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Abstract 

Studies that investigated the relation between appraisal and emotion have largely focused on the linear 

effect of appraisal criteria on subjective feelings (e.g., the effect of appraised goal obstruction on 

anger). Emotional responding can be extended to include more than just feelings, however. 

Componential definitions of emotion also add motivation, physiology, and expression. Moreover, a 

linear model is not compatible with the idea held by many appraisal theorists that appraisal criteria 

interact to produce emotional responding. In the present study, we modelled adaptive non-linear 

interaction effects of appraisal criteria on motivation, expression, and physiology simultaneously. We 

applied a combination of principal component analysis (PCA) for data reduction, and multivariate 

adaptive regression splines (MARS) for automatic interaction identification. Data were obtained from 

a large-scale cross-cultural study on emotion concepts conducted in 27 countries, which represented 

semantic profiles of component information in 24 common emotion words. Results of modelling 

indicated that (a) appraisal of relevance, familiarity, goal compatibility, coping potential, and 

suddenness showed main effects on component responses, (b) appraisals of agency and norm 

compatibility uniquely showed interaction effects on component responses, (c) interaction effects 

explained significant variance only in some component responses but not all, and (d) the emotion 

patterns simulated by the fitted MARS model could be clustered according to qualitative emotion 

categories. 

Keywords: emotion; appraisal; machine learning; cross-cultural psychology; computational modelling  

 

1 Introduction 

In the past decades, emotion theories in psychology have converged on what is known as a 

componential view of emotion. According to this view, an emotion is a temporary episode of 

coordinated components, that is, changes in five organismic subsystems (Frijda, 2008; Frijda & 

Scherer, 2009; Moors, 2009; Scherer, 2005): (a) an appraisal component that involves changes in the 

evaluation of an event or stimulus with respect to its personal significance, (b) a motivational 

component that involves changes in action tendencies such as the tendencies to attack and avoid, (c) a 
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physiological component that involves changes in autonomic physiological responses of the body 

such as sweating, increases in heart rate, or changes in blood pressure, (d) an expression component 

that involves changes in expressive behaviour in the face (e.g., smiling), the voice (e.g., screaming), 

or the body (e.g., attacking), and (e) a feeling component that involves the conscious experience of all 

the other components integrated in a kind of Gestalt. This experience can (but does not have to) be 

categorized or verbally labelled (e.g., as feelings of anger, fear, or sadness; see Figure 1 for a 

schematic depiction of all components).  

 

 

Figure 1. Emotion as a coordinated set of components: appraisal, motivation, physiology, expression, and feeling. Appraisal 

theories posit that appraisal of an event causes changes in motivation, physiology, and expression. Jointly, the changes in 

these four organismic subsystems enter conscious experience as a feeling, which may be categorized with verbal emotion 

labels. 

 

The componential view of emotion lists the components that are part of an emotional episode 

and introduces assumptions about the way in which changes in organismic subsystems are elicited and 

differentiated and about the relations between the components. Contemporary appraisal theories of 

emotion (Scherer, Schorr & Johnstone, 2001) are one type of componential theory. They place special 

emphasis on the appraisal component to explain the emotion process arguing that it is the appraisal of 

the event rather than the intrinsic properties of the event that drives the changes in the other four 

components. In Figure 1, this assumption has been represented by the absence of arrows leading 
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directly from the emotion eliciting event to the motivation, physiology, expression, and feeling 

components. All changes in these components are causally mediated by the appraisal process (Moors, 

2009; 2013). 

Appraisal theories put forward a limited set of criteria, such as goal relevance, compatibility 

with goals and desires, compatibility with expectations, causal agency, potential to cope with or 

control the situation, and compatibility with norms and values (see Ellsworth & Scherer, 2003, for 

lists of common criteria). Combinations of evaluations on these criteria are thought to differentiate 

patterns of emotional responding in the other components. Some but not all of these patterns 

correspond well with colloquial emotion categories such as fear, anger, and joy. The idea that a 

handful of criteria can account for much of the variation in emotional responding has had obvious 

appeal to scientific study. It has stimulated a wealth of observational, experimental, and simulation 

research (see Ellsworth & Scherer, 2003, Moors & Scherer, 2013, and Marsella, Gratch, & Petta, 

2010, for partial overviews of these three domains). All these studies support the existence of relations 

between appraisal criteria and emotional responding. At the same time, other important assumptions 

of appraisal theories have not been consistently studied in empirical research. In the present study, we 

wish to focus on two of these assumptions: (a) that emotional responding consists of changes in 

motivation, physiology, and expression, in addition to feeling—as per the componential definition—

and (b) that appraisal criteria interact to differentiate emotional responding. In the next two sections, 

we take a closer look at these two assumptions and review how both theory and research have dealt 

with them. After that, we show how multicomponentiality and interactions can be studied using 

appropriate data and flexible statistical models. 

 

1.1 Multicomponential responses 

Appraisal theories agree that emotions are multicomponential phenomena and that the appraisal 

process should affect changes in motivation, physiology, expression, and feeling (see Figure 1). 

Nevertheless, empirical work on appraisal theory has overwhelmingly focused on explaining changes 

in feeling—usually discrete categories thereof. Such an approach neglects the motivation, physiology, 
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and expression components, and reduces feelings to categorical labels. An empirical model of 

emotion that includes full componential information is desirable, firstly, for its comprehensiveness—

allowing emotions to represented in much richer detail than in one- or two-component models—and, 

secondly, to investigate in a systematic fashion the link between different components of emotion. In 

this section we discuss how appraisal theories have dealt with multi-componentiality in emotion, both 

in theory and research. 

The feeling component has a special status in the componential perspective on emotion, in that 

it is considered to be an integrated awareness of the changes in the other four components (Moors, 

2009; Moors & Scherer, 2013; Scherer, 2005). Just as points, lines, and curves are combined into a 

global percept or Gestalt rather than as separate elements, changes in appraisal, motivation, 

physiology, and expression might combine to produce an integrated feeling that could receive a label. 

The number of possible feeling states is thought to be infinite. However, some patterns of changes and 

their associated feelings may occur more frequently than others (i.e., so-called modal emotions), 

leading to special words in our vocabulary to describe these patterns, such as joy, fear, and anger 

(Scherer, 2001, 2009). 

One important class of appraisal theories primarily seeks to explain variation in labelled feeling 

categories on the basis of appraisal criteria (e.g., Lazarus, 1991; Roseman 2013). Another important 

class of appraisal theories seeks to explain variation in all components, without necessarily linking the 

patterns to feeling labels (e.g., Scherer, 2009). As examples of the latter, Frijda (1988) has proposed 

hypotheses about the influence of specific appraisals on specific action tendencies, while Scherer 

(2001; 2009) has proposed hypotheses about the influence of specific appraisals on specific 

physiological responses and facial action units. These two classes of theories have been identified by 

Moors (2014) as two flavors of appraisal theories.  

When considering these two flavors of theories for empirical emotion modelling, it should be 

clear that the first flavor offers a less comprehensive characterization of an emotion episode than does 

the second. A model that only outputs feeling labels provides no explicit information on motivational, 

physiological, or expression changes. These changes are only implied by our own background 

knowledge of that label, for example, knowledge that the word “anger” conveys a possible tendency 
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to attack, increased sweating, or lowered eyebrows. On the other hand, a model that outputs responses 

of all emotion components would not only be more comprehensive, it would also allow a more 

detailed decomposition of feelings.  The diagram in Figure 1 implies that bodily and behavioral 

information co-determine changes in feeling. If we wish to find out which changes in which 

components emerge into consciousness, full component information would be required. For this 

reason, the appraisal theories of the second flavor promise to yield a more comprehensive 

understanding of emotions. Second-flavor appraisal research can be split into bi-componential and 

multi-componential research.  

