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Abstract— This paper addresses the unsupervised classification
problems for multilook Polarimetric synthetic aperture radar
(PolSAR) images by proposing a patch-level spatially variant
Wishart mixture model (SVWMM) with double constraints.
We construct this model by jointly modeling the pixels in a
patch (rather than an individual pixel) so as to effectively capture
the local correlation in the PolSAR images. More importantly,
a responsibility parameter is introduced to the proposed model,
providing not only the possibility to represent the importance
of different pixels within a patch but also the additional flexi-
bility for incorporating the spatial information. As such, double
constraints are further imposed by simultaneously utilizing the
similarities of the neighboring pixels, respectively, defined on
two different parameter spaces (i.e., the hyperparameter in the
posterior distribution of mixing coefficients and the responsibility
parameter). Furthermore, the variational inference algorithm is
developed to achieve effective learning of the proposed SVWMM
with the closed-form updates, facilitating the automatic deter-
mination of the cluster number. Experimental results on several
PolSAR data sets from both airborne and spaceborne sensors
demonstrate that the proposed method is effective and it enables
better performances on unsupervised classification than the
conventional methods.

Index Terms— Polarimetric synthetic aperture radar
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I. INTRODUCTION

INHERITING the advantages from synthetic aperture
radar (SAR), Polarimetric SAR (PolSAR) can work all

day and in all-weather condition due to its active imaging
mechanism and the ability to penetrate to the earth surface [1].
Compared with SAR, PolSAR acquires data from different
polarimetric channels instead of a single one and can provide
more information of the scenes with different land-cover
topologies. PolSAR images have been pervasively used in the
applications, such as land cover classification, disaster man-
agement, environment monitoring, and urban planning [2]–[5].
One of the central tasks underlying these applications is the
interpretation and analysis of PolSAR images, which has
attracted extensive attentions from researchers.

Many techniques have been developed for the interpreta-
tion of PolSAR images ranging from supervised methods to
unsupervised ones [5]–[15]. The supervised methods gener-
ally require a sufficiently large number of training samples
to achieve good classification results. It is expensive and
time-consuming to obtain these training samples. In contrast,
the unsupervised methods eliminate the need for the label
information, which could be more convenient for the automatic
interpretation task.

As a significant analysis tool for the PolSAR data, polari-
metric target decomposition (TD) theorems [1], [9] can pro-
vide insights into the scattering mechanism over the scenes
with different land-cover topologies. Many unsupervised clas-
sification methods have been proposed based on polarimet-
ric TD theorems [5], [12]–[15]. In the classification method
based on the Cloude–Pottier decomposition [12], the physical
scattering characteristics associated with PolSAR data were
first represented by a pair of parameters (i.e., the entropy
H and the α angle) and then assigned to one of the eight
classes according to its location in the H/α plane. This idea
was extended by introducing additional parameters such as
the anisotropy parameter and SPAN (the total polarimetric
power) to partition the feature space and to achieve the
more detailed classification results [16], [17]. The significant
improvement was observed by implementing the complex
Wishart classifier on the resulting TD-based classification
results, for which the statistical characteristics of PolSAR data
were considered [5], [13], [14], [17].
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Statistical characteristics of PolSAR data lay an alternative
foundation for the development of the unsupervised classifica-
tion approaches. It is shown in the literature that the complex
Wishart distribution [18] is effective to model the multilook
PolSAR data (e.g., the covariance matrix and the coherence
matrix) [1], [13], [19]. Fuzzy clustering methods utilize the
similarity/dissimilarity measures derived from this statistical
model to perform the unsupervised classification of PolSAR
data [20]–[22]. In contrast, the methods based on mixture
models directly characterize the PolSAR data and achieve the
classification results according to a decision rule. The Wishart
mixture model, which is a weighted combination of the
complex Wishart distribution, has been proposed to model
the PolSAR data and perform the classification [19], [21].
The probability theory underlying the model-based method
provides the foundation for constructing flexible models
and allows for the possibility to incorporate the useful
information.

Spatial information is favorable for the analysis and inter-
pretation of PolSAR images. The framework of spatially vari-
ant mixture model (SVMM), which is obtained by associating
each of the data with a unique set of mixing coefficients, pro-
vides the opportunity to incorporate the spatial information and
has been widely used in an image classification task [23]–[25].
Within the framework, the spatial constraint can be taken into
account by introducing the Markov random field (MRF) prior.
In this MRF prior, the influence of each neighboring pixel
on the centered pixel is evaluated according to the similarity
in the neighborhood [26], [27]. As an alternative to the MRF,
the mean template method is computationally efficient and
is shown to be effective in facilitating the good classifica-
tion [28]. The mean template method is utilized to capture
another kind of similarity in the neighboring pixels, which
declines with the increase of the spatial Euclidean distance
from the centered pixel. However, these two kinds of methods
have not fully exploited the similarities (e.g., the geometric
similarity and the covariance matrix similarity) to character-
ize the local correlation. Meanwhile, the data are generally
assumed to be Gaussian-distributed vectors or scalars, which
cannot always deal with the multilook PolSAR data in the
type of complex matrix and might not consider the statistical
characteristics of the multilook PolSAR data.

To overcome the aforementioned limitations, a patch-level
spatially variant Wishart mixture model (SVWMM) with dou-
ble constraints is proposed for the unsupervised classification
of PolSAR images. The proposed SVWMM describes the Pol-
SAR image by jointly modeling the pixels in a patch (including
the neighboring pixels and the centered pixel itself) instead of
an individual pixel. With the conjecture that the pixels in a
patch are not equally important, a responsibility parameter is
introduced to the proposed SVWMM, such that the importance
of different pixels in a patch can be taken into account. More
importantly, the responsibility parameter provides additional
flexibility for incorporating spatial information. Therefore,
on two different parameter spaces (i.e., the hyperparameter
in the posterior distribution of mixing coefficients and the
responsibility parameter), the geometric similarity and the
covariance matrix similarity are defined. As such, double

constraints are imposed to incorporate the local correlation
through the two defined similarities. Furthermore, a variational
inference (VI) algorithm is developed for an effective imple-
mentation of the proposed method, where the update equations
of the parameters are obtained in a closed form. Last but not
least, the cluster number, as well as the other parameters in the
proposed SVWMM, can be automatically determined from the
PolSAR data. In this way, the proposed method provides a
potential solution for some real applications, where the users
may not have enough backgrounds on optimizing parameters
(e.g., the cluster number). Several PolSAR data sets from
both the airborne and the spaceborne sensors are exploited
to validate the proposed method. The results of qualitative
and quantitative analyses in the experiments demonstrate that
the proposed method can provide smooth classification maps
and high classification accuracy, implying that the proposed
method is effective and can improve the performance of the
unsupervised classification over the conventional methods.

