that follows the optimal action-
value function Q* (s, a), defined as the maximum expected
discounted return for taking an action a, given an observed
state s, and following the optimal policy onwards.

Q*(s,a) = maxE [Ry|s; = s,a; = a, 7| 2)

Q-learning (Watkins & Dayan, 1992) is an off-policy algo-
rithm that iteratively learns the optimal action-value func-
tion, by executing the following update rule:

Q(s,a) < Q(s,a) + a(r +ymaxQ(s', a’) — Q(s, a)).
3)
Deep Q-learning (Mnih et al., 2013) approximates the op-
timal action-value function by using a deep Q-network

(DQN). This is a deep neural network, parameterized by
0, that represents Q(s, a; 0).

3. Decoupled learning

When training for a task, an agent can gain a notion of sur-
vival by decoupling the environmental reward signals from
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Figure 1. Architecture for decoupled learning.

the task-specific ones. This way, the agent can indepen-
dently learn the environment characteristics. Formally, we
define a reward function R.(s) for the environment, and a
reward function R;(s) for task 1.

We can integrate decoupled learning in the Q-learning
framework, by decomposing the action-value function

Q(s,a) = Qc(s,a) + Qi(s,a) )

where Q.(s,a) is defined as the action-value function for
survival and @, (s, a) as the action-value function for task 1.
We can learn both functions iteratively by applying the ap-
propriate reward function during updates, instead of using
the global reward. This is illustrated by Figure 1.

When training for a new task, we can leave the learned sur-
vival function Q. (s,a) unmodified, and must only learn
the new task function. Furthermore, the survival function
is used to safely navigate the environment while gathering
experience for the new task.

As an example, consider the traditional cliff walking prob-
lem (Sutton & Barto, 1998), where an agent is separated
from its goal by a cliff. The agent receives a positive re-
ward reaching its goal, and a negative reward when it falls
into the cliff. In this problem, we can interpret a negative
reward as an environmental punishment and a positive re-
ward as completing the task. In doing so, the cliff walking
problem is transformed into a part inherent to the environ-
ment (don’t fall into the cliff), and a part specific for the
task (reach the goal). When training an agent for this prob-
lem, we decouple the environment characteristics by prop-
agating a negative reward to the survival function, and a
positive reward to the task function.

4. Experiments

We evaluate our approach in an 11x11 gridworld environ-
ment, as seen on Figure 2. In this environment, an agent
must perform a collection task, while avoiding obstacles.
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Figure 2. The environment. The agent (black) has to avoid the ob-
stacles (red) and gather the collectibles (yellow or blue, depending
on the task).

At the beginning of an episode, the agent spawns on a ran-
dom space. Each other space can spawn either a collectible
or an obstacle. These spawn with a probability of 0.05 for
the collectibles and 0.15 for the obstacles. There are two
types of collectibles, distinguished by color. A task consists
of gathering as many collectibles of a single type. When an
agent grabs a collectible, a new one of the same type ap-
pears on a random empty space. If the taken collectible was
of the desired type, the agent receives a +1 reward. When
crashing into an obstacle, the agent receives a -1 reward,
and the episode ends instantly. Otherwise, an episode lasts
for a maximum of 50 steps.

We train an agent on the first collection task, change the
task, and apply different methods to train the agent on the
second task. We compare three methods:

Naive learning To learn the first task, we use a single
neural network to represent ()(s, a; ). The weights 6 of
this network are randomly initialized. When learning the
second task, we randomly re-initialize these weights.

Transfer learning Once again, a single neural network
with weights 6 is used to learn the first task. Next, the
trained weights are used to bootstrap learning the second
task.

Decoupled learning We use our decoupled learning ap-
proach, using two neural networks, to represent both the
survival function Q) (s, a; #) and the task-specific function
Qi(s,14; @), during the first task. When training for the sec-
ond task, we reuse the survival network, and only train a
new network for the task.

The RGB state representation serves as input for each net-
work. This input layer is followed by a convolutional layer
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Figure 3. Learning curves for the second task, evaluated over a
fixed set of states. All plots are an average over 9 random seeds.

with kernel size 3x3 and 64 filters, a max pooling layer, and
two more convolutional layers with kernel size 3x3 and 32
filters. Another max pooling layer is followed by two fully
connected layers, with 64 and 16 hidden units respectively.
The output of each network consists of four values, repre-
senting the estimated Q-values for each of the four possible
actions.