Bi-componential research investigates links between appraisal, on the one hand, and changes in 

motivation, physiology, or expression, on the other hand. Studies provide support for links between 

appraisals and (a) motivation changes, such as tendencies to attack or repair (e.g., Bossuyt, Moors, & 

De Houwer, 2014a,b; Fast & Chen, 2009; Frijda, Kuipers, & ter Schure, 1988; Moors & De Houwer, 

2001; Nelissen & Zeelenberg, 2009), (b) physiological changes, such as cardiac, respiratory, 

temperature, and electrodermal responses (e.g., Aue, Flykt, & Scherer, 2007; Delplanque et al., 2009; 

Gentsch, Grandjean, & Scherer, 2013; Gentsch, Grandjean, & Scherer, 2014; Grandjean & Scherer, 

2008; Kreibig, Gendolla, & Scherer, 2010; Kreibig, Gendolla, & Scherer, 2012; Lanctot & Hess, 

2007; van Reekum et al., 2004), and (c) expression changes, such as facial muscle activity, vocal 

activity, and body posture (see reviews in chapters 15–17 in Scherer et al., 2001 and Scherer, 2009).  

Multi-componential research examines hypotheses that involve three, four, or even all five 

components simultaneously. Appraisal theories (Frijda, 1993; Frijda, Kuipers, & ter Schure, 1989; 

Scherer, 2009) typically propose that effects of the appraisal component on the physiological and 

expression component are mediated by the motivation component. In turn, all these components 

mediate between appraisal and the feeling component. Testing such hypotheses requires the modelling 

of at least three emotion components simultaneously, that is, a predictor, a mediator, and a response 

component. At present, such analyses remain scarce. 

If there are indeed strong causal relations among components, they should show a high degree 

of synchronization. Scherer (2009) even proposes component synchronization as a defining criterion 

for demarcating emotional from non-emotional episodes (see also Lewis, 2005). He argues that strong 
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synchronization or coherence among changes in appraisal, motivation, physiology and expression 

should increase the likelihood for an integrated feeling sensation to enter consciousness, for that 

feeling to be intense, and for the overall pattern of component changes to correspond to a modal 

emotion. Again, testing such hypotheses requires a multicomponential analysis. 

To date, a handful of studies have collected data on all components of emotion (e.g., Fitness & 

Fletcher, 1993; Scherer & Wallbott, 1994) but few of these have analysed the data simultaneously in a 

common model. Nguwi and Cho (2012) re-analysed the ISEAR dataset (International Survey on 

Emotion and Antecedent Relations; Scherer & Wallbott, 1994) and integrated survey data on all five 

emotion components for seven common emotion categories into a single support vector classifier. 

Fontaine, Scherer, and Soriano (2013) conducted a cross-cultural survey on emotion knowledge 

similar to the ISEAR study, measuring all components of emotion across 144 individual questionnaire 

items for 24 common feeling categories (e.g., pride, guilt). Both of these studies achieved an overall 

discrimination performance of over 80% correct classification using information from all emotion 

components simultaneously. These results point to the relatively high coherence among different 

emotion components, and suggest the possibility of further and more complex analyses. 

 

1.2 Interactions and nonlinear associations in appraisal theory 

We have highlighted in the previous section that the five components of emotion are expected to 

change in a mutually coherent fashion during an emotion episode. In Figure 1 this has been 

represented by arrows that connect all components. So far, we have not addressed the exact nature of 

those arrows. Appraisal theorists have put forward complex relations between appraisal criteria and 

emotional responding. Nonlinear associations have been proposed in (at least) three different areas: 

interaction effects between appraisal criteria to differentiate emotional responding (Ortony, Collins & 

Clore, 1988; Lazarus, 2001; Roseman, 2001; Scherer, 2001), curvilinear associations between 

appraisal criteria and emotion intensity (Kappas, 2001; Tong, Ellsworth & Bishop, 2009), and time-

dependent feedback processes (Lewis, 2005; Scherer, 2001, 2009). We limit our discussion to the first 
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two kinds because the data in the present study do not allow us to analyse associations of the third 

kind.  

Two appraisal criteria interact when the effect of one appraisal criterion on emotional 

responding is modified by levels of another appraisal criterion. Suppose that someone spills coffee on 

your friend at a restaurant. Depending on the agent of this spilling (you or the waiter), a different 

emotion may occur (e.g., guilt or anger). In this case, the appraisal of an undesirable outcome (coffee 

being spilled) is modified by the appraisal of agency (self vs. other agency) to differentiate the two 

emotions. All major appraisal theories predict this kind of interaction, including the theories of Ortony 

and colleagues (1988; the OCC model), Lazarus (1993; 2001), Roseman (2001; 2009), and Scherer 

(2001; 2009; the Componential Process Model). Interaction hypotheses in these theories usually take 

the form of configurational appraisal profiles associated with discrete emotion categories. Such 

configurations imply that an emotion is not just differentiated by a single appraisal criterion but by a 

joint combination of multiple appraisal criteria. This is most evident in the OCC model, which 

differentiates emotions according to a tree of decision rules (see 1988, p. 19). Paths in the tree 

correspond to configurations of appraisal values associated with specific emotions. Roseman (2001, 

pp. 70–71) and Scherer (2001, pp. 114–115) have proposed configurations in the form of contingency 

tables, with different emotion labels predicted at the intersection of different appraisal criteria values. 

These two types of representations—trees and tables—do not reflect a fundamentally different 

interaction structure, however. A contingency table could be rewritten as a decision tree, and vice-

versa.Trees and tables highlight the depth of the interaction structure that is implied by appraisal 

theories. In Roseman’s model (2001, pp. 70–71), for example, a classification of fear requires a six-

way interaction of EXPECTEDNESS × AGENCY × GOAL COMPATIBILITY × COPING × CERTAINTY. In 

addition, decision trees make explicit the hierarchical nature of the interaction structure. Decision 

trees contain only one traditional main effect, which is the first decision rule at the top of the tree 

(e.g., if situation is appraised on non-relevant, output no emotion; if situation is appraised as relevant, 

move to next appraisal decision rule. All other effects in the tree are conditional on this main effect, 

and hence should be considered as pure modifiers (Hastie, Friedman & Tibshirani, 2007). This 

distinction has also been addressed by many appraisal theories. For example, most theories consider 
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appraisal of (GOAL) RELEVANCE the main effect for determining whether an emotion is elicited at all, 

whereas appraisal of GOAL COMPATIBILITY is considered the main effect for separating positively 

from negatively valenced emotions (Ellsworth & Scherer, 2003). Other appraisal criteria are typically 

considered as modifiers of these main effects, such as appraisal of AGENCY, COPING POTENTIAL, and 

NORM COMPATIBILITY (Lazarus, 2001; Roseman, 2001; Scherer, 2001). 

In addition to standard interaction effects between different appraisal criteria, some authors 

have proposed that an appraisal criterion can interact with itself to affect emotional responding 

(Kappas, 2001; Tong, Ellsworth, & Bishop, 2009). This happens when the relation between an 

appraisal criterion and emotional responding changes for different values of that appraisal criterion. 

This is true by definition for any nonlinear function (e.g., parabolas, exponential curves) where the 

rate of change is variable. Kappas (2001) argued that relations between appraisal criteria and emotion 

intensity should be expected to be sigmoidal. A sigmoidal function is an s-shaped curve that makes a 

smooth monotone transition between a lower and an upper output limit (see Figure 3 for an example). 

For appraisal theory, this corresponds to an assumption that emotion intensity should be bounded to 

certain limits, and should not increase indefinitely for increasing appraisal input. Sigmoidal curves 

can also be viewed as continuous approximations of binary threshold functions1, and they share the 

property that output cannot increase substantially until input reaches a certain value. 

Evidence for interaction effects between different appraisal criteria has been collected in a non-

systematic fashion, encompassing both experimental as wel as observational studies. Experimental 

research has tested interactions in traditional factorial ANOVA designs, where levels of one or 

multiple appraisal criteria are manipulated across levels of other appraisal criteria in an orthogonal 

fashion. Two-way interaction effects of RELEVANCE × GOAL COMPATIBILITY have been reported on 

self-reported feelings of joy, sadness, and frustration (Kreibig, Gendolla, & Scherer, 2012; Nyer, 

1997), on cardiovascular and respiratory measures of physiology (Kreibig, Gendolla, & Scherer, 

2012), and on electromyogram corrugator measures of expression (Aue, Flykt, & Scherer, 2007). 

Trends toward two-way interaction effects for GOAL COMPATIBILITY × COPING were found in two 

                                                      

1 Also known as the Heaviside step function 
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studies conducted by Gentsch, Grandjean and Scherer (2013; 2014) for measures of 

electroencephalogram P300 mean amplitude and electromyogram zygomaticus activity, respectively. 