The remainder of this paper is organized as follows.
In Section II, the PolSAR data and the complex Wishart
distribution are introduced. Moreover, we briefly present the
SVMM and the framework of the VI. Section III is devoted
to the methodology, including the proposed SVWMM and its
VI algorithm. Section IV demonstrates the experimental results
and discussion. Finally, the conclusions of this paper are drawn
in Section V.

II. PRELIMINARIES

A. PolSAR Data and Complex Wishart Distribution

PolSAR system measures the backscattering signals of the
land covers in dual or quadratic polarizations to formulate
the PolSAR data. A target is fully represented by a complex
scattering vector (SV), which provides both the amplitude and
the phase information [1]. For fully PolSAR data, the complex
SV is given by

S = [SHH, SHV, SVH, SVV]T (1)

where T is the transpose operation and the elements represent
the measurements by the different combinations of transmit-
ting and receiving polarizations (e.g., the horizontal polariza-
tion and the vertical polarization). The backscattering signal
received from reciprocal media is assumed to be symmetric
for SHV and SVH, i.e., SHV = SVH. In this case, the SV takes
the form of S = [SHH,

√
2SHV, SVV]T .

PolSAR images are typically corrupted by the granular
speckle noise, degrading the image quality. To facilitate the
following processing, multilook sampling is commonly used
to reduce speckle by averaging the complex covariance matri-
ces or the complex coherence matrices of the neighboring pix-
els. Specifically, the multilook covariance matrix is obtained
by

C = 1

L

L∑
i=1

Si SH
i (2)

where L is the number of looks and (·)H is the Hermitian
transpose. The statistical characteristics of the multilook
covariance matrix in the PolSAR images can be described by
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complex Wishart distribution [1], [18], which is given by

W(C; L,�) = L Ld

�d (L)

|C|L−d

|�|L exp{−L · tr(�−1C)} (3)

where d is the number of elements in Si ,
�d (L) = π(d(d−1)/2)∏i=d−1

i=0 �(L − i), and �(x) =∫ +∞
0 zx−1 exp{−z}dz. � is the expectation of C. Here,
| · | and tr(·) are the operators of determinant and trace,
respectively. This distribution is essential for modeling the
multilook PolSAR data, and many similarity/dissimilarity
metrics are derived based on this distribution.

B. Spatially Variant Mixture Model

A finite mixture model (FMM) is a superposition of multiple
probability densities [29], [30], which provides a framework
to build flexible models for various types of data by appropri-
ately selecting the probability density function (pdf) of mixture
components. An M-component FMM can be represented by

p(x;�,�) =
M∑

i=1

πi f (x; λi) (4)

where � = {π1, π2, . . . , πM } is the set of the mixing
coefficients and f (x; λi ) is the pdf of the i th component.
� = {λ1, λ2, . . . , λM } includes the parameters in all the com-
ponents. The mixing coefficients are subjected to

∑
i πi = 1

and πi ≥ 0. With multiple components in (4), the FMM is
able to accurately model various data, even those with more
than one underlying modes.

To incorporate spatial context, the SVMM [23], [26] was
proposed based on the FMM by associating pixels with
their own mixing coefficients rather than the common mixing
coefficients, which is given by

p(xn;�,�) =
M∑

i=1

πni f (xn; λi ) (5)

where
∑M

i=1 πni = 1, πni ≥ 0, and � = {πni }. By introducing
an MRF prior or implementing mean template, the context
information in the neighboring pixels can be taken into consid-
eration, which facilitates smoothing images and contributing
to a classification map with better visual interpretation.

C. Variational Inference

VI is a Bayesian estimation method, which is able to
alleviate the overfitting phenomenon for small sample size and
automatically determine the number of components according
to data [31]. The idea underlying VI is to minimize the
Kullback–Leibler divergence between the true posterior dis-
tribution p(	|X) and the approximated posterior distribution
q(	), i.e.,

KL(q||p) =
∫

q(	) ln
q(	)

p(	|X) d	 (6)

where 	 = {	i } is the set of all the variables and X =
{x1, x2, . . . , xN } is the set of N observations. Minimiza-
tion of (6) is equivalent to maximizing the lower bound
of ln p(X) [29], which is given by

max
q(	)

L(q) =
∫

q(	) ln
p(X,	)

q(	)
d	. (7)

In practice, the solution to q(	) by maximizing (7) is rarely
in a closed form for a complicated mixture model. There-
fore, an approximation scheme is generally implemented to
achieve analytically tractable solutions. In VI, a factorized
approximation based on the mean field theory is effective
and commonly used, where each variable is assumed to be
independent [29], [31]–[33]. Thus, we have the approximated
posterior distribution as

q(	) ≈
∏

i

q(	i ). (8)

With this approximation, the posterior distribution of 	i can
be obtained by

ln q∗(	i ) = E j �=i [ln p(X,	)] + Const (9)

where E j �=i [ln p(X,	)] = ∫
ln p(X,	)

∏
j �=i q(	 j )d	 j ,

and Const is the constant to enforce normalization. In conjunc-
tion with appropriate conjugate prior distributions for these
variables, the analytically tractable solutions can be obtained
by simply matching the form of the prior distributions with
the corresponding posterior distributions.

