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Abstract: We consider questions posed in a recent paper of Mandayam et al. (2014) on the nature
of “unextendible mutually unbiased bases.” We describe a conceptual framework to study these
questions, using a connection proved by the author in Thas (2009) between the set of nonidentity
generalized Pauli operators on the Hilbert space of N d-level quantum systems, d a prime, and the
geometry of non-degenerate alternating bilinear forms of rank N over finite fields Fd. We then
supply alternative and short proofs of results obtained in Mandayam et al. (2014), as well as new
general bounds for the problems considered in loc. cit. In this setting, we also solve Conjecture 1 of
Mandayam et al. (2014) and speculate on variations of this conjecture.
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1. Introduction

Finite-dimensional quantum systems—that is, “multiple qudits”—exhibit many interesting
properties like quantum entanglement and quantum non-locality. Therefore, they play a crucial
role in numerous physical applications like quantum cryptography, quantum coding, quantum
cloning/teleportation and/or quantum computing, to mention just a few. As these systems live
in finite-dimensional Hilbert spaces, further insights into their behavior require, obviously, a proper
understanding of the structure of the associated Hilbert spaces. Within the past few years, a lot of
activity in this direction has been devoted to the study of so-called mutually unbiased bases (“MUBs”).

Recall that two orthonormal bases B and B′ of the Hilbert space C` (` ∈ N×) are mutually unbiased
if and only if

|〈φ|ψ〉|2 = 1/`

for all |φ〉 ∈ B and |ψ〉 ∈ B′. It is a fundamental conjecture, with many applications, that the theoretical
upper bound `+ 1 of a set of mutually unbiased bases can only be reached when ` is a prime power.

It has been suspected for a long time that there are deep connections between quantum
(information) theory and finite geometry—see, for instance, Wootters [1,2] (see also [3,4] and [5–7], and
references therein.)

As a specific example, proving a conjecture of Saniga and Planat [7], the author showed in [8]
that the generalized Pauli operators can be identified with the points, and maximum sets of pairwise
commuting members of them with the lines (or subspaces of higher dimensions) of a specific finite
incidence geometry, so that the structure of the operator space can fully be inferred from the properties
of the geometry in question. The incidence geometry is the geometry of a non-degenerate alternating
bilinear form over a finite field, called symplectic polar space. Using this connection, it is easy to construct
maximal sets of MUBs by just translating known results in the theory of symplectic polar spaces.
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In a recent paper [9], Mandayam, Bandyopadhyay, Grassl and Wootters introduced unextendible
mutually unbiased bases (“UMUBs”) (and several variations and related concepts; details can be found
in Section 3) as a natural generalization of maximal sets of mutually unbiased bases.

One of the main results of [9] reads as follows.

Theorem 1 (Mandayam et al. [9]). Given three Pauli classes C1, C2, C3 belonging to a complete set S of classes
in dimension = 4, there exists exactly one more maximal commuting class C of Pauli operators in C1 ∪ C2 ∪ C3.
The class C together with the remaining two classes C4 and C5 of S forms an unextendible set of Pauli classes,
whose common eigenbases form a weakly UMUB of order 3.

Using the connection with the polar space, we will give a short proof of this result. Moreover,
we generalize this result for all dimensions ` = prime2 (in fact, we present a construction of a new
class of maximal partial spreads of the symplectic polar space W3(d) for any odd prime power
d, which translates to UMUBs in the case d is a prime.) In dimension ` = 8, a similar result is
obtained in [9].

Motivated by Theorem 1 and the result in dimension 8, the following conjecture is then
stated in [9].

Conjecture 1 (Mandayam et al. [9]). Given `/2 + 1 maximal commuting Pauli classes C1, C2, . . . , C`/2+1
belonging to a complete set S of classes in dimension ` = 2N =: dN , there exists exactly one more maximal
commuting class C of Pauli operators in ∪1≤i≤`/2+1Ci. The class C together with the remaining classes of S
forms an unextendible set of Pauli classes of size `/2 + 1, whose common eigenbases form a weakly UMUB of
order `/2 + 1.

We will show that this conjecture is true if and only if N = 2 or N = 3. In fact, we will consider
an extension of the conjecture in any characteristic d (i.e., for any prime d), and show that it is true if
and only if d = 2 and N = 2 or N = 3. The formulation of the conjecture has to be adapted, of course,
since `/2 is not an integer if ` is odd. Thus, we will replace `/2 + 1 = 2N−1 + 1 by dN−1 + 1.

We then indicate that an alternative version of the conjecture might be true and describe several
new possible construction techniques to obtain weakly unextendible sets of MUBs.

At the end of the paper, we discuss a special kind of weakly unextendible set of MUBs
called “Galois MUBs,” which attain an optimal bound in relation to being unextendible.

2. The General Pauli Group

Let d be an odd prime. Let {|s〉|s = 0, 1, . . . , d− 1} be a computational base of Cd. Define the d2

(generalized) Pauli operators of Cd as

(Xd)
a(Zd)

b, a, b ∈ {0, 1, . . . , d− 1},

where Xd and Zd are defined by the following actions

Xd|s〉 = |s + 1 mod d〉, Zd|s〉 = ωs|s〉,

where ω = exp(2iπ/d).
The set P of generalized Pauli operators of the N-qudit Hilbert space CdN

is the set P of d2N

distinct tensor products of the form
σi1 ⊗ σi2 ⊗ · · · ⊗ σiN ,

where the σik run over the set of (generalized) Pauli matrices of Cd. Denote P× = P \ {I}.
These operators generate a group P = PN(d)—the general Pauli group or discrete Heisenberg–Weyl
group—under ordinary matrix multiplication, which has order d2N+1.
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For the case of N-qubit Hilbert spaces, we refer the reader to [8]—it is completely similar (and we
use the same notation).