A three-way interaction effect of RELEVANCE × GOAL COMPATIBILITY × COPING was reported by 

Nyer (1997) on self-reported feelings of anger. These findings lend some support to the interaction 

hypotheses of appraisal theories but in many experimental studies (including those just cited), the 

majority of interaction tests that were performed failed to reach significance (e.g., Kreibig, Gendolla, 

& Scherer, 2012; McGraw, 1987; Russell & McAuley, 1986; van Reekum et al., 2004). For example, 

van Reekum and colleagues (2004) manipulated appraisals of PLEASANTNESS and 

GOAL COMPATIBILITY in a videogame paradigm but found no two-way interaction across five self-

reported feelings (pride, joy, anger, surprise, tenseness), four physiological measures (skin 

conductance, interbeat interval, pulse transit time, finger temperature slope), and two expression 

measures (frontalis and forearm extensor activity). 

A potential drawback of traditional ANOVAs is that the number of conditions grows 

exponentially with the number of appraisal criteria. For example, for six appraisal criteria (an average 

across theories, see Ellsworth & Scherer, 2003) with a binary data format (0 = appraisal absent, 

1 = appraisal present), a full ANOVA design requires 64 conditions. With a ternary format 

(-1 = appraisal negative, 0 = appraisal absent, 1 = appraisal positive), a full ANOVA design requires 

729 conditions. Many of these conditions may be irrelevant or difficult to sample. This makes 

traditional ANOVAs not well-suited for testing the kind of sixth-order interactions predicted by 

Roseman (2001) or Scherer (2001) and may explain why they have not been systematically 

investigated.  

Observational studies typically investigate the relation between a set of appraisal criteria and 

features of subjective feeling (e.g., fear intensity, anger intensity, joy intensity) using standard linear 

models, such as additive linear regression2 , logistic regression, and linear discriminant analysis. 

Studies that used this approach have been conducted by Smith and Ellsworth (1985), McGraw (1987), 

Frijda, Kuipers, and ter Schure (1989), Reisenzein and Spielhofer (1994), Sonnemans and Frijda 

                                                      

2 Including Pearson correlation, t-test, ANCOVA, and non-factorial ANOVA 
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(1995), Scherer and Ceschi (1997), Scherer (1997), Ellsworth and Smith (1998), Ruth, Brunel, and 

Ötnes (2002), Kuppens et al. (2003), Tong et al. (2005), Siemer, Mauss, and Gross (2007), Hosany 

(2011), and Brans and Verduyn (2014). These analyses typically yield tables of one-to-one relations 

between appraisal criteria and feeling features (e.g., correlation coefficients, regression weights), as 

well as an index of explained variance or discriminative power. This approach has been useful for 

identifying specific appraisal determinants of specific emotions. Yet it is less suitable to measure the 

interaction hypotheses of appraisal theories.  

Two advantages that observational studies have over experimental studies is that they can 

include more appraisal criteria than a factorial ANOVA would allow, and that they do not have to 

restrict the format of the criteria to binary or ternary format. The disadvantage of this approach is the 

difficulty of selecting meaningful interaction effects in standard linear models. For six appraisal 

criteria, there are 15 possible two-way interactions to construct, 20 possible three-way interactions, 15 

possible four-way interactions, 6 possible five-way interactions, and 1 six-way interaction. Without 

automated procedures or prior hypotheses, testing all these effects simultaneously would not only 

strain statistical power but also raise issues of multiple testing. Nevertheless, a handful of 

observational studies, however, has attempted to model interactions. McGraw (1987) and Ruth et al. 

(2002) added two-way interaction terms to a standard linear model, although they could not 

significantly improve the resulting fit of the models. Graham, Kowalski and Crocker (2002) found a 

significant two-way interaction for RELEVANCE × GOAL COMPATIBILITY on self-reported sadness 

feelings. In addition, they found two three-way interactions, one for RELEVANCE × 

GOAL COMPATIBILITY × AGENCY and one for RELEVANCE × GOAL COMPATIBILITY × CONTROL on 

self-reported self-assurance feelings. However, the authors cast doubt on these findings due to the 

large number of exploratory tests. Tong et al. (2005) tested a configurational hypothesis of three 

appraisal criteria on self-reported happiness intensity, and found a significant three-way interaction of 

PLEASANTNESS × PERCEIVED CONTROL × MORAL VIOLATION on happiness ratings (using ecological 

momentary assessment). Importantly, PLEASANTNESS was the only criterion to show a main effect on 

happiness ratings in addition to its interaction effect. The criteria PERCEIVED CONTROL and 

MORAL VIOLATION, on the other hand, were pure modifiers. Such effects support the hierarchical 
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interaction structure suggested by decision trees and prediction tables from appraisal theories. In a 

follow-up study, Tong and colleagues (2009) also tested sigmoidal relations between appraisal criteria 

and emotion intensity. Significant curvilinear associations were found between seven appraisal 

criteria and five emotions across different subject pools, cultures, and sampling methods. 

Meuleman and Scherer (2013) attempted to address some of the disadvantages of standard 

linear models by conducting an automated search for interactions in a large observational dataset on 

recalled emotion episodes. They modelled a categorical emotion variable (12 levels reflecting feeling 

labels such as pride, joy, rage, and  despair) as a function of 25 appraisal criteria. Using classification 

techniques from the field of machine learning, it was found that interactive models significantly 

outperformed additive (linear) models. Furthermore, the interaction structure was found to be 

moderately hierarchical, with a main effect of the GOAL COMPATIBILITY appraisal separating 

positively from negatively valenced emotions, and interaction effects involving the appraisals of 

AGENCY and NORM COMPATIBILITY separating emotions within those two clusters (e.g., anger vs. 

fear). Meuleman and Scherer (2013) advocated the use of machine learning to estimate associations 

between appraisal criteria and emotional responding without assumptions of linearity. We will also 

adopt this perspective in the present paper, and show how the use of a more complex model does not 

necessarily compromise interpretability. 

 

1.3 Present Study 

The aim of the present study was to analyse the relation between appraisal and other components of 

emotion from a full componential and interactional perspective. Past analyses have largely focused on 

features of subjective feeling as response variables. Less attention has been devoted to features of 

motivation, physiology, or expression. In addition, interaction hypotheses have been proposed by 

appraisal theories but have not been consistently studied empirically. Implementing these two 

assumptions should generate an empirical model that more closely matches contemporary appraisal 

theories.  
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As shown in the preceding review of the literature (Sections 1.1 and 1.2), there is currently no 

extant data set that is comprehensive enough to allow the type of analysis we are suggesting. In 

consequence, we propose to use information about emotion mechanisms contained in the semantic 

meaning of major emotion words in natural languages. Theories on word meaning like those found in 

cognitive linguistics (see Croft & Cruse, 2004, for a review) and in constructionist psychological 

models (e.g., Barsalou, 2008; Barrett, Wilson-Mendenhall, & Barsalou, 2015) claim that a word’s 

meaning encompasses much of our world knowledge about the kind of thing designated by the word. 

For example, the meaning of “fear” would not only be “an emotion caused by the perception of 

threat”, but would also include features pertaining to accumulated knowledge of the emotion’s typical 

elicitation, physiological changes, expressions, and associated action tendencies. One of the 

potentially underlying mechanisms has been called the "lexical sedimentation hypothesis" in the 

classic lexical approach to personality (developed by John, Angleitner, and Ostendorf, 1988, and 

applied to emotion words by Fontaine et al., 2013, pp. 7-8). The central statement of this hypothesis 

that "Those individual differences that are most salient and socially relevant in people’s lives will 

eventually become encoded into their language; the more important such a difference, the more likely 

is it to become expressed as a single word." (John et al., 1988, p. 174) can be rephrased for our 

purposes as "Those emotion mechanisms and their outcomes that are most salient and socially 

relevant in people’s lives will eventually become encoded into their language; the more frequent and 

important a particular outcome and its underlying mechanism, the more likely is it to become 

expressed as a single word or category". Scherer (2005) has argued that the meaning structure of these 

emotion words would best be studied by domain-specific "semantic profiles" which represent the 

typical configuration of the major emotion component processes (see Section 1.1 above) for each 

word/category. We suggest that using empirically obtained semantic profiles for different emotion 

categories/words allows us to examine the "frozen" effects of appraisal interactions on different 

emotion components. 
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To accomplish this aim, we re-analysed the semantic profiles obtained in the large cross-

cultural dataset collected by Fontaine and colleagues (2013), known as the “GRID” dataset.3 In this 

study, respondents in 34 samples across 27 countries were asked to rate 24 common emotion words 

on their semantic (i.e., culturally shared) meaning in terms of the five components of emotion. Using 

a combination of dimension reduction techniques and interactional modelling, we addressed three 

research questions in our analysis: 

 

1. What is the nature of the association between appraisal predictors and response features of 

motivation, physiology, and expression? Specifically, do we find evidence of an interactional 

effects structure for the appraisal predictors, as predicted by appraisal theories? No study thus 

far has directly investigated this issue for these three emotion components. 