The objective function in the maximization problem (7) can
also be given by

L(q) =
∫

q(	) ln p(x|	)d	−KL(q(	)||p(	)) (10)

where the first term can be viewed as a log-likelihood term.
The second term could penalize the overlapping components
in mixture models, resulting in simple models with less
components [31]. When VI is applied to the inference of
SVMM, the cluster number could be automatically determined
with the help of both the above-mentioned property of VI and
the introduction of the Dirichlet prior distribution over the
mixing coefficients [29].

III. METHODOLOGY

A. Proposed SVWMM

As elaborated earlier, the multilook PolSAR data are com-
plex matrices, which can be appropriately described by the
complex Wishart distribution. To formulate a model for the
multilook PolSAR data, it is intuitive to select the complex
Wishart distribution as the component density in the SVMM,
yielding a standard SVWMM with M components as

p(Cn) =
M∑

i=1

πniW
(
Cn; L,
−1

i

)
(11)

where we use {
−1
i } to facilitate assigning conjugate prior

distributions. Under the assumption of independent and identi-
cally distributed (i.i.d.) multilook PolSAR data, the parameters
in (11) can be estimated with the maximum likelihood estima-
tion. However, there are some limitations in (11). {πni } is the
only appropriate parameter to incorporate spatial information,
revealing that this model is not flexible enough to simultane-
ously incorporate the geometric similarity and the covariance
matrix similarity. In addition, i.i.d. assumption implies that this
model is still a pixel-based method and the local correlation
is not explicitly indicated in (11).
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The pixel-based SVWMM [see (11)] might not provide
reliable results for the interpretation of PolSAR images due
to the lack of the explicit indication of the local correlation.
To effectively exploit the local correlation, we can jointly
model the pixels in a patch (including the neighboring pixels
and the centered pixel itself) obtained by implementing a
spatial sliding window with the size of k×k. Thus, the PolSAR
image can be statistically described based on these patches
(the grouped pixels) rather than individual pixels. In practice,
each pixel in a patch is not generally of equal importance
to its patch. Therefore, to effectively exploit the importance
of different pixels in a patch, a responsibility parameter is
introduced to the proposed SVWMM, which is given by

p(Pn) =
M∑

i=1

πni

⎧⎨⎩ ∏
m∈Pn

W(Cm; L,
−1
i )ωnm

⎫⎬⎭ (12)

where Pn is the patch centered at pixel n. {ωnm} is the
set of the responsibility parameters indicating the importance
of the mth pixel in the nth patch, and

∑
m∈Pn

ωnm = 1.
In addition to the advantage of flexibly describing the patches,
the responsibility parameter is more important in providing
additional flexibility for incorporating the spatial information.
Moreover, when all the PolSAR data in a patch are equal
to each other, we have Cm = Cs and ωnm = 1/k2 for
(m, s) ∈ Pn . Then, (12) reduces to the standard SVWMM
[see (11)], which implies that the proposed SVWMM is more
flexible in form and is an extension of the standard SVWMM.
In Section III-C, the design of the responsibility parameter
{ωnm} is elaborated.

B. Variational Inference for the Proposed SVWMM

Given a PolSAR image with N covariance matrices C =
{C1,C2, . . . ,CN }, the log-likelihood function of the proposed
SVWMM is given by

P(C) =
N∑

n=1

ln

⎧⎨⎩
M∑

i=1

πni {
∏

m∈Pn

W(Cm; L,
−1
i )ωnm }

⎫⎬⎭ .
(13)

In view of the summation in the logarithm operation,
it is challenging to estimate the parameters {πni } and {
i}
by directly maximizing (13). Therefore, hidden variables
Z = {z1, z2, . . . , zn} are introduced to mitigate this
difficulty [29], [31]. Specifically, zn = [zn1, zn2, . . . , znM ] is
a binary vector for the nth observation, in which only one
of the elements is 1 (i.e., zni = 1) and the others are 0
(i.e., znk = 0, k �= i ). By identifying the only element
with the value of 1, this vector explicitly indicates which
component an observation belongs to. Thus, the observations
can be statistically described by a pdf conditioning on Z.
The multinomial distribution is assigned as the conditional
distribution of zn on πn = [πn1, πn2, . . . , πnM ]. Furthermore,
the Dirichlet distribution is selected as the prior distribution of
the vector πn , which is conjugate with the multinomial distri-
bution and enforces the summation of πni over i to be 1. More
importantly, with this conjugate prior distribution, the closed-
form update equations could be derived, contributing to an

efficient inference algorithm. These distributions are given
in the following forms as:

p(Z|�) =
N∏

n=1

{
M∏

i=1

π
zni
ni

}
(14)

p(�; {αni0}) =
N∏

n=1

{
�(
∑M

i=1 αni0)∏M
i=1 �(αni0)

·
M∏

i=1

π
αni0−1
ni

}
(15)

p(C|Z) =
N∏

n=1

M∏
i=1

⎧⎨⎩ ∏
m∈Pn

W(Cm; L,
−1
i )ωnm

⎫⎬⎭
zni

(16)

where every hyperparameter αni0 is positive. By further assign-
ing prior distributions to the parameters in the component
densities, a fully Bayesian inference model is established.
Consequently, we have the complete data log-likelihood
function as

ln p(C,Z,�,
)

=
N∑

n=1

M∑
i=1

zni

⎧⎨⎩∑
m∈Pn

ωnm · lnW(Cm; L,
−1
i )

⎫⎬⎭
+

M∑
i=1

ln p(
i; θi0)+ ln p(Z|�)+ ln p(�; {αni0}) (17)

where p(
i ; θi0) is the prior distribution of the parameter set
in the density of i th component and θi0 is the set of corre-
sponding hyperparameters. This complete data log-likelihood
function is significant both in learning model parameters and
for the classification of observations.