3. Unextendible Sets of MUBs and Operator Classes

Let U be a set of d2 mutually orthogonal unitary operators in Cd using the Hilbert–Schmidt norm:
operators A and B are orthogonal if tr(AB†) = 0. Assuming that U contains the identity operator I,
U constitutes a basis for the C-vector space of (d × d)-complex matrices Md×d(C). A standard
construction of MUBs outlined in [10] relies on finding classes of commuting operators, with each class
containing d− 1 mutually orthogonal commuting unitary matrices different from the identity I.

3.1. Maximal Commuting Operator Classes

A set of subsets {C1, C2, . . . , C`|Cj ⊂ U \ {I}} of size |Cj| = d− 1 constitutes a (partial) partitioning
of U \ {I} into mutually disjoint maximal commuting classes if the subsets Cj are such that

(a) the elements of Cj commute for all 1 ≤ j ≤ `, and
(b) Cj ∩ Ck = ∅ for all j 6= k.

In the rest of the paper, we sometimes use the term “Pauli classes” to refer to mutually disjoint
maximal commuting classes formed out of the N-qudit Pauli group PN(d) ≤ UdN (C) (in [9], only
qubits are considered). The correspondence between maximal commuting operator classes and MUBs
is stated in the following lemma, originally proved in [10].

Lemma 1 ([10]). The common eigenbases of ` mutually disjoint maximal commuting operator classes form
a set of ` mutually unbiased bases.

The reference [10] only considers sets of d + 1 mutually disjoint maximal commuting operator
classes, but the proof is the same.

3.2. Unextendibility of MUBs and Operator Classes

A set of MUBs {B1, B2, . . . , B`} is called unextendible if there does not exist another basis that is
unbiased with respect to the bases B1, . . . , B`.

The correspondence between MUBs and maximal commuting operator classes gives rise to
a weaker notion of unextendibility, based on unextendible sets of such classes.

Definition 1 (Unextendible sets of operator classes [9]). A set of mutually disjoint maximal commuting
classes {C1, C2, . . . , C`} of operators drawn from a unitary basis U is said to be unextendible if no other maximal
class can be formed out of the remaining operators in U \ ({I} ∪⋃`

i=1 Ci).

The eigenbases of such an unextendible set of classes form a weakly unextendible set of MUBs,
as defined below.

Definition 2 (Weakly unextendible sets of MUBs [9]). Given a set of MUBs {B1, B2, . . . , B`} that are
realized as common eigenbases of a set of ` operator classes comprising operators from U , the set {B1, B2, . . . , B`}
is weakly unextendible if there does not exist another unbiased basis that can be realized as the common
eigenbasis of a maximal commuting class of operators in U .

4. Symplectic Polar Spaces and the Pauli Group

Consider the projective space PG(2N − 1, d) of dimension 2N − 1, N ≥ 2, over the field Fd with
d elements, where d is a prime. Let F be a non-degenerate symplectic form of PG(2N − 1, d). For F,
one can choose the following canonical bilinear form [11]:

(X0Y1 − X1Y0) + (X2Y3 − X3Y2) + · · ·+ (X2N−2Y2N−1 − X2N−1Y2N−2).
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Here, (X0 : · · · : X2N−1) and (Y0 : · · · : Y2N−1) stand for homogeneous coordinates of points
in PG(2N − 1, d). Then, the symplectic polar spaceW2N−1(d) consists of the points of PG(2N − 1, d)
together with all totally isotropic spaces of F [11]. Here, a totally isotropic subspace is a linear subspace S
of PG(2N − 1, d) that vanishes under F (that is, the bilinear form is trivial once restricted to S).

One can also define this space in the underlying 2N-dimensional vector space V(2N, d) over
Fd using a non-degenerate alternating bilinear form (which induces a symplectic form on the
projective space).

Remark 1 (Number of points). Note that | points ofW2N−1(d)| = |V(2N,d)|−1
d−1 = d2N−1 + d2N−2 + · · ·+ 1.

In the following proposition, [., .] denotes the commutator relation in the group P;
thus, [a, b] := a−1b−1ab for a, b ∈ P and P′ := [P, P] is defined as the subgroup generated by the
set {[a, b]|a, b ∈ P}.

Proposition 1 (K. Thas [8]).
(i) The derived group P′ equals the center Z(P) of P.
(ii) We have Z(P) = 〈ωI〉, so that |Z(P)| = d.
(iii) P is nonabelian of exponent d if d is odd.
(iv) P is nonabelian of exponent 4 if d is 2.
(v) We have the following short exact sequence of groups:

1 7→ Z(P) 7→ P 7→ V(2N, d) 7→ 1.

Now, denote the natural map P 7→ V(2N, d) by an overbar (and note that in P we use
multiplicative notation, which translates into addition in V(2N, d)). Then, the commutator

[., .] : V(2N, d)×V(2N, d) 7→ 〈ωIdN 〉 : (v1, v2) 7→ [v1, v2] = [v1, v2]

defines a non-degenerate alternating bilinear form on V(2N, d), and thus defines a symplectic polar
spaceW2N−1(d). Here, the derived group P′ is identified with the additive group of Fd.