2. How well can we predict features of motivation, physiology, and expression from appraisal 

criteria? What is the overall percentage of variance that we can explain in each of these three 

components, and where can we find substantial gains when interactions (if any) are accounted 

for? 

3. Can we differentiate qualitative emotion categories (e.g., anger, fear, joy) using the four-

component model derived to address Questions 1 and 2? To address this question, simulated 

output from the obtained model was mapped onto the GRID emotion words. 

 

Both our methodology and prior hypotheses were based on the earlier study by Meuleman and 

Scherer (2013). With respect to methodology, we used machine learning to estimate appropriate 

models for our data (multivariate adaptive regression splines, followed by nearest neighbour 

matching) and considered both interactions between appraisal predictors (Meuleman & Scherer, 2013) 

and curvilinear effects of the kind investigated by Tong and colleagues (2009). With respect to 

hypotheses, the earlier study pointed to a hierarchical interaction structure with a strong main effect of 

GOAL COMPATIBILITY appraisal and modifying effects of AGENCY and NORM COMPATIBILITY 

                                                      

3 The word “GRID” refers to the semantic grid approach of the original study (see Scherer, 2005). Although it is 

not a proper acronym, we have chosen to adopt the same naming convention as the original authors. 
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appraisals on emotional responding. We therefore expected to find a similar structure in the GRID 

data, this time also for features of motivation, physiology, and expression as response variables. It 

should be noted that Meuleman and Scherer (2013) collected ratings on actual experienced emotion 

episodes (via self-report), whereas the GRID data represent culturally shared semantic knowledge (or 

“sedimented world knowledge) of emotions, as assessed by empirical surveys in 34 studies in 27 

countries covering 23 languages. We therefore expect the GRID data to contain more prototypical 

information than the individual episodes sampled in the Meuleman & Scherer (2013) data.  

 

2 Method 

2.1 Data 

Data were obtained from the GRID cross-cultural questionnaire on the meaning of emotion terms 

(Fontaine et al., 2013). In this study, 4948 respondents from 34 language samples in 27 countries 

rated the typicality of 144 items for 24 common emotion words. The 144 rated items reflected 

variables belonging to the five components of emotion. For example, when FEAR was the target word 

and the rated item was the appraisal of SUDDENNESS, the following question was asked: 

 

If a speaker of your native language as spoken in your country or region 

uses the word FEAR to describe an emotional experience, how likely is it that 

the person experienced an event... that occurred suddenly? 

 

All items were rated in this manner on a 9-point scale ranging from “1 = extremely unlikely”, 

over “5 = neither likely nor unlikely”, to “9 = extremely likely”. For our analysis, we retained 105 of 

the total 144 items that were pertinent to the current study. 4 This included 26 appraisal items, 40 

motivation items, 18 physiology items, and 21 expression items. All items related to the feeling 

                                                      

4 The 39 omitted items represented 5 appraisal items about supernatural agency and core-relational themes, 5 

expression items that overlapped conceptually with some of the motivation items, all 20 feeling items, 2 items 

about duration and intensity, 4 items about emotion regulation, and 3 items about miscellaneous cultural aspects 

of emotion. 
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component were dropped, as we wished to focus explicitly on features of motivation, physiology, and 

expression as the response variables in our analysis. The ratings for the retained items were first 

standardized within subjects to remove response bias, and then averaged by sample by emotion word 

(34 × 24), yielding 816 cases. For more information on the distribution of these data by component 

and across cultures, as well as the psychometric qualities of the GRID instrument, we refer to the 

original study by Fontaine et al. (2013). 

 

 

Figure 2. Modelling strategy for the GRID data. In the first part, both appraisal items and items for motivation, physiology, 

and expression are factorized with PCA. In the second part, the motivation, physiology, and expression factors are modelled 

simultaneously using multivariate adaptive regression splines (MARS). In the third part, the output of the MARS model is 

matched to the 24 emotion words using nearest-neighbour matching. 

 

2.2 Data Analysis 

The data analysis proceeded in three parts, (i) dimension reduction, (ii) modelling, and (iii) matching 

(see Figure 2). 
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Dimension reduction. We used PCA to reduce each set of GRID items into a smaller number 

of factors for each emotion component. 5  We closely followed the procedure of Fontaine and 

colleagues (2013), reducing the 26 appraisal items to 7 appraisal factors, the 40 motivation items to 3 

motivation factors, the 18 physiology items to 3 physiology factors, and the 21 expression items to 5 

expression factors (Figure 2). The only thing we changed in the present study was the rotation 

procedure of the PCA. For the appraisal predictor factors, we retained the orthogonal varimax rotation 

of the original analysis. This allowed us to identify the unique contribution of each factor during the 

modelling stage, and to stabilize our modelling algorithm, which is known to be sensitive to 

correlations among predictor variables (see next section). For the motivation, physiology, and 

expression response factors, however, we used an oblique promax rotation (with default rotation 

power, m = 4). The calculation of correlations among response variables rather than predictor 

variables is desirable from a multivariate modelling perspective. This is because when the correlation 

among the response variables is higher, it makes more sense for them to share the same predictor set. 

Using a promax rotation instead of a varimax rotation had a negligible impact on the interpretation of 

the motivation and expression response factors, but did affect the interpretation of the physiology 

response factors. Unlike Fontaine et al. (2013), who obtained a DISTRESS SYMPTOMS, AROUSAL, and 

TEMPERATURE factor, we obtained a RELAXATION VS TENSION, AROUSAL, and TEMPERATURE factor 

(see results section for interpretation and supplementary material, Table S1, for the full loading 

matrix). Note, finally, that all factor scores were computed using Thurstone’s method. 

Modelling. We simultaneously modelled the 11 response factors as a function of the 7 

appraisal predictor factors, using multivariate adaptive regression splines (MARS; Friedman, 1991). 

This part of the analysis addressed the first and second of our three research questions. The MARS 

model is a variant of the standard linear regression model. As in ordinary multiple regression, we 

model one or more response variables as a function of one or more predictor variables. The MARS 

model increases the flexibility of the standard linear model in two important ways: first, by 

                                                      

5 In this paper, we use the term factor for principal components to avoid confusion with components of emotion 
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constructing a piecewise linear function rather than a single straight line/plane; second, by 

automatically selecting relevant interactions between predictor variables. 

 

 

Figure 3. Comparison of a linear fit versus a MARS fit for a nonlinear curve. The MARS fit achieves more flexibility by 

constructing a piecewise linear function. The black triangles depict the hinges of each spline.  

 

The first feature is illustrated in Figure 3. A standard linear model (dotted line) and the MARS 

model (solid line) attempt to approximate some curvilinear data (dashed line). The MARS model 

achieves a better approximation of this curve than the standard linear model by constructing a 

piecewise linear slope. The pieces of this function are known as splines and are joined by hinges (i.e., 

knot points). MARS will automatically select the optimal number of hinges, their location, and the 

number of splines. It is more “sparse” than standard regression in the sense that MARS only models 

those areas of the data where it can find significant associations, and sets the response to a constant 

elsewhere. The major advantage of the spline approach is that we achieve a flexibility similar to non-

parametric curves (e.g., LOWESS smoothers) while retaining easily interpretable linear slopes. 