To establish the Bayesian model for the inference of the
proposed SVWMM, the prior distributions are required for
the parameters in component densities. Specifically, L in the
proposed SVWMM is the number of looks, which should
be common for each component. Thus, L is not assigned
prior distribution and is treated as a known parameter, which
can be determined according to the data of the homoge-
neous area. As for {
i }, the complex Wishart distribution
W(
i ; ηi0,W−1

i0 ) is selected as its conjugate prior distribution
facilitating the derivation of the closed-form update equations.
By substituting the component density and the prior distrib-
utions into (17), we have the log-likelihood function of the
proposed SVWMM as

ln p(C,	)

=
∑

n

∑
i

zni

⎧⎨⎩∑
m∈Pn

ωnm[Ld ln L − ln�d (L)

+ (L − d) ln |Cm | + L ln |
i | − L · tr(
i Cm)]
⎫⎬⎭

+
∑

n

∑
i

zni ln πni +
∑

n

∑
i

(αni0 − 1) lnπni

+
∑

i

{(ηi0 − d) ln |
i | − ηi0 · tr(Wi0
i )} + Const

(18)

where Const is the summation of the terms that are irrelevant
to the variables 	 = {Z,�,
}. The first term in (18) indicates
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the contribution of the observations to the log-likelihood
function. In particular, by observing this term, the contribution
from a patch to the log-likelihood function is given by a
weighted combination of the contribution of the pixels in the
corresponding patch, which provides a flexible representation
of a patch and can consider the spatial information in the
neighboring pixels by designing the responsibility parameter
{ωnm}.

Following the framework of VI, we obtain the posterior
distribution of Z in logarithm as:

ln q∗(Z)

=
∑

n

∑
i

zni ln ρni + Const

=
∑

n

∑
i

zni

⎧⎨⎩∑
m∈Pn

ωnm(Ld ln L − ln�d (L)

+(L − d) ln |Cm | + LE[ln |
i |] − L · tr(E[
i ]Cm))

+E[lnπni ]
⎫⎬⎭+ Const (19)

where E[•] is the expectation. By further implementing nor-
malization based on (19), the solution to Z can be obtained
by

ln q∗(Z) =
∑

n

∑
i

zni ln rni (20)

where rni = ρni/
∑

i ρni and E[zni ] = rni .
Similarly, the posterior distributions of � and 
 in loga-

rithm are, respectively, given by

ln q∗(�) =
∑

n

∑
i

(αni0 + E[zni ] − 1) lnπni + Const (21)

and

ln q∗(
)

=
∑

i

⎧⎨⎩(ηi0 +
∑

n

∑
m∈Pn

L · E[zni ] · ωnm − d) ln |
i |

−tr(
[
ηi0Wi0 +

∑
n

∑
m∈Pn

LE[zni ]ωnmCm
] ·
i )

⎫⎬⎭+ Const.

(22)

Since the conjugate prior distributions are assigned, these
resulting posterior distributions keep the same function form as
their prior distributions. With this knowledge, we can directly
obtain the update equations of the hyperparameters in an
elementwise form as

αni = αni0 + E[zni ] (23a)

ηi = ηi0 +
∑

n

∑
m∈Pn

L · E[zni ] · ωnm (23b)

Wi = 1

ηi
{ηi0Wi0 +

∑
n

∑
m∈Pn

LE[zni ]ωnm · Cm}. (23c)

Therefore, the parameters in the proposed SVWMM can be
estimated by alternatively evaluating (23a)–(23c) until the stop

criterion is reached. The necessary expectations are calculated
according to

E[ln πni ] = ψ(αni )− ψ
(∑

i

αni

)
(24)

E[zni ] = rni (25)

E[
i ] = W−1
i (26)

E[ln |
i |] = ln
∣∣W−1

i

∣∣− d ln ηi +
d−1∑
j=0

ψ(ηi − j) (27)

where ψ(x) = d ln�(x)/dx is the digamma function. With
the resulting SVWMM, the label of nth pixel in the PolSAR
image can be determined by identifying the largest element
in zn [34], [35], i.e.,

ln = arg max
i

E[zni ]. (28)

C. Double Constraints

The similarities in the neighborhood might not be fully
exploited by the existing methods to perform the interpretation
task of the multilook PolSAR images, for which only one of
the geometric similarity and the covariance matrix similar-
ity is considered. The geometric similarity increases as the
spatial distance declines, and the covariance matrix similarity
describes the variation of multilook PolSAR data in a local
area. Simultaneous incorporation of these two similarities can
benefit the analysis and interpretation of PolSAR images due
to the sufficient consideration of the local correlation. To this
end, the geometric similarity and the covariance matrix simi-
larity are first defined from the spatial Euclidean distance and
the distance measure of the covariance matrices. Then, double
constraints are imposed by employing these two similarities
to fully investigate the local correlation.

In the proposed method, two parameters (i.e., the hyper-
parameter in the posterior distribution of mixing coefficients
and the introduced responsibility parameter) are available
for incorporating the spatial information. The hyperparameter
in the posterior distribution of mixing coefficients (i.e., {αni })
is related to the count of pixels in each cluster, which is
revealed by summing αni in (23a) over all the pixels, i.e.,∑

n

αni =
∑

n

αni0 +
∑

n

E[zni ]
= α̃i0 + Ni , (29)

where Ni can be interpreted as the expected pixel number
of cluster i in the PolSAR image. In contrast, according
to (18), the responsibility parameter represents the portion
of the contribution from each pixel to the patch in the log-
likelihood function. In this regard, the responsibility parameter
is the more appropriate choice for incorporating the spatial
information.