Theorem 2 ([8]). Two elements of P× commute if and only if the corresponding points of W2N−1(d) are
collinear. In other words, the commuting structure of P (and P) is governed by that of the symplectic polar
spaceW2N−1(d).

Two points inW2N−1(d) are called collinear if there is a line inW2N−1(d) containing them both.
Applying this result, one can easily construct sets of MUBs of maximal size ` + 1 using the

symplectic geometry [8].

5. Unextendible Mutually Unbiased Bases and Pauli Classes

In this section, we explain in detail the correspondence between Pauli classes and “generators”
of symplectic polar spaces of [8]. It has the same proof as Theorem 2, but we make the relationship
between (unextendible) commuting Pauli classes and the generators more explicit.

Theorem 3 (General connecting theorem). Two elements of P× commute if and only if the corresponding
points ofW2N−1(d) are collinear. In other words, the commuting structure of P (and P) is governed by that of
the symplectic polar spaceW2N−1(d). As a corollary, “complete” partial spreads ofW2N−1(d) correspond to
unextendible sets of operator classes in the Pauli group.

We indicate the proof in several steps.
Let d be any prime and N ∈ N \ {0, 1}. Let S be a partial spread of W2N−1(d), i.e., a set of

(N − 1)-dimensional totally isotropic subspaces that are pairwise disjoint. Throughout this, we will
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call (N − 1)-dimensional totally isotropic subspaces “generators.” Let M + 1 be the number of
elements in S , and note that M + 1 ≤ dN + 1 (equality holds when S , by definition, is a spread).
Then, S corresponds to a set of mutually unbiased bases in the associated dN-dimensional Hilbert
space, in the following way:

Step 1 To S corresponds a set of M + 1 subgroups Hi, i ∈ {0, 1, . . . , M}, of P of size dN+1 which
mutually (pairwise) intersect (precisely) in Z(P).

Step 2 In each Hj, one chooses dN − 1 elements Hk
j (k = 1, 2, . . . , dN − 1) which are not contained in

Z(P), so that no two such elements are in the same Z(P)-coset.
Step 3 Then, U (S) :=

{
{Hβ

α |β ∈ {1, 2, . . . , dN − 1}} | α ∈ {0, 1, . . . , M}
}

is a set of commuting
unitary classes.

Step 4 If S is a complete partial spread ofW2N−1(d), that is, if S is not strictly contained in another
partial spread, then U (S) is unextendible, and the corresponding set of MUBs is weakly
unextendible of size M + 1.

In particular, this construction applies when U (S) is a set of Pauli operators (each Z(P)-coset
contains precisely one Pauli operator).

5.1. The Bijection ρ

Let G(W2N−1(d)) be the set of generators ofW2N−1(d), and let C(CdN
) be the set of commuting

classes of Pauli operators (of size dN − 1). Note that, from the above, it follows that we have a bijection

ρ : C(CdN
) −→ G(W2N−1(d)), (1)

which sends an element U ∈ C(CdN
) to a generator, following the scheme explained above. It is indeed

a bijection: to each generator corresponds a unique maximal abelian subgroup A ≤ P ≤ UdN (C) as
above (and conversely), and each Z(P)-coset in this subgroup contains precisely one Pauli operator.
Together, the set of (nontrivial) Pauli operators in A form one commuting class of Pauli operators of
size dN − 1, that is, one element of C(CdN

).

5.2. Prime Dimension

Now let N = 1 (i.e., consider the case of prime dimension) and d 6= 2. Then, Proposition 1 tells us
that P is a group of size d3 and exponent d, and its center has size d—in other words, P is extra-special.
In P, one can now choose subgroups Hi

j as above, and again [10] applies. If d = 2, the result is well
known (but it can also be derived as above).

6. The Case d Prime, N = 2—Small and Large Examples

If d = p is a prime and N = 2, the corresponding symplectic polar space is W3(p) =: X ,
with ambient projective space PG(3, p), and it has two types of linear subspaces that are completely
contained in X , namely points of PG(3, p) and (projective) lines.

6.1. Grids and Point-Line Duals

Before proceeding, we explore some synthetic properties ofW3(`), and ` is any prime power now,
which will makes things easy below.

Let P be the point set of W3(`), L its line set (that is, its set of generators), and let I be the
(symmetric) “incidence relation” on (P × L) ∪ (L× P) which says that xIL (LIx) if and only if the
point x is on the line L. Then, this point-line geometry is a generalized quadrangle [12], and an extensive
theory exists on these structures. Note that each line contains `+ 1 points and that on each point
there are `+ 1 lines. In addition, recall the following defining projection property for generalized
quadrangles: if x is a point and X a line not containing x, there is a unique line YIx which meets X
(and then at a unique point). We will refer to this property as “property (PR).”
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Now consider the point-line geometry Q with line set P , point set L and the same incidence
relation I—the so-called point-line dual ofW3(`). Then, by Section 3.2.1 in [12], Q is isomorphic to the
point-line geometry of an orthogonal quadric Q(4, `) in PG(4, `). Moreover, if ` is even, Q andW are
isomorphic; see Section 3.2.1 in [12]. For all other prime powers, Q andW are not isomorphic—see
loc. cit.

