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A Measure-Theoretic Foundation for Data Quality
Antoon Bronselaer , Robin De Mol, and Guy De Tré

Abstract—In this paper, a novel framework for data quality mea-
surement is proposed by adopting a measure-theoretic treatment of
the problem. Instead of considering a specific setting in which qual-
ity must be assessed, our approach departs more formally from the
concept of measurement. The basic assumption of the framework is
that the highest possible quality can be described by means of a set
of predicates. Quality of data is then measured by evaluating those
predicates and by combining their evaluations. This combination
is based on a capacity function (i.e., a fuzzy measure) that mod-
els for each combination of predicates the capacity with respect
to the quality of the data. It is shown that expression of quality
on an ordinal scale entails a high degree of interpretation and a
compact representation of the measurement function. Within this
purely ordinal framework for measurement, it is shown that rea-
soning about quality beyond the ordinal level naturally originates
from the uncertainty about predicate evaluation. It is discussed
how the proposed framework is positioned with respect to other
approaches with particular attention to aggregation of measure-
ments. The practical usability of the framework is discussed for
several well known dimensions of data quality and demonstrated
in a use-case study about clinical trials.

Index Terms—Data quality, fuzzy measure, uncertainty
modeling.

I. INTRODUCTION

THE continuously growing potential of data in nowadays
organizations has rapidly promoted assessment of data

quality to an important topic of research. Throughout the past
decades, many authors have contributed to this field and some
commonly accepted principles have been established. One of
these principles is that data quality is a multidimensional prob-
lem [1], [2]. Although many such dimensions may be rele-
vant in particular situations [3], [4], the most commonly stud-
ied dimensions are correctness, completeness, and consistency,
and time-related dimensions such as timeliness, currency, and
volatility [5], [6]. For each of these dimensions, many proce-
dures for measurement have been proposed with very specific
scenarios.1 Because the different dimensions of quality typically
have their particular nature, the whole of data quality measures
across all dimensions is very disperse and heterogeneous. As
a consequence, a common and formal understanding of the

Manuscript received May 27, 2016; revised October 17, 2016; accepted Jan-
uary 18, 2017. Date of publication March 23, 2017; date of current version
March 29, 2018. (Corresponding author: Antoon Bronselaer.)

The authors are with the Department of Telecommunications and Informa-
tion Processing, Ghent University, Ghent B-9000, Belgium (e-mail: antoon.
bronselaer@ugent.be; robin.demol@ugent.be; guy.detre@ugent.be).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TFUZZ.2017.2686807
1In the literature, the term “metric” is sometimes used. Here, the term “mea-

sure” is preferred as a metric is commonly used to express a notion of distance.

concept “measurement” in the field of data quality is up-to-
date still missing, as are any well-established connections to
the theory of representational measurement [7]. To the best of
our knowledge, a first observation in this direction was made
by Even et al. [8]–[10], who compiled a set of properties (i.e.,
axioms) to which a “good” measure of quality should adhere.
Their perspective was mainly economically and utility driven.
The considered properties were further investigated and refined
by Heinrich et al. [11] from a decision making point of view.
Although these properties are valuable and interesting, the re-
quirements in [8] and [11] originate from a specific usage sce-
nario. Therefore, it is argued here that a more general approach
is required. Recently, observations of the same issue were made
in [12] and [13]. The need for a more general approach can be
shown by reviewing some problems with state-of-the-art mea-
surement approaches.

First, definitions of measurement are very heterogeneous:
some are based on metrics [14], some are based on utility cal-
culation [8], and others apply a function on the data [15]. It is
therefore hard to compare different approaches as they express
quality in a different way. In this respect, Fürber et al. [16] pro-
posed an ontological approach in the definition of data quality
rules. However, the authors believe that the field of data quality
measurement has not yet reached sufficient maturity for such an
approach.

Second, the commonly accepted idea of expressing quality in
the unit interval [0, 1] (or an alternative isomorphic scale) causes
issues with the interpretation of quality measurements. What
does it mean when an attribute value has an accuracy of 0.7 or
when the timeliness is 0.8? Moreover, if we assume to operate
on an interval scale, then what is the unit of measurement?
In general, numbers assigned to indicate quality are hard to
interpret and they do not provide insight in the causality of
quality degradation, nor do they enable concrete actions that
must be taken to improve the quality of current or future data.
Again, the lack of a theoretical framework for measurement is at
the root of this problem. There are no procedures that tell us how
to properly assign numbers to data in such a way it reflects our
empirical perception of quality. If it is unclear what measuring
means, the actual measurements cannot easily be interpreted,
nor can they be combined.

Third, existing approaches assume that quality is measured
on the level of attributes and then aggregated to higher lev-
els. In order to illustrate that such an approach can easily fail,
consider the snippet of data shown in Table I that shows a
number of addresses in the city of Ghent. Hereby, blank cells
indicate a NULL value. Note that, for each of the addresses
shown in Table I, there is at most one attribute that has a NULL

value.
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TABLE I
EXAMPLE DATA FOR QUALITY MEASUREMENT

ID Street Number City Zip

1 Saint-Bavo Square 25 Gent 9000
2 Saint-Bavo Square 40 9000
3 Saint-Bavo Square 41 Gent
4 Saint-Bavo Square 41 Gent 2000
5 Saint-Bavo Square Gentbrugge 9000
6 Saint-Bavo Square Gent 9000

Suppose now we want to measure completeness. Following
the approach proposed in [17], completeness is measured on the
attribute level by means of the function:

c (x) =

{
1, if x �= NULL

0, if x = NULL
.

It is further stated in [17] that aggregation to the tuple level is
then done by taking the average c over all attributes. Doing this
yields a score of 1 for tuples 1 and 4 and a score of 0.8 for all
other tuples. Following the approach in [18], a tuple is scored
0 if it contains at least one NULL value. With this approach, a
similar result is obtained in the sense that tuples 2, 3, 5, and 6
are assigned with the same level of quality. However, these ap-
proaches omit that certain dependencies between data can exist.
For Belgian postal addresses, there is a kind of redundancy be-
tween the zip code and the name of the city. Therefore, provided
that the zip code is known, a NULL value for street or number
reduces the quality of the data more than a NULL value for the
name of the city.

A fourth and last issue deals with aggregation of different
measurements on the same data. In order to assess the useful-
ness of data with respect to a certain goal, it is often required to
measure multiple dimensions of quality. As the data in Table I
concern address data, a concrete goal could be to assess whether
an address is of sufficient quality so that postal mail can be di-
rected to this address. From this point of view, tuple 4 has perfect
completeness, but it is useless because there is an inconsistency
between the name of the city and the zip code. This example
illustrates the need for measuring multiple aspects of quality
at the same time in order to decide about the usability of data.
However, current approaches for measurement of data quality
do not account for the fact that different measurements may and
usually will have a different nature and interpretation. The fact
that all measurements are expressed in the unit interval often
cloaks this difference in interpretation. Within the framework
proposed here, this problem will be given special attention.

To cope with the above mentioned problems, a measure-
theoretic treatment of data quality is proposed in this paper.
Instead of starting of, by considering specific dimensions or ap-
plications, the concept of measurement is cut loose here from
any context. We propose a framework for measurement that is
applicable to specific scenarios. In contrast to the axiomatic def-
inition of quality measures in [8], [11], a more general approach
based on predicates and capacity is envisioned here. Within
this framework, it is argued that capacity should be expressed

using a scale that is ordinal [19]. Scales beyond the ordinal level
are not considered here because they unavoidably introduce the
problem of choosing a “unit” of quality. By conducting a purely
measure-theoretic inference, a framework for quality measure-
ment is obtained in which a measurement is unambiguous and
therefore highly informative. Several results with respect to in-
terpretation and representation will be shown and a comparison
with the axiomatic ways of defining quality measurement will
be made. In this comparative discussion, particular attention will
be given to the concept of aggregation.