To achieve the appropriate classification results of the Pol-
SAR images, the top priority is given to the incorporation
of the covariance matrix similarity, which can control the
smoothness in the results. As such, this similarity is obtained
by evaluating the responsibility parameter according to

ωnm = exp{−DW (Cm ,Cn)}∑
m∈Pn

exp{−DW (Cm ,Cn)} (30)
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Algorithm 1 Algorithm for the Inference of the Proposed
SVWMM
1: Compute {ωnm} by (30) and {γnm} in (31)
2: M ← initial number of components
3: {αni0, ηi0,Wi0} ← initial values of the hyperparameters

in the prior distributions
4: E[Z] ← initial expectation of the indicator variable
5: t ← 0
6: while Stop criterion is not satisfied, do
7: Evaluate α(t+1)

ni by (23a) and (31)
8: Evaluate η(t+1)

i by (23b)
9: Evaluate W (t+1)

i by (23c)
10: Update E[zni ](t+1) according to (19) and (20)
11: t ← t + 1
12: end while
13: Output {α∗ni , η

∗
i ,W∗i } ← {α(t)ni , η

(t)
i ,W (t)

i }
14: Return E[zni ](t)

where Cn is the average of all the pixels in Pn

and DW (Cm ,Cn) = 1/2[ln |CmCn |+tr(C−1
m Cn)+tr(C−1

n Cm)]
is a symmetric pairwise distance measure of similarity [36].
A lower value of the distance measure implies more similarity.
Therefore, (30) entitles the pixels with more similarity to more
importance in the corresponding patch.

The geometric similarity is defined from the spatial Euclid-
ean distance and is incorporated by implementing the mean
template on {αni } (i.e., the hyperparameter in the posterior dis-
tribution of mixing coefficients). Specifically, {αni } is updated
in an elementwise form by

αni =
∑

m∈Pn

γnmαni (31)

where γnm = σnm/
∑

m∈Pn
σnm and σnm = 1/(1 + d2

nm). dnm
is the Euclidean distance between the centered pixel and the
pixel m in patch n. With this implementation, the pixels nearer
to the centered pixel n have more contribution to patch n.
Furthermore, the geometric similarity is conveyed to E[zni ]
through the term E[ln πni ] as shown in (19), which finally
affects the classification map resulting from the criteria such
as that in (28).

By evaluating (30) and (31), double constraints are imposed
in the proposed method by simultaneously considering the
two similarities. The complete algorithm for the inference
of the proposed SVWMM with double constraints is given
in Algorithm 1. For the initialization of the hyperparameters
in the prior distributions, αni0 = 1× 10−1 and ηi0 = 5 are the
general choice. According to our experience, the appropriate
value of Wi0 could be selected in the range of (1×102× Iavg ∼
1 × 105 × Iavg) · I, where Iavg is obtained by averaging the
intensity of all the channels (e.g., the diagonal elements of the
covariance matrix). The selection of the patch size depends
on the data set. 3 × 3 and 5 × 5 windows are generally
utilized. The use of larger patch size could provide smooth
results in the homogeneous area, and the use of smaller patch
size can preserve more details. Thus, Wi0 can be appropri-
ately selected, and the cluster number can be automatically

Fig. 1. Pauli RGB images over the test sites. (a) L-band PolSAR image
with the size of 395 × 415 was acquired by Deutsches Zentrum für Luft-
und Raumfahrt (DLR) ESAR over Oberpfaffenhofen, Germany. (b) Excerpt
of the C-band PolSAR image with the size of 513 × 345 was acquired
by RADARSAT-2 over Vancouver, BC, Canada. (c) This is a 383 × 281
excerpt of the PolSAR image over the agriculture area in Flevoland measured
by NASA/JPL airborne synthetic aperture radar (AIRSAR) in the L-band.
(d) 586 × 595 image over San Francisco Bay was obtained by NASA/JPL
AIRSAR in the P-band. (e) 544×523 PolSAR image of sea ice was acquired
by the Environment Canada SAR580-Convair in the Northumberland Strait
off the Coast of New Brunswick, Canada. (f) NASA/JPL AIRSAR L-band
Pauli RGB image over the savanna area in the north of Kakadu Northern
Territory of Australia, the image size of which is 792× 827.

determined according to the PolSAR data instead of being
manually set.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In the experiments, the effectiveness of the proposed method
is verified based on six real PolSAR images, as shown
in Fig. 1. Various types of terrains and objects are included
ranging from ocean, forest, sea ice, agriculture area to
ships, roads, streets, and buildings. Furthermore, these images
are acquired in different frequencies (i.e., P-band, L-band,
and C-band) and by either airborne or spaceborne sen-
sor (i.e., NASA/Jet Propulsion Laboratory (JPL) AIRSAR,
DLR E-SAR, SAR580-Convair, and RADARSAT-2), which
facilitates an extensive validation of the proposed method
in both the qualitative and the quantitative manner. The data
sets in Fig. 1(a)–(d) are, respectively, named “Oberp” short
for “Oberpfaffenhofen”, “Vancouver”, “Flevoland”, and “San
Francisco” according to their corresponding place names.
The remaining data sets in Fig. 1(e) and (f) are referred to as
“Sea Ice” and “Savanna” due to their landscapes. All the data
sets are preprocessed by the refined Lee filter [37]. The labels
of pixels in the classification maps resulting from both the
variational WMM and the proposed SVWMM are obtained
according to (28). The proposed method is implemented with
MATLAB programming language, and the experiments are
conducted with MATLAB R2015b on Ubuntu Linux operation
system with 64-GB RAM and Intel Core i7-3930K CPU.

A. Smoothness and Cluster Number

We take the PolSAR image “Vancouver” as an exam-
ple to see the influence of the parameter settings in the
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Fig. 2. Resulting classification maps with the patch sizes of (a) 3 × 3,
(b) 5 × 5, (c) 7 × 7, and (d) 9 × 9. All the other parameters are fixed as
{αni0 = 1× 10−5, ηi0 = 5,Wi0 = 1× 1010 · I} for all n and i values, where
I is the identity matrix.

Fig. 3. Resulting classification maps by setting the parameter αni0 with
various values of (a) 1 × 10−5, (b) 1 × 10−2, (c) 1 × 100, and (d) 1× 102.
The patch size is fixed as 5 × 5, and the other parameters are fixed as
{ηi0 = 5,Wi0 = 1× 1010 · I} for all i values, where I is the identity matrix.