MARS selects the optimal hinge points by a stepwise selection that minimizes the generalized 

cross-validation error of the model (GCVE). The GCVE criterion is a so-called penalized measure of 

fit, like AIC or BIC, and hence robust to overfitting. The selection of main effects and interaction 
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effects occurs likewise. MARS only adds an effect to the model if it lowers the GCVE criterion.6 This 

procedure automatically selects the maximal degree of interaction (e.g., 2nd order, 3rd order). When 

more than one response variable is modelled simultaneously (i.e., a multivariate regression), MARS 

only adds hinges and effects if they reduce GCVE across all response variables. The final result of 

the selection process is a model with piecewise linear terms and interactions that can be interpreted in 

the same fashion as an ordinary linear model. It is important to note, however, that the MARS 

procedure completely avoids classical hypothesis testing. The final model does not return t-tests or p-

values, which would be redundant for two reasons. First, in our data specifically, all relations would 

have turned out to be significant due to excess statistical power (N = 816). Second, the selection of an 

effect by MARS is indicative of predictive relevance in itself. If a predictor has no meaningful 

association with the set of response variables, MARS does not select this variable for inclusion in the 

final model. The reduction in GCVE is a measure of predictive strength, and not sensitive to 

overfitting, excess power, or issues of multiple testing, making this criterion superior to classical 

significance testing. 

A potential drawback of the MARS model is that it is unstable in the presence of correlated 

predictor variables (Milborrow, 2011a). This was an important reason for us to favor orthogonal 

appraisal factors—as computed by our PCA procedure—rather than using the original set of 26 

appraisal items or allowing oblique rotation among appraisal factors. In addition, it allowed us to 

quantify variable importance free of confounding. 

To evaluate the MARS procedure for our data, we quantified the relative contribution of splines 

and interactions to the model fit by systematically removing these options from MARS and evaluating 

the reduction in cross-validated R2, which is a measure of explained variance based on a 20-fold 

cross-validation of the data. This measure also served as our primary index of predictive strength for 

the final model. To aid interpretation, we also computed estimates of relative variable importance and 

surface plots to visualize interactions. 

                                                      

6 Additionally, adding interactions is subject to the constraint that at least one involved variable has been 

retained as a main effect. 
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Simulation and matching. In the final part of the analysis, simulated output from the estimated 

MARS model was matched to the emotion words of the GRID data. This part addressed the third 

research question. We first generated model-based predictions for interesting combinations of 

appraisal values, and then matched the combined predictor and fitted values to the nearest similar case 

in the GRID data, using a nearest-neighbour algorithm (Euclidean distance). This procedure allowed 

us to connect values of appraisal, motivation, physiology, and expression features simultaneously to 

emotion words in the manner prescribed by the componential perspective on emotion (Figure 1). 

Consistent with a previous study (Scherer & Meuleman, 2012), a nearest-neighbour approach was 

chosen because of its relatively non-parametric nature. The matching analysis allowed us to generate 

maps of emotion labels corresponding to particular combinations of values from the four-emotion-

component MARS model. We analyzed these maps primarily in a qualitative rather than a quantitative 

manner because this analysis depended on novel simulations, and these cannot be evaluated against a 

corresponding “ground truth” emotion category. However, we did assess how the certainty of these 

predictions shifted across emotion categories and across the appraisal criteria we manipulated for the 

simulation. 

 

2.3 Software 

All analyses were carried out using the R statistical software, version 3.0.2. Principal component 

analysis was conducted with the “psych” package, version 1.3.10 (Revelle, 2013). The analysis of 

multivariate adaptive regression splines was conducted with the “earth” package, version 3.2.6 

(Milborrow, 2013b). The random effects ANOVA was conducted with the “lme4” package, version 

1.0.5 (Bates et al., 2013) and the “lmerTest” package, version 2.0.0 (Kuznetsova, Brockhoff & 

Christensen, 2013). Nearest-neighbour matching was conducted with the “kknn” package, version 

1.2.5 (Schliep &  Hechenbichler, 2014), and “ipred” package, version 0.9.2 (Peters & Hothorn, 2013), 

for cross-validation and prediction, respectively. Three-dimensional surface plotting and correlation 

plotting were conducted using the “plotmo” package, version 1.3.2 (Milborrow, 2012b) and the 

“corrplot” package, version 0.73 (Wei, 2013), respectively. 
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3 Results 

3.1 Dimension Reduction 

The names of the 18 factors that were extracted from the original GRID items and their correlations 

are presented in Figure 4 (see Fontaine et al, 2013, for a full description of the dimension reduction 

procedure). Most of the factors are straightforward (e.g., jaw drop). We briefly zoom in on those 

factors that require some additional clarification. The appraisal factors GOAL COMPATIBILITY, 

AGENCY, and NORM COMPATIBILITY are bipolar factors, with values ranging from goal incompatible 

to goal compatible, self-caused to other-caused, and norm incompatible to norm compatible, 

respectively. The motivational factors are all bipolar and reflect tendencies to act in a certain way. 

The APPETITIVE VS DEFENSIVE factor corresponds to the tendencies to approach/continue (positive 

values) versus retreat/stop (negative values). The INTERVENTION VS DISENGAGEMENT factor 

corresponds to tendencies to undertake any action or movement (positive values) versus to remain 

still/freeze (negative values). The ATTACK VS SUBMIT factor corresponds to tendencies to dominate 

(positive values) versus to be dominated (negative values). The AROUSAL factor refers to general 

symptoms of physiological arousal (e.g., increased heartbeat, blushing, shivers), TEMPERATURE refers 

to the felt body temperature (positive values indicating higher, negative values indicating lower 

temperature), and RELAXATION VS TENSION refers to the relaxing (positive values) versus tensioning 

(negative values) of the muscles. The FROWN VS SMILE factor is a bipolar factor reflecting frowning 

versus (positive values) smiling (negative values) expression, and VOCAL ENERGY refers to volume 

and speed characteristics of the voice. 

Figure 4 depicts the bivariate Pearson correlation between each pair of factors. In this matrix, 

correlations with values smaller than 0.30 were omitted from plotting, following Cohen’s (1988) rule 

of thumb for small effect sizes. The correlation matrix in Figure 4 reveals that factors were relatively 

uncorrelated within emotion components. For the appraisal component, this was imposed by the 

varimax rotation. For the other emotion components, where oblique rotation methods were applied, 

correlations were still relatively small. More substantial correlations were found between emotion 
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components, pointing to linear coherence in emotional responding across components. Interestingly, 

the majority of the appraisal predictor factors did not correlate substantially with most of the response 

factors. 

 

Figure 4. Factors extracted from the GRID data and their correlations multiplied by 100. Diagonal elements have been 

removed for visual clarity. For bipolar factors, the label of the positive end of the scale is named first, e.g., attack (positive) 

versus submit (negative). 

 

3.2 Modelling 

The MARS algorithm was applied using the 7 appraisal factors as predictor variables and the 11 

motivation, physiology, and expression factors as simultaneous response variables. MARS selected a 

3rd-degree interactional structure as the final model, including spline effects. Table 1 gives an 
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overview of the selected appraisal factors and the degree of interaction at which they appear. All 

appraisal factors appeared in the final model, either as a main effect or as part of interactions. In other 

words, no appraisal factor was found to be redundant for predicting the 11 component response 

factors. Among these, the GOAL COMPATIBILITY factor was the single most important predictor of 

component responses, appearing at all three levels of interaction (main, 2nd, 3rd) and achieving the 

largest reduction in GCVE by MARS (Table 1, relative importance column). The appraisal factors of 

FAMILIARITY and COPING uniquely showed main effects on emotional responding, and did not interact 

with other appraisal factors. The factors of AGENCY and NORM COMPATIBILITY were found to be 

uniquely involved in interactions (2nd and 3rd degree), indicating that these were the most important 

modifiers in the model. Already, these results paint a different picture than the linear bivariate 

correlations in Figure 4. Finally, Table 1 lists the number of hinges that were used for constructing the 

splines per appraisal predictor factor. Only GOAL COMPATIBILITY required more than one hinge for 

changing the direction of the slope. 