The remainder of this paper is structured as follows. In
Section II, the literature relevant to the current paper is re-
viewed and the proposed framework is positioned with respect
to these contributions. In Section III, some notations for relevant
preliminary concepts such as the relational database model are
introduced. In Section IV, a measure-theoretic framework for
the measurement of data quality is introduced and the proper-
ties of this framework are investigated. A theoretical compari-
son with other approaches is conducted and it is explained how
quantitative information about data quality arises when uncer-
tainty about predicates is added to the picture. In Section V,
the proposed procedure for measurement is applied to different
well known dimensions. In Section VI, a use-case for consis-
tency about clinical trials is reported. Finally, the most important
contributions of this paper are summarized in Section VII.

II. RELATED WORK

In the past decades, several authors have contributed to the
measurement, assessment, and improvement of data quality. In
this section, the most relevant contributions with respect to the
current paper are summarized.

The first contributions toward the multidimensional quality
model that is today’s standard, are due to Wang et al. [1], [20]
and Redman [5]. In their work, they argue for the need of well-
defined, goal-oriented dimensions of data quality. This mul-
tidimensional view inspired several authors to define a broad
range of different data quality dimensions. Kim et al. proposed
a taxonomy of different quality dimensions [4] and Batini et al.
investigated the more common dimensions and how to mea-
sure them [2], [6]. When it comes to defining measures for data
quality dimensions, Pipino et al. argued that a distinction can
be made between objective and subjective measures [3]. This
distinction was further developed by Even et al. [8]–[10] who
point out the distinction between impartial, context-free mea-
sures on the one hand and contextual, utility-driven measures
on the other hand. Of particular importance in the work by Even
et al. is their proposal of a set of requirements to which mea-
sures for data quality should adhere. This set of requirements
was adopted and refined by Heinrich et al. [14], who provide
an axiomatic definition of a data quality measure by stating six
axioms:

1) Normalization: A measure must be adequately normalized
and expressed using a bounded scale.

2) Interval Scaled: A measure must be expressed in an
interval-scale to support both monitoring (e.g., over time)
and economic assessment of the measure.
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3) Interpretability: A measure must be comprehensible and
“easy to interpret by business users” [10].

4) Adaptivity: As data quality is often measured in a specific
context, measures should be adaptable to such context
(e.g., by means of parameters).

5) Feasibility: A measure must be based on input parame-
ters that are determinable and allow for a high level of
automation.

6) Aggregation: A measure should allow aggregation along
different structural levels of a (relational) database (i.e.,
attribute level, tuple level, relation level, and database
level).

In their motivation for these axioms, Heinrich et al. adopt an
economically driven context of decision making. In the remain-
der of this paper, we will further discuss these axioms when
reviewing our framework. Recently, several authors have at-
tempted to standardize data quality terminology by means of
ontologies [16], [21]. In the spirit of this paper, measurement
of data quality as proposed here is aimed to be standardized,
portable, and easily exchangeable. Next to the high level and
comprehensive contributions reviewed above, there are many
contributions that focus on specific dimensions. For example,
Heinrich et al. have investigated completeness [17], accuracy
[17], and currency [11], [22] separately. Naumann et al. have
investigated completeness in the setting of distributed query-
ing [15]. They assess the usefulness of one or more sources
based on their completeness. This idea to incorporate quality
measurements in the resolution of a query has recently been
investigated in more depth [23]. Ballou et al. have studied the
tradeoff between concurrent quality dimensions in a decision
making context [24], [25]. They argue that, in an economically
driven scenario, a lack of perfect data requires a mechanism that
can select the best possible data by making a tradeoff between
several, possibly conflicting, quality dimensions of the data.
They studied the balancing between accuracy and timeliness
[24] and the balancing between consistency and completeness
[25], [26].

The impact of data quality on other areas of research has
been studied by several authors. Ballou et al. investigated data
quality in the scope of data warehouses [27]. Blake et al. stud-
ied the most important dimensions from the perspective of data
mining [18]. Caballero et al. reviewed data quality in the set-
ting of a big data scenario and pose that the most important
dimension in big data projects is consistency [28]. With re-
spect to the big data scenario, Abedjan et al. [29] pointed out
that the big data scenario poses concrete challenges for data
quality research. Among others, they indicate that incremen-
tal algorithms for measurement are an important topic of fu-
ture research. When discussing aggregation of measurements,
attention will be given to this point. To conclude this litera-
ture review, we mention that some authors surpass the pro-
cess of measurement and aim at data quality improvement.
Chen et al. [30] have investigated the repairing of functional
dependency violations to improve consistency. Cong et al. in-
vestigated a similar principle based on conditional functional
dependencies [31].

III. NOTATIONS

In the remainder of this paper, the relational database model is
considered [32]. Note that although we consider the relational
model here, the presented concepts can be transferred easily
to nonrelational database systems such as NoSQL and XML
databases. In this section, the relevant concepts and notations
used throughout the paper are recalled. Consider a countable set
of attributes A, where each attribute a ∈ A is defined by a name
and a domain. For each attribute a ∈ A, dom(a) denotes the
domain of a and name(a) denotes the name of a. In practice, if
no ambiguity exists, it is common to omit the name function and
use the notation a for both the name of the attribute as well as the
attribute itself. Given a set of attributes, a (relational) schema R
is defined by a nonempty and finite subset of A. Instantiations of
a schema are known as relations, where a relation R over R is
defined by R ⊆ dom(a1) × · · · × dom(ak ). In other words, a
relation over a schema can be any subset of the crossproduct of
all attribute domains in the schema. Each element of a relation
R with schema R is called a tuple t over R. Such a tuple t
is basically a vector where the ith dimension contains a value
for attribute ai . The relational model comes with a complete
relational algebra, but within the scope of this paper only the
projection operator is of relevance. For a relation R with schema
R, the projection of R over a set of attributes A ⊆ R is denoted
as R[A] and is defined as a relation with schema A that consists
of the set of tuples from R that is obtained by projecting R over
attributes in A. In the case where R and A are given by the
singleton sets {t} and {a}, the notation t[a] is adopted.

IV. MEASURE-THEORETIC APPROACH TO QUALITY

MEASUREMENT

Having the scope, the goals and the notations set, a measure
theoretic framework for quality is now proposed in this sec-
tion. The properties of this framework are investigated and their
practical relevance is discussed. The section then continues with
discussing some ways to facilitate the construction of capaci-
ties. Finally, a comparison with the axiomatic definition of data
quality measurement is presented.

A. Basic Framework

In order to provide a formal ground for measuring data qual-
ity, we begin by specifying the scope of data quality measure-
ment. In the literature, many approaches adopt the assumption
that data quality should be measured on the lowest level pos-
sible and then be aggregated to higher levels [10], [15], [17].
However, it is argued here that, in a more general setting, it
makes sense to immediately consider higher level structures.
The example of measuring address completeness (see Section I)
illustrates that considering multiple attributes at once might be
necessary. In addition, when verifying uniqueness of attributes
or (conditional) functional dependencies, it might be necessary
to consider multiple tuples at once. Therefore, in general, the
data that must be assessed are given here by a relation R with
schema R. Note that the scope in which quality is measured, be
it on attribute level, tuple level or relational level, is something
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that should be considered upfront and will have consequences,
e.g., when it comes to computing aggregates of quality mea-
surements.