Fig. 4. Resulting classification maps using the parameter Wi0 with various
values of (a) 1× 109 · I, (b) 1× 1010 · I, (c) 1× 1011 · I, and (d) 1× 1012 · I,
where I is the identity matrix. The patch size is fixed as 5× 5, and the other
parameters are fixed as {αni0 = 1× 10−5, ηi0 = 5} for all n and i values.

proposed SVWMM. We vary only one of the parameters and
keep the other parameters being fixed. In the experiments,
the proposed SVWMM is initialized with 10 components,
which could be much more than the underlying number of
components. The parameters (i.e., {αni0, ηi0,Wi0}) in the prior
distributions are equally set for all the components so as to
avoid the initial discrimination on any component. The result-
ing classification maps are illustrated in Figs. 2–4.

It can be observed from Fig. 2 that the land, the ocean, and
the ships are recognized by the proposed method. For small
patch sizes (e.g., 3×3 and 5×5), the pixels of the line in the
middle of the classification map are identified to be different
from the ocean, which is obviously the misclassification.
With larger patch sizes, this misclassification can be corrected
by incorporating more spatial context information from the
surrounding pixels, and less miscellaneous pixels are observed
[see Fig. 2(c) and (d)]. It is worth noting that the results

with small patch sizes are very similar to the corresponding
Pauli RGB image by observing Figs. 1(b) and 2(a) and (b),
which could imply that a small patch size tends to identify
more details although some of these details could not be
necessary. However, the parameter {αni0} plays a different role
in controlling the smoothness of the resulting classification
map. Although the classification results in the ocean area
(i.e., blue pixels) are similar for diversifying values of αni0,
it is quite different in the land (the lower parts of the images),
as shown in Fig. 3. Specifically, a relatively larger value
of αni0 (e.g., 1 × 102) leads to a complex structure in the
land. By comparison, the simple structure is recognized for
relatively small αni0 according to Fig. 3(a) and (b), which are
more convenient for the visual interpretation.

The classification maps for various values of Wi0 are
demonstrated in Fig. 4, from which the resulting cluster
numbers can also be identified. The resulting cluster numbers
in Fig. 4(a)–(d) are 10, 8, 3, and 2, respectively. As such, there
is an evidence that the resulting cluster number decreases and
the classification maps become smooth as the value of Wi0
increases. Although large Wi0 could result in oversmooth-
ing results, the good classification map can be achieved by
appropriately selecting the values of Wi0. In addition, it is
found that the resulting number of clusters can be less than
the initial 10 components. Therefore, the proposed method
can automatically determine the cluster number according to
the PolSAR data if the initial number of components is large
enough.

B. Qualitative Analysis

The qualitative analysis of the proposed method is first
performed by identifying the land use in data sets “Oberp”,
“San Francisco”, and “Vancouver”. Then, data sets “Sea Ice”
and “Savanna” are employed to test the performance of
the proposed method on the classification of natural areas.
The proposed method is evaluated by comparing with: 1) the
H/α-Wishart method proposed by Lee et al. [5]; 2) the
Chernoff–Wishart method proposed by Dabboor et al. [14];
and 3) the variational Wishart mixture model (see the
Appendix). For both the H/α-Wishart method and the
Chernoff–Wishart method, the nearest two clusters are merged
until the specified number of clusters is reached.

We first determine the specified cluster number for both
the H/α-Wishart method and the Chernoff–Wishart method
and then give the initial component number for the variational
WMM and the proposed method. For data set “Oberp”, we
set the cluster number of both the H/α-Wishart method
and the Chernoff–Wishart method to 8 to identify the rich
details. According to the main objects and land use, the cluster
numbers for data sets “San Francisco” and “Vancouver” are
all specified as 3. Data set “Sea Ice” includes first year
ice (FYI), rough FYI, ridged FYI, and leads. In data set
“Savanna”, water, mangroves, dense vegetation, and sparse
vegetation are observed from the corresponding optical image
in December 1996 provided by Google Earth. Therefore,
their cluster number is identified as 4. For the variational
WMM and the proposed method, the initial component
numbers are set to be 10, which is a larger value than the
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Fig. 5. Pauli RGB images of the test data sets and the classification maps resulting from the different methods. The first row corresponds to data set “Oberp”,
the second row to “San Francisco”, and the third row to “Vancouver”. (a), (f), and (k) Pauli RGB images of the test data sets. (b), (g), and (l) Classification
maps using the H/α-Wishart method. (c), (h), and (m) Classification maps using the Chernoff–Wishart method. (d), (i), and (n) Classification maps using the
variational WMM. (e), (j), and (o) Classification maps using the proposed method.

TABLE I

AVERAGE ELAPSED TIME FOR THE H/α-WISHART METHOD, THE CHERNOFF–WISHART METHOD,
THE VARIATIONAL WMM, AND THE PROPOSED METHOD

underlying cluster numbers of these data sets. The appro-
priate cluster number for these data sets can be automati-
cally determined by the variational WMM and the proposed
method.

1) Classification of Human Activity Areas: The classifi-
cation maps resulting from all the four methods are pre-
sented in Fig. 5. According to Fig. 5(a)–(e), the build-
ings, the woodland, and the ground are identified and the
rich details are demonstrated by all the methods. There
are less miscellaneous pixels in the yellow circle and the
red circle of Fig. 5(e), revealing that the proposed method
can provide better classification results in the homogeneous
area.

The Pauli RGB image and the corresponding classification
maps of the P-band data set “San Francisco” are shown
in Fig. 5(f)–(j). It is observed from Fig. 5(j) that the struc-
ture and the details in the red circles are explicitly exhib-
ited, which is in accordance with those in the Pauli RGB
image [see Fig. 5(f)]. In contrast, the H/α-Wishart method
and the Chernoff–Wishart method cannot accurately capture
these structures, leading to the loss of details according to
Fig. 5(g) and (h). The variational WMM demonstrates the
competitive performance in view of the good results in the
red circles of Fig. 5(i). However, compared with the results
of the proposed method, there are more miscellaneous and
misclassified pixels for the variational WMM in the blue
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Fig. 6. Pauli RGB images of the test data sets and the classification maps resulting from the different methods. The first row corresponds to data set “Sea Ice”
and the second row to “Savanna”. (a) and (f) Pauli RGB images of the test data sets. (b) and (g) Classification maps using the H/α-Wishart method. (c) and
(h) Classification maps using the Chernoff–Wishart method. (d) and (i) Classification maps using the variational WMM. (e) and (j) Classification maps using
the proposed method.