Let “⊥” denote the orthogonality relation in W3(`); for any element ε ∈ P ∪ L,
define ε⊥ := {ε′ ∈ P ∪ L|ε′ ∼ ε}, where ε′ ∼ ε if there is some element E in P ∪ L such that εIEIε′;
in particular, ε ∼ ε. Now, for E ⊆ P or E ⊆ L, define E⊥ := ∩ε∈E ε⊥. Now, let V, W be arbitrary lines
ofW3(`) which do not meet. Then, {V, W}⊥ = V⊥ ∩W⊥ consists of `+ 1 lines ofW3(`), which are
mutually disjoint (since, by (PR), there are no triangles). If ` is odd, {V, W}⊥⊥ := ({V, W}⊥)⊥, the set
of lines ofW3(`) which meet all lines of {V, W}⊥, is {V, W}. If ` = 2, there is a third line X ofW3(`)

besides V, W in this set. In that case, the set of points on the lines of R1 := {V, W}⊥ is the same as
the set of points on the lines ofR2 := {V, W}⊥⊥, and these nine points together with the six lines of
{V, W}⊥ ∪ {V, W}⊥⊥ form a (3× 3)-grid G (see Figure 1); the aforementioned line setsR1,R2 are the
reguli of this grid.

Figure 1. A (3× 3)-grid.

In addition, still in the case ` = 2, an easy counting exercise shows that all lines ofW3(2) have at
least one point in common with the point set of V ∪W ∪ X. All of these properties can essentially be
found in Chapter 3 in [12].

6.2. Antiregularity

If ` is any odd prime power, we will use the fact thatW3(`) has no (3× 3)-grids. This is a corollary
of a property called “antiregularity,” and can be found in Section 3.3.1(i) in [12] (in the dual version).

6.3. Regularity

If ` is any even prime power, we will also use the fact that inW3(`), if U and V are lines which
do not meet, then |{U, V}⊥⊥| = `+ 1, that is, U and V are contained in an (`+ 1)× (`+ 1)-grid of
which the line set is {U, V}⊥ ∪ {U, V}⊥⊥. We call {U, V} a regular pair of lines. We already met this
property for the case ` = 2 in Section 6.1. Also in this case, one easily shows that every line ofW3(`)

meets the (`+ 1)× (`+ 1)-grid determined by U and V.

6.4. The Case p = 2

We start with giving an alternative and very short proof of Theorem 1 of [9] using the connection
between Pauli classes and partial spreads of symplectic polar spaces.

Theorem 4 (Mandayam et al. [9]). Given three Pauli classes C1, C2, C3 belonging to a complete set S of classes
in dimension = 4, there exists exactly one more maximal commuting class C of Pauli operators in C1 ∪ C2 ∪ C3.
The class C together with the remaining two classes C4 and C5 of S forms an unextendible set of Pauli classes,
whose common eigenbases form a weakly UMUB of order 3.

Proof. Interpret S inW3(2); then, by Theorem 3 to the Ci correspond lines Li ofW3(2) (i = 1, . . . , 5),
and they form a spread. Consider the lines L1, L2, L3. Then, either there is precisely one line L ofW3(2)
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meeting them all, or there are three such lines. In the latter case, the lines L1, L2, L3 form a regulus of
a (3× 3)-grid, and, as we have seen, any line ofW3(2) meets the point set of such a grid, leading to
the fact that L1, L2, L3 would not be extendible to a spread, contradiction. Thus, we are in the former
case, and the class C corresponding to L is the one of the statement. The set C, C4, C5 obviously is
unextendible, since extending it with a class C̃ would mean that the corresponding line L̃ be contained
in the point set of L1 ∪ L2 ∪ L3, implying that there would be another line besides L meeting all of
L1, L2, L3, contradiction.

We now give a short proof of another result of [9], namely Theorem 5 of that paper.

Theorem 5 (Mandayam et al. [9]). Given an unextendible set of three Pauli classes C1, C2, C3 in
dimension = 4, the nine operators in C1 ∪ C2 ∪ C3 can be partitioned into a different set of three maximal
commuting classes C ′1, C ′2, C ′3 such that each C ′i has precisely one operator in common with each Cj, i, j ∈ {1, 2, 3}.

Proof. Let L1, L2, L3 be the lines corresponding to C1, C2, C3 inW3(2); we have seen that either one
or three lines are contained in {L1, L2, L3}⊥; in the latter case, an easy counting argument shows
that all lines ofW3(2) intersect with L1 ∪ L2 ∪ L3. Thus, suppose we are in the former case, and let
{L} := {L1, L2, L3}⊥. Then, each point on L is incident with precisely one line besides L and not in
{L1, L2, L3}. By the projection property of generalized quadrangles, there are six lines different from
L1, L2, L3, which meet the six points of L1 ∪ L2 ∪ L3 not on L in precisely two points. For, each point of
L1 ∪ L2 ∪ L3 not on L is on one of the lines ofW3(2) meeting L1 ∪ L2 ∪ L3 in exactly two points; thus,
no such point is on a line ofW3(2) meeting L1 ∪ L2 ∪ L3 in precisely one point. Thus, the total number
of lines meeting L1 ∪ L2 ∪ L3 is 13, and {L1, L2, L3} is indeed extendible (since there are 15 lines in total
inW3(2)).

In the next subsection, we will see a general approach for constructing unextendible Pauli classes
in Cd2

with d a prime number, starting from a complete set. As a corollary, we will obtain yet another
proof for the result of Mandayam et al.

6.5. General Case

Theorem 6 (Existence of unextendible Pauli class sets for d prime, A). For each prime d = p, there exists
an unextendible set of Pauli classes S of size d2 − d + 1 or d2 − d + 2 in Cd2

. The common eigenbases form a
weakly UMUB of order d2 − d + 1 or d2 − d + 2.