In order to measure the quality of R, the basic assumption on
which our framework relies is that R is of the best possible qual-
ity if it satisfies a finite set of criteria. These criteria must be at
least sufficient in the sense that satisfaction of criteria in addition
to the given ones, does not improve the quality of R any further.
Within the scope of this paper, it is assumed that each criterion
is represented by means of a predicate p : dom (R) → B where
B = {T, F} is the set of Boolean values on which we consider
the usual ordering F < T . Given a finite set of requirements,
the corresponding predicates are denoted by P = {p1 , . . . , pn}.
The choice for Boolean-valued criteria is motivated by two im-
portant arguments. First, as will be shown in the following, mea-
surement of predicates in the quality measurement space can be
done without any ambiguity. This yields an exact interpretation
of quality measurement. Second, on a more intuitive level, data
quality has a strong affinity with the Boolean space. In the end,
measurement of quality will serve to answer the question “Are
the data of sufficient quality?” From this perspective, a Boolean
treatment at the basis is justified by intuition.

Basically, measurement of the quality of R is an appreciation
of predicates observed on R. This appreciation will be expressed
on an ordinal scale S that has at least two levels. We do not
consider interval scales (or higher) as this would imply the
choice of a data quality “unit” and this is a problem of which it
is yet unclear whether it can be solved. The total order of S is
denoted as ≤. The smallest (resp. largest) element of S under ≤
is denoted as 0 (resp. 1). Measurement of quality is then defined
by a function Q : dom (R) → S. Because of the assumption
that P represents a set of sufficient requirements for data of the
best possible quality, we must have⎛

⎝ ∧
p∈P

p (R)

⎞
⎠ ⇒ Q (R) = 1. (1)

If it would be assumed that in addition, P models a set of
necessary requirements, then we must have⎛

⎝ ∧
p∈P

p (R)

⎞
⎠ ⇔ Q (R) = 1. (2)

In order to construct Q, we will operate within the measur-
able space

(
P, 2P

)
and transfer the concept of capacity [33] to

the context of data quality. A definition for quality capacity is
therefore introduced as follows.

Definition 1 (Quality Capacity): Consider the data R and let
P be a set of predicates that are sufficient requirements for data
of the best possible quality. Consider an ordinal scale S equipped
with a total order ≤. A quality capacity on P is defined by a
function C : 2P → S for which C(∅) = 0, C(P ) = 1 and that is
monotonic in the sense that

∀X1 ⊆ P : ∀X2 ⊆ P : X1 ⊆ X2 ⇒ C(X1) ≤ C(X2). (3)

Informally, a quality capacity (also known as a fuzzy measure
[34]) expresses for any combination of predicates, the perceived

quality when at least these predicates succeed. In other words,
for a subset of predicates X ⊆ P , C (X) represents the maximal
capacity of these predicates with respect to the quality of data.
Because a capacity has no notion of additivity, the codomain is
allowed to be ordinal scaled.

Before we get to the integral-based inference of a measure-
ment function Q, some interesting notes on the implications of
Definition 1 on P are given. First, a quality capacity is mono-
tonic. This means that observing more predicates cannot de-
crease the appreciation that we assign to the given data. Second,
if we require P to be necessary and sufficient requirements,
then C must satisfy C (X) = 1 ⇔ X = P . A quality capacity
that satisfies this constraint is called a strict quality capacity.

Let us now consider the measurable space
(
P, 2P

)
. In order

to measure quality, it is required to formalize how predicate
evaluation contributes to quality and how it is to be measured in
S. This formalization is obtained by means of a C-measurable
function h : P → S defined by:

h (p) =

{
1, if p |= T

0, if p |= F
. (4)

This function is basically a characteristic function and states
that if a predicate evaluates to T , this is measured as perfect in
S. Despite its deceptively simple formulation, the definition of h
deserves special attention. The choice for predicates makes the
measurement of predicates in S completely free of ambiguity.
If criteria would be evaluated by functions with a codomain that
is larger than B (e.g., [0, 1]), the meaning of the evaluation of a
predicate could easily differ across different predicates and the
construction of h would be much more ambiguous. As such, our
earlier remark about the interpretation of predicates is supported
here on a more formal level. Given a piece of data, the quality
of that data can now be calculated by integrating the function h
over the set of predicates P with respect to the capacity C:

Q (R) =
∫

P

h (p) ◦ C. (5)

The calculation of integrals in an ordinal setting was investi-
gated by Sugeno in his doctoral dissertation [35]. Following the
inference rules of the Sugeno integral, it can be shown that

Q (R) = sup
α∈S

(
min (α, C (Sα ))

)
(6)

where we have that Sα = {p | p ∈ P ∧ h (p) ≥ α}. Informally,
this integral looks for those predicates that have maximal mea-
sured capacity (under h) and at the same time have maximal po-
tential capacity under C. Because of the choice for predicates,
the definition of h allows us to further simplify the calcula-
tion of Q. Indeed, because h is a function with a binary image
{0, 1}, Sα is restricted to two possible values. More specifically,
if α = 0, then Sα = P . Alternatively, if α �= 0, then we have
Sα = {p | p ∈ P ∧ p |= T}. This implies that

Q (R) = sup (0, C ({p | p ∈ P ∧ p (R) = T})) . (7)

As such, the measured quality of data for R is given by

Q (R) = C ({p | p ∈ P ∧ p (R) = T}) . (8)
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It can be seen that this measure-theoretic inference results in an
elegant and simple formulation of quality measurement.

B. Properties

In the following, the properties of Q with respect to the inter-
pretation of measurements are further investigated and reported.
Let us begin by noting that if P is finite then the number of pos-
sible outcomes for Q is also finite and bounded by the number
2|P |. In combination with this upper bound, the following prop-
erty offers a great potential with respect to interpretation.

Property 1: Consider a measurement function Q based on
predicates P and a capacity C that maps onto S. If Q (R) = s
with s ∈ S, then, we have

∀p ∈
⎛
⎝ ⋂

X⊆P ∧C(X )=s

X

⎞
⎠ : p (R) = T (9)

and

∀p ∈
⎛
⎝P \

⋃
X⊆P ∧C(X )=s

X

⎞
⎠ : p (R) = F. (10)

Proof: Assume that Q (R) = s. We, then, have

∃X ⊆ P : C(X) = s ∧ (∀p ∈ X : p(R) = T ) . (11)

On the one hand, if there exists a predicate p′ such that

∀X ⊆ P : C(X) = s ⇒ p′ ∈ X (12)

then, we are certain that p′ evaluates to true for the given data.
On the other hand, if there exists a predicate p′′ such that

∀X ⊆ P : C(X) = s ⇒ p′′ /∈ X (13)

then, there does not exists an evaluation of predicates under
which p′′ evaluates to true for the given data. Hence, p′′ must
evaluate to false. �

Together with the upper bound on the number of outcomes for
Q, Property 1 illustrates that each of the outcomes immediately
carries an interpretation. Within the context of the capacity C,
observation of Q(R) immediately allows us to draw conclusions
about the data. The extent of these conclusions depends on
the structure of the capacity C: the more predicate sets map to
the same s ∈ S, the weaker the conclusions about R will be.
However, if there is only one subset of predicates that maps to
a given s, then observation of s immediately reveals the truth
values of all the predicates. Therefore, as a corollary we have
that, if C is an injection, then observation of Q(R) encodes
the truth values of all predicates for R. Property 1 learns that
each value s ∈ S comes with certain constraints that need to be
satisfied in order to reach the level of quality represented by s.
This observation hints us that it should be possible to represent
the constraints for each s ∈ S as a Boolean function. In order to
get to this representation theorem, some intermediary concepts
are required.

First, we say that a set of predicates B ⊆ P is minimal and
sufficient for s ∈ S if the capacity of B is at least s and no real
subset of B has a capacity that is at least s. As such, for each

s ∈ S the set of all minimal and sufficient predicate sets can be
written as

B (s) = {B | B ⊆ P ∧ C (B) ≥ s ∧ ∀B′ ⊂ B : C (B′) < s} .