We use a replay memory of 10,000 experiences, which is
continuously updated as the agent learns the first task. For
the second task, a new replay memory is generated in dif-
ferent ways depending on the evaluated approach. In the
naive case, the replay memory is initialized with random
experiences. For transfer learning, the memory is filled
with experiences of the agent performing the first task.
When evaluating the decoupled approach, we use the sur-
vival network, trained during task one, to generate the re-
play memory.

We initialize the weights of each network using Xavier ini-
tialization (Glorot & Bengio, 2010). Training is done for
60.000 episodes, by means of the Adam algorithm (Kingma
& Ba, 2014), with a minibatch size of 32 and a learning rate
of 0.000025. For the second task, the naive agent is trained
using e-greedy learning, with ¢ linearly annealed from 1.0
to 0.1. The transfer agent always follows its policy during
training, and the decoupled agent uses an e-greedy strat-
egy, but instead of sampling over the entire action space,
the agent picks an action from a subset of safe actions, pro-
vided by the survival network.

To ascertain progress in re-training the agents, we apply
each agent’s action-value function as metric, as shown in
Figure 3. It shows how the decoupled agent equals the
transfer agent in convergence rate, albeit with a higher vari-
ance. The naive agent fails to converge within the given
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Figure 4. Comparison of the training performance of the naive,
transfer and decoupled agent while learning the second task. All
plots are an average over 9 random seeds.

time frame.

Although the decoupled agent has the same convergence
rate as the transfer agent, the first one learns a safer pol-
icy, resulting in a higher survivability. Because of this, the
decoupled agent can take more steps each episode, which
results in a higher episode return, as seen in Figure 4.

5. Related Work

In transfer learning, knowledge from a source task is used
to learn a target task better than if transfer learning were
not used, according to some metric such as training time or
total accumulated reward (Taylor & Stone, 2009). Differ-
ent approaches exist to transfer knowledge between tasks.
Autonomous shaping (Konidaris & Barto, 2006) tackles
a sequence of goal-directed reinforcement learning tasks
by separating each task in a problem-space representation,
which can be different for each task, and an agent-space
representation, which is the same across tasks. Using the
latter representation, a shaping function is learned that pro-
vides value predictions for novel states across tasks as to
speed up learning. The separation of problem-space and
agent-space can also be extended to the level of options
(Sutton et al., 1999; Konidaris & Barto, 2007). Transfer
learning via inter-task mapping (Taylor et al., 2007) uses
hand coded task relationships to transform the action-value
function from a source task to fit a target task with different
state and/or action spaces. The MASTER method (Tay-
lor et al., 2008) improves on the inter-task mapping by au-
tonomously learning a mapping between a target task and
one or more source tasks, by using experience the agent
has gathered in the different task environments. When
placing an agent in multiple environments, the agent it-
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self is a common feature of each environment. By lever-
aging this stronger notion of an agent, the shared features
framework (Konidaris et al., 2012) allows for both trans-
fer of knowledge between a source and a target task, and
a way to learn portable skills through a sequence of tasks.
The Actor-Mimic method (Parisotto et al., 2015) involves
a single policy network learning to act in a set of distinct
tasks through the guidance of an expert teacher for each
task. Furthermore, the learned representation of the pol-
icy network enables generalizing to new tasks without ex-
pert guidance. The use of successor features (Barreto et al.,
2016), an extension of the successor representation (Dayan,
1993), combined with a generalized framework for policy
improvement, allows an agent to perform well on a novel
task if it has seen a similar task before.

6. Conclusion

In this paper, we present an approach for an agent to ex-
plicitly learn survival skills, by decoupling the environment
characteristics from those of the task during training. This
way, a learned representation of these characteristics can
be transferred when training for a new task in the same en-
vironment. We compare our approach to both the naive
method and the method of transfer learning. We evaluate
each method by sequentially training an agent to gather dif-
ferent types of collectibles in a hostile environment. Our
approach equals the method of transfer learning in terms of
convergence, and, in addition, allows for a much safer uti-
lization of prior knowledge, resulting in a higher episode
return on average.

Following this paper, we plan to evaluate our approach in a
real-world scenario, where a robot has to complete a series
of tasks while crashing as little as possible.
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