Proof. As before, we pass toW3(p). Let T be any spread ofW3(p).
Now, let U be any line ofW3(p) which is not contained in T ; then, there are precisely p + 1 lines

in T which hit U (each in exactly one point), due to the fact that the lines of T partition the point set of
W3(p). Call this line set TU . Now, consider the line set

T (U) := T \ TU ∪ {U}. (2)

Note that |T (U)| = p2 − p + 1. If it is not a complete partial spread, there is at least one other line
R ofW3(p) not meeting any line of T (U), and, as a point set, it clearly must be contained in the point
set “of” TU . Then, all lines of TU meet both U and R. If yet another line R′ would exist that extends
T (U)∪ {R}, R′ would also be met by the lines of TU — in other words, R′ ∈ T ⊥U while TU = U⊥ ∩ R⊥.
As we have seen in Section 6.1, this is not possible, so only at most one line R can be added.

Translating back to Pauli classes gives the desired result.

It is easy to see that both cases of Theorem 6 can occur (but not necessarily for every p).
As we have not used the fact that p is prime, we can translate immediately to symplectic polar

spaces over any finite field.
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Corollary 1. For each prime power `, there exists a complete partial spread S ofW3(`) of size `2 − `+ 1 or
`2 − `+ 2. For ` even, only the case `2 − `+ 1 occurs.

Proof. When ` is odd, the proof is the same as in the odd prime case. If ` is even, and if U and R are as
above, then by Section 6.3, {U, R} is a regular pair, so each line ofW3(`) meets the (`+ 1)× (`+ 1)-grid
determined by U and R. However, this implies that each of the lines of T \ TU meet some line of TU ,
contradicting the fact that T is a spread. Thus, even R cannot be added.

Remark 2. For ` even, we have seen this result in the literature (see, e.g., [13] and the references
therein)—it would be safe to attribute this result to folklore though. We presume the odd case is somewhere as
well, but the way of proving is needed below, so it is included anyhow for the sake of completeness.

One could apply the technique in the proof of Theorem 6 multiple times to obtain examples with
less elements. Indeed, this works quite well, as we will demonstrate now. We will work immediately
inW3(`), and will not restrict ourself only to the prime case. Thus, ` is a prime power. We do ask that
` is odd—it will be used in the proof.

Let S be a classical spread ofW3(`)—by this, we mean a spread which in the point-line dualQ(4, `)
corresponds to an elliptic quadric (c.f. Section 5.2 in [11]). Take any two lines L, M in S , and consider
the set X = {X0, X1, . . . , X`} := {L, M}⊥; it consists of `+ 1 mutually disjoint lines which are not
in S . Now, for each Xi ∈ X , define Si to be the set of `+ 1 lines of S meeting Xi. As explained in
Appendix B of this paper, for each Si, there is precisely one more line X̃i 6= Xi of S which meets each
line of Si. Clearly, this line must be in X , so we can denote X̃i by Xĩ.

Now, the following properties are immediate:

(a) (̃·) : {0, 1, . . . , `} −→ {0, 1, . . . , `} is an involution, so that |{S0,S1, . . . ,S`}| = (`+ 1)/2;
(b) for Si 6= Sj, we have that Si ∩ Sj = {L, M} (by Section 6.2).

For the sake of convenience, we re-write the set {S0,S1, . . . ,S`} as {S0,S1, . . . ,S(`−1)/2}. For each
j ∈ {0, 1, . . . , (`− 1)/2} we have that {Xj, X j̃}

⊥ = Sj.

Theorem 7. Let ` be an odd prime power. Then, for any k = 0, 1, . . . , (`− 3)/2, there exist complete partial
spreads of size `2 − (k + 1)`+ (3k + 2) inW3(`).

Proof. Let k be as in the statement, and consider any subset R of {0, 1, . . . , (`− 1)/2} of size k + 1;
for simplicity, we consider w.l.o.g. the set {0, 1, . . . , k}. Then, define the following set:

SR := S \ (∪u∈RSu) ∪v∈R ({Xv, Xṽ}). (3)

It is straightforward to see that SR is a partial spread of size `2 − (k + 1)` + (3k + 2). As for
completeness, suppose we could enlarge SR with some line U to another partial spread. As S is
a spread, U, as a point set, must be contained in ∪u∈RSu, as a point set, and it cannot be contained
in S nor SR. By the Pigeon Hole Principle, some Sw must have at least three lines meeting U since U
has `+ 1 points and k + 1 < `+1

2 (in case U ∈ {L, M}⊥, one does not need the Pigeon Hole Principle).
However, this implies the existence of a (3× 3)-grid, contradiction.

For each odd prime power `, the bounds appear to be new (up to some small coincidences).
For fixed `, we obtain complete partial spreads of respective sizes

`2 − `+ 2, `2 − 2`+ 5, `2 − 3`+ 8, . . . ,
`2

2
+ 2`− 3

2
. (4)
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Translating back to Pauli operators, we obtain the next result.

Theorem 8 (Existence of unextendible Pauli class sets for d prime, B). For each odd prime d = p and any
k = 0, 1, . . . , (d− 3)/2, there exists an unextendible set of Pauli classes S of size d2 − (k + 1)d + (3k + 2)
in Cd2

. The common eigenbases form a weakly UMUB of order d2 − (k + 1)d + (3k + 2).

The construction has many variations, all using roughly the same ideas, and all giving similar
(but not the same) bounds. We will come back to these variations in a forthcoming paper.

7. Solution of Conjecture 1

Motivated by Theorem 1, the following conjecture is then stated in [9].