The minimal and sufficient generator for s ∈ S is then defined
by

G (R | s) =
∨

B∈B(s)

∧
p∈B

p (R) . (14)

The function G is a Boolean representation of the constraints
necessary for R to be at least of quality level s. This claim is for-
malized and proven by considering the following representation
theorem.

Theorem 1 (Representation Theorem): For a measurement
function Q based on predicates P and a capacity C we have

Q (R) = max {s | s ∈ S ∧ G (R | s) = T} . (15)

Proof: Consider the data R and assume that Q (R) = s, then
by definition there must exist X ⊆ P for which

C (X) = s ∧ ∀p ∈ X : p (R) = T (16)

By definition of B (s) and by monotonicity of C, we have

∃B ∈ B (s) : B ⊆ X (17)

from which it follows that

∀p ∈ B : p (R) = T. (18)

By definition, it follows that G (R | s) = T . Consider now an
s′ ∈ S such that s′ > s and assume that G (R | s′) = T . This
would imply that there is a B′ ⊆ P for which

C (B′) ≥ s′ > s (19)

and

∀p ∈ B′ : p (R) = T. (20)

By monotonicity of C we would then have that Q(R) �= s, which
is in contradiction with the premises. As such, we have proven
that if Q(R) = s, then s is the largest value in S for which
G (R | s) = T . �

Theorem 1 is an important and elegant result with respect
to quality measurement. It shows how measurement of quality
verifies for each level of quality, whether the criteria for that
level are satisfied, or not. The largest level of quality for which
all criteria are satisfied determines the quality of the data. The
representation theorem has some interesting consequences that
further support the correctness and intuitiveness of our approach.
First, it can be seen that the minimal and sufficient generator for
0 is a tautology:

∀R : G (R | 0) = T. (21)

This is because the capacity of an empty predicate set equals 0.
As such, data are always at least of quality 0. This positions 0
as the absolute minimal level of quality. Second, if S = B then
quality measurement reduces to a regular Boolean function as
there are only 0 (i.e., F ) and 1 (i.e., T ) to be considered. In
addition, if the underlying capacity is strict, then this Boolean
function is a conjunction of all the predicates in P .
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C. Construction of Capacity

So far a formal derivation of quality measurement has been
presented and some properties have been shown. In order to get
the framework to work, two steps must be taken: formulation
of the predicates and construction of the capacity. Because the
image of a capacity has an exponential size in terms of the
number of predicates, it can be considered a tedious task. For
that reason, some notes on the construction of capacities and
possible simplifications of this process are discussed.

To begin with, it is noted that an important factor in the con-
struction of capacity is the extent to which predicates in P are
mutually independent. If P contains two or more predicates
that are mutually dependent, then this dependency unavoidably
influences the capacity. A first kind of dependency that may
occur is a logical contradiction. If P contains both p and ¬p,
then any subset containing both p and ¬p reflects an impossible
situation. Usually, the occurrence of such logical contradictions
within P indicates one or more disjunctive scenarios in which
data are of the best quality. For example, consider two attributes
a and b that are consistent if their values are either both even or
both odd. In such a case, four predicates are to be considered:
“p1 = t[a] is even,” “p2 = t[b] is even,” “p3 = t[a] is odd,” and
“p4 = t[b] is odd” where we have that p1 = ¬p3 and p2 = ¬p4 .
When constructing capacity for these predicates, we want to as-
sess the disjunctive scenarios where either both attribute values
are even or both attribute values are odd. In other words, we
must pay attention in assignment of capacity to sets {p1 , p2}
and {p3 , p4}. Supersets of {p1 , p2} and {p3 , p4} correspond to
contradictory situations that will never occur and the actual as-
signment of capacity to those supersets does not matter, as long
as it respects monotonicity. From this point of view, the con-
struction of capacity can be simplified in the sense that P can
be partitioned into subsets in which no mutual contradictions
occur and capacity must be assigned only for subsets of those
partitions. A second kind of dependency that will often occur
is a logical implication. If P contains two predicates for which
p1 ⇒ p2 , this dependency again influences the construction of
capacity in the sense that {p1} and {p1 , p2} can be assigned the
same capacity as they are equivalent. Such logical implications
are for example quite common when treating uncertainty about
predicates (see Section IV-E). Within the scope of this paper, we
will not further detail on the impact of predicate dependencies,
but it is important to realize that one should account for them
during the design of Q.

If all predicates are mutually independent or one is able to
account for existing dependencies in P , there are a number of
strategies to soothe the construction of capacity. First, the liter-
ature on fuzzy measures and integrals describes several options
such as symmetric measures [36], λ-measures [35], and possibil-
ity/necessity measures [34]. For a further reading on nonadditive
measures, the reader is referred to [37]. An interesting way to
construct the capacity relies on the fact that in many practical
situations, there exists an intuitive order in which predicates
should be evaluated. As an example, consider the determination
of the normal form of a relational database [32], [38]. Each
normal form is hereby paired with a set of predicates, but it

only makes sense to verify those predicates if all predicates of
all lower normal forms are known to evaluate to true. If such a
scenario is encountered, the construction of C can be reduced
to a linear problem. Consider therefore the set of predicates P
and consider a total order ≺ on P such that pi ≺ pj means that
pi should be evaluated before pj . With this order at hand, let
us define for each i ∈ {0, . . . , |P |}, E(i) as the subset of P that
contains the first i predicates in the order ≺. We then have that
E(0) = ∅ and E(|P |) = P . These sets allow for the definition of
the following class of capacities.

Definition 2 (≺-sensitive quality capacity): Consider the
predicates P with evaluation order ≺. The quality capacity C is
≺-sensitive if

∀X ⊆ P : C (X) = max
E ( i )⊆X

C (
E(i)

)
. (22)

Definition 2 states that the capacity of a set of predicates can-
not be greater than the capacity of the largest E(i) contained by
those predicates. This means that the construction of the capacity
is equivalent to the construction of a monotonically increasing
function that maps each E(i) onto S, taking into account the
boundary constraints of capacities. For each E(i) , the capacity
is given by that function. For any other predicate set X , C (X)
is given by the capacity of the largest E(i) that is contained by
X .

Property 2: If C is ≺-sensitive, it is a necessity measure and
therefore minitive. Formally, for any X ⊆ P and Y ⊆ P we
have

C (X ∩ Y ) = min (C (X) , C (Y )) . (23)

Proof: Follows from Definition 2. �
The class of≺-sensitive quality capacities has some appealing

properties. First, because there are only |P | + 1 different E(i) ,
the construction of the capacity is linear in terms of |P |. Second,
if the generative function that assigns capacity to the E(i)-sets
is a bijection, then the inverse function is defined and a bijection
as well. Therefore, the measurement of quality can be translated
into those predicates that succeeded and those predicates that
failed. Third, application of Theorem 1 allows to transform any
capacity into an equivalent ≺-sensitive capacity by introducing
a new set of predicates such that, for each s ∈ S, the predicate:

ps (R) = G (R|s) (24)

and by considering the evaluation order as follows:

∀s1 ∈ S : ∀s2 ∈ S : s1 < s2 ⇒ ps1 ≺ ps2 . (25)

This last result indicates the importance of ≺-sensitive capaci-
ties as it aids in the standardization and simplification of capacity
construction.

As another option to construct capacity, it is recalled that
the capacity can be used to account for dependencies between
attributes (see Section I). In this case, capacity is constructed by
translating the existing dependencies into a capacity function.
This is illustrated by means of the following example.