 

Table 1. Final selected MARS model 

 Degree of interaction   

Appraisal factor Main 2nd 3rd Rel. importance Hinges 

GOAL COMPATIBILITY Yes Yes Yes 100.0 4 

SUDDENNESS Yes Yes  64.5 1 

FAMILIARITY Yes   35.0 1 

COPING Yes   30.7 1 

RELEVANCE Yes Yes  39.1 1 

NORM COMPATIBILITY   Yes 56.0 1 

AGENCY  Yes Yes 56.0 1 

Degree of interaction, relative importance, and number of spline hinges for appraisal predictors in the final selected MARS 

model. Variable relevance is calculated relative to the most important variable, which is set to 100 by default. 
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To what extent did the use of splines and interactions contribute to the overall model fit? We 

manipulated the presence or absence of these features and inspected the change in cross-validated R2 

across 20 cross-validation folds in the data and for each response factor, yielding 880 𝑅𝑐𝑣
2  values. 

 

 

Figure 5. Estimated changes in cross-validated R2 as a function of adding interactions and/or splines to the MARS model. 

Adjacent bars of different height indicate an interaction effect. Stacked bars indicate a spline effect (e.g., AROUSAL has 

neither effect, whereas TEARS has both effects). 

 

These values were then submitted to a 2 × 2 × 11 random effects ANOVA of SPLINES (with or 

without) by INTERACTIONS (with or without) by RESPONSE (one of 11 response factors). The cross-

validation fold was treated as a random intercept. Denominator degrees of freedom for all F-tests 

were adjusted using Satterthwaite’s approximation for random effects models (Fitzmaurice, Laird & 

Ware, 2004). No evidence was found for a three-way interaction between RESPONSE, SPLINES, and 

INTERACTIONS, F(10,816.3) = 0.257, p = 0.990, nor for a two-way interaction between SPLINES and 

INTERACTIONS, F(1,826.28) = 0.327, p = 0.567. We did find evidence of two-way interactions 

between RESPONSE and SPLINES, F(10,827.28) = 2.829, p = 0.002, and between RESPONSE and 

INTERACTIONS, F(10,827.28) = 3.543, p < 0.001. In other words, adding splines or interactions 
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improved 𝑅𝑐𝑣
2  differently between factors. To investigate these interaction effects, we refitted the 

random effects model for each response factor separately, using only additive effects for SPLINES and 

INTERACTIONS.7 Results of this analysis are reported in Figure 5. 

From Figure 5, we can draw several conclusions. First, the motivation, physiology, and 

expression components were, on average, predicted equally well by the appraisal predictor factors in 

the MARS model, with mean 𝑅𝑐𝑣
2  equal to 42.0%, 41.6%, and 48.7%, respectively. Second, sizeable 

differences in explained variance were found between individual response factors, with 𝑅𝑐𝑣
2  reaching 

as much as 89.0% for the APPETITIVE VS DEFENSIVE motivation factor, and as little as 7.3% for the 

INTERVENTION VS DISENGAGEMENT factor. Six out of eleven response factors reached an 𝑅𝑐𝑣
2  larger 

than 30%, indicating that overall predictive power was satisfactory. Third, evidence for nonlinear 

effects was substantial, supporting theoretical claims for interactions and curvilinear patterns. Seven 

out of eleven response factors showed a significant improvement when adding either splines or 

interactions to the MARS model. The remaining four factors, AROUSAL, TEMPERATURE, JAW DROP, 

and VOCAL ENERGY, showed no improvement in 𝑅𝑐𝑣
2  from adding such features (equal bars without 

stacked area in Figure 5), indicating that these factors could be modelled equally well with a standard 

linear appraisal model. Overall, nonlinearity was the least substantial for the physiology component. 

Fourth, some response factors improved on 𝑅𝑐𝑣
2  when adding splines but not when adding 

interactions, namely APPETITIVE VS DEFENSIVE, INTERVENTION VS DISENGAGEMENT, 

RELAXATION VS TENSION, and FROWN VS SMILE. Not surprisingly, these factors are all bipolar, 

indicating that trends differed between the negative and positive ends of these scales. Finally, some 

factors benefitted from interactions but not splines, namely ATTACK VS SUBMIT and 

SPEECH PERTURBATION, indicating that these factors of emotional responding crucially depended on 

modifications of AGENCY and NORM COMPATIBILITY appraisal (see Table 1 for the general interaction 

structure). Finally, one response factor, TEARS, showed both substantial spline and interaction effects, 

improving 𝑅𝑐𝑣
2  by over 20%. 

                                                      

7 We used an additive model because the overall ANOVA showed no SPLINES by INTERACTIONS effect. 
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The full coefficient table of the MARS model would be too large to report and too complicated 

to interpret (see supplementary material, Table S2). Instead, we can visualize the spline and 

interaction effects for selected combinations of appraisal predictor factors and response factors, using 

line and surface plots. For response factors that did not benefit from interaction effects (Figure 5) it 

suffices to visualize one appraisal predictor at a time. Figure 6 shows three examples:  The line plots 

visualize the predicted rate of change for three different response factors as a function of three 

different appraisal predictors when the non-visualized appraisal predictors are set to their mean value 

of 0. These plots also visualize the hinges that were selected for constructing the splines. 

 

 

Figure 2. Effects of three appraisal predictor factors on three response factors, when all other appraisal predictor factors are 

fixed to their mean value of 0. All factors on a standardized factor scale with mean 0 and standard deviation 1. 

 

For the relation between GOAL COMPATIBILITY and APPETITIVE VS DEFENSIVE tendency 

(Figure 6, left panel), we see that the rate of change differs for both ends of the factor scale. Overall, 

we see that increasing appraisal of incompatibility increases defensive action tendencies, whereas 

increasing appraisal of compatibility increases appetitive action tendencies. For the latter, the rate of 

change is much steeper than for the former. For the relation between FAMILIARITY and AROUSAL 

(Figure 6, middle panel), increasing familiarity simply leads to decreasing physiological arousal. This 

decrease occurs even faster for strong appraisal of familiarity. For the relation between SUDDENNESS 
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and JAW DROP (Figure 6, right panel), we see that the more sudden an event is appraised to be, the 

more jaw drop expression is reported. For this relation, the spline effect hardly matters, as the rate of 

change remains more or less identical before and after the hinge. 

 

 

Figure 7. Three-way interaction between goal compatibility, norm compatibility, and agency appraisal. For this plot, 

appraisal of agency has been dichotomized into other agency (-3) versus self-agency (+3). Surfaces are plotted for the 

approach–reject and assert–submit response factors. All factors on a standardized factor scale with mean 0 and standard 

deviation 1. 
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For response factors that benefited from interaction effects (Figure 5), we need to visualize 

several appraisal predictor factors simultaneously. This produces three-dimensional surface plots of 

the kind depicted in Figure 7. The top two panels of this figure visualize the three-way interaction of 

GOAL COMPATIBILITY × NORM COMPATIBILITY × AGENCY on the ATTACK VS SUBMIT tendency. 

Shades of blue indicate a stronger submit tendency, whereas shades of red indicate a stronger attack 

tendency. When the person appraises herself as the cause of an event (top left panel), no attack 

tendency is reported for any combination of appraised goal and norm compatibility, only a submit 

tendency. In addition, the degree of submit tendency does not depend on appraisal of norm 

compatibility, but simply on appraisal of goal compatibility: More incompatible events lead to a 

stronger submit tendency. When someone else is appraised as the cause of an event (top right panel), 

the response surface changes drastically. This time, an attack tendency is predicted for combinations 

of high goal incompatibility and high norm incompatibility. For events appraised as goal incompatible 

yet norm compatible, the model once again predicts a submit tendency. 

 

 

Figure 8. Multicomponential response pattern as a function of goal compatibility appraisal. Note that the appraisal of agency 

was fixed to other-agency (+3), and all other appraisal factors were fixed to their mean value of 0. All factors on a 

standardized factor scale with mean 0 and standard deviation 1. 

 

The bottom two panels of Figure 7 visualize the GOAL COMPATIBILITY × SUDDENNESS and 

GOAL COMPATIBILITY × RELEVANCE interactions for the response factors TEARS and 
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SPEECH PERTURBATION, respectively. These effects were conditioned on another person being 

appraised as the cause of an event. Tears become less likely for decreasing appraisal of suddenness 

but this trend reverses when an event is appraised as goal compatible. In fact, the highest tears 

response is predicted for appraisals of low suddenness and high goal compatibility. A similar reversal 

can be observed in the response surface for speech perturbation. Speech perturbation increases with 

increasing goal incompatibility, except when an event is appraised as being totally irrelevant. 