Fig. 7. (a) Ground truth for data set “Flevoland”. The classification results of the proposed method (b) without considering both similarities, (c) considering
only the geometric similarity, (d) considering only the covariance matrix similarity, and (e) considering both the similarities.

TABLE II

QUANTITATIVE EVALUATION OF THE EFFECT OF THE GEOMETRIC SIMILARITY AND THE COVARIANCE MATRIX SIMILARITY

ON THE CLASSIFICATION OF DATA SET “FLEVOLAND”

dotted circle, implying that the incorporation of the spatial
information in the proposed method is helpful in facilitating
the visual interpretation of PolSAR images.

Data set “Vancouver” exhibits solecistic structures such
as the horizontal lines in the red circle of Fig. 5(k),
which brings about the challenge for its interpretation. For
the H/α-Wishart method and the Chernoff–Wishart method
[see Fig. 5(l) and (m)], the ships are correctly identified.
However, the solecistic structures are preserved and the
ocean area is classified as two categories, which are not
desired. The WMM provides a better result as presented
in Fig. 5(n), where the ocean area is identified as a whole part.

Nevertheless, the pixels of the meaningless lines in the red
circle are not completely assigned to the appropriate class.
For this scenario, the spatial context is quite useful and can
guide these pixels to be appropriately classified. As shown
in Fig. 5(o), the proposed method appropriately identifies the
pixels of the solecistic structures in the red circle as the
ocean, contributing to a good classification map for visual
interpretation. In addition, there are less miscellaneous pixels
for the proposed method in the black dotted circle.

The average elapsed time of the four methods (i.e., the
H/α-Wishart method, the Chernoff–Wishart method, the varia-
tional WMM, and the proposed method) over 30 independent
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Fig. 8. Test data and the classification results. (a) Optical image over Flevoland, The Netherlands. (b) Pauli RGB image of the data set. (c) Ground
truth. (d) Color code. The resulting classification maps by employing (e) H/α-Wishart method, (f) Chernoff–Wishart method, (g) Variational WMM,
and (h) proposed method.

TABLE III

QUANTITATIVE EVALUATION OF THE H/α-WISHART METHOD, THE CHERNOFF–WISHART METHOD, THE VARIATIONAL WMM,
AND THE PROPOSED METHOD BASED ON DATA SET “FLEVOLAND”

tests are presented in Table I. In view of the larger size
of data set “San Francisco”, all the four methods consume
more time for this data set than the other two (i.e., “Oberp”
and “Vancouver”), as shown in Table I. Although the H/α-
Wishart method and the variational WMM are generally faster,
the proposed method can incorporate local correlation and
provide better classification results in the acceptable run-
ning time. Meanwhile, compared with the Chernoff–Wishart
method, the proposed method is more computationally effi-
cient according to Table I. The Chernoff–Wishart method
always consumes much time. This is because the Chernoff–
Wishart method merges two clusters from a large initial
number (generally 48), which requires many iterations to

reach the specified cluster number. In addition, the Wishart
clustering procedure in the Chernoff–Wishart method, which
is also an iterative procedure, is always performed after
each merging operation, leading to more consumption of
time.

2) Classification of Natural Areas: The Pauli RGB image
of data set “Sea Ice” [see Fig. 6(a)] demonstrates complex
structures in view of the many edges. Even the whole block
of the ice in the upper part exhibits bright and dark parts.
This structure is well identified by the proposed method,
as shown in Fig. 6(e). In addition, the proposed method
also correctly distinguishes the leads (such as that in the red
circle), which are important for the navigation. For data set
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TABLE IV

CONFUSION MATRICES RESULTING FROM THE H/α-WISHART METHOD, THE CHERNOFF–WISHART METHOD,
THE VARIATIONAL WMM, AND THE PROPOSED METHOD BASED ON DATA SET “FLEVOLAND”

“Savanna”, the H/α-Wishart method does not identify the
complete structure of the water according to the red circle of
Fig. 6(g). Although the Chernoff–Wishart method can preserve
this structure, the misclassification for the water is observed
from Fig. 6(h) and the details are lost in the black circle.
The proposed method provides the improved classification
map in terms of image details’ preservation [see Fig. 6(j)].

C. Quantitative Analysis

To quantitatively evaluate the proposed method, data set
“Flevoland” is employed in view of its sufficient ground truth,
as shown in Fig. 7(a). With this data set, two experiments are
carried out to investigate the effect of two similarities and to
evaluate the proposed method against the comparison methods,
including the H/α-Wishart method, the Chernoff–Wishart
method, and the variational WMM. The number of classes for
the H/α-Wishart method and the Chernoff–Wishart method is
specified as 8 [8]. For a fair comparison, the initial class num-
ber for both the variational WMM and the proposed method is
also specified as 8. To calculate the metrics for the quantitative
analysis, it is important to obtain an appropriate mapping of
the generated labels by the unsupervised classification to the
ground-truth labels. By exhaustively trying all the possible
mappings from the generated labels to the ground-truth labels,

the one with the highest overall accuracy (OA) is selected, and
we can have the comparable classification map with the ground
truth.

1) Effect of Double Constraints: By presenting the results
with either the geometric similarity or the covariance matrix
similarity, the effect of these two similarities can be investi-
gated. The corresponding OA and the kappa coefficient (κ)
are given in Table II. Under this circumstance, the proposed
SVWMM reduces to (11) and the constraint can be imposed
by implementing the mean template on {αni } (i.e., the hyper-
parameter in the posterior distribution of mixing coefficients).
The result without considering both similarities could be
obtained by further eliminating the implementation of the
mean template. The ground truth of data set “Flevoland” and
the classification maps are illustrated in Fig. 7.