Example 1: In this example, a quality measurement function
for completeness is constructed that accounts for redundancy
between attributes. The data R considered here reduce to a single
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tuple t consisting of a set of attributes for which completeness
should be measured as a whole. In the sample data of Table I
(see Section I), these attributes are all attributes that constitute an
address, i.e., street name, house number, zip code, and city name.
For each of the attributes in the data, a single predicate is defined
that asserts the attribute value being not a NULL value. More
specifically, for each attribute a ∈ R, we consider a predicate
pa defined by

pa (t) =
{

T, if t[a] �= NULL

F, if t[a] = NULL
. (26)

These predicates together describe the requirements met by data
that are perfectly complete. In order to measure the complete-
ness of data, the capacity of any set of predicates must be
expressed. In this concrete scenario, the capacity of a set of
attributes expresses the completeness of the data in case those
attributes are not NULL. To construct this capacity, we consider
the set of quality levels S = {BAD, SUFFICIENT, PERFECT} and
a total order relation such that BAD < SUFFICIENT < PERFECT.
As explained in Section I, the data in Table I contain a certain
redundancy between the zip code and the name of the city. This
redundancy implies that data for which only one of these at-
tributes is missing, has sufficient completeness. In terms for the
capacity C, this means that:

C {pstreet , pnumber , pcity} = SUFFICIENT (27)

C {pstreet , pnumber , pzip} = SUFFICIENT. (28)

Because of the upper boundary constraint of a capacity, we also
have

C {pstreet , pnumber , pcity , pzip} = PERFECT. (29)

For all other attributes sets, the capacity is equal to BAD. If these
predicates and capacity function are used to measure the com-
pleteness of the tuples in Table I, we find that tuples 1 and 4 have
perfect completeness because they have no NULL values among
their attributes. Tuples 2 and 3 have sufficient quality, because
those tuples have a NULL value for resp. the city name and the
zip code. Finally, tuples 5 and 6 have a completeness score equal
to BAD because the missing house number makes them useless
according to the given capacity. It can be observed that the re-
sulting measurement of completeness is more fine grained than
the procedures described in Section I because those procedures
yielded an equal completeness measurement for tuples 2, 3, 5,
and 6. The above sketched procedure for the measurement of
completeness illustrates the borderline between objective crite-
ria for completeness given by the predicates and the subjective
assessment of quality expressed by means of a capacity function.

D. Comparison With Axiomatic Approaches

As mentioned in the introduction of this paper, some au-
thors proposed an axiomatic definition of quality measurement.
Particularly the proposed definition by Heinrich et al. [11] is
considered relevant in this paper (see Section II). Therefore, the
necessary requirements according to Heinrich et al. are reviewed
within the scope of our framework.

The first requirement according to [11] is that quality is ex-
pressed in a normalized manner, with clear upper and lower
bounds. It has been shown in the previous that within our frame-
work, 0 and 1 are respectively the levels for unacceptable data
and data of the highest possible quality. Because the scale S on
which we measure is not fixed, 0 and 1 set the bounds for a single
measurement and within the scope of a particular database. As
a consequence, our framework does not exhibit an absolute up-
per bound of quality. Instead, the upper bound depends on both
the measurement and the data. This is considered an important
advantage with respect to other approaches. If a database is for
example extended by adding attributes, scales can be adjusted
to this modification.

The second requirement is that quality is expressed on an in-
terval scale. In our framework, we have loosened this constraint
by proposing ordinal scales as it is far from trivial to introduce
additivity for several reasons. Except for the case where quality
is interpreted as probability (see Section IV-E), Heinrich et al.
[11] do not detail on the connection between additivity and an
empirical concatenation operator [7].

The third requirement stated in [11] is that measurement of
quality must be interpretable. The rigorous inference of Q to-
gether with several shown properties support the claim that mea-
surement in the proposed framework indeed yields a high degree
of interpretation.

As a fourth requirement, it is stated that measurement of
quality must be adaptive to a specific setting. This requirement
is originally due to Even et al. [10], who point out the differ-
ence between objective and subjective measurements. In our
framework, this is reflected formally as the difference between
predicates and capacity. More specifically, the basic assumption
on which our theory is built, is that the highest quality of data
can be described by a list of criteria, which were then formalized
as predicates. It could be argued that an objective measurement
would assess any data by requiring that all predicates are satis-
fied. In any other case, the data are not of the highest possible
quality and thus not acceptable. However, it is commonly ac-
cepted that in a practical usage scenario, data do not have to
be of the best quality to be useful. The perceived quality with
respect to a specific application is therefore different than the
objective requirement that data must be as good as maximally
possible. From this perspective, any subjective or application-
specific knowledge about data quality is expressed by means of
the quality capacity. In other words, the application determines
the quality capacity for a given combination of predicates.

The fifth requirement adheres to feasibility and comes down
to the fact that it should be practically possible to compute
any quality measurement, both in terms of computational com-
plexity and necessary input data. As far as our framework con-
cerns, the definitions of a predicate and a quality capacity are
the boundaries in which quality measurements can be defined.
However, it is common sense that a predicate that can-not be
evaluated with ease, leads to useless measurements.

The sixth and last requirement requires that multiple mea-
surements of data quality can be aggregated to higher-level
structures. Heinrich et al. [14] and Even et al. [8] prescribe
the possibility to aggregate measurements of quality on the
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attribute level into a measurement of quality on the tuple level.
The tuple level can then be aggregated to the relational level and
so on. In addition, the interpretation of measurements across all
those levels must be the same. This latter requirement is called
interpretation consistency by Even et al. [10], who also pre-
scribe the possibility to aggregate across dimensions. However,
this treatment of aggregation makes some assumptions that are
hard to advocate. More specifically, aggregation defined in [14]
and [8] actually treats two different problems.

The first problem is observed when aggregating from the
attribute level to the tuple level or when aggregating across di-
mensions. Essentially, these are different measurements and the
interpretation of their results might also be different, even if
the same scale is used. To clarify this, consider the snippet of
data from Table I and assume three [0, 1]-valued functions f1 ,
f2 , and f3 that respectively measure completeness, accuracy,
and consistency of an attribute. In this setting, it is clear that
a value of 0.8 might carry a different interpretation for each
of the three functions. Completeness of 0.8 might be accept-
able for the task at hand whereas accuracy of 0.8 renders the
data useless. From this perspective, blind aggregation that ig-
nores the meaning of f1 , f2 , and f3 is virtually without any
meaning. The basic problem that we observe here, is that differ-
ent measurements intrinsically measure something different and
therefore the result of different measurements requires separate
treatment. Even if these different measurements are expressed
in the same scale, this does not automatically imply that they can
be interpreted in the same way. A combination of different mea-
surements should be interpretation-aware in the sense that the
interpretation of each of the individual measurements is taken
into account by the aggregation function. Such an interpretation-
aware measurement can be obtained by our framework through
recursive measurements. In such a scheme, the different mea-
surements that must be combined serve as the basis for a more
complex quality measurement, which has predicates that rely
on the initial measurements and has a capacity that is aware of
the interpretation of the individual measurements. As such, a
hierarchical system of measures is obtained. We will illustrate
this principle in Section VI.

The second problem encountered is the aggregation of qual-
ity measurements of different instances of data into a global
outcome. Suppose that we have a procedure to measure the ac-
curacy of a tuple, then this procedure can be used to measure to
quality of all tuples in a relation. All those measurements have a
common interpretation as they are obtained with the same mea-
surement procedure. Aggregation of all the tuple measurements
is then well defined and provides insight in the quality of the re-
lation. Within our framework, aggregations of this second kind
are supported. For each set of data instances {R1 , . . . , Rk}, the
quality measurements under Q can be aggregated by any ag-
gregation function a : Sk → S that is permitted on an ordinal
scale. This means that we can compute minima, maxima, medi-
ans, quantiles, etc., to gain insight in the overall quality of the set
{R1 , . . . , Rk}. For a further reading on aggregation operators,
the reader is referred to [39].