Finally, we can also visualize the complete multicomponential response to the appraisal of goal 

compatibility, which gives a better idea of the full emotional state that is being predicted. This 

visualization is depicted in Figure 8. In this plot, goal compatibility was allowed to vary, appraisal of 

agency was set to other-agency, and all other appraisal predictors were set to their mean value of 0. 

This plot shows how increasing the appraisal of goal incompatibility produces a multicomponential 

response that is indicative of anger, including increasing intervention and attack motivation, 

increasing body temperature, increasing frowning, and increasing vocal energy. 

 

3.3 Simulation and Matching 

So far, we analysed emotions in terms of appraisal, motivation, physiology, and expression. In the 

final part of the analysis, we wanted to reintroduce the emotion words that were part of the GRID 

database and connect these to the estimated MARS model, using a nearest-neighbours algorithm. 

First we simulated new fitted values of the MARS model based on inputted combinations of 

GOAL COMPATIBILITY, NORM COMPATIBILITY, and AGENCY values. Although other combinations of 

appraisal values could have be chosen, we decided to focus on the three appraisal factors involved in 

the three-way interaction of the MARS model. The former two appraisal factors were allowed to vary 

continuously from -3 to 3, in increments of 0.05, while the latter appraisal factor was fixed to either -3 

(self-agency) or +3 (other-agency). All other appraisal factors were fixed to their average value of 0. 

These values were manipulated orthogonally to produce a total of 29,282 appraisal combinations, 

which were then inputted into the MARS model to simulate new fitted values in the response 

components. For each such simulation, this produced a combined pattern of appraisal input and fitted 
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response values. An example pattern is depicted in Figure 9 (top panel). Then, each of these combined 

patterns was matched to the nearest similar cases in the observed GRID data by its Euclidean distance 

(see Figure 9, top panel, for a comparison of the simulated pattern with its nearest neighbor).8 The 

majority emotion word among these nearest cases in the observed GRID data was then chosen as a 

“predicted label” for the simulated pattern. This resulted in the map of matched labels that is depicted 

in Figure 9 (bottom panels). 

Figure 9 shows the matched emotion labels form a structured geography. Appraisal of GOAL 

COMPATIBILITY linearly separates positive from negative emotions. That is, events appraised as goal 

compatible generate emotional responding that is most proximal to labels such as pride, pleasure, 

contentment, happiness, and joy. Events appraised as goal incompatible, on the other hand, generate 

emotional responding that is most proximal to labels such as guilt, anger, disgust, jealousy, hate, 

disappointment, and sadness. Figure 9 also highlights the effect of agency appraisal, which produces a 

dramatically different emotion landscape depending on whether the person takes  herself (left panel) 

or another person (right panel) as the cause of an event. This picture is made more complex in the 

presence of norm violations. For example, for self-agency, an appraisal of goal incompatibility 

generates emotional responding that is close to guilt, irrespective of an appraisal of norm violation. By 

contrast, an appraisal of goal compatibility generates emotional responding that is close to pride only 

when the event is also appraised as norm compatible. When an event is appraised as norm 

incompatible, pleasure becomes more likely. 

                                                      

8  Leave-one-out cross-validation showed that a parameter of k=13 neighbours achieved the lowest 

misclassification error (26.5%) for the factorized GRID data. 
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Figure 9. Simulation and matching analysis of the GRID data. Top panel: Simulated pattern of data based on appraisal input 

to the fitted MARS model (dark bars), juxtaposed with the nearest neighbor of the observed GRID data (light bars). Bottom 

panels: Map of simulated data patterns matched to the emotion label of the nearest observed GRID cases, indexed by varying 

appraisals of goal compatibility, norm compatibility, and agency. The remaining appraisal factors were fixed to their average 

value of 0. All factors on a standardized factor scale with mean 0 and standard deviation 1. The pattern marked with a black 

cross corresponds to the simulation depicted in the top panel of this figure. 

 

The landscapes in Figure 9 conform largely to intuitions about the link between the three 

manipulated appraisal criteria, the associated component response patterns, and the matched emotion 
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label. Evaluating the goodness-of-fit of this landscape in a quantitative manner is complicated due to 

the fact that the simulated patterns possess no ground truth label. Novel predictions generated by the 

MARS model can therefore only be validated in follow-up studies. Nevertheless, we performed 

additional analyses of the nearest neighbor predictions by assessing how the certainty of these 

predictions shifted across emotion categories and across the manipulated appraisal criteria (Table S3; 

Figure S1). As a measure of probability, we looked at the proportion of the majority label among the 

13 nearest neighbors (e.g., if 8 out 13 neighbors are “pride”, the probability of “pride” equals 

8/13 ≈ 61.5%). Across all emotions, the average probability of a prediction was 41.8%, with the 

highest average probability for guilt and sadness predictions (68%) and the lowest for anxiety (23%; 

Table S3). This was much higher than chance level, at 4.2%. Next we fitted a regression model with 

probability of a nearest neighbor prediction as the dependent and the manipulated appraisal criteria as 

the independents. Results indicated that, for self-agency simulations, higher values of goal 

compatibility led to more uncertain nearest neighbor matching. For other-agency simulations, 

combinations of low goal compatibility and low norm compatibility led to more uncertain nearest 

neighbor matching (Figure S1). For no simulated scenario did the prediction probability drop below 

chance level, however.9 These results suggest that the structure of emotion labels observed in Figure 9 

was not random. 

 

4 Discussion 

Appraisal theories assume that emotions are multicomponential phenomena, comprising changes in 

appraisal, motivation, physiology, expression, and feeling. In addition, many appraisal theories 

assume that appraisal criteria interact to differentiate emotions. This study operationalized these two 

assumptions in a single model—multivariate adaptive regression splines—and tested them in a large 

dataset on culturally shared semantic profiles of emotion words (GRID data; Fontaine et al., 2013). 

We addressed three research questions, which we now discuss in light of the present results. 

                                                      

9 Note that, due to the large amount of data in this model, inferential tests were overpowered and therefore not 

meaningful to interpret (all significant). 
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Interactions and nonlinearity. Our first research question concerned the association between 

appraisal criteria and features of motivation, physiology, and expression. While many appraisal 

theories have put forward interactional and even curvilinear hypotheses, these have not been 

systematically investigated or they have been limited to using feelings as response variables. In our 

study, we found substantial evidence for interaction effects and curvilinear associations across 

features of motivation, physiology, and expression. The final MARS model included both splines and 

interactions up to the third degree. Appraisal of goal compatibility played a central role in this model, 

appearing as a main effect and in all higher-order interactions. The prominence of this appraisal 

criterion is due to its power in differentiating positive from negative emotional responses (see Figure 

9). More subtle emotion differentiation tended to occur via interactions with the other appraisal 

criteria, such as appraisal of suddenness, relevance, agency, and norm compatibility. Interestingly, the 

latter two criteria appeared exclusively in interactions, without having a corresponding main effect. 

These results converge with the interaction structure that was obtained by Meuleman and Scherer 

(2013) for recalled emotion experiences. In that study, appraisal of goal compatibility also operated as 

a strong main effect, whereas agency and norm-related appraisal criteria appeared only in interaction 

terms (see also Tong et al., 2005, for a pure interaction effect of moral violation). These results 

validated the interaction assumptions of appraisal theories. Nevertheless, the strong hierarchical 

interactivity proposed by Roseman (2001) and Scherer (2001) could not be substantiated. No evidence 

was found for a single main effect characterized by subsequent pure interactions. Instead, models 

were found to be partly additive and partly hierarchical. Interaction effects beyond the third degree 

were not selected by the final MARS model. 

Our application of splines extended the work of Tong and colleagues (2009) on curvilinear 

associations between appraisal criteria and features of feelings, and allowed our model to adapt to 

local patterns in the data. In some cases the spline effects suggested that an appraisal criterion must 

reach a certain threshold value before it can affect emotional responding (see Figure 6, middle panel). 