Conjecture 2 (Mandayam et al. [9]). Given `/2 + 1 maximal commuting Pauli classes C1, C2, . . . , C`/2+1
belonging to a complete set S of classes in dimension ` = 2N =: dN , N ∈ N \ {0, 1}, there exists exactly one
more maximal commuting class C of Pauli operators in ∪1≤i≤`/2+1Ci. The class C together with the remaining
classes of S forms an unextendible set of Pauli classes of size `/2 + 1, whose common eigenbases form a weakly
UMUB of order `/2 + 1.

In this section, we will show that this conjecture is true if and only if N = 2 or N = 3.
In fact, we will consider an extension of the conjecture in any characteristic d (i.e., for any prime
d), replacing `/2 + 1 = 2N−1 + 1 by dN−1 + 1, and show that it is true if and only if d = 2 and N = 2
or N = 3.

Translated to the geometric setting, we obtain: “given 2N−1 + 1 elements α1, α2, . . . , α2N−1+1
belonging to a spread S of the polar spaceW2N−1(2), there exists exactly one more generator χ which
is completely contained in the union of these elements, such that χ together with the remaining
elements of S constitutes a complete partial spread.”

Note that the situation implies that χ meets each αj, j = 1, 2, . . . , 2N−1 + 1.
We will replace d = 2 by any prime d and consider the same situation (immediately in the

geometric setting). We will also slightly generalize the statement by replacing “exactly one” by
“at least one.”

Thus, let S be a spread ofW2N−1(d) and d be a prime. We assume that the conjecture above is
true (in the more general setting).

First, suppose that U and U ′ are different subsets of S , both of size dN−1 + 1. Let α be a generator
which meets all elements of U and is covered by these elements, and let α′ be a generator which meets
all elements of U ′ and is covered by them. Then, α 6= α′.

In the next counting argument, we will use the fact that the number of generators ofW2N−1(d)
is (dN + 1)(dN−1 + 1) · · · (d + 1). Per subset of S of size dN−1 + 1, by the conjecture, we have at least
one generator meeting all of its elements and covered by them. Such a generator is never contained in
S . Thus, we have that

CdN−1+1
|S| · 1 + |S| ≤ (dN + 1)(dN−1 + 1) · · · (d + 1). (5)

Here,

CdN−1+1
|S| :=

(dN + 1)!
(dN−1 + 1)!(dN − dN−1)!

. (6)

Now, Equation (5) is equivalent to

(dN + 1)dN · · · (dN − dN−1 + 1) + (dN−1 + 1)!(dN + 1)
(dN−1 + 1)!(dN + 1)(dN−1 + 1) · · · (d + 1)

≤ 1, (7)
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or, slightly simplified:(
(dN + 1)/(dN−1 + 1)

)
(dN/dN−1) · · ·

(
(dN − dN−1 + 1)/(1)

)
+ (dN + 1)

(dN + 1)(dN−1 + 1) · · · (d + 1)
≤ 1. (8)

Now, note that(
(dN + 1)/(dN−1 + 1)

)
(dN/dN−1) · · ·

(
(dN − dN−1 + 1)/(1)

)
≥ dN + 1

dN−1 + 1
· ddN−1

, (9)

and that
(dN + 1)(dN−1 + 1) · · · (d + 1) ≤ dN+1dN · · · d2 = dN(N+3)/2. (10)

Observe that if for some value N = M, we have

ddM−1 ≥ dM(M+3)/2, (11)

then the same inequality holds for all M′ ≥ M.
This is already enough to conclude with a contradiction for d ≥ 5; d = 3 and N ≥ 3; and d = 2 and

N ≥ 6. The cases (d, N) = (3, 2), (2, 5), (2, 4) all yield a contradiction when substituted in Equation (5);
the substitution (d, N) = (2, 2), which is precisely the case ofW3(2) which was already studied before,
leads to equality in Equation (5), as does the substitution (d, N) = (2, 3), which is the case ofW5(2).

Note that the cases (d, N) = (2, 2), (2, 3) are precisely those handled in Section 3, Theorem 1
and Section 3, Theorem 3 of [9]. In the next section, we will formulate and discuss variations on
Conjecture 1; to that end, we first try to generalize Theorem 6.

8. Existence of Maximal Pauli Classes

Before proceeding, let us first introduce a simple lemma about complete “partial spreads” of
general incidence structures. Let Γ = (E , t, T) be a triple, with T = {0, 1, . . . , n}, n ∈ N×, and t
a surjective function from the set E 6= ∅ to T. For each i ∈ {0, 1, . . . , n}, put Ei := t−1(i), and call its
elements the elements of type i. Thus,

E = ∪i∈TEi, and |E | ≥ |T|. (12)

In particular, we call elements of E0 “points.” We now assume that for i > 0, every element of Ei is
a subset of E0. This is a natural assumption: we see each “i-space” (= element of type i) as a point set.

An i-spread of Γ is a partition of E0 in elements of type i. Complete i-spreads are introduced naturally
as above.

The following observation is trivial.

Proposition 2. Let S be an i-spread of Γ. Let χ be an element of type i which is not contained in S , and let Sχ

be the subset of elements of S , which meet χ in at least one point. Note that Sχ induces a partition of the points
of χ. Then, if we cannot find a set T of elements of type i such that

C.1 each element of T is a subset of the point set

Ω(S , χ) := ∪U∈Sχ
U, (13)

C.2 the elements of T partition Ω(S , χ),

we have that S \ Sχ ∪ {χ} cannot be completed to an i-spread of Γ.