An interesting property is that because P is finite so is the
image of C. More specifically, the number of possible outcomes

of C is finite and is at most 2|P |. This means that the quality
measurements over the set {R1 , . . . , Rk} can be stored effi-
ciently as a histogram with a worst case space complexity of
2|P |. In practical scenarios, the space complexity of this his-
togram will be much lower as is illustrated in Example 1. The
advantage of using a histogram representation is that many dif-
ferent aggregations can be computed efficiently because the time
complexity of those aggregations reduces to the size of the his-
togram. In addition, the histogram representation can be updated
incrementally, which means that aggregations can be easily dis-
tributed over different threads, processes, and machines. In ad-
dition, data modifications do not require that the histogram is
recalculated.

E. Beyond Ordinal Measurement

In the framework presented so far, measurement is ap-
proached in an ordinal manner. It has been shown that such
an approach yields an unambiguous framework in which each
measurement of quality has a clear interpretation. In this section,
the framework is further refined by investigating how expres-
sions that are beyond ordinal scales can be incorporated and
how they must be interpreted.

In order to understand the role of scales that are beyond the
ordinal level, let us reconsider the concept of “measurement of
data quality.” As argued in [11], when measuring quality of data,
one has in the very essence two options: either one performs a
real-world test or one estimates the quality. Although this is a
very simple and straightforward observation, it is at the same
time crucial in our reasoning and argumentation. In case of a
real-world test, one simple verifies whether data are a correct
representation of reality or not. Note that such a real-world test is
a Boolean matter (either data correspond to reality or not) and a
real-world test is therefore nothing more than a predicate. In the
following, some strategies for performing a real-world test will
be discussed and it is in general the best measurement of quality
one can perform. However, real-world testing may be not de-
sired (e.g., due to the high cost of it) or simply not possible (e.g.,
if there is no access to the real-world value). For this reason, the
second scenario where quality is estimated will apply in most
cases. The question is then how quality can be estimated, taking
into account that there are many possible causes for degradation
of quality (see for example the taxonomy presented in [4]).
Despite this complex web of data quality issues, it is motivated
here that there are two sensible ways of making an estimation
of quality. The first way is to adopt a set of rules or constraints
to which data must adhere. Measurement then follows from
verification of these rules. This scenario is immediately appli-
cable in the measurement of completeness and consistency and
it is a straightforward application of the framework proposed
so far. The second way is to adopt a model that describes the
uncertainty about the reality and derive an estimation of quality
based on this model. Following this method, measuring the
quality of data involves measuring the (un)certainty that data
are indeed of the highest quality. The nature of the measurement
then becomes dependent on the uncertainty theory that is used.
Usage of a probabilistic model implies that the corresponding
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measurement is quantitative whereas a possibilistic model can
result in both quantitative and qualitative measurements.

To support the statement that a quantitative measurement
of quality necessarily stems from a model of uncertainty, it
is pointed out that literature on data quality actually provides
many arguments that back this hypothesis. In [40], Goodchild
et al. point out that in the context of spatial databases, a mea-
surement of accuracy is closely related to the error model of
the instrument that generated the data, which are in many cir-
cumstances Gaussian. In [14], it is argued that the currency of
data should be measured as the probability that data are still up-
to-date. More specifically, it is argued there that if shelf life of
data assumed to be exponentially distributed, currency of data
is given by exp (−η · (age(a))) where η represents a decline
factor [14]. What is of particular interest here is that the proba-
bilistic interpretation of quality is found to be the most sensible
way of interpreting quality [11].

If we closer revise the interpretation of measured quality as a
quantification of uncertainty, it can be seen that this approach in
fact puts forward a Boolean assumption on the connection be-
tween data and reality (i.e., a predicate) and then tries to estimate
the certainty that this assumption is true. In the probabilistic sce-
nario, this will provide us with a probability that the predicate
is true. By this observation, it becomes apparent that there is a
close connection between the ordinal framework presented in
the previous and the role of “beyond-ordinal” measurement as a
way to express uncertainty. Indeed, the presented framework is a
measurement framework in which it is assumed that each pred-
icate can be evaluated in a precise manner. Information beyond
the ordinal level naturally comes into play when this assumption
no longer holds and uncertainty about whether a predicate is true
or false needs to be modeled. Within the context of this paper,
we present two ways of dealing with this uncertainty: predicate
decomposition and uncertainty propagation.

The first solution is to decompose a predicate with an un-
certain evaluation into a chain of predicates that each perform
a test on the certainty that the main predicate is true. Suppose
a predicate p for which we know the probability distribution
Pr [p (R) = T ]. Assume that the scale of measurement is given
by S = {s0 , . . . , sk} with s0 = 0, sk = 1, and si < si+1 . Un-
der this assumption, we can consider a (k + 1)-dimensional
vector v = [v0 , . . . , vk ] ∈ [0, 1]k such that v0 = 0, vk = 1, and
vi ≤ vi+1 . The v-decomposition of the predicate p is then given
by a set of predicates P (v) = {p1 , . . . , pk} such that

∀i ∈ {0, . . . , k} : pi
�
= Pr [p (R) = T ] ≥ vi. (30)

It can be seen that P (v) is a set of k predicates that can be eval-
uated without uncertainty. Because of the connection between
v and S by definition, the construction of capacity follows from
the consideration pi ≺ pi+1 .

By predicate decomposition, one immediately translates un-
certainty into an appreciation on the scale S and a decision
about reflected quality is taken at the level of predicates. In
certain scenarios of decision making, this may not be a desired
property. Therefore, a second solution is to propagate the un-
certainty about predicates throughout the measurement process

in such a way that the outcome of a measurement is in fact an
uncertain matter. The result of a measurement is then no longer
a value s ∈ S, but rather a distribution or density function over
S. Within the scope of this paper, we limit ourselves to a quick
sketch of how such a distribution can be derived. Basically, The-
orem 1 serves as the basis for propagation. This theorem implies
that we can represent the necessary and sufficient constraints to
obtain a given level s ∈ S by its minimal and sufficient gen-
erator. Taking into account that 1) the capacity function C is
monotonic and 2) S is a totally ordered set, these minimal and
sufficient generators imply a complementary cumulative distri-
bution. Let us clarify this in the case of stochastic uncertainty
about predicates. Consider the predicates P and the capacity C
and consider for each pi ∈ P the density function Xi as follows:

Xi (R) = Pr [pi (R) = T ] . (31)

Under these circumstances, for any s ∈ S, we can calculate the
survival function as

Pr [Q (R) ≥ s] = Pr [G (R | s) = T ] (32)

from which a distribution on S can be derived. Note that in the
specific case where all Xi are distributed mutually independent,
we have

Pr [G (R | s) = T ] =
⊕

B∈B(s)

⎛
⎝ ∏

pi ∈B

Xi (R)

⎞
⎠ (33)

where the operator ⊕ denotes the probabilistic t-conorm [41].
With these formulae, propagation of uncertainty can be imme-
diately derived. With the above presented results in place, a
clear and unambiguous interpretation of assessment of quality
beyond the ordinal level has been established. In the following
section, the complete framework will be applied on the most
important dimensions of data quality.

V. TOWARD CONCRETE MEASUREMENTS

Thus far, an elaborate theoretical exposition of a novel frame-
work for data quality measurement is given. In this section, the
framework is applied to obtain measurements for a series of
well known quality dimensions. Hereby, dimensions that focus
on quality of data as well as on metadata are considered. After a
brief and quick discussion of a wide range of dimensions, a more
detailed discussion is given about the dimension of consistency.