As shown in Fig. 7(b), the result without considering both
similarities exhibits many miscellaneous pixels, leading to
the misclassification and the difficulty in the visual inter-
pretation. Considering either the geometric similarity or the
covariance matrix similarity will significantly improve the
classification performance in view of the good classification
maps in Fig. 7(c) and (d), which is also confirmed in Table II.
The covariance matrix similarity can result in smoother results
in the homogeneous area (e.g., the area in the red circle) than
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the geometric similarity. Nevertheless, none of them provides
the coinciding results with the ground truth in the black circles
of Fig. 7(c) and (d). By observing Fig. 7(e), the smooth result
is achieved in view of the less miscellaneous pixels in the pink
blocks, implying that the proposed method can further improve
the classification performance by simultaneously considering
the two similarities.

2) Classification of Agriculture Area: In Fig. 8, the exper-
imental results from the H/α-Wishart method, the Chernoff–
Wishart method, the variational WMM, and the proposed
method are illustrated. The metrics, including producer’s accu-
racy, OA, and the κ coefficient, are summarized in Table III for
the quantitative evaluation. Moreover, the confusion matrices
of the H/α-Wishart method, the Chernoff–Wishart method,
the variational WMM, and the proposed method are demon-
strated in Table IV.

By observing Fig. 8(e)–(h), all of the four methods pro-
vide appropriate classification maps. However, according to
Tables III and IV, the class “lucerne” is not identified by
the H/α-Wishart method. The H/α-Wishart method can find
at most eight classes according to the locations of pixels
in the entropy and α plane [12]. This small number of classes
inhibits its application in the classification of the complicated
PolSAR images with more than eight classes. Moreover,
the H/α-Wishart method cannot identify the details in the
middle red circle by comparing Fig. 8(e) and (b). In contrast,
the structures and details are explicitly recognized by the
proposed method according to the results in the red circles of
Fig. 8(h). In addition to this good preservation of structures,
the proposed method allows for the smooth classification result
in the homogeneous area. Specifically, less miscellaneous
pixels and a smooth region are observed for the proposed
method, as shown in the black dotted circles of Fig. 8(h).
In addition, only the proposed method can correctly identify
the whole block of rapeseed in the upper black circle by
comparing the results of all the four methods with the ground
truth in Fig. 8(c). According to Table IV, the diagonal elements
in the confusion matrix of the proposed method achieve larger
values and the values of other elements are small, implying
that the proposed method achieves the good result. There is
an evidence that the proposed method can provide appropriate
classification results, which is confirmed by its large values of
producer’s accuracy, OA, and κ in Table III.

V. CONCLUSION

A patch-level SVWMM with double constraints has been
proposed for the unsupervised classification of multilook
PolSAR images. In the proposed method, the introduced
responsibility parameter facilitates both imposing double con-
straints and utilizing the importance of different pixels in a
patch. We consider not only the geometric similarity but
also the covariance matrix similarity. The closed-form updates
in the VI algorithm for the proposed SVWMM are achieved.
The experiments were performed to verify the effectiveness
and to evaluate the performance of the proposed method based
on the P-band, L-band, and C-band PolSAR images acquired
from either the airborne or spaceborne sensors. The patch size
and the hyperparameter {αni0} in the prior distribution of the

mixing coefficients {πni } play different roles in controlling the
smoothness of the classification results. The cluster number
can be automatically determined according to the PolSAR
data by the proposed method. The resulting cluster number
is influenced by the hyperparameter {Wi0} in the prior dis-
tribution of the density parameter {
i }, for which a larger
value of {Wi0} can lead to the classification results with
less clusters. The experimental results demonstrate that the
proposed method can achieve appropriate classification results
for the automatic interpretation of PolSAR images.

A future work will investigate the extension of the pro-
posed method for the classification of high-resolution PolSAR
images. In high-resolution PolSAR images, the scatterer num-
ber in one resolution cell is limited, under which the central
limit theorem is not always valid. The zero-mean complex
Gaussian distribution and the complex Wishart distribution
could fail to capture the statistical characteristics of PolSAR
data in high-resolution images. One potential solution is to
develop models with more flexibility to characterize high-
resolution PolSAR data. Another line of the future work will
investigate the superpixel-level SVWMM to preserve clear
boundaries and to develop fast learning algorithm for the
PolSAR image classification. Finally, more PolSAR data sets
from natural landscape areas will be exploited to test the
performance of the proposed method in the scenarios with
a complicated scattering behavior.

APPENDIX

VARIATIONAL WMM

Within the framework of VI, we can conveniently have
the update equations for the WMM. The formulation of the
Bayesian model for the inference of the WMM is similar to
the proposed SVWMM, where the latent variable Z is intro-
duced and its prior distribution is endowed with the Dirichlet
distribution. The number of looks is treated as a known
parameter as that in the proposed SVWMM. The complex
Wishart distribution is selected as the prior distribution for
each random variable �−1

i , leading to conjugacy between the
prior distribution and the posterior distribution. On this basis,
the WMM can be learned according to the following update
equations:

E[zni ] = ρni

/∑
i

ρni (32a)

αi = αi0 +
∑

n

E[zni ] (32b)

ηi = ηi0 +
∑

n

L · E[zni ] (32c)

Wi = 1

ηi

{
ηi0Wi0 +

∑
n

L · E[zni ] · Cn

}
(32d)

where ρni can be evaluated according to

ln ρni = {Ld ln L − ln�d (L)+ (L − d) ln |Cn |
+ L · E[ln |
i |] − L · tr(E[
i ]Cn)]}
+E[ln πi ]. (33)

The expectations E[
i ] and E[ln |
i |] can be calculated
by (26) and (27), respectively. E[ln πi ] can be obtained
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according to the standard result of the Dirichlet distribution
as E[ln πi ] = ψ(αi ) − ψ(∑i αi ). As such, all the parame-
ters can be estimated by alternatively evaluating (32a)–(32d)
until the stop criterion is reached. With the resulting WMM,
the classification map is obtained according to E[zni ]. One of
the effective criteria is (28).
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