Proof. If S \ Sχ ∪ {χ} could be completed to an i-spread S ′ of Γ, S ′ must have elements which all are
subsets of Ω(S , χ), and which partition Ω(S , χ).
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If ` is the maximum number of elements of type i contained in Ω(S , χ) (where both Ω(S , χ) and
the elements of type i are seen as point sets) and which are pairwise disjoint, the number of elements
in a maximal partial i-spread containing S \ Sχ ∪ {χ} is at most |S| − |Sχ|+ ` (note that ` ≥ 1 as χ

itself is in Ω(S , χ).)

Remark 3 (Back to the prime case). Note that the first part of Theorem 6 is an application of the construction
method of Proposition 2 (with χ = L).

8.1. U -Sets

Motivated by Proposition 2, a U -set with carrier χ is a set Sχ of mutually disjoint generators of
W2N−1(d), which all meet some generator χ 6∈ Sχ such that

χ ⊂ ∪Y∈Sχ
Y, (14)

and such that ∪Y∈Sχ
Y cannot be partitioned by a partial spread P of generators which includes χ.

Note that the number of elements of a U -set is not uniquely determined by N and d (one U -set
could also have different carriers).

Proposition 3 (Existence of UMUBs). The existence of U -sets implies the existence of complete partial spreads
which are not spreads, that is, of unextendible sets of Pauli classes.

Proof. Let Sχ be a U -set. If Sχ is not contained in a spread, then we are done, so suppose it is
contained in some spread S . Then, by Proposition 2, we have that S \ Sχ ∪ {χ} cannot be completed
to a spread.

Note that this proposition can also be applied to general incidence geometries.
For the rest of this section, we suppose d is an odd prime.
Before proceeding, recall that a spread S (of generators) ofW2N−1(d) is regular if the following

property is satisfied: if for every three distinct elements α, β, γ in S , L is the set of lines of PG(2N− 1, d)
which meet each of α, β, γ, then there are d − 2 further elements of S which meet every line in L.
By definition, L is called the regulus defined by α, β, γ. It is well known that every symplectic polar
space has regular spreads.

Now, let R be a regular spread of W2N−1(d). Take a generator χ which meets some α ∈ R
in a space of dimension N − 2 (and note that this is possible), and let Rχ be the set of elements in
R which meet χ. Note that |Rχ| = dN−1 + 1. Now consider a generator β 6= χ, α which contains
χ ∩ α, and which is disjoint from the elements in Rχ \ {α} (for the existence of such a generator,
see Appendix A). Then, becauseR is a regular spread, we conjecture that Sχ := Rχ \ {α} ∪ {β} is a
U -set with carrier χ. By Proposition 3, this would suggest that (nice) unextendible sets of Pauli classes
of CdN

always exist (ignoring possible sizes completely), that is, that complete partial spreads which are
not spreads always exist inW2N−1(d). This fact is not necessarily true for general incidence geometries
which have i-spreads (using the nomenclature of above): consider, for instance, an incidence geometry
for which the elements of type i precisely form one i-spread. Thus, although the existence of complete
partial spreads is probably seen as folklore, we see the need to formalize this matter.

Remark 4. Note that if Rχ is such that there does not exist a generator besides χ which is contained in
∪ϑ∈Rχ

ϑ, then
|R \ Rχ ∪ {χ}| = dN − dN−1 + 1. (15)

Adapting the situation to the special case d = 2 (noting that a different definition is then needed for regular
spread), we would end up with an unextendible set of Pauli classes of size 2N−1 + 1.
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8.2. Reformulation of Conjecture 2

We have seen that Conjecture 2 is only true when N = 2 or N = 3. On the other hand, there seems
to be some evidence that the bound of that conjecture could be attained (see, e.g., the previous remark).
Thus, we reformulate the conjecture as follows—we will do it in geometric terms, over all fields F`

with ` a prime power, but again, for the applications in quantum information theory, one takes ` to
be prime.

Conjecture 3. For each prime power ` and positive integer N ≥ 2, there exists a spread S ofW2N−1(`) and a
generator χ not in S , such that S \ Sχ ∪ {χ} is a complete partial spread of size `N − `N−1 + 1.

When ` = 2, one obtains the same bound as in Conjecture 2.
We hope to come back to this conjecture, and the construction theory of U -sets, in the near future.

9. “Galois MUBs”

When d = 2, 3, 5, 7 or 11, there exist extremely exotic examples of unextendible sets of Pauli classes
of size d2 − 1 in Cd2

(details, constructions and references can be found in [14]). We propose calling the
corresponding sets of MUBs “Galois MUBs” because they are all related to exotic two-transitive
representations of special linear groups, as was first noted by Galois (see also [14]). They are
extremely special amongst Pauli classes of Cd2

, d being a prime, or even all Hilbert spaces, due
to the following result.

Theorem 9 (see [12], Section 2.7). Let Γ be a generalized quadrangle of finite thick order (s, s), and let C be
a complete partial spread of Γ. If Γ is not contained in a spread of Γ, then

|C| ≤ s2 − 1. (16)

As we have seen that the points and lines of anyW3(d) form a generalized quadrangle, this result
applies toW3(d) and hence also to Pauli classes in Cd2

.

Corollary 2. A set of commuting Pauli classes of size d2 in Cd2
, d being a prime, is never unextendible.

Remark 5. The aforementioned examples in d = 2, 3, 5, 7, 11 are the only known examples which effectively
reach the (d2 − 1)-bound, and conjecturally they are the only ones. Geometrically, they also satisfy very extreme
properties, which rightly translate to Pauli classes. Many more details on the geometric structure of partial
spreads of size s2 − 1 in generalized quadrangles of order (s, s) can be found in the author’s paper [15].