A. Quick Overview

Perhaps the most important dimension of data quality is
the correctness of the data. In simple terms, data are correct
if it is a true representation of reality. As was mentioned in
Section IV-E, measurement of correctness ideally relies on a
real-world test. Although this seems infeasible in many cases,
there are some ways to establish real-world testing. A first tech-
nique is the usage of reference data. Hereby, there is a set of
reference data that is curated and maintained in such a way
one can assume that the reference data are completely correct
at all times. The measurement of data (e.g., a tuple or an at-
tribute value) is performed by cross-checking the data against the
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reference data. Hereby, there is a single predicate that asserts that
the data are coherent with the reference data. The capacity for
such a single predicate is trivial. This technique is often used in
measuring the correctness of address data. A second technique
is to adopt crowd curation, where a group of experts (i.e., the
crowd) is employed to find out if data are correct or not. Hereby,
again a single predicate is put forward that asserts correctness of
the data. The difference in opinions between experts may lead
to uncertainty about the truth of the predicate. As shown in the
previous, the proposed framework offers the machinery to deal
with such uncertainty.

Two important dimensions of data quality that have been al-
ready discussed in the previous are currency and completeness.
With respect to currency, it has been pointed out that the exten-
sive and ample work of Heinrich et al. [11], [14], [22] has led
to the interpretation of currency as the probability that data are
still up-to-date. As shown in the previous, such probability can
be integrated in the presented framework. With respect to the
dimension of completeness of the data, it has been illustrated
in Example 1 and further explained in Section IV-D that the
proposed framework offers a better handling of this dimension
than existing approaches.

Besides the principal dimensions of data quality (including
consistency, which is treated separately in the following), there
are a number of other dimensions that are frequently used, be
it to a lesser extent than the ones already mentioned. Examples
are interpretability, believability, and accessibility of data. For
each of these dimensions, one can either provide a concrete
set of criteria (i.e., predicates) or a model of uncertainty that
describes the perceived quality of a piece of data. For inter-
pretability, predicates may include the availability of a database
schema, presence of metadata and information on the lineage
and/or provenance of the data [6]. For accessibility of the data,
predicates may include the presence of multiple representations
(e.g., text-based, visual, and auditive), representation of content
in multiple languages but also the fact whether or not data can
be represented in a device-independent manner [6].

Although the proposed framework is initially intended to
measure quality of data, it can also be used to measure quality
of metadata. Quality aspects of database design such as schema
completeness, schema readability, and schema minimization can
be measured with the proposed framework. In addition, there
are several well known procedures for measuring or express-
ing quality on a metalevel that fit into the proposed framework.
Perhaps the most obvious example is database normalization.
With this procedure, the different normal forms can be seen as
levels on the scale S. The measurement of the normal form of a
database is done by verifying a set of rules (i.e., predicates) in
a certain order (i.e., the measurement is ≺-sensitive). Another
example is the five-star data paradigm, which uses a five-level
scale S to express the extent to which data are coherent with
the linked open data principle. Each level corresponds to cer-
tain conditions that must be met, which can be implemented
as predicates and a suitable capacity. Finally, a last example of
metadata quality is the usage of an error-model to communi-
cate the global accuracy of values. For example, if an attribute
“pressure” is measured with a pressure gauge, the error-model

of that instrument provides us with an indication of accuracy of
all values for that attribute.

B. Measurement of Consistency

An important dimension of data quality that is now discussed
in more detail, is consistency. According to the definition in
[6], consistency “captures the violation of semantic rules de-
fined over data items.” It can be easily seen that such “semantic
rules” are immediately transferable to a set of predicates P .
The degradation of quality upon failure of rules can be modeled
by means of a suitable capacity function. In order to further
detail this, we distinguish three types of consistency: attribute
consistency, tuple consistency, and source consistency.

In the case of attribute consistency, the scope of the data to
which measurement is applied, is that of single attributes. With
this kind of measurement, attributes are considered as mutually
independent pieces of data and measurement is focused on the
adherence of data to certain attribute-specific rules. For this
reason, this kind of consistency is sometimes referred to as
conformity. For an attribute a, the attribute-specific rules induce
a set of k nested sets N1 ⊂ N2 ⊂ · · · ⊂ Nk ⊆ dom(a) in such
a way that we can define k predicates as follows:

∀i ∈ {1, . . . , k} : pi (t[a])
�
= t[a] ∈ Nk−i+1 . (34)

This set of predicates can then be measured on the basis of a ≺-
specific capacity such that pi ≺ pi+1 . As is pointed out in [13],
a compact representation of these nested sets can be obtained
in the case of textual attributes. More specifically, when dealing
with textual attributes, one may consider a set of predicates
P = {p1 , . . . , pn} in such a way that each predicate pi either
verifies a regular expression pattern Σ (type-I) or verifies a
constraint on one or more captured groups of a pattern Σ that
was the subject of a predicate pj with j < i. It can be shown
that relying solely on these two types of predicates, a simple
yet powerful system to define attribute consistency measures is
obtained. Currently, about 600 different measurement functions
for attribute consistency are defined according to the rules of
the framework introduced in this paper. The names of attributes
and measures are standardized by means of uniform resource
indicators in order to promote and facilitate the exchange of
knowledge w.r.t. consistency measurement.

In the case of tuple consistency, measurement is done on entire
tuples of a relation. Rather than considering single attributes
independently of each other, it is recognized that there may
exist dependencies between attributes. These dependencies can
be used to verify whether the co-occurrence of multiple attribute
values within the same tuple is in adherence to the rules of
consistency. Both functional and inclusion dependencies can
play an important role here. Measures of this type can be based
on reference data. For example, a registry of first names of
newborns per year of birth and gender can be used to measure
consistency between attributes “first name,” “gender,” and “birth
date.” However, such reference data might be unavailable or
hard to maintain. Therefore, measurement of tuple consistency
is especially powerful when it can be denoted in a functional
form. For example, for Belgian SSNs (an 11-digit identifier
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of inhabitants), the first six digits refer to the birth date and
the ninth digit is even for females and odd for males. What is
important here is that this information does not only inform us
about the functional dependencies SSN → Gender and SSN →
Birth date, but also informs us about how the values for attributes
“gender” and “birth date” can be inferred from a given SSN.

The last type of consistency distinguished here is called
source consistency or source compatibility. In this case, mea-
surement aims to grasp the mutual compatibility of information
about a real-world object that originates from two or more dif-
ferent sources. In essence, source consistency can be seen as a
special kind of tuple consistency where we encounter the same
information more than once. Basically, source consistency han-
dles the same kind of problems encountered also in the field
of duplicate detection. From this field, there are many models,
both probabilistic and possibilistic, that can be used to quantify
the uncertainty about the assertion that two pieces of data are
describing the same real-world entity or fact [42], [43]. Source
consistency is of particular interest when data are either textual
or have a multivalued nature. Relevant examples of multival-
ued attributes are sets (e.g., hobbies of a person), interval data
(e.g., time intervals), vague data (e.g., linguistic labels for age
categories), or uncertain data (e.g., ill-known values).

VI. USE-CASE: CLINICAL TRIALS

In this section, the design and application of quality measures
is illustrated in the context of clinical trial data. It is stressed that
the purpose of this section is to illustrate the framework in a real-
world setting. For indications on the computational complexity
of the framework, the reader is referred to [13]. We will report
measurement results in this section, but is emphasized that they
mainly serve the purpose of showing how the outcome of quality
measurement can be interpreted.