In other cases the spline effects allowed a slope to completely reverse its direction before and after the 

hinge point  (see Figure 8, middle panel). 
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Although the final MARS model included both splines and interactions, a follow-up analysis 

showed that not all response factors benefitted equally from these features. The factors AROUSAL, 

TEMPERATURE, JAW DROP, and VOCAL ENERGY were predicted equally well by a linear additive 

model. This may be due to the fact that variance in each of these response factors can be largely 

accounted for by a single appraisal predictor. For example, appraisal of suddenness predicted the 

degree of jaw drop almost completely on its own (Figure 6, right panel). Splines were mainly 

beneficial for modelling bipolar response factors (e.g., FROWN VS SMILE). This suggests that different 

poles of such factors require different modelling. Finally, interactions were the most beneficial for 

modelling ATTACK VS SUBMIT, TEARS, and SPEECH PERTURBATION, suggesting that a correct 

response differentiation in these factors depends strongly on appraisals of agency and norm 

compatibility (see Figure 7, top panels). 

Predicting motivation, physiology, and expression. Our second research question concerned 

the predictive strength of appraisal on features of motivation, physiology and expression. Overall, the 

amount of explained variance achieved by the final MARS model was substantial, with 𝑅𝑐𝑣
2  as high as 

89.0% for the APPETITIVE VS DEFENSIVE tendency. Although individual response features differed 

with respect to the amount of variance explained by appraisal criteria (Figure 5), the three emotion 

components were predicted equally well on average (between 40% and 50% of the variance). These 

results pointed to the relatively high interdependence among emotion components in the GRID data, 

and suggests that each of these components plays a significant role in determining the final content of 

the emotion. 

Differentiating emotion words. Our third research question concerned whether we could 

cluster and label emotions (e.g., joy, anger, fear) that were simulated from the four-component model 

that was derived during modelling. To do so, we manipulated values of GOAL COMPATIBILITY, 

NORM COMPATIBILITY, and AGENCY to generate new output (i.e., fitted values) in the MARS model. 

The new output was then labelled with a feeling term by matching it to the most similar cases from 

the observed GRID data (using Euclidean distance nearest neighbour matching). This resulted in a 

map of emotion words that varied according to the manipulated appraisal criteria (Figure 9), and 

which indictaed the linear separation of positively and negatively valenced emotions by appraisal of 
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goal compatibility (see Meuleman and Scherer, 2013, for a highly similar map). Within those two 

valence regions, subtle emotion differentiation occurred along the norm compatibility and agency 

appraisals. Since our matching procedure was an unsupervised method of classification, we could not 

compare the predicted labels directly to ground truth labels. However, the structure of the landscape 

could be assessed and individual label predictions could be evaluated for their plausibility in matching 

the underlying pattern of values in the four emotion components. For example, in Figure 9, the 

simulated pattern marked with a cross on the bottom left landscape was matched to “pride”. The 

barplot in the top panel of this figure shows that the underlying pattern was generated from high goal 

compatibility appraisal, high norm compatibility appraisal, and self-agency appraisal. Prominent 

component responses include high appetitive tendencies, high temperature increases, smiling, and 

lowered speech perturbation. 

This example highlights the utility of our approach. Contrary to most studies on emotion, we 

decided not to focus directly on the feeling component as the main phenomenon to be explained. 

Instead, we focused on predicting aspects of motivation, physiology, and expression. Labelling with 

emotion words occurred only at a late stage of the analysis and in an unsupervised manner. In doing 

so, we recall that labelled states (a) can be a fuzzy set of categories open to interpretation and 

relabeling, and (b) may communicate less about the meaning of an emotional state than commonly 

assumed. In the final MARS model that we derived, emotional output was generated unambiguously 

in terms of potential or manifested behaviours and actions. An emotion label would not add much 

information to this response pattern except as an integrated summary, much in the same way that we 

use these labels in day-to-day life to communicate our feelings.  

As an application, consider the problem of creating an affective agent such as a video game 

character or a robot imbued with emotions. Now consider two candidate appraisal models for this 

problem, one that outputs emotion labels directly (e.g., OCC model), and our MARS model that only 

outputs the label optionally. In the first case, the agent would not be able to do much more than 

communicate the label that was generated (e.g., “I am angry” following the appraisal of a goal 

incompatible event). In the second case, the agent would display changes in motivation and bodily 
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symptoms following appraisal (e.g., attack tendency, blushing, frowning). The anger pattern would be 

clear when observing the agent, even without adding the label explicitly to it. 

Limitations and future work. It was highlighted in the introduction that the data, the analyses 

and the interpretations reported in the current article were obtained on the basis of empirical 

assessments of culturally shared semantic profiles of major emotion words (reflecting sedimented 

world knowledge) rather than on self-reported memories  of actual emotion situations experienced by 

individuals. We believe that this should not be considered a limitation in the sense that it limits the 

validity of our data as we do not claim to have examined actual, day-to-day emotion experiences. 

Rather the evidence we provide refers to emotion mechanisms as they are represented in the shared 

meaning of emotion words used to reliably communicate emotion episodes and their characteristics to 

other people. As such, they represent very stable (rater reliability AlphaC of .92 across 23 languages 

from most language families; Fontaine et al., 2013, p. 103) relationships for prototypical emotions. In 

contrast, self-report data on experienced emotion episodes vary very widely depending on individual 

appraisal patterns and reaction tendencies and being affected by multiple sources of error.  

Importantly, the structure of effects we extracted from these data was found to be highly similar 

to the structure found in the study by Meuleman and Scherer (2013), which modelled real recalled 

emotion episodes. This lends support to the assumption of a substantial overlap between semantic and 

experience data, probably reflecting the effects of the lexical sedimentation mechanism proposed by 

Fontaine and colleagues (2013, Ch. 1) to explain such correspondence. Nevertheless, attempts should 

be made to replicate the present results for multicomponential data on actual emotion occurrences. 

A potential limitation is that we did not explicitly model relations between the three response 

components (motivation, physiology, and expression). The set of variables of each component was 

reduced by PCA and then merely allowed to correlate by oblique rotations. While this was a 

reasonably flexible approach, we cannot exclude that vital nonlinear associations between the three 

response components were omitted by this procedure. Related to the PCA, we also must acknowledge 

that this procedure potentially introduced bias into the cross-validation for the MARS model. PCA 

was conducted before cross-validation, therefore different folds are not entirely independent, strictly 

speaking. However, we believe any bias that might have occurred this way to be minimal, since the 
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PCA was conducted as a pure dimension reduction step, and not tuned to give optimal results from the 

MARS analysis. Secondly, the loading structure uncovered by the authors of the original GRID study 

was found to be stable across different cultural samples and hence should be considered robust. We 

preferred basing our own analyses on this established structure, rather than re-establishing it by a 

cross-validated PCA. 

A second limitation of the current study is the omission of time from our emotion model. 

Emotions are processes with temporal properties, such as onset, duration, and offset (Davidson, 

1998). The operationalization that we have utilized in this study should be further modified by 

including time and the possibility of feedback relations. Such a modification is necessary if we wish 

to understand the full nature of emotion processes. We hope to address this issue in future studies. 

A third limitation is that our analysis of clusters in component patterns—via simulation and 

nearest neighbor matching—remained at a largely qualitative and descriptive level. An objective 

quantification of goodness-of-fit was not possible due to the lack of ground truth labels for the 

simulated patterns. Nevertheless, the current simulations strongly suggest that our fitted model could 

be a powerful tool in generating concrete hypotheses and predictions to be validated in experimental 

research. At present, the testing of hypotheses about links between appraisals and other emotional 

components is still primarily based on theoretical prediction tables and decision trees. These 

predictions often concern only a limited set of appraisal criteria and emotion labels. A GRID-based 

simulation model could generate much more comprehensive and complex predictions about patterns 

of emotional responding than any theory could. Future studies could therefore benefit greatly from 

this type of computational hypothesis generation. 

Conclusion. Our study represents the first attempt to examine emotion processes from a full-

componential and interactional perspective using data on culturally shared semantic representations of 

the complex relationships between appraisals and different response components in emotion episodes. 

Both of these aspects constitute an important theoretical part of many appraisal theories but have 

received little empirical study. The present results show that accounting for interaction effects among 

appraisal criteria is essential for differentiating some—but not all—emotion patterns, and that a 

multicomponential approach provides a richer and more comprehensive characterization of what it 
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means to be in an emotional episode. Apart from the presentation of a number of intrinsically 

interesting relationships, the findings reported here suggest several eminently testable hypothesis for 

studies examining actual emotion processes in everyday life as well as proposing some innovative 

methods for analysis and simulation. 
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