The next theorem, taken from the author’s paper [15], says that when d = 2, up to isomorphism,
there is only one complete partial spread of size 3 = 22 − 1 inW3(2).

Theorem 10 ([15]). Up to isomorphism, there is only one complete partial spread of size 3 inW3(2).

Corollary 3. Up to isomorphism, there is only one unextendible set of Pauli classes of size 3 in C4.

Remark 6 (On isomorphisms). Of course, one needs to specify what isomorphisms between unextendible
sets of Pauli classes are. Because of the General Connecting Theorem (and the bijection ρ), we propose saying
that unextendible sets of Pauli classes U and U ′ in CdN

are isomorphic if there exists an automorphism of
W2N−1(d) which maps the complete partial spread S(U ) corresponding to U , to the complete partial spread
S(U ′) corresponding to U ′. This is a natural notion of “isomorphism,” since automorphisms ofW2N−1(d)
preserve collinearity of points, and thus also the commuting of operators at the level of Pauli operators. One could
also define isomorphisms through the general Pauli group. On the other hand, such automorphisms induce
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automorphisms ofW2N−1(d) anyhow, while the converse is not true. Thus, one misses (many) maps which
should be considered as isomorphisms in this way.

10. Conclusions

The geometry underlying the space of the generalized Pauli operators/matrices characterizing
N d-level quantum systems, with N ≥ 2 and d any prime, is that of the symplectic polar space of rank
N and order d,W2N−1(d).

Using this connection, we have derived a short proof of a recent result of [9] on the unextendibility
of MUB sets in C4 (their Theorem 1). Moreover, we generalized this result for all dimensions = square
of a prime, and presented a construction of a class of maximal partial spreads ofW3(`) for any odd
prime power `, attaining new bounds in generically every case, which rightly translates to (weakly)
UMUBs in the case ` is a prime. We also gave a very short proof of Theorem 5 of [9].

We then considered Conjecture 1 of [9], which conjecturally generalizes the aforementioned result
of [9] to any dimension and showed that it is true if and only if N = 2 or N = 3.

We then indicated that an alternative version of the conjecture might be true and described several
new construction techniques to obtain weakly unextendible sets of MUBs.

Finally, we discussed a special kind of weakly unextendible set of MUBs, called “Galois MUBs,”
which attain an optimal bound in relation to being unextendible.

Acknowledgments: The author wishes to thank Marcus Grassl and William K. Wootters for various interesting
communications on the subject of this note.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Properties of (Symplectic) Polar Spaces

Consider the spaceW2N−1(d), d being a prime, and N ≥ 2. We restrict ourself to the prime case
because that is the class which translates to Pauli operators, but everything works when d is a prime
power as well.

Appendix A.1. The Map µ

Let γ be a generator, and x a point not in γ. Then, a well-known property (of general polar
spaces)—see e.g., p. 137, (c) in [16]—says that there is a unique generator on x which meets γ in
an (N − 2)-space, γ(x) (if “⊥” is the orthogonality relation coming from the associated alternating
form, then γ(x) = x⊥ ∩ γ). Now, let γ and γ′ be disjoint generators. Then, it is not hard to see
that for every (N − 2)-space δ in γ′, there is precisely one point y ∈ γ such that 〈y, δ〉 is a generator
(y = γ ∩ δ⊥). Thus, the map

µ : γ −→ γ′ : z −→ γ′(z) (A1)

is a bijection between the points of γ and the hyperplanes of γ′.

Appendix A.2. Generators on (N − 2)-Spaces

Now, let α be a totally isotropic (N − 2)-space ofW2N−1(d); it is well known that there are d + 1
generators g0, . . . , gd containing α. Let β be a generator disjoint from α. By the surjectivity above,
it follows that some gi has to intersect β, and then necessarily in one point.

Appendix A.3. Structure of Spreads

Let S be a spread ofW2N−1(d), d being a prime, and N ≥ 2. Let α = g0 ∈ S , and let τ be an
(N − 2)-space in α. Let g1, . . . , gd be the other generators containing τ. By the previous paragraph,
each element of S \ {α} meets some gi (i 6= 0) in precisely one point (and, conversely, each point of
gj \ τ, j 6= 0, is, of course, contained in precisely one spread element.)
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Appendix B. Some More Properties of W3(d)

As in the first appendix, for the applications in quantum information theory considered here,
one wants to think of d as being prime, but everything holds when d is a prime power as well. What we
do ask is that d is odd.

Let S be a classical spread ofW3(d); point-line dualize to obtain Q(4, d)—S becomes an elliptic
quadric, denoted O. Now, let x be a point of Q(4, d) not contained in O. As usual, let “⊥” denote the
orthogonality relation associated to the defining quadratic form of Q(4, d) (say, corresponding to the
variety with equation X2

0 + X1X2 + X3X4 = 0). Then, x⊥ ∩ O is a conic section, and since d is odd,
there is precisely one other point y 6∈ O for which

y⊥ ∩O = x⊥ ∩O. (B1)

Note that the latter expression is equal to {x, y}⊥.
Going back toW3(d) (i.e., dualizing again), we obtain that if X is a line ofW3(d) not in S , and SX

is the set of d + 1 lines in S which meet X, then there is precisely one other line Y not in S such that

SX = {X, Y}⊥ = X⊥ ∩Y⊥ = SY. (B2)
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