A clinical trial is basically a clinical study performed with
human participants and is considered as an important aspect in
the development of new pharmaceuticals. The aim of clinical
trials is to answer one or more specific research questions, for
example, the efficacy of a drug in the treatment of a medical
condition. Because of their great importance, there are several
initiatives that aim to register and provide information about
clinical trials. These initiatives may vary in geographical scope
(e.g., nation-wide, continental, world-wide) and study purpose
(e.g., a collection of trials may be limited to certain medical con-
ditions). Due to this variability, information about a single study
is often dispersed across different (independent) databases. As
is usual is such a case, maintaining consistency between these
databases is a tedious task. In this section, the proposed frame-
work is applied to measure consistency of data coming from
two databases. The first database is the European Union Clinical
Trial Register (EUCTR) facilitated by the European Medicines
Agency. It contains mainly clinical trials from within the Euro-
pean Union.2 The second database is the Clinical Trials database
facilitated by the National Library of Medicine in the U.S. (CT-
GOV). It contains clinical studies from around the world.3 For

2https://www.clinicaltrialsregister.eu
3http://clinicaltrials.gov

both databases, either the main sponsor or the principal investi-
gator of the study is responsible for inputting and maintaining
the necessary data of their studies.

From these two databases, a dataset was created by searching
for studies conducted within Belgium and first reported in the
database after the first of January, 2010. This query results in
2327 studies in the EUCTR database and 4031 studies in the
CTGOV database. The studies from both databases are then
linked by their EudraCT number (an identifier available in both
databases) which leads to a dataset of 1063 studies. For each
of these studies, there are approximately 200 attributes and it
is clear that a complete assessment of all these attributes lies
outside the scope of the current paper. Instead, we will focus on
a specific aspect of the data in order to illustrate the versatility
of the consistency dimension and the ability of the proposed
framework to account for this versatility and to enable an un-
ambiguous interpretation.

The aspect of the data that is investigated covers the design
parameters of a study. These parameters provide a design model
of the study and indicate for example whether control groups
are used, how test subjects are assigned to groups, etc. In the
EUCTR database, information about study design is modeled as
a set of Boolean (i.e., “Yes/No”) parameters while the CTGOV
database uses categorical attributes to model the information.

The analysis of the study design parameters starts with mea-
surement of attribute consistency. The measures that are used
for this adopt a three-valued scale S = {0, 1, 2} and rely on two
predicates. Predicate p1 asserts that an attribute value is not NULL

and predicate p2 asserts that an attribute value matches a regular
expression pattern. The capacity of this measure is ≺-sensitive
with p1 ≺ p2 . The patterns to verify the design parameters sim-
ply list allowed values. For example, pattern “Yes |No” checks
if a character string is one of “Yes” or “No” and can be used to
verify the Boolean parameters in the EUCTR database. In total,
nine measures of this type are applied on the data. The results
show that the main degradation of attribute consistency is the
occurrence of NULL-values. In addition, it was found that the
CTGOV database contains 33 tuples with a deviating spelling
for the attribute that indicates the masking of the study (i.e.,
double blind, single blind, or open label). In general, it can
be concluded that study design parameters have high attribute
consistency in both databases. More interestingly to discuss is
the compatibility between information about study design in
both databases. Therefore, the following measure design is con-
sidered to measure tuple consistency. The scope in which we
measure is a tuple with two attributes: the determinant and the
inferred attribute. We adopt a five-level scale S = {0, 1, 2, 3, 4}
and define four predicates. The first predicate verifies whether
the tuple on which measurement takes place, is not NULL. The
second predicate measures attribute consistency of the determi-
nant attribute and verifies if the measured quality is sufficient.
This is an example of recursive measurement as was discussed in
Section IV-D. As explained in the previous paragraph, attribute
consistency of the study design parameters is measured on a
three-level scale (i.e., {0, 1, 2}). In our current measure design,
we require the determinant attribute to have attribute consis-
tency of level 2. The third predicate similarly evaluates attribute
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Fig. 1. Tuple consistency results for six measurements based on the
dependencies CTGOV:masking → EUCTR:single-blind, CTGOV:masking
→ EUCTR:double-blind, CTGOV:intervention → EUCTR:crossover, CT-
GOV:intervention → EUCTR:parallel-groups, CTGOV:intervention → EU-
CTR:arms, CTGOV:allocation → EUCTR:randomized.

consistency of the inferred attribute. Finally, the fourth predicate
evaluates whether the determinant and inferred attribute are in
adherence to one another. For example, if the attribute “mask-
ing” in the CTGOV database indicates “Double blind,” then the
Boolean attribute “double blind” in the EUCTR database must
have the value “Yes.” If the attribute “masking” has another
value, attribute “double blind” must have the value “No.” As an-
other example, if the attribute “intervention model” (CTGOV)
has the value “Single Group Assignment,” then the number of
arms in the study (EUCTR) must equal 1. For other intervention
models, this value must be larger than 1. The capacity of the
measure is ≺-sensitive in such a way that p1 ≺ p2 ≺ p3 ≺ p4 .
Following this design pattern, six measures can be defined that
all verify a certain aspect of tuple consistency.

The results of applying the six measures to the dataset are
shown in Fig. 1. Interpretation of these results is as follows.
Tuples with quality 1 are tuples for which the determinant at-
tribute is not of sufficient attribute consistency. In this case,
this is always an attribute from the CTGOV database. Tuples
with quality 2 have sufficient attribute consistency for the de-
terminant attribute, but not for their inferred attribute (i.e., an
EUCTR attribute). By analysis of the attribute consistency, we
know that this insufficiency is mainly because of missing data,
apart for some spelling variants in the attribute “masking.” Tu-
ples with quality 3 are tuples for which attribute consistency
of both attributes is sufficient, but there is an inconsistency be-
tween the values of the determinant attribute and the inferred
attribute. It can be observed that especially for the attribute
“parallel-groups” in the EUCTR database, there are quite some
conflicts between attribute values. Finally, tuples with quality 4
are considered to have perfect quality w.r.t. the measured aspect.

In their turn, the six measures for tuple consistency can again
be used as the basis for new predicates, thus obtaining a global
measure of consistency that provides an aggregated view for
a single tuple. By doing so, it can be found that 432 tuples
(40.6%) that have perfect consistency and 428 tuples (40.3%)
have degraded attribute consistency. The remainder of the tu-
ples (19.1%) has perfect attribute consistency but show issues
with tuple consistency. For 41 tuples (3.9%), there is more than
one issue (i.e., there is more than one tuple consistency mea-
sure that results in insufficient quality). It can be seen that the
global consistency measure reflects an aggregation strategy that
accounts for interpretation of the results that are aggregated and,
therefore, maintains disambiguation on an aggregated level.

VII. CONCLUSION

In this paper, a theoretic framework for the measurement
of data quality has been proposed. In contrast to current ap-
proaches, the construction of this framework relies on a formal
treatment of the concept “measurement.” Basically, measure-
ment of quality relies on two corner stones: A set of predicates
that can be evaluated against data and a capacity function that
expresses the contribution of each combination of predicates
with respect to the overall quality. Measurement of quality is
then obtained by resolving an ordinal integral. Because of the
Boolean nature of predicates, this integral can be reduced to a
simple and elegant formula. It is shown that the framework has
appealing properties with respect to interpretation and represen-
tation. A comparison with other approaches for describing data
quality is made and it is shown that our framework has some
benefits over these approaches. The aspect of interpretation is
further examined in two ways. First, the concept of aggregation
of measurements is studied, showing the difference between
aggregation of the same measurements on different data and ag-
gregation of different measurements. Second, it is shown how
uncertainty about predicates can be integrated in the described
process of measurement, thereby linking our framework to ex-
isting interval-scaled measures. Finally, the applicability of the
framework is illustrated by revising the most important dimen-
sions of data quality and by demonstrating the framework in a
real-life use-case.
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Tré.

His research interests include flexible querying
and uncertainty modeling.
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